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Abstract—Understanding the user-perceived Quality of Experi-
ence (QoE) of HTTP-based video has become critical for content
providers, distributors, and network operators. For network
operators, monitoring QoE is challenging due to lack of access
to video streaming applications, user devices, or servers. Thus,
network operators need to rely on the network traffic to infer
key metrics that influence video QoE. Furthermore, with content
providers increasingly encrypting the network traffic, the task
of QoE inference from passive measurements has become even
more challenging. In this paper, we present a methodology called
eMIMIC that uses passive network measurements to estimate
key video QoE metrics for encrypted HTTP-based Adaptive
Streaming (HAS) sessions. eMIMIC uses packet headers from
network traffic to model a HAS session and estimate video
QoE metrics such as average bitrate and re-buffering ratio.
We evaluate our methodology using network traces from a
variety of realistic conditions and ground truth of two popular
video streaming services collected using a lab testbed. eMIMIC
estimates re-buffering ratio within 1 percentage point of ground
truth for up to 70% sessions and average bitrate with error under
100 kbps for up to 80% sessions. We also compare eMIMIC
with recently proposed machine learning-based QoE estimation
methodology. We show that eMIMIC can predict average bitrate
with 2.8%-3.2% higher accuracy and re-buffering ratio with
9.8%-24.8% higher accuracy without requiring any training on
ground truth QoE metrics.

I. INTRODUCTION

Understanding the user-perceived Quality of Experience
(QoE) is important for network operators, as it can help
with efficient provisioning and management [1], [2]. However,
estimating QoE is challenging in general since not only is
it subjective, but also application-specific, and the operators
do not have access to applications at end user devices to
observe ground truth of key objective metrics impacting QoE.
Instead, they have to rely on passive measurements of network
traffic to estimate objective QoE metrics. This works well for
applications whose objective QoE metrics are directly reflected
by, for example, observable network Quality of Service (QoS)
metrics, such as packet delay and jitter for voice quality [3].
However, this can be challenging for HTTP-based Adaptive
Streaming (HAS) video, a major contributor to network
traffic [4], because of its robustness to short-term variations
in the underlying network QoS resulting from the use of the
video buffer and bitrate adaptation.

Existing approaches [5], [6], [7], [8] for HAS video QoE
estimation propose using machine learning algorithms to learn
the relationship between network QoS metrics and application-
layer QoE metrics. However, these approaches have several

limitations. First, they require ground truth QoE metrics for
initial training, which are not generally available to operators.
Second, different video services use different service design
parameters such as encoding bitrates and bitrate adaptation
logic. Thus, relationships learned for one service do not
necessarily generalize for others. Third, these approaches give
a categorical estimate of the QoE metrics which might not be
adequate for active QoE-based traffic management as proposed
recently [1], [2].

In prior work [9], we presented a highly accurate and
practical QoE inference approach (with the system details
presented in [10]) for HAS video, called MIMIC. MIMIC
relied on extracting information from the application layer, i.e.,
Uniform Resource Identifiers (URIs) and other HTTP headers.
With increasing number of video service providers using end-
to-end encryption, MIMIC loses visibility into the key pieces
of information needed for QoE inference.

To overcome this challenge, we present a QoE estimation
approach for encrypted HAS video, called eMIMIC, which
works by reconstructing the chunk-based delivery sequence of
a video session from packet traces of encrypted traffic. This
reconstructed sequence is then used to model a video session
based on high-level HAS properties, which are generally
consistent across services.

From the accurately built model, eMIMIC can estimate
average bitrate, re-buffering ratio, bitrate switches and startup
time, the key objective metrics that influence HAS QoE [11].
An operator may need to further model the impact of these
metrics taken together on the user experience, either through
user studies [12] or objective data analysis [13], [14]. This
step is complimentary to the estimation of the individual
objective QoE metrics and is out of scope of this paper. The
key objective of this paper is to demonstrate feasibility and
accuracy of the cross-layer approach to infer service-level QoE
metrics from network-level passive measurements.

To facilitate the QoE inference from encrypted video ses-
sions, we develop an experimental framework with automated
streaming and collection of network traces and ground truth
of video sessions, as well as QoE metric estimation. We use
this framework to do an extensive evaluation of eMIMIC with
two popular commercial video streaming services.

Furthermore, we replicate a recently proposed machine
learning-based QoE estimation approach, hereon referred to as
ML16 [6], by fully implementing and applying it to the same
two video services. This helps in understanding the differences
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Fig. 1: Overview of QoE inference approaches

in performance and accuracy between the two QoE estimation
approaches, so that they can be further evolved and improved.

