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Video analytics application may face great
performance degradation because of its
data-intensive and latency-sensitive workload



Edge’s proximity benefit can help!
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Edge computing brings benefits:

- Higher computing resource than client

- Reduce communication cost, lower processing latencies,
higher processing rates, ...

- Flexible service deployment
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How does video analytics application
work with edge?

Deep neural network

(DNN)

VI

High accuracy and famous

Computation-intensive workload

MobileNet | ResNet V2 | Inception | Inception | NASNet | PNASNet
Model | VGG 16| v) 14 50 V3 ResNet V2 | 331 331
ReTlf;S:d 2014 Sep | 2018Jan | 2016Jul | 2016Jul | 2016Aug | 2018 Apr | 2018 Jul
S B 74.9 75.6 78.0 80.4 827 82.9
ccuracy
# Operators 54 155 205 788 871 1265 939

-
Accuracy increases, so does model complexity
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Deep neural network (DNN)

Exponential Growth in Deep Learning

_d

ArXiv papers about ML Google project directories FLOPs to train a model
~18 months ~18 months ~3.5 months .
% Google, Cliff Young
Why all this growth? Because Deep Learning works. (Linley processor conference 2018)

Single type of device cannot fit every DNN,
more accurate DNNs require more resource
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Deep neural network (DNN)

Client -> Edge -> Cloud
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Diverse specification and network distance
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Bringing out edge’s benefit is not easy
?
DNN Client -> Edge -> Cloud

If edge cannot run whole DNN:

Gt o Bl

Optimize DNN for edge Bring specific edge for DNN

These two methods are relatively time- and money-consuming
and turns to be impractical for
rapid growth of DNNs and diverse and shared edge environment
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This is a multi-dimensional problem:
1. Heterogeneous computing resource on client-edge-cloud.

2. Various compute-intensive DNN models

3. No single deployment meets users’ expectation forever

Given a DNN and an edge,
How can we deploy the model with good performance?
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Couper: a general edge system |

' finding(and deploying) a good DNN deployment for you! i
finding(and deploying) a g ploy you! |
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How do we decide the slicing point?

2 ] ol g = g S
23 z g 23 z gy o = Y 3 Ei
= o = Q = o = Q wn = =
=9 g = e =3 g < e = 9 g < =g g2
—-= ] s ] »E ™ = T =) T »E =3 = % 8E Ty s v Ss =

= =] SR~ 2 =] X S =] = =] SEe =] F =] =] o = = s = S o
3= b o = ISLZ] b ag b 9] = ISIE = = S e S 5] S 2 £

o ) ] ) S = =} % ) % S N <3 5] e g

=} = = © 5 % % B 3 g 2

5 5 % o0 oo B a a
= = ¥

http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/



Share load across edge and cloud
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Share load across edge and cloud
by DNN partitioning
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How do we decide the partition point?

1. Filter out splittable candidates in DNN

2. Pick up a right one among the candidates
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Listing splicing candidates

{MaxPool}y
[Placeholder'—»' Pad '-r —>' RelLu '—»' Squeeze H Reshape)

Conv2D
Take “Pad” as
slicing point !

Running on edge

Running on cloud

X Multi-parallel path
X Constant or reading operator
X Last operator



Evaluating splicing candidates
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Evaluating splicing candidates
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Evaluating splicing candidates
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- softmax

- reshape

- squeeze

- conv_1c/biasadd
- conv_1c/conv

- avgpool

- mixed_7c/concat
- mixed_7b/concat
- mixed_7a/concat
- mixed_6e/concat
- mixed_6d/concat
- mixed_6c/concat
- mixed_6b/concat
- mixed_6a/concat
- mixed_5d/concat
- mixed_5c/concat
- mixed_5b/concat
- maxpool_5a/maxpool
- conv_4a/relu

- conv_4a/add

- conv_4a/conv

- conv_J3b/relu

- conv_3b/add

- conv_3b/conv

- maxpool_3a/maxpool
- conv_2b/relu

- conv_2b/add

- conv_2b/conv

- conv_2a/relu

- conv_2a/add

- conv_2a/conv

- conv_1a/relu

- conv_1a/add

- conv_1a/conv

2

Strongman method tests 34 slicing candidates
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Data transmission M ML inference on edge

B ML inference on cloud
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Couper contribution

 Improve DNN inference on various metrics:
Achieved up to 90% improvement on processing latency and
100% improvement on processing quality.

 Rapid to find solution:
Reduced 99% problem space for searching best deployment.

* Flexible to different DNN inference service:
Supported pluggable slicing algorithm and evaluating method.

e Compatible with contemporary software stack:
Deployed with container orchestration, Kubernetes.
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Here comes Couper!

This is a multi-dimensional problem:

1. Heterogeneous computing resource between client, edge and cloud.
2. Various compute-intensive DNN models

=> slicing the DNN to fit the edge resource
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Experiment

Goals:

- How Couper improves performance?

- How Couper reduces problem space and saves evaluation time?

- Why Couper supports different evaluating methods?

Hardware specification of experiments:

RTT (ms
Device CPU Freq| CPU | RAM ST . (ms)
(GHz) proc (GB) client | cloud

Client device 2.0 2 1

Low-end edge 2.0 4 16 1 65

. N/A

Mid-end edge 3.1 8 32 15 50
High-end edge 3.1 16 64 25 42
Cloud server 3.1 48 96 2 Nvidia P100
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The original layers of DNN and the # evaluation candidates

Model # Layer Method
Strongman Comm-slim Hybrid
VGG 16 54 52 20 1
MobileNet V2 1.4 158 155 132 3
ResNet V2 50 205 34 15 1
Inception V3 788 34 15 2
Inception ResNet V2 871 106 28 3
NASNet 331 1265 7 3 1
PNASNet 331 939 7 3 1

14
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Up to 98% evaluation time reduction

Hugely reduce problem space(split point candidates) by methods
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Next Step

e Couper Enhancement:

Working with different DNN model, application, and framework
(i.e. Yolov3 with object detection)

* Collaborate with edge software stack:
Evaluating 5G environment, edge infrastructure (i.e. Akraino),
and supporting software (i.e. NFV techniques)

 Multi-tenancy with different workloads:

Evaluating on the compute and network interference/overhead while
sharing resource with other services

18



Edge resources are diverse and target to support multi-tenancy
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Edge resources are diverse and target to support multi-tenancy
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Edge resources are diverse and target to support multi-tenancy

Even in specific edge device owned by certain company, need to
support multiple services
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% Chick-fil-A, Edge computing architecture overview
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Experiment

Goals:

- How Couper improves performance?

- How Couper reduces problem space and saves evaluation time?

- Why Couper supports different evaluating methods?

Hardware specification of experiments:

. CPU Freq| CPU | RAM RTT (ms)
Device (GHz) ! proc | (GB) GPU client | cloud
Client device 2.0 2 1
Low-end edge 2.0 4 16 N/A 1 65
Mid-end edge 3.1 8 32 15 50
High-end edge 3.1 16 64 25 42
Super-high-end edge 3.1 16 64 1 Nvidia P100 25 42
Cloud server 3.1 48 96 2 Nvidia P100
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Real evaluation time in minutes across models and edge devices,
the hybrid method comes out decision more faster than strongman

Model Inception V3 | Inception ResNet V2 | PNASNet 331
The evaluation time of > 30 ~ 120 ~ 10
Strongman
Low-end edge 1 1 1
Mid-end edge 2 3 1

High-end edge 10 16 1




