## Solving Stochastic Games

Liam Mac Dermed Charles Isbell

Georgia Institute of Technology

A tractable algorithm to find the optimal (game-theoretic with ε-error) solution to multi-agent reinforcement learning

## Key Ideas:

- Generalize the Bellman equation by using feasible-sets instead of values (Murray & Gordon 2007). A feasible-set captures the set of possible achievable utilities, instead of a single best utility (the value of a state).
- Approximate feasible-sets using a fixed collection of hyperplanes. Approximation scheme is chosen carefully to maintain convergence guarantees while bounding error.
- Use multi-objective linear programming to calculate backups.

An Example Game (The Breakup Game):



Circles represent states, outgoing arrows represent deterministic actions. Unspecified rewards are zero. Previous algorithms could not solve this game.

The final feasible-set for player 1's state



The tractable backup of feasible sets: (an iteration consists of a single backup for each state)

Q\*(s,a)



Feasible sets of successor states  $V^*(s')$ 

Feasible set of Expected values of all policies expected values  $\mathbf{V}^*(s) = \text{equilibrium}(\mathbf{Q}^*(s, \vec{a}))$ 



Feasible sets of all joint actions  ${Q*(s,a)}$ 



Exact Feasible set of initial state equilibrium({Q\*(s,a)})



replaces 'max' in single agent RL

Approximation Using Set of Hyperplanes



The state shown being

rock-paper-scissors game

first in the breakup game

played to decide who goes

calculated is an initial

Final Feasible Set of initial state  $V^*(s)$ 

Computing the set of possible expectations:

Simultaneously maximize foreach player i from 1 to n:  $\sum_{s'} \sum_{\vec{v} \in V(s')} v_i x_{s'\vec{v}}$ Subject to: for every state s'  $\sum_{\vec{v} \in V(s')} x_{s'\vec{v}} = P(s'|s,\vec{a})$ 

## Computing the set based correlated equilibrium:

Simultaneously maximize foreach player i from 1 to n:  $\sum_{\vec{a}\vec{u}} u_i x_{\vec{a}\vec{u}}$ **Subject to:** probability constraints  $\sum x_{\vec{a}\vec{u}} = 1$  and  $x_{\vec{a}\vec{u}} \geq 0$ and foreach player i, actions  $a_1, a_2 \in A_i$ ,  $(a_2 \neq a_1)$  $\sum_{\vec{a}\vec{u}|a_i=a_1} u_i x_{\vec{a}\vec{u}} \ge \sum_{\vec{a}\vec{u}|a_i=a_2} F_{th}(s,\vec{a}) x_{\vec{a}\vec{u}}$ 

Approximation guarantees an upper bound on the computational complexity of each backup

## Results:

We provide the first approximation algorithm which solves stochastic games with cheap-talk to within ε absolute error of the optimal game-theoretic solution.







Statistics from a random game (100 states, 2 players, 2 actions each) run with different levels of approximation. The numbers shown (120, 36, 12, and 6) represent the number of predetermined hyperplanes used to approximate each Pareto frontier.