1   /*
2    *  %W% %E%
3    *
4    * Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved.
5    * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6    */
7   
8   package java.util;
9   import java.io.*;
10  
11  /**
12   * Hash table based implementation of the <tt>Map</tt> interface.  This
13   * implementation provides all of the optional map operations, and permits
14   * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
15   * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
16   * unsynchronized and permits nulls.)  This class makes no guarantees as to
17   * the order of the map; in particular, it does not guarantee that the order
18   * will remain constant over time.
19   *
20   * <p>This implementation provides constant-time performance for the basic
21   * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
22   * disperses the elements properly among the buckets.  Iteration over
23   * collection views requires time proportional to the "capacity" of the
24   * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
25   * of key-value mappings).  Thus, it's very important not to set the initial
26   * capacity too high (or the load factor too low) if iteration performance is
27   * important.
28   *
29   * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
30   * performance: <i>initial capacity</i> and <i>load factor</i>.  The
31   * <i>capacity</i> is the number of buckets in the hash table, and the initial
32   * capacity is simply the capacity at the time the hash table is created.  The
33   * <i>load factor</i> is a measure of how full the hash table is allowed to
34   * get before its capacity is automatically increased.  When the number of
35   * entries in the hash table exceeds the product of the load factor and the
36   * current capacity, the hash table is <i>rehashed</i> (that is, internal data
37   * structures are rebuilt) so that the hash table has approximately twice the
38   * number of buckets.
39   *
40   * <p>As a general rule, the default load factor (.75) offers a good tradeoff
41   * between time and space costs.  Higher values decrease the space overhead
42   * but increase the lookup cost (reflected in most of the operations of the
43   * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>).  The
44   * expected number of entries in the map and its load factor should be taken
45   * into account when setting its initial capacity, so as to minimize the
46   * number of rehash operations.  If the initial capacity is greater
47   * than the maximum number of entries divided by the load factor, no
48   * rehash operations will ever occur.
49   *
50   * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,
51   * creating it with a sufficiently large capacity will allow the mappings to
52   * be stored more efficiently than letting it perform automatic rehashing as
53   * needed to grow the table.
54   *
55   * <p><strong>Note that this implementation is not synchronized.</strong>
56   * If multiple threads access a hash map concurrently, and at least one of
57   * the threads modifies the map structurally, it <i>must</i> be
58   * synchronized externally.  (A structural modification is any operation
59   * that adds or deletes one or more mappings; merely changing the value
60   * associated with a key that an instance already contains is not a
61   * structural modification.)  This is typically accomplished by
62   * synchronizing on some object that naturally encapsulates the map.
63   *
64   * If no such object exists, the map should be "wrapped" using the
65   * {@link Collections#synchronizedMap Collections.synchronizedMap}
66   * method.  This is best done at creation time, to prevent accidental
67   * unsynchronized access to the map:<pre>
68   *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
69   *
70   * <p>The iterators returned by all of this class's "collection view methods"
71   * are <i>fail-fast</i>: if the map is structurally modified at any time after
72   * the iterator is created, in any way except through the iterator's own
73   * <tt>remove</tt> method, the iterator will throw a
74   * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
75   * modification, the iterator fails quickly and cleanly, rather than risking
76   * arbitrary, non-deterministic behavior at an undetermined time in the
77   * future.
78   *
79   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
80   * as it is, generally speaking, impossible to make any hard guarantees in the
81   * presence of unsynchronized concurrent modification.  Fail-fast iterators
82   * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
83   * Therefore, it would be wrong to write a program that depended on this
84   * exception for its correctness: <i>the fail-fast behavior of iterators
85   * should be used only to detect bugs.</i>
86   *
87   * <p>This class is a member of the
88   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
89   * Java Collections Framework</a>.
90   *
91   * @param <K> the type of keys maintained by this map
92   * @param <V> the type of mapped values
93   *
94   * @author  Doug Lea
95   * @author  Josh Bloch
96   * @author  Arthur van Hoff
97   * @author  Neal Gafter
98   * @version %I%, %G%
99   * @see     Object#hashCode()
100  * @see     Collection
101  * @see     Map
102  * @see     TreeMap
103  * @see     Hashtable
104  * @since   1.2
105  */
106 
107 public class HashMap<K,V>
108     extends AbstractMap<K,V>
109     implements Map<K,V>, Cloneable, Serializable
110 {
111 
112     /**
113      * The default initial capacity - MUST be a power of two.