Our contributions are summarized as follows:
• We present eMIMIC, a methodology that uses passive mea-

surements at network-layer to estimate service-level video
QoE metrics of the encrypted video sessions.

• We develop an experimental framework for automated
streaming and collection of network traces and ground truth
QoE metrics of video sessions of two popular video stream-
ing service providers. Using this framework under realistic
network conditions, we show that eMIMIC estimates re-
buffering ratio within one percentage point of ground truth
for up to 70% of video sessions, and average bitrate with
error under 100 kbps for up to 80% of sessions.

• We compare eMIMIC with ML16 [6] and show that for
categorical prediction (low, medium and high) of QoE
metrics, eMIMIC has 2.8%-3.2% higher accuracy in classi-
fying average bitrate and 9.8%-24.8% higher accuracy in
classifying re-buffering ratio, without requiring training on
any ground truth QoE metrics. We also find that ML16 does
not generalize across video services.

II. BACKGROUND AND DESIGN REQUIREMENTS

A. QoE inference methods

Existing video QoE inference approaches using passive
network measurements can be broadly classified into two
categories: Session Modeling-based (SM-based) and Machine
Learning-based (ML-based).

SM-based approach: This approach infers QoE by mod-
eling a video session using the properties of the underlying
streaming protocol (Figure 1a). For progressive download,
works by Schatz et al. [15] and Dimopoulos et al. [16]
estimate video re-buffering by inspecting the packet traces and
HTTP logs, respectively. For unencrypted HAS video, MIMIC
estimates the key video QoE metrics by modeling a video
session as a sequence of chunks whose information is directly
extracted from HTTP requests logged by a web proxy [9].

ML-based approach: This approach infers QoE by cor-
relating the network observable metrics such as packet delay,
loss and throughput with the video QoE metrics using machine
learning algorithms. Figure 1b shows a high-level overview of
this approach. Implemented as a supervised ML-based method,

it has an offline phase to build a QoE prediction model. This
phase consists of selecting useful features to be extracted
from network traffic and labeling them with corresponding
ground truth, using which the algorithm learns the relationship
between features and ground truth. Variants of this approach
have been proposed that differ either in the feature selection
or the training methodology [5], [6], [7], [8].

B. Design Requirements

We motivate eMIMIC by describing the design requirements
of an ideal QoE inference approach for a network operator:

• Works on encrypted traffic: Given an increased use of
end-to-end encryption in HAS, this is a critical requirement
for operators. Clearly, ML-based approaches will work
if the required features can be collected from encrypted
traffic. However, existing SM-based approaches that rely on
visibility of HTTP transactions will not.

• Minimally dependent on QoE ground truth: An ideal
QoE estimation method should not introduce extensive
overhead in incorporating ground truth. The disadvantages
of ML-based approach include a requirement to collect the
extensive ground truth measurement under a wide variety
of network conditions, followed by training and validation
of the learned model. Recent works propose methods to
obtain ground truth through player instrumentation [5], [7],
logging unencrypted versions of the traffic [6] or using a
trusted proxy [8]. Unfortunately, there is no guarantee that
any video service will support these approaches. On the
other hand, an SM-based approach needs no training and
minimal ground truth for validation. It may only need a few
design parameters that can be easily obtained with a handful
of test runs, as we demonstrate with eMIMIC.

• Generalizes across different services: To understand the
QoE of many video services in its network, operators would
prefer an approach that generalizes well. Given that content
providers differ in system design and player implementa-
tions, ML-based models learned for one service do not
necessarily generalize across different services, as we show
in Section IV-E. An SM-based approach, however, does not
significantly suffer from this limitation since the underlying
HAS properties do not change much across services.

• Provides quantitative measures: For active QoE-based
traffic management, such as QoE-based resource alloca-
tion [1], [2], operators may need quantitative measures
of QoE metrics. ML-based approaches typically provide
categorical estimates of QoE with two (good or bad) or three
(low, medium and high) categories whereas an SM-based
approach estimates quantitative values of QoE metrics.

Takeaway: It is clear that an SM-based QoE inference
approach that also works for encrypted traffic would be prefer-
able for operators, as it would satisfy all design requirements.
Therefore, we design eMIMIC, an SM-based approach that
works on encrypted traffic.
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III. METHODOLOGY

This section describes the HAS chunked delivery principles
used for reconstructing video sessions using eMIMIC, the
challenges and solutions in extracting chunk-level details of
the session, and how QoE metrics are inferred.

