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Abstract— End user experiences on mobile devices with their rich 
sets of sensors are constrained by limited device battery lives and 
restricted form factors, as well as by the ‘scope’ of the data 
available locally. The 'Personal Cloud' distributed software 
abstractions address these issues by enhancing the capabilities of 
a mobile device via seamless use of both nearby and remote cloud 
resources. In contrast to vendor-specific, middleware-based cloud 
solutions, Personal Cloud instances are created at hypervisor-
level, to create for each end user the federation of networked 
resources best suited for the current environment and use. 
Specifically, the Cirrostratus extensions of the Xen hypervisor 
can federate a user’s networked resources to establish a personal 
execution environment, governed by policies that go beyond 
evaluating network connectivity to also consider device 
ownership and access rights, the latter managed in a secure 
fashion via standard Social Network Services. Experimental 
evaluations with both Linux- and Android-based devices, and 
using Facebook as the SNS, show the approach capable of 
substantially augmenting a device's innate capabilities, improving 
application performance and the effective functionality seen by 
end users. 
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I.  INTRODUCTION 

Smart phones and other mobile devices are operating in 
increasingly rich settings that include both nearby sensors and 
machines, and the remote cloud. By leveraging and interacting 
with such potentially cooperative resources, mobile device 
capabilities can be improved, and device users can gain 
enhanced interactions with their current environments.  

This paper presents the Personal Cloud abstraction, which 
along with its runtime and its Cirrostratus implementation with 
the Xen hypervisor, delivers to each application a Personal 
Cloud instance -- PCloud -- coupling their mobile devices with 
network-attached resources. In contrast to cloud-only services 
like Apple’s Siri and those that do not clearly distinguish 
between nearby and remote cloud resources such as MAUI [3], 
CloneCloud [4], ThinkAir [20], [21], and [22], a PCloud can 
service end users even when remote cloud resources are not 
present and/or difficult to access due to insufficient network 
connectivity or expensive to use via 3G/4G connections. This is 
because a PCloud can also run on available and free-of-charge 
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user-owned machines in the home or on other cooperative 
machines.  

Further benefits obtained from using local, user-own nearby 
vs. remote cloud resources are rapid access to such nearby 
devices and improved privacy, e.g., by users retaining complete 
control over their data rather than placing it into the cloud (e.g.,  
voice, pictures, and etc.). The outcome is that a PCloud no 
longer limits mobile applications to run on single devices. 
Instead, it exploits the capabilities of the variety of devices 
available in most homes, offices, and elsewhere. Advantages 
derived from using PClouds vs. single devices include the 
followings: 

Combined and augmented abilities. While mobile devices 
are imbued with many built-in sensors, the interpretation of 
sensor outputs can benefit from increased computational 
abilities and from data captured previously and/or stored 
elsewhere, e.g., in nearby desktop PCs or in the cloud. An 
example explored in our work is face recognition, using a 
camera on a smartphone (i.e., a local sensor) to capture images, 
but leveraging other network-accessible resources for 
computationally intensive work, and to deal with the fact that 
recognition accuracy also depends on the extent of the face 
database.  

Improved usability. While the small form factors of mobile 
devices restrict their display and keyboard sizes, this is not the 
case for the large-display TV in a user’s home (or his friend’s) 
and the keyboard attached to his home desktop machine. We 
demonstrate new and secure methods for accessing and 
using/sharing such capabilities available on nearby networked 
devices that are owned by users and/or their friends or other 
cooperative parties.  

Increased ‘scope’. Referring to the fact that a device’s 
limited storage and current context (e.g., physical location) can 
benefit from data resident in the remote cloud and captured by 
other devices, storage aggregating data from the remote cloud 
and all user-owned devices is shown capable of delivering 
improved accuracy and utility for services offered to end users. 
An example is the aforementioned face recognition service. 

High availability. Studies [1-5] show that applications on 
battery-operated devices can gain performance and availability 
and extend their battery lives by offloading computationally 
expensive tasks from local to remote resources. PCloud, 
therefore, offers ways to seamlessly tie applications running on 
battery-operated devices with both nearby and remote 
resources. In this paper, we show how a neighborhood-watch 



 
 

application can gain performance and accuracy benefits from 
running across such networked sets of machines.  

PCloud is similar in spirit to vendor-specific solutions for 
integrated use of shared devices, such as Apple’s AirPlay and 
Microsoft’s Smart Glass as well as DLNA, but in contrast to 
those solutions operating only across ‘compatible’ vendor-
certified entities, PClouds have no such constraint, by using a 
simple model of device interaction realized at a level of 
abstraction ‘below’ that of vendor-specific software, i.e., at the 
system level. Specifically, the Cirrostratus implementation of 
PCloud operates as a set of extensions of the Xen hypervisor, 
including arbitrary other Xen-based devices and also 
interacting with non-virtualized entities like Android-based 
smart phones, via device-resident ‘agents’.  