114      */
115     static final int DEFAULT_INITIAL_CAPACITY = 16;
116 
117     /**
118      * The maximum capacity, used if a higher value is implicitly specified
119      * by either of the constructors with arguments.
120      * MUST be a power of two <= 1<<30.
121      */
122     static final int MAXIMUM_CAPACITY = 1 << 30;
123 
124     /**
125      * The load factor used when none specified in constructor.
126      */
127     static final float DEFAULT_LOAD_FACTOR = 0.75f;
128 
129     /**
130      * The table, resized as necessary. Length MUST Always be a power of two.
131      */
132     transient Entry[] table;
133 
134     /**
135      * The number of key-value mappings contained in this map.
136      */
137     transient int size;
138 
139     /**
140      * The next size value at which to resize (capacity * load factor).
141      * @serial
142      */
143     int threshold;
144 
145     /**
146      * The load factor for the hash table.
147      *
148      * @serial
149      */
150     final float loadFactor;
151 
152     /**
153      * The number of times this HashMap has been structurally modified
154      * Structural modifications are those that change the number of mappings in
155      * the HashMap or otherwise modify its internal structure (e.g.,
156      * rehash).  This field is used to make iterators on Collection-views of
157      * the HashMap fail-fast.  (See ConcurrentModificationException).
158      */
159     transient volatile int modCount;
160 
161     /**
162      * Constructs an empty <tt>HashMap</tt> with the specified initial
163      * capacity and load factor.
164      *
165      * @param  initialCapacity the initial capacity
166      * @param  loadFactor      the load factor
167      * @throws IllegalArgumentException if the initial capacity is negative
168      *         or the load factor is nonpositive
169      */
170     public HashMap(int initialCapacity, float loadFactor) {
171         if (initialCapacity < 0)
172             throw new IllegalArgumentException("Illegal initial capacity: " +
173                                                initialCapacity);
174         if (initialCapacity > MAXIMUM_CAPACITY)
175             initialCapacity = MAXIMUM_CAPACITY;
176         if (loadFactor <= 0 || Float.isNaN(loadFactor))
177             throw new IllegalArgumentException("Illegal load factor: " +
178                                                loadFactor);
179 
180         // Find a power of 2 >= initialCapacity
181         int capacity = 1;
182         while (capacity < initialCapacity)
183             capacity <<= 1;
184 
185         this.loadFactor = loadFactor;
186         threshold = (int)(capacity * loadFactor);
187         table = new Entry[capacity];
188         init();
189     }
190 
191     /**
192      * Constructs an empty <tt>HashMap</tt> with the specified initial
193      * capacity and the default load factor (0.75).
194      *
195      * @param  initialCapacity the initial capacity.
196      * @throws IllegalArgumentException if the initial capacity is negative.
197      */
198     public HashMap(int initialCapacity) {
199         this(initialCapacity, DEFAULT_LOAD_FACTOR);
200     }
201 
202     /**
203      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
204      * (16) and the default load factor (0.75).
205      */
206     public HashMap() {
207         this.loadFactor = DEFAULT_LOAD_FACTOR;
208         threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
209         table = new Entry[DEFAULT_INITIAL_CAPACITY];
210         init();
211     }
212 
213     /**
214      * Constructs a new <tt>HashMap</tt> with the same mappings as the
215      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
216      * default load factor (0.75) and an initial capacity sufficient to
217      * hold the mappings in the specified <tt>Map</tt>.
218      *
219      * @param   m the map whose mappings are to be placed in this map
220      * @throws  NullPointerException if the specified map is null
221      */
222     public HashMap(Map<? extends K, ? extends V> m) {
223         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
224                       DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
225         putAllForCreate(m);
226     }
227 
228     // internal utilities
229 
230     /**
231      * Initialization hook for subclasses. This method is called
232      * in all constructors and pseudo-constructors (clone, readObject)
233      * after HashMap has been initialized but before any entries have
234      * been inserted.  (In the absence of this method, readObject would
235      * require explicit knowledge of subclasses.)