A. Chunked video delivery in HAS

In HAS, a video is split into chunks which are typically
of same duration. Each of these chunks are encoded at pre-
defined quality levels determined by encoding bitrate and
resolution and hosted on a standard HTTP server. The video
player at the client has a bitrate adaptation logic that decides
the bitrate of media chunks to download. The video metadata
such as chunk encoding levels and request URI is obtained by
downloading a manifest file at the beginning of video session.

The network traffic corresponding to the media chunks in
an HAS video session consists of a sequence of HTTP GET
requests and responses. When the client requests the video, the
player first downloads the manifest file by sending an HTTP
GET request to the server. The player then sends an HTTP
GET request for the first chunk. Once the video chunk has
been fully downloaded, the player sends the request for the
next chunk, whose bitrate is decided based on the past chunk
throughput and/or current buffer occupancy [17], and this
process repeats (Figure 2). The video session at the client can
be modeled using this strong serial request-response pattern
corresponding to chunk downloads observed on the network.

B. Challenges in designing eMIMIC

1) HTTP request reconstruction: An SM-based approach
abstracts an HAS video session as a sequence of video
chunks appearing as HTTP GET requests on the network. For
unencrypted network traffic, these requests can be logged by a
passive monitor or a transparent web proxy. However, this does
not work when Transport Layer Security (TLS) is used, as is
common today, where HTTP headers are encrypted. We note
that parsing limited clear-text TLS headers is not a feasible
approach to distinguish individual chunks, since multiple, or
even all, chunks, can be requested within one TLS transaction.

Idea: We explore if TCP headers can be used for HTTP-
level session reconstruction. Figure 2 shows the flow of video
data for a sequence of HTTP requests and responses on a
single TCP connection. The data flow in an HTTP transaction
has an important traffic directionality property, i.e., request
flows from client to server, followed by response flowing in the
opposite direction. This directionality and sequence in the data
flow of HTTP traffic can be used to identify the boundaries

of HTTP request-response pairs. This methodology has been
used to identify the size of web objects in HTTPS traffic [18].

It is important to note that this approach would not work
correctly if the HTTP requests were pipelined. However,
in practice, video players typically do not pipeline HTTP
requests. This is because pipelining may cause self-contention
for bandwidth among the chunks, potentially causing head-of-
line blocking, as well as diminishing the ability of the player
to quickly adapt to changing network conditions.

Solution: For a TCP-flow f corresponding to video session
V, we log the source IP address of every packet in the
flow. A packet with non-zero payload size is tagged as an
HTTP request if the source IP address matches the client
IP address. The subsequent non-zero payload size packets
in f with the server IP address as the source are tagged as
the HTTP response. The end of the response is determined
by one of the following conditions: i) a new packet from
the client on the same flow indicating a new HTTP request
or ii) an inactivity period of greater than some pre-defined
threshold (5 seconds in our experiments) or iii) the closing
of the TCP connection indicated by TCP RST or FIN flag.
In addition, TCP retransmissions are logged. The size of
the response is estimated by adding the payload sizes of
all the packets tagged as response and adjusted to account
for re-transmissions. The start time and the end time of an
HTTP transaction are obtained from the timestamp of the
first packet tagged as a request and the last packet tagged
in the corresponding response, respectively. TCP ACKs with
no payload are ignored.

Applying this approach to all TCP flows in a video session,
we can reconstruct HTTP transactions, along with the size (Si)
and download start time (STi) and end time (ETi) for every
chunk i. This approach can also be applied to UDP-based
transport such as QUIC, assuming the same request-response
sequence, but without accounting for retransmissions or using
TCP flags for response termination.

2) Media type classification: The reconstructed HTTP
transactions in the above methodology will include multiple
media types: video, audio, and metadata, such as the manifest
file. Some services separate audio and video content which
means that they appear as separate transactions in the network
traffic. To model a session, it is important to identify video
(and audio, if separate) chunks and filter out the metadata.

Idea: We use the estimated response sizes obtained from
the HTTP reconstruction step to identify the media type. The
size of metadata is usually smaller than audio or video as it
consists of text files. Audio chunks are encoded at Constant
Bit Rate (CBR) with one or two bitrates levels. Thus, they can
be identified based on the size and its consistency.

Figure 3a illustrates this by showing the distribution of
response sizes of video, audio and metadata obtained from
the HTTP logs of 1005 VOD2 sessions collected by a trusted
proxy (see Section IV for details). The media type is identified
from the request URI of the HTTP logs. Metadata HTTP logs
are smaller than 30 KB and most of the audio HTTP logs
are around 42 KB. However, we observe a small proportion
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Fig. 3: Chunk and bitrate characterization for VOD2.

of video chunks that are similar in size to audio chunks. To
reduce the probability of misclassifying these as audio, we use
the insight that audio and video playback is synchronized, and
hence the amount of audio and video downloaded and stored
in the buffer should be similar in terms of duration.