Generalizing our earlier work on ‘device clouds’ [1], 
Personal Clouds make the following new technical 
contributions: 

 They manage and dynamically compose distributed 
networked resources that are from both local/personal and 
remote/public devices and machines, where any of those 
entities can be active participants in running the services 
desired by end users, and all resources in the PCloud are 
available to the applications being run. The neighborhood 
watch application in the paper, for instance, takes 
advantage of PCloud to run its face recognition service 
both with and without remote cloud connectivity, albeit at 
different levels of fidelity based on where and how it runs.  

 Device participation in any PCloud is guided by 
permissions and policies controlled through social network 
services (SNS), thus making it possible to share devices 
owned by different end users and/or residing at different 
locations. This is done in a privacy-preserving manner, via 
a system level service for authentication and authorization 
that uses Facebook’s ‘Friends’ lists to look up and encode 
the relationships of users’ participating devices. With such 
SNS-defined access policies, Cirrostratus can extend and 
alter a user’s PCloud without the need for direct and 
repeated user interaction or consultation. 

 PClouds protect end user privacy by tagging data – like 
photos – with meta-data about the devices on which it is 
captured, the users to which it belongs, and other such 
semantic information. This makes it possible to 
automatically ‘sync’ data across of all of the devices 
owned by some PCloud user, e.g., with a privacy-protected 
repository maintained on her home desktop vs. storing 
such data in some remote SNS not controlled by her. The 
user can then selectively upload photos from the repository 
to the SNS, and/or she can use a PCloud-provided service 
that gathers photos from the SNS, e.g., from those who are 
encoded as ‘friends’ and have expressed their intent to 
share their pictures on Facebook. 

 The PCloud runtime tracks the availability of networked 
resources and  decides what resource should be granted to 
a PCloud instance to meet current demand. This is guided 
by policies in Cirrostratus aware of current device 
capabilities and network conditions. An example is a face 
recognition service located on three different platforms – a 

mobile device, a nearby home desktop, and a remote cloud 
– with different location choices determined by current 
network connectivity and machine load, thus providing 
different levels of performance to PCloud users. 

Since PCloud participants can range from entire virtual 
machines running on servers or in the cloud to agents operating 
on low end devices, PCloud instances can operate across the 
wide spectrum of low end devices, to high end non-virtualized 
or virtualization-capable mobile devices to server systems. We 
demonstrate the utility of this generality with both micro-
benchmarks and realistic use cases. The first use case 
implements neighborhood-watch functions. It uses face 
recognition to distinguish neighbors from friends from others, 
where Cirrostratus orchestrates its use of network-accessible 
resources in the home and/or on remote cloud machines. Using 
local resources offers rapid response, but may suffer in terms of 
accuracy due to limited volumes of face data on the home 
machine. Additional use of remote machines improves 
accuracy by drawing on the cloud’s global scope and data. The 
second use case shares devices and content among friends, 
where the SNS serves to establish secure interactions across 
friends’ devices. The applications enabled by this functionality 
include playing a video on say, a friend’s large-screen display, 
capturing sound from other devices, and playing sound where 
desired. 

Experimental evaluations in Section V demonstrate the 
utility of leveraging multiple nearby resources for enhancing 
the capabilities of single mobile devices. Performance results, 
for instance, show a 53% reduction in execution time for a 
compute-intensive service on a PCloud vs. on a single device in 
addition to a 74% saving in energy consumption. Results also 
show how the use of ‘friend’ relationships present on social 
network services make it possible to securely employ diverse 
devices in PClouds: a ten-fold increase in data scope via SNS-
maintained data results in improved accuracy for the outputs of 
certain data-intensive tasks.  

II. MOTIVATING USE CASES  

This section describes us how Personal Clouds can leverage 
surrounding and cloud resources to provide end users with 
enhanced application functionality and performance.  

A. Neighborhood Watch  

A neighborhood watch is a community group organized by 
residents to forestall crimes and vandalism. Tasks include 
watching for suspicious activities and persons, notifying each 
other of such events, alerting neighbors about relevant local 
issues, and reporting certain events to external parties like the 
police. In this context, a face recognition service can be used to 
classify persons seen in the neighborhood as residents vs. 
others, e.g., using images taken by neighborhood or home 
cameras and stored in homes’ image repositories. Such a 
service should be always-on, even when Internet connectivity 
is not present or when power is out, the latter requiring its 
ability to run on single battery-driven devices. At the same time, 
face recognition accuracy heavily depends on the size of the 
dataset being used [8], with small sample data for each face, 
i.e., a narrow ‘scope’ of data, resulting in over-fitting and 
making recognition unlikely. Also important is the 



 
 

computational capacity available for running these codes, with 
their compute requirements directly related to database size. 
Further, when images are seen, it must detect and identify 
potential threats in a timely manner. This makes the network 
bandwidth and latency between cameras and computing 
resources running the service critically important.  