236      */
237     void init() {
238     }
239 
240     /**
241      * Applies a supplemental hash function to a given hashCode, which
242      * defends against poor quality hash functions.  This is critical
243      * because HashMap uses power-of-two length hash tables, that
244      * otherwise encounter collisions for hashCodes that do not differ
245      * in lower bits. Note: Null keys always map to hash 0, thus index 0.
246      */
247     static int hash(int h) {
248         // This function ensures that hashCodes that differ only by
249         // constant multiples at each bit position have a bounded
250         // number of collisions (approximately 8 at default load factor).
251         h ^= (h >>> 20) ^ (h >>> 12);
252         return h ^ (h >>> 7) ^ (h >>> 4);
253     }
254 
255     /**
256      * Returns index for hash code h.
257      */
258     static int indexFor(int h, int length) {
259         return h & (length-1);
260     }
261 
262     /**
263      * Returns the number of key-value mappings in this map.
264      *
265      * @return the number of key-value mappings in this map
266      */
267     public int size() {
268         return size;
269     }
270 
271     /**
272      * Returns <tt>true</tt> if this map contains no key-value mappings.
273      *
274      * @return <tt>true</tt> if this map contains no key-value mappings
275      */
276     public boolean isEmpty() {
277         return size == 0;
278     }
279 
280     /**
281      * Returns the value to which the specified key is mapped,
282      * or {@code null} if this map contains no mapping for the key.
283      *
284      * <p>More formally, if this map contains a mapping from a key
285      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
286      * key.equals(k))}, then this method returns {@code v}; otherwise
287      * it returns {@code null}.  (There can be at most one such mapping.)
288      *
289      * <p>A return value of {@code null} does not <i>necessarily</i>
290      * indicate that the map contains no mapping for the key; it's also
291      * possible that the map explicitly maps the key to {@code null}.
292      * The {@link #containsKey containsKey} operation may be used to
293      * distinguish these two cases.
294      *
295      * @see #put(Object, Object)
296      */
297     public V get(Object key) {
298         if (key == null)
299             return getForNullKey();
300         int hash = hash(key.hashCode());
301         for (Entry<K,V> e = table[indexFor(hash, table.length)];
302              e != null;
303              e = e.next) {
304             Object k;
305             if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
306                 return e.value;
307         }
308         return null;
309     }
310 
311     /**
312      * Offloaded version of get() to look up null keys.  Null keys map
313      * to index 0.  This null case is split out into separate methods
314      * for the sake of performance in the two most commonly used
315      * operations (get and put), but incorporated with conditionals in
316      * others.
317      */
318     private V getForNullKey() {
319         for (Entry<K,V> e = table[0]; e != null; e = e.next) {
320             if (e.key == null)
321                 return e.value;
322         }
323         return null;
324     }
325 
326     /**
327      * Returns <tt>true</tt> if this map contains a mapping for the
328      * specified key.
329      *
330      * @param   key   The key whose presence in this map is to be tested
331      * @return <tt>true</tt> if this map contains a mapping for the specified
332      * key.
333      */
334     public boolean containsKey(Object key) {
335         return getEntry(key) != null;
336     }
337 
338     /**
339      * Returns the entry associated with the specified key in the
340      * HashMap.  Returns null if the HashMap contains no mapping
341      * for the key.
342      */
343     final Entry<K,V> getEntry(Object key) {
344         int hash = (key == null) ? 0 : hash(key.hashCode());
345         for (Entry<K,V> e = table[indexFor(hash, table.length)];
346              e != null;
347              e = e.next) {
348             Object k;
349             if (e.hash == hash &&
350                 ((k = e.key) == key || (key != null && key.equals(k))))
351                 return e;
352         }
353         return null;
354     }
355 
356 
357     /**
358      * Associates the specified value with the specified key in this map.
359      * If the map previously contained a mapping for the key, the old
360      * value is replaced.