Solution: We first determine a minimum size threshold
(Smin) for identifying HTTP transactions corresponding to
the metadata. This is based on the minimum bitrate levels
of video and audio obtained by inspecting manifest files of
several videos. For services that separate audio and video, the
expected response size of audio chunks is calculated based on
the audio bitrates used. A range [Amin, Amax] is determined
to identify an HTTP transaction corresponding to the audio
chunks. We use a range instead of a single value for two
reasons: i) there exist small variations in size of the audio
chunks despite being CBR encoded; ii) the estimated size of
reconstructed HTTP transaction may have errors. Furthermore,
to avoid misclassifying a video chunk with actual size in
the expected audio size range, we track the audio and video
content downloaded in seconds. We fix a threshold Tahead
such that the audio content downloaded so far is no more
than Tahead seconds of the downloaded video content.

Thus, a reconstructed transaction is tagged as metadata if
its size is less than Smin; as audio if its size is in the range
[Amin, Amax] and the audio content downloaded is at most
Tahead seconds more than video; and as video otherwise.

3) Estimating bitrate of video chunks: After identifying the
video chunks in a session, we need to estimate their bitrate.
This is used to calculate average bitrate and bitrate switches.

Idea: One way to estimate chunk bitrate is to use its
estimated size. More specifically, we can divide the chunk
size by its duration and assign it to the nearest bitrate in
the bitrate set of the video service. However, video services
typically use Variable Bit Rate (VBR) encoding, which means
that the chunk size can deviate, sometimes significantly, from
the average bitrates based on the underlying video scene
complexity. Figure 3b illustrates this by showing the distri-
bution of chunk sizes (from HTTP logs) with their average
bitrate levels (from request URI) for the 1005 VOD2 video
sessions. The majority of chunk sizes are a close match to the
average bitrates. However, there are cases where the chunk
sizes overlap between two consecutive bitrate levels. Thus,
using size alone can lead to errors in bitrate estimation.

To overcome this problem, we use an additional insight that

players usually switch bitrate when the network bandwidth
changes. Thus, a bitrate switch would be most likely accompa-
nied by a change in past chunk throughput that is in the same
direction as the bitrate switch. Thus, using both chunk size
and observed throughput of previously downloaded chunks can
improve the accuracy of bitrate estimation of a chunk.

Solution: We first estimate the bitrate of a chunk i using its
size (Si). If the estimated bitrate (Q̂i) is same as the previous
chunk’s estimated bitrate (Q̂i−1), we keep this estimate and
move to next chunk. However, if there is a switch in the
estimate, we compare the download throughput observed for
chunk i−1 and i−2, say Ti−1 and Ti−2. We approve a change
in bitrate if |Ti−1−Ti−2| ≥ |Q̂i−Q̂i−1| (a change in network
throughput is detected) and (Ti−1−Ti−2)× (Q̂i− Q̂i−1) > 0
(throughput changed in the same direction as bitrate switch).
In case of a bitrate up-switch according to chunk size, we also
check if Ti−1 is greater than Q̂i. For the first two chunks, we
just use the chunk size to estimate its bitrate as we do not
have enough information about chunk throughput.

C. QoE metrics inference

Using the above approach for a session V , we get a se-
quence of video chunks along with estimates of the download
start time (STi), download end time (ETi), and bitrate (Q̂i) for
every chunk i. Let N denote the number of chunks observed
in the session and L be the chunk duration in seconds. QoE
metrics are estimated from this information as follows:

Average bitrate: Average bitrate is estimated by taking an
average of the estimated bitrates of chunks in the session.

B̂R =

∑N
i=1 Q̂i

N
(1)

Re-buffering ratio: Intuitively, re-buffering time is esti-
mated by keeping an account of video chunks that have been
downloaded and the part of the video that should have been
played so far. Let Bi denote the video buffer occupancy in
seconds just before chunk i was downloaded. The re-buffering
time between two consecutive chunk download times, ETi and
ETi−1, is represented by bi. Let j denote the index of chunk
after which the playback resumed since last re-buffering event,
and CTS denote the minimum number of chunks required in
the buffer to start playback. In the beginning, j = CTS and
bk = 0 for k ≤ CTS as the waiting time before video startup
is considered as startup time by definition. For each subsequent
chunk i, Bi is calculated as follows:

Bi = max((i− 1− j + CTS)× L− (ETi − ETj), 0) (2)

Here, (i− 1− j + CTS)× L represents the video content
that has been downloaded, and ETi − ETj represents the total
video that should have been played since the playback began
last time. If Bi > 0, then bi = 0 and we move to next chunk.
Otherwise, re-buffering occured and is calculated as follows:

bi = (ETi − ETj)− (i− 1− j + CTS)× L (3)

In this case, video playback would begin after downloading
CTS chunks. Thus, value of j is set to i + CTS − 1 and
parameter bk for chunk k ∈ {i + 1, i + CTS − 1} is set as



ETk −ETk−1. The remaining bi values can be obtained in a
similar way. Re-buffering ratio can be calculated as follows:

R̂R =

∑N
k=1 bk

N × L+
∑N

k=1 bk
(4)

Bitrate switches: The number of bitrate switches are cal-
culated by counting the total number of times the estimated
chunk bitrate changed between consecutive chunks. We nor-
malize this number by the total video streamed in minutes and
estimate bitrate Switches Per Minute (SPM ).

ˆSPM =

∑N
i=2 I(Q̂i 6= Q̂i−1)× 60

N × L
(5)

Here I is the indicator function which equals one if the
consecutive chunks do not have same bitrate, zero otherwise.

Startup time: We use the time taken to download minimum
number of chunks to begin playback, denoted by TTNC as
a proxy for startup time. Note that normally startup time is
defined as the time taken to play the video from the time user
opened the video and constitues of following delays:

ST = Tloading + TTNC + Tdecode (6)

Here, Tloading is the time to prepare the video, including
delays like rights management. Tdecode is time to decode
and render the downloaded chunks on screen. Tloading and
Tdecode are mostly application induced, while TTNC depends
on the network. An operator would like to monitor only the
network contribution (TTNC) to startup time since improving
the network does not directly impact the other two delays.
Therefore, we use TTNC as a proxy for startup time.

IV. EVALUATION

Our evaluation is divided into the following four sections:
i) Accuracy of HTTP request reconstruction, ii) Accuracy
of media type classification, iii) Accuracy of QoE metrics
estimation, and iv) Comparison of eMIMIC with ML16. We
first describe our experimental setup.

A. Experimental Setup

We build an automated browser-based framework that
streams video sessions of a video service in a web browser
under emulated network conditions and collects packet traces,
HTTP traces and ground truth video QoE metrics. We use Java
implementation of a popular browser automation framework,
known as Selenium1. The HTTP logs of encrypted sessions
are collected using a trusted proxy, BrowserMob proxy2, that is
easy to integrate with Selenium. We use TShark3 for capturing
packet-level network traffic and Linux Traffic Control (tc) to
emulate different network conditions.

Video sessions: We use two popular premium video services
that stream Video on Demand (VoD). VOD1 streams primarily
full-length movies, with some TV show selection, offering
content in many countries world-wide. VOD2 is a U.S. VoD
service offering primarily popular TV shows, including also

1www.seleniumhq.org
2bmp.lightbody.net
3www.wireshark.org/docs/man-pages/tshark.html

2-5 5-10 >= 10

Session duration (minutes)

 0%

20%

40%

60%

80%

%
 o

f 
s
e
s
s
io

n
s

(a) Session duration distribution

0 5 10 15 20 25

Average bandwidth (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

3G

FCC

LTE

(b) CDF of average bandwidth
of three dataset

Fig. 4: Bandwidth traces and session duration

full-length movies. Both services are available on most mobile
and desktop devices, with up to 1080p video resolutions. Eval-
uating with two different video services helps in understanding
the impact of differences in service design parameters on
the accuracy of eMIMIC. We collected URIs of 100 videos
each from both services, covering different genres such as
animated videos, talk shows and action movies. The intent was
to capture a diversity of content complexities and encoding
bitrates. The duration of each session is pre-determined based
on a distribution obtained from the video network dataset
collected in [9] and is shown in Figure 4a. The distribution
ranges from 2 to 20 minutes with a mean of 5 minutes.

Bandwidth traces: We use the following throughput traces
to evaluate eMIMIC under realistic network conditions:
• Norway 3G dataset [19] consists of per-second throughput

measurements from mobile devices streaming videos while
connected to a 3G/HSDPA network.

• Belgium LTE dataset [20] is similar to Norway 3G but the
network is LTE, resulting in higher throughput.

• FCC dataset [21] consists of per-5 seconds throughput
measurements of broadband networks. We sample traces
from this dataset with the same end-points and an average
throughput under 3 Mbps to induce bitrate switching and
make it more challenging to estimate QoE metrics.