PCloud’s functionality supporting services like 
neighborhood is the following. First, the face recognition 
service can, of course, run on a single device, using the photos 
resident on it, but second, it can obtain a wider scope of data 
(e.g., people’s faces in this case) than those existing on a single 
user’s device by also accessing a user’s home image repository, 
as well as using remote data available via SNS (or even in 
neighbors’ home repositories). Third, the service can benefit 
from both home machines’ and remote cloud resources’ 
computational capacities depending on local vs. remote 
network conditions. Section V describes additional 
implementation details about how PClouds backed by 
Cirrostratus permit the face recognition service to run with 
these diverse configurations.  

B. Display Sharing among Friends 

With high quality video clips and photos with multi-million 
pixels, recent smart phones have become equipped with high 
resolution displays and high performance processors. Small 
screen sizes continue to hamper user experiences, however. 
PClouds permit mobile devices seamless access to nearby large 
screen displays. Our previous work demonstrated this 
capability [1], but it required all personal cloud devices (e.g., 
display, keyboard, and processors) to be virtualized and owned 
by the same user. PClouds extend device sharing to also 
include non-virtualized devices and those owned by friends. 
Specifically, users can share any capability of any nearby 
device (e.g., a large display in this case), enabled by the use of 
social network services (SNS): the Cirrostratus infrastructure 
implementing this functionality ensures (i) that the device 
issuing a sharing request is actually owned by a designated 
friend who is identified via SNS, (ii) that the request recipient 
is the intended PCloud, and (iii) that no one else is currently 
using the chosen target device (i.e., the display). Secure, 
access-controlled sharing is realized with a security service 
implementing the X.509 specification and using the SNS to 
maintain ‘friend’ relationships; the devices currently supported 
include a user’s home displays, storage devices, keyboards, and 
machines, devices in friends’ homes (even image repositories 
they wish to export), and remote cloud resources. 

III. PERSONAL CLOUD – SOFTWARE ARCHITECTURE 

PClouds are realized as a multi-level software architecture 
designed to operate within dynamically changing external 
environments. Fig. 1 depicts the main components of the 
proposed architecture. 

Applications. An application is a set of services running on a 
PCloud instance. An example is a media player consisting of a 
storage service holding a content file, a decoding service 
generating a video stream from the file, and a screen service 
projecting the video stream. The PCloud API permits cloud 
instance creation, query of and access to currently available 
services, and the construction of new services for a given one.  

 
Figure 1.  Personal Cloud Architecture  

Services. Applications running in some PCloud instance 
can transparently access both local and remote services. This 
approach is similar to that of the Android Service 
implementation in the sense that it separates computing 
intensive or hardware access parts of applications from their 
main execution flows. 

PCloud Instance. Each PCloud presents the illusion of a 
single machine. Its resources may be distributed across some 
set of networked devices, but they are accessed in exactly the 
same fashion as done by traditional applications (e.g., open, 
read, and write system calls). An instance’s lifecycle 
transitions from its initialized, to started, to terminated states. 

PCloud Runtime. The runtime brings up a PCloud instance 
for an application, with its ‘intent’ interface used to describe 
resource requirements, e.g., a large screen with HD resolution, 
presence of a face recognition service, etc. It also allocates 
resources for the services being asked for a given instance. 

System Services. These are used to authorize applications to 
run, and for actions requiring global knowledge, such as 
authentication and a data storage with global scope, so they 
directly interact with Cirrostratus.  

Cirrostratus. These set of extensions of the Xen hypervisor 
discover and monitor both locally and globally network-
reachable resources, in order to maintain a pool of distributed 
resources accessible to each end user. The PCloud runtime 
draws resources from this pool and combines them to establish 
and maintain PCloud instances.   

A. Applications  

Designed to support existing programing models and 
minimize code development, a PCloud application operates 
much like one running on a single device or machine. It runs a 
simple preamble to create a PCloud instance, then runs its 
services, the latter able to use all of the resources in PCloud.  



 
 

It is the responsibility of Cirrostratus and its runtime to 
ensure resource availability in lieu of changing network 
conditions and resource use by others. 

B. Services  

PCloud services are like those described in the Intel 
processing framework [24], but differ in implementation in 
that they use local ‘service proxies’ for the services that are 
run remotely. Specifically, for each remotely run service, the 
runtime instantiates a local proxy that reveals how to reach the 
remote service, what service is required for dependency, and 
what resources are needed to run it. State information is 
maintained, as well, relayed by the runtime to the actual 
remote service location. The current API has operations to 
enumerate, attach, use, and detach services, and to create and 
launch new ones. System services differ from others in that 
they are always present and available. 

C. The Personal Cloud Instance 

The ‘resources’ presented in a PCloud instance are either 
services or devices, and for both types of participants, 
Cirrostratus exposes and maintains their capabilities. For 
instance, a desktop machine can separately expose devices like 
its disk storage, processing capacity (CPU), and large display. 
This means that a PCloud application can run across say, the 
CPU of a laptop, the storage on a desktop, the keyboard of a 
smartphone, and a separate large-screen display of a TV, all as 
if it were running on a single platform offering all of those 
device resources.  

