OPACE: Quick Polytope Approximation of All Correlated Equilibria in Stochastic Games

Liam MacDermed Karthik Narayan Charles Isbell Lora Weiss

Solve multi-agent reinforcement learning by using achievable-sets instead of values (Murray & Gordon 2007).

An Example Game (The Breakup Game):

Circles represent states, outgoing arrows represent deterministic actions. Unspecified rewards are zero. Previous algorithms could not solve this game.

the extreme points

Player 2 Action

all joint actions

 ${Q(s,a)}$

Approximate achievable-sets using a fixed collection of half-spaces (MacDermed & Isbell 2009).

replaces 'max' in single agent RL

Achievable sets are approximated using regular half-spaces with a fixed set of normals.

Offsets are contracted to construct an overestimate. Normals remain constant.

This polytope representation can be used to dramatically improve performance by (this paper):

- Eliminating vertex computation
- Permitting very fast Minkowski sums
- Preventing sets from changing dramatically, allowing linear program solution caching

We provide the first approximation

algorithm which solves stochastic games

Transforming multi-objective LPs into a series of single-objective LPs

Results:

The tractable backup of achievable sets: (an iteration consists of a single backup for each state)

Q(s,a)

 $Q(s, \vec{a})_j = R(s, \vec{a}) \cdot H_j + \gamma \sum_{s'} P(s'|s, \vec{a}) V(s')_j$

(Weighted Minkowski Sum)

Minkowski sums can be very efficiently computed using our regular polytope scheme

Value

Computed:

successor states

V(s')

Achievable sets of Define the set of correlated equilibrium equilibria({Q*(s,a)})

For each player i, distinct actions $\alpha, \beta \in A_i$,

 $\sum \overrightarrow{cu_{\vec{a}^{(\alpha)}}}_i \ge \sum x_{\vec{a}^{(\alpha)}} [\overrightarrow{gt_{\vec{a}^{(\beta)}}}_i + R(s, \vec{a}^{(\beta)})_i]$

 $\sum_{\vec{a}\in A^n} x_{\vec{a}} = 1 \text{ and } \forall \vec{a}\in A^n, \ x_{\vec{a}} \ge 0$

For each joint-action $\vec{a} \in A^n$,

 $\overrightarrow{cu_{\vec{a}}} \in x_{\vec{a}} \ Q(s,\vec{a}) \quad (i.e. \quad H_j \ \overrightarrow{cu_{\vec{a}}} \le x_{\vec{a}} \ Q(s,\vec{a})_j)$

 $V(s)_j$

Final Achievable Set of initial state V(s)

The state shown being

rock-paper-scissors game

played to decide who goes

Player 1 Utility

first in the breakup game

calculated is an initial

 $\max \sum_{\vec{a}} \sum_{i \in I} H_{j,i} \cdot \overrightarrow{cu}_{\vec{a}i}$

Each LP changes slowly from iteration to iteration, granting very fast results when we start the LP from the previous solution