Figure 4b shows the CDF of average bandwidth of these traces.
Ground truth QoE metrics: These metrics in video stream-

ing are available within the video player itself. We monitor
the player buffer using the JavaScript API exposed by the
Video element of the HTML5 MSE-based video players of
these services. We found two functions, buffered and played,
that return the range of video content that has been buffered
and played, respectively. Calling them together enables us to
infer the size of buffer. However, it still does not give any
information about other QoE metrics such as video bitrate.

We then explore the APIs available in the minified
JavaScript source of the video players of the two video
services. We found a function for VOD1, which when called
returns the size of the buffered content in seconds and bytes,
bitrate of the currently playing video and a boolean variable
indicating if the playback is currently stalled. In our test-
ing framework, we insert per-second calls to this function.
Similarly, for VOD2 we found a function which closes the
video playback and returns a session-summary of all the video
QoE metrics, including average bitrate, re-buffering duration,
number of bitrate switches and time taken to download the



TABLE I: Design parameters of VOD1 and VOD2
Design parameter Audio Video

VOD1 VOD2 VOD1 VOD2
Bitrate levels 2 1 10 7

Bitrate range (kbps) 64 - 96 64 100 - 4000 400 - 6000
Chunk duration (s) 16 5 4 5

Chunks to start 1 1 2 1

first chunk (TT1C). We insert a call to this function in our
experiments at the end of the video session. Thus, by hooking
into the functions of these players, we can obtain per-second
ground truth QoE metrics for VOD1 and per-session ground
truth QoE metrics for VOD2.

Obtaining video service design parameters: eMIMIC
needs to know a few design parameters of a video service. The
chunk duration is estimated by playing several video sessions
completely and determining the number of chunks downloaded
from HTTP logs. Video play time divided by the number of
chunks gives average chunk duration. The bitrate levels for
VOD2 are obtained by inspecting the manifest of few videos.
VOD1 uses different bitrate levels across videos. As getting
per-video bitrate levels is infeasible, we use approximate levels
obtained by averaging bitrate levels observed for multiple
videos. The number of chunks required to start (CTS) playing
is obtained by inspecting the manifest for VOD2. For VOD1,
we streamed several video sessions and collected the ground
truth QoE metrics using the methodology described above.
Using these metrics, we found that CTS varied but was always
greater than 2, which we assume as CTS for VOD1. Table I
summarizes the values of these design parameters. We note
that these design parameters are prone to change for a service
which can impact eMIMIC performance. In future, we plan to
devise methods to automatically detect these changes.

Based on the obtained (or inferred, if needed) design
parameters, we set Smin to 35 KB and Tahead to 40s for both
services. We use two ranges: [126 KB, 136 KB] and [190 KB,
200 KB], and a single range: [40 KB, 50 KB] for identifying
audio chunks in VOD1 and VOD2, respectively.

Experiment: We use our testbed to stream video sessions
from both VOD1 and VOD2 in Firefox. The bandwidth
conditions in a session are emulated based on a trace selected
randomly from the set of bandwidth traces. The packet traces,
HTTP logs, and ground truth QoE metrics collected using the
testbed are stored after the end of the session. In total, we ran
985 sessions for VOD1 and 1005 sessions for VOD2.

B. Session reconstruction accuracy

We first evaluate the accuracy of eMIMIC in reconstructing
HTTP transactions corresponding to audio and video in a
session. We filter out transactions less than Smin from the re-
constructed HTTP transactions. We then match the remaining
transactions with the ground truth HTTP logs corresponding to
audio and video collected using trusted proxy. The matching
process works as follows: for every reconstructed HTTP
transaction of size greater than Smin, we search for an HTTP
log in the corresponding proxy logs which has a start time
within 500 milliseconds of the start time of the reconstructed
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Fig. 5: HTTP request reconstruction accuracy

TABLE II: Media classification confusion matrix for VOD1
actual predicted

audio video
audio 99.2% 0.8%
video 1.1% 98.9%

(a) With A/V buffer tracking

actual predicted
audio video

audio 99.3% 0.7%
video 2.4% 97.6%

(b) Without A/V buffer tracking

transaction. If a matching log is found, we consider it as true
transaction and remove the ground truth HTTP log. If there
are multiple matches found, we use the one closest in size
to the reconstructed log’s size. After this matching process is
finished, the unmatched reconstructed HTTP transactions are
tagged as extra, and the unmatched ground truth HTTP logs
are tagged as missing transactions.