361      *
362      * @param key key with which the specified value is to be associated
363      * @param value value to be associated with the specified key
364      * @return the previous value associated with <tt>key</tt>, or
365      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
366      *         (A <tt>null</tt> return can also indicate that the map
367      *         previously associated <tt>null</tt> with <tt>key</tt>.)
368      */
369     public V put(K key, V value) {
370         if (key == null)
371             return putForNullKey(value);
372         int hash = hash(key.hashCode());
373         int i = indexFor(hash, table.length);
374         for (Entry<K,V> e = table[i]; e != null; e = e.next) {
375             Object k;
376             if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
377                 V oldValue = e.value;
378                 e.value = value;
379                 e.recordAccess(this);
380                 return oldValue;
381             }
382         }
383 
384         modCount++;
385         addEntry(hash, key, value, i);
386         return null;
387     }
388 
389     /**
390      * Offloaded version of put for null keys
391      */
392     private V putForNullKey(V value) {
393         for (Entry<K,V> e = table[0]; e != null; e = e.next) {
394             if (e.key == null) {
395                 V oldValue = e.value;
396                 e.value = value;
397                 e.recordAccess(this);
398                 return oldValue;
399             }
400         }
401         modCount++;
402         addEntry(0, null, value, 0);
403         return null;
404     }
405 
406     /**
407      * This method is used instead of put by constructors and
408      * pseudoconstructors (clone, readObject).  It does not resize the table,
409      * check for comodification, etc.  It calls createEntry rather than
410      * addEntry.
411      */
412     private void putForCreate(K key, V value) {
413         int hash = (key == null) ? 0 : hash(key.hashCode());
414         int i = indexFor(hash, table.length);
415 
416         /**
417          * Look for preexisting entry for key.  This will never happen for
418          * clone or deserialize.  It will only happen for construction if the
419          * input Map is a sorted map whose ordering is inconsistent w/ equals.
420          */
421         for (Entry<K,V> e = table[i]; e != null; e = e.next) {
422             Object k;
423             if (e.hash == hash &&
424                 ((k = e.key) == key || (key != null && key.equals(k)))) {
425                 e.value = value;
426                 return;
427             }
428         }
429 
430         createEntry(hash, key, value, i);
431     }
432 
433     private void putAllForCreate(Map<? extends K, ? extends V> m) {
434         for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
435             Map.Entry<? extends K, ? extends V> e = i.next();
436             putForCreate(e.getKey(), e.getValue());
437         }
438     }
439 
440     /**
441      * Rehashes the contents of this map into a new array with a
442      * larger capacity.  This method is called automatically when the
443      * number of keys in this map reaches its threshold.
444      *
445      * If current capacity is MAXIMUM_CAPACITY, this method does not
446      * resize the map, but sets threshold to Integer.MAX_VALUE.
447      * This has the effect of preventing future calls.
448      *
449      * @param newCapacity the new capacity, MUST be a power of two;
450      *        must be greater than current capacity unless current
451      *        capacity is MAXIMUM_CAPACITY (in which case value
452      *        is irrelevant).
453      */
454     void resize(int newCapacity) {
455         Entry[] oldTable = table;
456         int oldCapacity = oldTable.length;
457         if (oldCapacity == MAXIMUM_CAPACITY) {
458             threshold = Integer.MAX_VALUE;
459             return;
460         }
461 
462         Entry[] newTable = new Entry[newCapacity];
463         transfer(newTable);
464         table = newTable;
465         threshold = (int)(newCapacity * loadFactor);
466     }
467 
468     /**
469      * Transfers all entries from current table to newTable.
470      */
471     void transfer(Entry[] newTable) {
472         Entry[] src = table;
473         int newCapacity = newTable.length;
474         for (int j = 0; j < src.length; j++) {
475             Entry<K,V> e = src[j];
476             if (e != null) {
477                 src[j] = null;
478                 do {
479                     Entry<K,V> next = e.next;
480                     int i = indexFor(e.hash, newCapacity);
481                     e.next = newTable[i];
482                     newTable[i] = e;
483                     e = next;
484                 } while (e != null);
485             }
486         }
487     }
488 
489     /**
490      * Copies all of the mappings from the specified map to this map.