Other than running the aforementioned preamble, the use 
of hypervisor-level technologies in Cirrostratus makes it 
possible for entirely unmodified single-machine applications 
to run across such virtual platforms. However, users may wish 
to impose constraints on the platforms being constructed. For 
this reason, the PCloud runtime provides additional APIs for 
an application to guide a construction of such platforms: the 
‘Intent’ runtime module and API can be used to submit a list 
of required services along with their required capabilities.  An 
example is the ‘re-wiring’ of a user’s display device, to say, 
move the depiction of a streaming video currently being 
viewed by the user on his laptop screen to his large home TV 
display. A PCloud instance supporting this example may 
continue to use the exact same laptop resources as before, and 
simply add the large home TV as a screen resource. 

D. The Personal Cloud Runtime 

The PCloud runtime’s tasks are  (i) to establish a PCloud 
instance with services per a user’s request or ‘intent’ – the 
Intent module, (ii) to decide which resources are most suitable 
for running requested services – the ‘Composition’ module, 
and (iii) to manage the certificate of the device owner for 
authentication – the ‘Access Control’ module. The Intent 
module builds a list of services requested by an application and 
determines the types of resources needed to run them. Based on 
its inputs, the Composition module interacts with the 
Cirrostratus layer to allocate resources, the latter mapping the 
best-fit resources to requested services, and it establishes a 
PCloud instance with such resources and services.  

 
Figure 2.  Using a Personal Cloud between people identified via a SNS 

The Access Control module works with the authentication 
system service checks access permissions for the resources 
requested for some specific user. 

E. System Services  

System services provide global information to other PCloud 
components and to user-created applications and services. Two 
default current system services are: (i) the authentication 
service and (ii) the user data aggregation service. They both 
interact with social network services (SNS) to authenticate the 
users of resources joining a PCloud platform, permit/deny 
requests for resources, and they also use the SNS as a 
repository of user data for the applications running with a 
PCloud instance. Authentication leverages the SNS, and 
aggregation is a special storage service that assembles data 
about users from both their local disks and the remote clouds, 
to create a virtual storage service for each cloud instance. The 
purpose is for the services running on that cloud to have access 
to the data they need. Like others, system services also use 
local proxies. 

F. Cirrostratus  

Cirrostratus extends or earlier work on Stratus and its 
‘device clouds’ [1] in three substantial ways. First, Stratus 
device clouds required all active cloud participants to be fully 
virtualized platforms running the Xen hypervisor. Cirrostratus 
also permits non-virtualized devices like Android-based 
smartphones to be active participants. Second and more 
important is the use of SNS to implement the access control 
methods needed for device sharing across ‘friends’ and for 
access to friends’ data, the latter increasing the data scope 
available to individual participants. Third, Cirrostratus is able 
to use remote cloud services (e.g., Amazon EC2) as PCloud 
resources, thus substantially increasing PCloud functionality 
and capabilities. Fourth, for all such resources, it is the 
responsibility of Cirrostratus to maintain status information of 
about participants’ devices, via active device and network 
monitoring. The ‘Coordination’ module carries out these tasks. 
Finally, Cirrostratus’ ‘transport’ layer, termed ‘Data Exchange’ 



 
 

in Fig. 1, is a straightforward extension of the data exchange 
protocol developed for Stratus.  

Fig. 2 illustrates an example of PCloud use between two 
users. It illustrates how the aforementioned components relate 
to others so that users can leverage their own network-
reachable resources as well as share others, in a secure fashion, 
by interacting with a SNS 

IV. SELECT IMPLEMENTATION DETAIL 

Cirrostratus supports the Linux and Android systems 
running on native or on virtualized hardware. This section 
presents the detail about these implementation needed to 
explain the performance results shown in Section V.  

A. Cirrostratus  

We review interesting aspects of the Data Exchange, 
Coordination, and Composition modules. 

Coordination. Cirrostratus uses the master/slave model to 
manage the resource pool available for use by PClouds. Its 
current implementation elects the one with the largest 
performance index (defined later) as the master among nearby 
devices. Battery-operated devices are precluded from that role, 
because of the master’s computationally intensive workload 
and the need for high availability. Slaves contribute resources 
with certain capabilities. 

Configuration. The configuration module runs on all 
participating Cirrostratus devices. It uses static data as well as 
online monitoring to gather information about the capabilities 
of available device resources, and it provides such information 
to the master for storage in a central PCloud repository of 
device capabilities. There are also ‘knobs’ available to device 
owners permitting them to control their devices’ degrees of 
participation, including preventing certain device resources 
from being used (e.g., a device’s display). Finally, there are 
resource quotas to control device usage. The naming scheme 
used in configuration translates <scr1.dt2.pcloud3.bob> 
to the fact that Bob has the screen1 connected to the desktop2 
in the personal cloud managed by PCloud3. A single user may 
have multiple names, according to his location, say in the home 
or office. The configuration module also supports resource 
discovery. That is, if a new device joins any PCloud, this 
module on the device reports the device’s capabilities to the 
master of that PCloud upon discovery and registration.  