Figure 5a shows a CDF of percentage of extra transactions
(negative value denotes missing transactions) in a session. We
find that the accuracy of reconstruction is high with 80% of
sessions from VOD2 reconstructed with 100% accuracy. The
lower accuracy of reconstruction for VOD1 is because few
metadata transactions in VOD1 are comparable in size to video
and get misclassified as video.

Figure 5b shows the CDF of median percentage error in
the estimated size of reconstructed transactions. Note that it is
important to accurately estimate the size of transaction as it is
used to identify video chunks and their bitrates. The median
error is within 1% of the actual size of HTTP transaction
for both VOD1 and VOD2 which suggests that eMIMIC can
estimate the size of HTTP transactions accurately.

C. Media type classification accuracy

Table IIa shows the confusion matrix of audio/video (A/V)
classification of the reconstructed HTTP transactions for
VOD1. The ground truth was obtained by inspecting the
request URI of HTTP logs collected by the proxy. The overall
accuracy of classification is high (99.15%). The classification
error is mainly due to two reasons: i) small video chunks in
the range of expected audio chunk size get misclassified as
audio ii) errors in estimated size of reconstructed audio chunk
leads to audio chunk misclassified as video. The results are
similar for VOD2. (omitted due to lack of space).

We also show the confusion matrix (Table IIb) when the
A/V classification is done only using the size of the HTTP
transaction. Tracking A/V buffer (Table IIa) helps in reducing
the error of misclassifying video chunks as audio by 1.26%
without significantly impacting the error in misclassifying
audio chunks as video.
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D. QoE inference accuracy

Here, we present the comparison of QoE metrics estimated
by eMIMIC with ground truth QoE metrics.

Average bitrate: Figure 6a shows the CDF of difference
in estimated and ground truth average bitrate, denoted by
δBR, for VOD1 and VOD2. We see that eMIMIC accurately
predicts average bitrate within an error of 100 kbps for 75%
sessions in VOD1 and 80% sessions in VOD2. The error is in
fact zero for nearly 20% sessions in VOD2. We do not observe
zero error in VOD1 partially because we do not know the exact
values of bitrate levels and use approximate values instead.

Figure 6b shows a scatter plot of ground truth average
bitrate and estimated average bitrate for VOD2 sessions. The
points are close to the identity line in most cases except at
higher bitrates (around 4 Mbps). We found this is because of
eMIMIC underestimating chunks with bitrate 3.2 Mbps and 6
Mbps due to higher variation in the chunk sizes in this range.
Nevertheless, these are still estimated as more than 2 Mbps,
which would be considered high bitrate for most purposes, if
used for categorical classification.

Re-buffering ratio: We calculate the difference (δRR)
between the estimated re-buffering ratio and ground truth re-
buffering ratio. Figure 7 shows a CDF of δRR for VOD1 and
VOD2. We see that eMIMIC can predict re-buffering ratio
with a high overall accuracy, i.e., within an error of 1% for
around 70% sessions in VOD1 and 65% sessions in VOD2.

We observe heavy-tails in δRR distribution for VOD1. On
closer inspection, we found this has to do with an unusual
buffering behavior in VOD1 player. The player would not
begin a session even if it had video (and audio) chunks in its
buffer. Figure 8 shows the CDF of number of video chunks
in player buffer when the playback first started. The player
sometimes waits until it has 12 chunks (48s video) in its
buffer before starting video playback. Similar behavior was
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Fig. 9: Error in estimating the bitrate switches and startup time

also seen when re-buffering event happened. This leads to
errors in estimating re-buffering ratio since we assume that
playback begins as soon as player receives a fixed number of
chunks (two in this case) in its buffer.

Bitrate switches: Figure 9a shows a scatter plot of ground
truth and estimated SPM for VOD1. We find that eMIMIC
does not estimate SPM with high accuracy. This is because
accurate bitrate switch estimation requires accurate estimate
of bitrate of every video chunk in a session. Even a single
wrong bitrate estimation of chunk can lead to significant errors
in SPM estimation. We plan to explore alternate methods of
bitrate switch estimation in our future work.

Startup time: Figure 9b shows a scatter plot of ground
truth and estimated TT1C for VOD2. For most sessions, the
network estimated TT1C is somewhat smaller than ground
truth TT1C obtained from the player. This underestimation
has been discussed in a previous study [8] and is mainly be-
cause the players experience additional network and operating
system delays before they receive a chunk. Overall, eMIMIC
shows high accuracy. It can predict startup delay within 2
seconds of ground truth for 65% sessions in VOD1 and 70%
sessions in VOD2.