491      * These mappings will replace any mappings that this map had for
492      * any of the keys currently in the specified map.
493      *
494      * @param m mappings to be stored in this map
495      * @throws NullPointerException if the specified map is null
496      */
497     public void putAll(Map<? extends K, ? extends V> m) {
498         int numKeysToBeAdded = m.size();
499         if (numKeysToBeAdded == 0)
500             return;
501 
502         /*
503          * Expand the map if the map if the number of mappings to be added
504          * is greater than or equal to threshold.  This is conservative; the
505          * obvious condition is (m.size() + size) >= threshold, but this
506          * condition could result in a map with twice the appropriate capacity,
507          * if the keys to be added overlap with the keys already in this map.
508          * By using the conservative calculation, we subject ourself
509          * to at most one extra resize.
510          */
511         if (numKeysToBeAdded > threshold) {
512             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
513             if (targetCapacity > MAXIMUM_CAPACITY)
514                 targetCapacity = MAXIMUM_CAPACITY;
515             int newCapacity = table.length;
516             while (newCapacity < targetCapacity)
517                 newCapacity <<= 1;
518             if (newCapacity > table.length)
519                 resize(newCapacity);
520         }
521 
522         for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
523             Map.Entry<? extends K, ? extends V> e = i.next();
524             put(e.getKey(), e.getValue());
525         }
526     }
527 
528     /**
529      * Removes the mapping for the specified key from this map if present.
530      *
531      * @param  key key whose mapping is to be removed from the map
532      * @return the previous value associated with <tt>key</tt>, or
533      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
534      *         (A <tt>null</tt> return can also indicate that the map
535      *         previously associated <tt>null</tt> with <tt>key</tt>.)
536      */
537     public V remove(Object key) {
538         Entry<K,V> e = removeEntryForKey(key);
539         return (e == null ? null : e.value);
540     }
541 
542     /**
543      * Removes and returns the entry associated with the specified key
544      * in the HashMap.  Returns null if the HashMap contains no mapping
545      * for this key.
546      */
547     final Entry<K,V> removeEntryForKey(Object key) {
548         int hash = (key == null) ? 0 : hash(key.hashCode());
549         int i = indexFor(hash, table.length);
550         Entry<K,V> prev = table[i];
551         Entry<K,V> e = prev;
552 
553         while (e != null) {
554             Entry<K,V> next = e.next;
555             Object k;
556             if (e.hash == hash &&
557                 ((k = e.key) == key || (key != null && key.equals(k)))) {
558                 modCount++;
559                 size--;
560                 if (prev == e)
561                     table[i] = next;
562                 else
563                     prev.next = next;
564                 e.recordRemoval(this);
565                 return e;
566             }
567             prev = e;
568             e = next;
569         }
570 
571         return e;
572     }
573 
574     /**
575      * Special version of remove for EntrySet.
576      */
577     final Entry<K,V> removeMapping(Object o) {
578         if (!(o instanceof Map.Entry))
579             return null;
580 
581         Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
582         Object key = entry.getKey();
583         int hash = (key == null) ? 0 : hash(key.hashCode());
584         int i = indexFor(hash, table.length);
585         Entry<K,V> prev = table[i];
586         Entry<K,V> e = prev;
587 
588         while (e != null) {
589             Entry<K,V> next = e.next;
590             if (e.hash == hash && e.equals(entry)) {
591                 modCount++;
592                 size--;
593                 if (prev == e)
594                     table[i] = next;
595                 else
596                     prev.next = next;
597                 e.recordRemoval(this);
598                 return e;
599             }
600             prev = e;
601             e = next;
602         }
603 
604         return e;
605     }
606 
607     /**
608      * Removes all of the mappings from this map.
609      * The map will be empty after this call returns.
610      */
611     public void clear() {
612         modCount++;
613         Entry[] tab = table;
614         for (int i = 0; i < tab.length; i++)
615             tab[i] = null;
616         size = 0;
617     }
618 
619     /**
620      * Returns <tt>true</tt> if this map maps one or more keys to the
621      * specified value.
