
replaces ‘max’ in single agent RL

Solving Stochastic Games Liam Mac Dermed
Charles Isbell

Georgia
Institute of

Technology
A tractable algorithm to �nd the optimal (game-theoretic with ε-error) solution to multi-agent reinforcement learning
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Computing the set of possible expectations: Computing the set based correlated equilibrium:

The tractable backup of feasible sets:  (an iteration consists of a single backup for each state)

Approximation
guarantees an
upper bound on
the computational
complexity of
each backup
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Circles represent states, outgoing arrows represent
deterministic actions. Unspeci�ed rewards are zero.
Previous algorithms could not solve this game.

An Example Game (The Breakup Game):
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The �nal feasible-set
for player 1’s state

achieved by player 1 
passing, followed by 
player 2 exiting w.p. 0.55

Set is closed and convex 
as any interior point can 
be achieved by 
randomizing between 
the extreme points

Extreme point (1,-0.5) is 
achieved by player 1 
passing, followed by 
player 2 exiting

The state shown being 
calculated is an initial 
rock-paper-scissors game 
played to decide who goes 
�rst in the breakup game 

Generalize the Bellman equation by using feasible-sets 
instead of values (Murray & Gordon 2007).  A feasible-set captures the 
set of possible achievable utilities, instead of a single best utility (the value 
of a state).
Approximate feasible-sets using a �xed collection of 
hyperplanes.   Approximation scheme is chosen carefully to maintain 
convergence guarantees while bounding error.
Use multi-objective linear programming to calculate 
backups.

 

Key Ideas:
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Results:
We provide the �rst 
approximation algorithm 
which solves stochastic games 
with cheap-talk to within ε 
absolute error of the optimal 
game-theoretic solution.

Statistics from a random game (100 
states, 2 players, 2 actions each ) run 
with di�erent levels of approximation. 
The numbers shown (120, 36, 12, and 6) 
represent the number of predetermined 
hyperplanes used to approximate each 
Pareto frontier.
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