E. Comparison with ML-based approach

Here, we compare eMIMIC with ML16, an ML-based
approach described by Dimopoulos et al. [6]. We use this
approach for comparison because it gives categorical estimates
of individual video metrics namely re-buffering ratio and
average bitrate as opposed to other ML-based approaches that
estimate overall QoE class assuming a specific model. The
approach trains a Random Forest model using network QoS
metrics such as round trip time and packet loss and chunk
statistics such as size and download time. We implement
ML16 using the scikit-learn library [22] in Python. We use
67% of our collected data for training the machine learning
model and use remaining 33% for testing both ML16 and
eMIMIC. We balance the QoE metric classes while training
using a popular oversampling algorithm [23].

Average bitrate: We use three categories for average bitrate
estimation. For VOD2, average bitrate is classified as low if
BR < 800 kbps, med if BR ∈ [800 kbps, 2000 kbps], and
high otherwise. The low bitrate category corresponds to the
two lowest bitrates, med to the next two bitrates and high to
the top two bitrates. Similarly, thresholds of 600 kbps and
1400 kbps are chosen to classify sessions of VOD1 into low,



TABLE III: Classification accuracy of eMIMIC and ML16

QoE metric Classification accuracy
VOD1 VOD2

eMIMIC ML16 eMIMIC ML16
Average bitrate 87.8% 84.5% 93.6% 90.8%

Re-buffering ratio 80.5% 71.7% 85.1% 61.3%

TABLE IV: Confusion matrix: VOD1 average bitrate
(a) eMIMIC

actual
BR

predicted BR
low med high

low 91.9% 8.1% 0.0%
med 12.2% 82.7% 5.1%
high 0.0% 15.2% 84.8%

(b) ML16

actual
BR

predicted BR
low med high

low 89.4% 8.8% 1.8%
med 17.4% 75.5% 7.1%
high 0.0% 13.0% 87.0%

med and high. The overall classification accuracy of eMIMIC
is slightly higher (around 3%) than ML16 (row 1 of Table III).
Table IV shows the confusion matrix of bitrate classification
for VOD1. eMIMIC identifies low and med sessions with a
higher accuracy, 2% and 7% respectively, than ML16.

Re-buffering ratio: For estimating re-buffering using
ML16, a video is categorized into one of the following three
categories (same as in [6]): zero stall when there is no re-
buffering, mild stalls when 0 < RR ≤ 10%, and high
stalls when RR > 10%. ML16 was trained separately for
both VOD1 and VOD2. Row 2 in Table III shows the re-
buffering ratio classification accuracy of eMIMIC and ML16
over the test data. eMIMIC can estimate re-buffering ratio with
significantly higher accuracy (10%-25%) than ML16. Table V
shows the confusion matrix for re-buffering classification of
VOD2. eMIMIC can predict low and high stalls with much
higher accuracy than ML16. The accuracy of ML16 may
improve with more training data.

Finally, we test if ML16 generalizes across services by using
the ML16 model learned for VOD2 to estimate re-buffering
ratio for VOD1. The classification accuracy of the model
dropped to 31% on VOD1 from 61% on VOD2. This shows
that ML16 does not generalize and needs separate training for
each service whereas eMIMIC faces no such issues.

V. CONCLUSION

We present eMIMIC, a methodology to estimate QoE met-
rics of encrypted video using passive network measurements.
To facilitate extensive evaluation, we develop an experimental
framework that enables automated streaming and collection of
network traces and ground truth QoE metrics of two popular
video service providers. Using the framework, we demonstrate
that eMIMIC shows high accuracy of QoE metrics estimation
for a variety of realistic network conditions. We compare
eMIMIC with ML16, a machine learning-based approach and
find that eMIMIC outperforms ML16 without requiring any
training on ground truth QoE metrics.

In future work, we plan to improve eMIMIC by automating
the inference of video service design parameters, adapt it to
new protocols like QUIC, and understand the impact of user
interactions such as fast-forward and rewind on the estimation
accuracy. Another goal is to devise methods for an operator to
use the QoE estimation by eMIMIC for network management.

TABLE V: Confusion matrix: VOD2 re-buffering ratio

(a) eMIMIC

actual
RR

predicted RR
zero mild high

zero 87.6% 12% 0.4%
mild 51.5% 44.9% 3.6%
high 3.1% 8.4% 88.4%

(b) ML16

actual
RR

predicted RR
zero mild high

zero 61.1% 37.0% 1.9%
mild 39.4% 48.5% 12.1%
high 26.9% 30.8% 42.3%
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