622      *
623      * @param value value whose presence in this map is to be tested
624      * @return <tt>true</tt> if this map maps one or more keys to the
625      *         specified value
626      */
627     public boolean containsValue(Object value) {
628     if (value == null)
629             return containsNullValue();
630 
631     Entry[] tab = table;
632         for (int i = 0; i < tab.length ; i++)
633             for (Entry e = tab[i] ; e != null ; e = e.next)
634                 if (value.equals(e.value))
635                     return true;
636     return false;
637     }
638 
639     /**
640      * Special-case code for containsValue with null argument
641      */
642     private boolean containsNullValue() {
643     Entry[] tab = table;
644         for (int i = 0; i < tab.length ; i++)
645             for (Entry e = tab[i] ; e != null ; e = e.next)
646                 if (e.value == null)
647                     return true;
648     return false;
649     }
650 
651     /**
652      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
653      * values themselves are not cloned.
654      *
655      * @return a shallow copy of this map
656      */
657     public Object clone() {
658         HashMap<K,V> result = null;
659     try {
660         result = (HashMap<K,V>)super.clone();
661     } catch (CloneNotSupportedException e) {
662         // assert false;
663     }
664         result.table = new Entry[table.length];
665         result.entrySet = null;
666         result.modCount = 0;
667         result.size = 0;
668         result.init();
669         result.putAllForCreate(this);
670 
671         return result;
672     }
673 
674     static class Entry<K,V> implements Map.Entry<K,V> {
675         final K key;
676         V value;
677         Entry<K,V> next;
678         final int hash;
679 
680         /**
681          * Creates new entry.
682          */
683         Entry(int h, K k, V v, Entry<K,V> n) {
684             value = v;
685             next = n;
686             key = k;
687             hash = h;
688         }
689 
690         public final K getKey() {
691             return key;
692         }
693 
694         public final V getValue() {
695             return value;
696         }
697 
698         public final V setValue(V newValue) {
699         V oldValue = value;
700             value = newValue;
701             return oldValue;
702         }
703 
704         public final boolean equals(Object o) {
705             if (!(o instanceof Map.Entry))
706                 return false;
707             Map.Entry e = (Map.Entry)o;
708             Object k1 = getKey();
709             Object k2 = e.getKey();
710             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
711                 Object v1 = getValue();
712                 Object v2 = e.getValue();
713                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
714                     return true;
715             }
716             return false;
717         }
718 
719         public final int hashCode() {
720             return (key==null   ? 0 : key.hashCode()) ^
721                    (value==null ? 0 : value.hashCode());
722         }
723 
724         public final String toString() {
725             return getKey() + "=" + getValue();
726         }
727 
728         /**
729          * This method is invoked whenever the value in an entry is
730          * overwritten by an invocation of put(k,v) for a key k that's already
731          * in the HashMap.
732          */
733         void recordAccess(HashMap<K,V> m) {
734         }
735 
736         /**
737          * This method is invoked whenever the entry is
738          * removed from the table.
739          */
740         void recordRemoval(HashMap<K,V> m) {
741         }
742     }
743 
744     /**
745      * Adds a new entry with the specified key, value and hash code to
746      * the specified bucket.  It is the responsibility of this
747      * method to resize the table if appropriate.
748      *
749      * Subclass overrides this to alter the behavior of put method.
750      */
751     void addEntry(int hash, K key, V value, int bucketIndex) {
752     Entry<K,V> e = table[bucketIndex];
753         table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
754         if (size++ >= threshold)
755             resize(2 * table.length);
756     }
757 
758     /**
759      * Like addEntry except that this version is used when creating entries
760      * as part of Map construction or "pseudo-construction" (cloning,
761      * deserialization).  This version needn't worry about resizing the table.
762      *
763      * Subclass overrides this to alter the behavior of HashMap(Map),
764      * clone, and readObject.