Data Exchange. Data is exchanged via a publish-subscribe 
transport termed M-Channel [1][15]. M-Channels create a 
software layer for applications to communicate with others 
transparent to underlying physical connections being used. 

B. Resource Allocation 

Resources are allocated to services. The current 
implementation uses a simple allocation heuristic guided by 
summary data about resource capabilities changed dynamically. 
Allocation operates within stable allocation epochs, assuming 
that (i) the status of resources and the network connection are 
unlikely to change during the current epoch, and (ii) if changes 
occur, they will persist during the next allocation epoch. We 
have not yet considered multi-epoch allocation planning and/or 
the evolution of allocations across multiple epochs in place 

sophisticated allocation methods. We currently approximate the 
status of each computational resource by computing its 
performance index (PI) and its network connectivity. When N 
is the number of processor cores in a device, and ω is a weight 
assigned to its processor architecture, the PI is defined as 
follows:
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MemorySize: RAM size of a resource in MB. 
ClockFreqofCoren: Operational frequency of a core in MHz. 

Util_Coren: Current utilization (0-1) of a core 

As the metric for resource allocation, we can then estimate 
the execution time, , of a service on any resource as: 
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PCloud composition for an application with some set of 
services, then, operates as follows. When the application 
requires computation-related services, the composition module 
interacts with Cirrostratus to obtain the performance index (PI) 
and network connection status of each candidate 
computational resource. Each service is then mapped to the 
resource with the largest PI, as its initial allocation. 
Subsequent  runtime monitoring uses the service proxy to 
obtain additional detail about service execution, including the 
volume of data transmitted over the network and the elapsed 
finish time for service requests. Allocations are changed when 
service times substantially and consistently exceed previously 
observed values; we have not yet investigated rigorously the 
dynamic methods needed for runtime re-allocation. Our 
alternative focus has been on showing PClouds to be viable 
and useful for realistic application. 

C. System Services 

For brevity, we elide further detail about the 
implementation of the PCloud runtime, instead describing 
those system services critical to the ability of PClouds to span 
distributed resources.  

1) Authentication Service 
The authentication service is implemented as a Facebook 

app, and like other services, its proxy resides within each 
PCloud instance. A user must install this app on her Facebook 
account and create a Facebook group with the label 
“DeviceShare.” By then listing appropriate Facebook friends, 
she indicates her willingness to share the capabilities of devices 
in her own PCloud with others in this group. Once the app is 
installed on her Facebook account, the server hosting the app 
generates and holds her certificate, based on the X. 509 
standard.   

The following example illustrates the authentication 
process. Alice and Bob are Facebook friends and each install 
the application on their accounts. One day, Alice visits Bob’s 
house and wants to use his large display to share pictures with 
him that reside on her phone. By running the Facebook app 
(the authentication system service), Alice is shown the list of 
people who are willing to share their resources with her. 



 
 

Choosing Bob prompts the server to send out her request to his 
PCloud along with Alice’s certificate. The access control 
module in the runtime then verifies Bob’s resources she is 
allowed to access. In terms of access rights, our current 
implementation grants access to resources based on group 
membership, either owner or guest. In this case, Alice belongs 
to the guest group, while Bob is in the owner group. Alice’s 
phone also receives the IP address of Bob’s network, along 
with Bob’s certificate. With this information, the data exchange 
module in Bob’s Cirrostratus establishes a connection to 
Alice’s phone, whereupon her phone then becomes a ‘guest’ 
participant of Bob’s Cirrostratus PCloud.  

2) User Data Aggregation Service 
The service used to collect user data consists of the 

aggregate total of a user’s remote and local storage. Its remote 
part extracts photos and user-written tags from SNS accounts 
listed as ‘friends’, while the local part provides storage to 
participants of Cirrostratus, e.g., so that it can aggregate all 
photos from participating devices. The remote store is 
comprised of a Facebook app and a remote storage service. If a 
user installs this app on her account, it collects photos along 
with tags from friends’ accounts that open their photos in 
albums for friends or for the public to see. Since on Facebook, 
tags of photos usually include information regarding who 
appears in photos, the app can send both the photos and such 
meta-data to some remote storage site. For the local synced 
storage implementation, we use an rsync-based tool and 
SparkleShare [23].  

D. Implementation Setup  

1) Virtualized Devices 
We use an Intel Atom mobile platform with the Xen 4.1 

hypervisor, running Linux and Android virtual machines. The 
control domain of Xen hosts the PCloud runtime and its other 
necessary components. For both Linux and Android on guest 
domains, M-Channels link guest actions with PCloud 
components.  