765      */
766     void createEntry(int hash, K key, V value, int bucketIndex) {
767     Entry<K,V> e = table[bucketIndex];
768         table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
769         size++;
770     }
771 
772     private abstract class HashIterator<E> implements Iterator<E> {
773         Entry<K,V> next;    // next entry to return
774         int expectedModCount;   // For fast-fail
775         int index;      // current slot
776         Entry<K,V> current; // current entry
777 
778         HashIterator() {
779             expectedModCount = modCount;
780             if (size > 0) { // advance to first entry
781                 Entry[] t = table;
782                 while (index < t.length && (next = t[index++]) == null)
783                     ;
784             }
785         }
786 
787         public final boolean hasNext() {
788             return next != null;
789         }
790 
791         final Entry<K,V> nextEntry() {
792             if (modCount != expectedModCount)
793                 throw new ConcurrentModificationException();
794             Entry<K,V> e = next;
795             if (e == null)
796                 throw new NoSuchElementException();
797 
798             if ((next = e.next) == null) {
799                 Entry[] t = table;
800                 while (index < t.length && (next = t[index++]) == null)
801                     ;
802             }
803         current = e;
804             return e;
805         }
806 
807         public void remove() {
808             if (current == null)
809                 throw new IllegalStateException();
810             if (modCount != expectedModCount)
811                 throw new ConcurrentModificationException();
812             Object k = current.key;
813             current = null;
814             HashMap.this.removeEntryForKey(k);
815             expectedModCount = modCount;
816         }
817 
818     }
819 
820     private final class ValueIterator extends HashIterator<V> {
821         public V next() {
822             return nextEntry().value;
823         }
824     }
825 
826     private final class KeyIterator extends HashIterator<K> {
827         public K next() {
828             return nextEntry().getKey();
829         }
830     }
831 
832     private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
833         public Map.Entry<K,V> next() {
834             return nextEntry();
835         }
836     }
837 
838     // Subclass overrides these to alter behavior of views' iterator() method
839     Iterator<K> newKeyIterator()   {
840         return new KeyIterator();
841     }
842     Iterator<V> newValueIterator()   {
843         return new ValueIterator();
844     }
845     Iterator<Map.Entry<K,V>> newEntryIterator()   {
846         return new EntryIterator();
847     }
848 
849 
850     // Views
851 
852     private transient Set<Map.Entry<K,V>> entrySet = null;
853 
854     /**
855      * Returns a {@link Set} view of the keys contained in this map.
856      * The set is backed by the map, so changes to the map are
857      * reflected in the set, and vice-versa.  If the map is modified
858      * while an iteration over the set is in progress (except through
859      * the iterator's own <tt>remove</tt> operation), the results of
860      * the iteration are undefined.  The set supports element removal,
861      * which removes the corresponding mapping from the map, via the
862      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
863      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
864      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
865      * operations.
866      */
867     public Set<K> keySet() {
868         Set<K> ks = keySet;
869         return (ks != null ? ks : (keySet = new KeySet()));
870     }
871 
872     private final class KeySet extends AbstractSet<K> {
873         public Iterator<K> iterator() {
874             return newKeyIterator();
875         }
876         public int size() {
877             return size;
878         }
879         public boolean contains(Object o) {
880             return containsKey(o);
881         }
882         public boolean remove(Object o) {
883             return HashMap.this.removeEntryForKey(o) != null;
884         }
885         public void clear() {
886             HashMap.this.clear();
887         }
888     }
889 
890     /**
891      * Returns a {@link Collection} view of the values contained in this map.
892      * The collection is backed by the map, so changes to the map are
893      * reflected in the collection, and vice-versa.  If the map is
894      * modified while an iteration over the collection is in progress
895      * (except through the iterator's own <tt>remove</tt> operation),
896      * the results of the iteration are undefined.  The collection
897      * supports element removal, which removes the corresponding
898      * mapping from the map, via the <tt>Iterator.remove</tt>,
899      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
900      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
901      * support the <tt>add</tt> or <tt>addAll</tt> operations.
902      */
903     public Collection<V> values() {
904         Collection<V> vs = values;
905         return (vs != null ? vs : (values = new Values()));
906     }
907 
908     private final class Values extends AbstractCollection<V> {
909         public Iterator<V> iterator() {
910             return newValueIterator();
911         }
912         public int size() {
913             return size;
914         }
915         public boolean contains(Object o) {
916             return containsValue(o);
917         }
918         public void clear() {
919             HashMap.this.clear();
920         }
921     }
922 
923     /**
924      * Returns a {@link Set} view of the mappings contained in this map.
925      * The set is backed by the map, so changes to the map are
926      * reflected in the set, and vice-versa.  If the map is modified
927      * while an iteration over the set is in progress (except through
928      * the iterator's own <tt>remove</tt> operation, or through the
929      * <tt>setValue</tt> operation on a map entry returned by the
930      * iterator) the results of the iteration are undefined.  The set
931      * supports element removal, which removes the corresponding
932      * mapping from the map, via the <tt>Iterator.remove</tt>,
933      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
934      * <tt>clear</tt> operations.  It does not support the
935      * <tt>add</tt> or <tt>addAll</tt> operations.
936      *
937      * @return a set view of the mappings contained in this map
938      */
939     public Set<Map.Entry<K,V>> entrySet() {
940     return entrySet0();
941     }
942 
943     private Set<Map.Entry<K,V>> entrySet0() {
944         Set<Map.Entry<K,V>> es = entrySet;
945         return es != null ? es : (entrySet = new EntrySet());
946     }
947 
948     private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
949         public Iterator<Map.Entry<K,V>> iterator() {
950             return newEntryIterator();
951         }
952         public boolean contains(Object o) {
953             if (!(o instanceof Map.Entry))
954                 return false;
955             Map.Entry<K,V> e = (Map.Entry<K,V>) o;
956             Entry<K,V> candidate = getEntry(e.getKey());
957             return candidate != null && candidate.equals(e);
958         }
959         public boolean remove(Object o) {
960             return removeMapping(o) != null;
961         }
962         public int size() {
963             return size;
964         }
965         public void clear() {
966             HashMap.this.clear();
967         }
968     }
969 
970     /**
971      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
972      * serialize it).
973      *
974      * @serialData The <i>capacity</i> of the HashMap (the length of the
975      *         bucket array) is emitted (int), followed by the
976      *         <i>size</i> (an int, the number of key-value
977      *         mappings), followed by the key (Object) and value (Object)
978      *         for each key-value mapping.  The key-value mappings are
979      *         emitted in no particular order.
980      */
981     private void writeObject(java.io.ObjectOutputStream s)
982         throws IOException
983     {
984     Iterator<Map.Entry<K,V>> i =
985         (size > 0) ? entrySet0().iterator() : null;
986 
987     // Write out the threshold, loadfactor, and any hidden stuff
988     s.defaultWriteObject();
989 
990     // Write out number of buckets
991     s.writeInt(table.length);
992 
993     // Write out size (number of Mappings)
994     s.writeInt(size);
995 
996         // Write out keys and values (alternating)
997     if (i != null) {
998         while (i.hasNext()) {
999         Map.Entry<K,V> e = i.next();
1000        s.writeObject(e.getKey());
1001        s.writeObject(e.getValue());
1002        }
1003        }
1004    }
1005
1006    private static final long serialVersionUID = 362498820763181265L;
1007
1008    /**
1009     * Reconstitute the <tt>HashMap</tt> instance from a stream (i.e.,
1010     * deserialize it).
1011     */
1012    private void readObject(java.io.ObjectInputStream s)
1013         throws IOException, ClassNotFoundException
1014    {
1015    // Read in the threshold, loadfactor, and any hidden stuff
1016    s.defaultReadObject();
1017
1018    // Read in number of buckets and allocate the bucket array;
1019    int numBuckets = s.readInt();
1020    table = new Entry[numBuckets];
1021
1022        init();  // Give subclass a chance to do its thing.
1023
1024    // Read in size (number of Mappings)
1025    int size = s.readInt();
1026
1027    // Read the keys and values, and put the mappings in the HashMap
1028    for (int i=0; i<size; i++) {
1029        K key = (K) s.readObject();
1030        V value = (V) s.readObject();
1031        putForCreate(key, value);
1032    }
1033    }
1034
1035    // These methods are used when serializing HashSets
1036    int   capacity()     { return table.length; }
1037    float loadFactor()   { return loadFactor;   }
1038}
1039