2) Non-virtualized Devices 
Cirrostratus uses ‘agents’ to interact with non-virtualized 

mobile devices, such as actual Android phones or tablets, using 
Google’s Android 4.0 Ice Cream Sandwich and 4.1 Jellybean. 
The agent is a service module on the Java service layer that 
essentially emulates the functionality resident in the control 
domain (Dom0) of virtualized systems.  

V. EXPERIMENTAL EVALUATION 

The two case studies described in Section II are the basis for 
demonstrating the utility and performance of the Personal 
Cloud approach and implementation.  

A. Neighborhood Watch with Face Recognition 

1) Test-bed Configuration 
The resource pool managed by Cirrostratus consists of two 

desktops (N1, N2, respectively), an m1.large EC2 instance 
(EC2) as well as a mobile device. Further, the neighborhood 
watch application on a mobile device uses a camera connected 
via Android on our virtualized Intel Atom platform. For non-
virtualized devices, the same software employs a camera 
installed on the Nexus 7 tablet. 

TABLE I.  PARTICIPANTS IN THE NEIGHBORHOOD WATCH.  

Name 
The number of recognized faces 

Faces in Facebook Standalone phone 

A 32 10 
B 23 16 
C 24 9 
D 35 11 
E 14 5 

 

The face recognition service operates in three different 
configurations: (i) on a standalone mobile device, (ii) on a 
PCloud instance with a set of ambient devices, and (iii) 
simultaneously using a remote server running on the Amazon 
EC2 instance as well as (ii). Each configuration performs the 
tasks of the neighborhood watch application, which include 
taking a photo, detecting and identifying faces on the photo, 
returning results to a user, and starting all tasks over again 
every 3 seconds. In addition, we introduce two cases in which 
execution environments differ in terms of network status and 
resource utilization. In exclusive execution mode, the 
neighborhood watch is the only application that gains access to 
all resources given by the PCloud, whereas in mixed execution 
mode, other applications are allowed to simultaneously access 
such resources. We use OpenCV 2.4.2 with the Eigen-face 
algorithm [6] to build this application.  

2) Evaluation Scenario  
When some user monitors a street close to his house, he 

runs the neighborhood watch app on his mobile device. The 
app captures peoples’ images on the street periodically (every 3 
seconds) and determines who they are. These result in capacity 
queries sent to each configuration of the face recognition 
service: (i) located on the device, (ii) a user-owned device, and 
(iii) a remote server. For this use case, our current selection 
heuristic is to initially choose the nearby service unless the 
remote one, i.e., the Amazon instance, offers a performance 
index that is twice as high. If a nearby service is not available, 
the heuristic attempts to work with a remote cloud service. 
Using the compute power on a mobile device is the last resort. 

3) Results: The ‘Scope’ of Data 
Five fellow students helped run the experiment by installing 

the required Facebook app for the data aggregation service, 
resulting in the remote store containing all photos and tags on 
their respective Facebook accounts for identified friends, the 
idea being to emulate several parties living in the same 
neighborhood. We assume that a user A, in TABLE I, has a 
mobile phone participating in the PCloud. The numbers of 
faces listed in TABLE I use photos from the data aggregation 
service attached to all participants (i.e., A, B, C, D, and E) 
since all of them are in the ‘DeviceShare’ group in Facebook. 
The numbers mentioned in TABLE I. refer only to those that 
are sufficiently clear to permit our face recognition software to 
correctly identify faces. Note that the total number of distinct 
faces accumulated by the data aggregation service is 105, after 
removing duplicated results, thereby demonstrating its ability 
to provide a wider scope with a broader set of data set than that 
available on any specific device. 



 
 

 
             (a) User-experienced response times     (b) Power consumption 

Figure 3.  (a) shows user-experienced response time in milliseconds for each 
photo under different configurations, while (b) shows power consumption in 
watts per configuration. 

4) Results: Performance 
We first evaluate the elapsed time needed to identify a 

person’s face via the neighborhood watch app. In the mixed 
execution environment, the neighborhood-watch app sends a 
face recognition service request every 3 seconds for 5 minutes. 
Then the PCloud runtime and Cirrostratus build a PCloud 
instance and allocate a resource for the service either on one of 
the nearby devices (N1 or N2) or on the cloud (EC2). Fig. 3 is a 
snapshot of the elapsed time to process one request. As seen in 
Fig. 3(a), the service located on the nearby resource, Config. (ii) 
(Nearby), shows the best response time when each service can 
identify a given face. With Config (ii), transmitting states and 
user data consumes 331ms out of the total elapsed time of 
1335ms (about 24.7% of time). This includes the time needed 
for the PCloud runtime to construct a PCloud instance to meet 
the requirement of the Face recognition service before 
transmitting them. However, most of the time is influenced by 
the network connection status: the time is less for nearby 
devices, compared to using the remote cloud, due to the 
network delay. 

Fig. 3(b) shows that power consumption is substantially 
higher when the neighborhood watch runs on a single device. 
This is in stark contrast to results shown for the ‘nearby’ and 
‘cloud’ configurations: the energy consumption on the mobile 
device of Config. (ii) and (iii) (Cloud) compared to (i) 
(Standalone) is reduced by 74% and 77%, respectively. Even if 
we omit CPU usage on the mobile device for each 
configuration, it still follows the power consumption plot in Fig 
3(b): this means that power savings are due to the fact that 
compute-intensive face recognition functions can be 
successfully offloaded to a suitable computing resource.  

During the experiment, resource allocation takes place 19 
times, due to changes in network condition and resource 
availability, caused by other workloads being run. Fig. 4 shows 
the user-experienced total response time taken to obtain 
recognition results. If the resource is located on the cloud, 
network delay is three times larger than when using the nearby 
resource, as seen in Fig. 5, but the increased computational 
capabilities of the cloud successfully offset that additional 
delay. Fig. 6’s comprehensive comparisons show that for this 
application, user-experienced response times are almost 
identical no matter what resource is given to the service. 

 
Figure 4.   User-experienced total response times in milliseconds for face 
recognition requests sent every 3 seconds for a 5 minute duration. 

 

                (a) Service on the cloud                    (b) Service on nearby devices 

Figure 5.  Cumulative distribution functions of network delay when the 
service runs on the cloud (EC2) or on a nearby device (N1,N2), respectively. 

 

Figure 6.  Average delays in milliseconds 

B. Display Sharing  

1) Testbed Configuration 
We evaluate the costs of projecting a small screen on a 

smartphone to a large nearby display. We use a 23-inch 
monitor with full HD resolution (1900 x 1080) attached to a 
desktop PC, participating in PCloud interacted with the master 
in Cirrostratus, all connected to the mobile device via 802.11n.  

Our Atom platform and the Nexus 7 offer 1024 x 600 and 
1280 x 800 resolution, respectively. The authentication service 
runs on an Amazon t1.micro instance hosting a Facebook app.  

2) Evaluation Scenario 
Suppose that Alice shows video clips of her newborn baby 

when she visits Bob’s house. With a PCloud instance, if a 
PCloud environment is set up at his home, she can easily depict 
this clip, as long as both Alice and Bob are friends on 
Facebook. In this case, Alice asks Bob to share the large TV 
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with her, and he places her into the “DeviceShare” group in his 
Facebook account. Assuming she already installed the 
Facebook app for the authentication service, when she starts the 
app, Facebook leads her to a server that hosts the app.  Now the 
app shows a list of people who are willing to share their 
device’s capabilities by putting her on their “device share” 
group. She selects Bob on the list. 

If this is her first use of the authentication app, the 
authentication service generates her certificate based on PKI 
(X. 509 specification). The service also provides the IP address 
of Bob’s Cirrostratus master along with her private/public key 
pair. Authentication is completed when the PCloud software in 
Alice’s phone starts a connection with Bob’s Cirrostratus 
master, with all subsequent communications transmitted via a 
secure M-Channel connection. Using this connection, 
Cirrostratus is allowed to share with Alice’s device a list of all 
permitted capabilities for guest users.  

Our current implementation only supports two groups—the 
owner group and the guest group, where only a member of the 
owner group can adjust the capabilities being shared. The 
Personal Cloud software in her phone, then, chooses the 
desired display, lets the capability service know about its 
selection, and finally, starts transmitting the mobile phone’s 
screen to an appropriate PCloud instance. Before the 
transmission takes place, the PCloud runtime in Bob’s house 
initiates a PCloud instance including the large TV and begins 
with the remote display service on the instance. Then the 
desktop machine starts its VLC receiver as the remote display 
service to project Alice’s screen on its display. 

3) Evaluation Results 
TABLE II shows the elapsed time from when Alice sends a 

request for display sharing for the first time to Bob’s 
Cirrostratus. In this case, Alice has to first create her certificate. 
As seen in TABLE II, it takes 1471.5ms to be ready to project 
the screen on her mobile phone to Bob’s display, likely 
superior to a case in which Alice and Bob try to wire these 
devices manually. Further, with PKI and SSL connections 
obtained by the authentication service, such sharing is done in 
ways that respect access rights and provide end user security. 

C. Discussion  

Interesting to note about the neighborhood watch 
application is that while local resources offer low latency 
response, the increased data scope of remote resources can 
offer improved accuracy, and in addition, for this application, 
the substantially faster remote resources can also hide some of 
the additional network delay seen for requests to the remote 
cloud vs. local machines. Such tradeoffs are a general attribute 
of the PCloud approach, encouraging future work combining 
performance indices capturing such tradeoffs, with networking 
data, and with indications of what may be most important to 
end users when services are run, i.e., user ‘intent’. In fact, it is 
because of the flexibility offered by PClouds that such 
tradeoffs become possible, permitting mobile devices to opt for 
‘best-fit’ resources in their current environments. The PCloud 
approach supports such actions via continuous system 
monitoring to understand the capabilities offered by currently 
reachable resources (the performance index in this case) and 
network connectivity.  

TABLE II.  ELAPSED TIME FOR DISPLAY SHARING 

Task (message) From  To 
Time 

(milliseconds) 
Dev. 

Initiate a certificate MO S 88.2 27.6 
Return the certificate 
and key pairs 

S MO 213 35.3 

Authentication All All 405 41 
Send a display sharing 
request 

MO SM 140 66.3 

Return a list of available 
capabilities 

SM MO 293 117.3 

Notify a selection of a 
display that wants to use 

MO SM 179 55.8 

Initiate a VNC 
connection 

SM MO 153.3 80 

Total Elapsed time 1471.5 ms 

MO: a mobile device, S: the authentication service, S M: a Cirrostratus master  

Display sharing via PClouds demonstrates seamless and 
secure ways to leverage nearby resources, supported by SNS-
based authentication and access control. Offline certificates [18] 
can be used when remote SNS services cannot be reached. 
More generally, efficient operation disconnected from remote 
clouds is an obvious advantage provided by PClouds, for which 
we are currently considering additional Cirrostratus 
enhancements that can distinguish important from less 
important services when a user wishes to run multiple services 
on potentially scarce nearby resources. 

VI. RELATED WORK 

ThinkAir [20] proposes dynamic resource allocation on the 
server side to maximize parallelism for offloaded workloads.  
MAPCloud [19]  models mobile application as a location-time 
workflow (LTWs) and maps LTWs onto online resources with 
2-tier clouds. Our work also considers two layers of resources, 
nearby and remote clouds, but PClouds can share fine-grain 
device capabilities among participants as well as perform 
compute offloading. HomeOS [1] pursues goals similar to 
those of PCloud. Like PCloud, it permits users to formulate and 
enforce desired policies across all HomeOS devices, but it does 
not exploit SNS to enable the access control and consequent 
rich methods for device sharing present in PCloud. SBone [13] 
uses social networks to create an overlay over existing social 
network graphs for enabling devices to share content, state, and 
computational resources. Cirrostratus shows the utility of 
leveraging efficient local area networks, and it can compose a 
new abstract at the finer granularity of individual device 
‘capabilities’. We leverage well-known authentication 
technology, with the innovative approach of using the 
Facebook SNS as an authentication service. Our approach 
implements a framework similar to [17], which suggests using 
Google’s OpenSocial and Facebook’s Connect to provide APIs 
for web-based social network applications, allowing users to 
carry their identities across applications and devices.  

Using remote resources to augment the compute 
performance of mobile devices has been studied since [9]. 
Recent research like MAUI, CloneCloud, Mars [7], and 
Cuckoo [5] address the question of how to find the compute 
intensive portions of an application and move those between 
battery-operated devices and high-performance backend 
servers. The focus is on remote cloud servers, however, so 
these systems do not have functionality that describes and can 



 
 

exploit the varied capabilities present in the many and often 
heterogeneous devices present in the nearby cyber-
environments targeted by our work. Similar to our own 
previous work, Cloudlets [16] use small servers as nearby 
computing resources to augment mobile devices, via virtual 
machine migration, but the system does not support non-
virtualized devices. [12] suggests use cases similar to ours, 
arguing that the use of smartphones heavily depends on context, 
in particular, on other devices and places, and on the situations 
users are experiencing.  

VII. CONCLUSIONS AND FUTURE WORK  

Personal Clouds are shown capable of substantially 
augmenting the capabilities of mobile devices, and they can 
alleviate their limitations, including lack of performance, 
limited battery lives, and constrained form factors. They can 
also deal with the restricted the ‘scope’ of the data currently 
resident on each device. In contrast to remote cloud services 
used by mobile devices, PClouds can also augment device 
capabilities through the use of nearby devices. The outcome is 
not only increased storage and computational capacities, but 
also the creation of entirely new functionalities not available 
from remote services, such as the ability to present images on 
large displays, the potential to share content not resident in 
remote clouds, and others. PClouds leverage Social Network 
Services (SNS), i.e., those provided by Facebook, for 
authentication, access control, and for secure device interaction. 
Their hypervisor-level realization includes fully virtualized 
devices as well as non-virtualized mobile devices. Performance 
evaluations show PClouds capable of augmenting device 
capabilities to improve their performance as well as enhance 
the functionality seen by end users.  

Our ongoing and future work is exploring several additional 
dimensions of service sharing and offloading. First, we are 
exploring offloading computational services to accelerator 
devices, like those accessible via OpenCL. Second, we are 
experimenting with useful device-device interactions, including 
those in which a user controls his large-screen display by 
manipulating his smart phone’s screen. Third, also needed are 
additional evaluations in actual home environments with less 
mature Internet or Wi-Fi connectivity.  
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