
978-1-4799-3360-0/14/$31.00 ©2014 IEEE

Personal Clouds: Sharing and Integrating Networked
Resources to Enhance End User Experiences

Minsung Jang†, Karsten Schwan†, Ketan Bhardwaj†, Ada Gavrilovska†, and Adhyas Avasthi‡,1

†Georgia Institute of Technology, {firstname.lastname}@cc.gatech.edu
‡Cisco Systems, adavasth@cisco.com

Abstract— End user experiences on mobile devices with their rich
sets of sensors are constrained by limited device battery lives and
restricted form factors, as well as by the ‘scope’ of the data
available locally. The 'Personal Cloud' distributed software
abstractions address these issues by enhancing the capabilities of
a mobile device via seamless use of both nearby and remote cloud
resources. In contrast to vendor-specific, middleware-based cloud
solutions, Personal Cloud instances are created at hypervisor-
level, to create for each end user the federation of networked
resources best suited for the current environment and use.
Specifically, the Cirrostratus extensions of the Xen hypervisor
can federate a user’s networked resources to establish a personal
execution environment, governed by policies that go beyond
evaluating network connectivity to also consider device
ownership and access rights, the latter managed in a secure
fashion via standard Social Network Services. Experimental
evaluations with both Linux- and Android-based devices, and
using Facebook as the SNS, show the approach capable of
substantially augmenting a device's innate capabilities, improving
application performance and the effective functionality seen by
end users.

 Keywords— mobile computing; workload offloading; capability
sharing; cloud computing; management of distributed resources;
Android; virtualization; social network services1

I. INTRODUCTION

Smart phones and other mobile devices are operating in
increasingly rich settings that include both nearby sensors and
machines, and the remote cloud. By leveraging and interacting
with such potentially cooperative resources, mobile device
capabilities can be improved, and device users can gain
enhanced interactions with their current environments.

This paper presents the Personal Cloud abstraction, which
along with its runtime and its Cirrostratus implementation with
the Xen hypervisor, delivers to each application a Personal
Cloud instance -- PCloud -- coupling their mobile devices with
network-attached resources. In contrast to cloud-only services
like Apple’s Siri and those that do not clearly distinguish
between nearby and remote cloud resources such as MAUI [3],
CloneCloud [4], ThinkAir [20], [21], and [22], a PCloud can
service end users even when remote cloud resources are not
present and/or difficult to access due to insufficient network
connectivity or expensive to use via 3G/4G connections. This is
because a PCloud can also run on available and free-of-charge

1 This work was done while the author was working for Nokia Research
Center North America.

user-owned machines in the home or on other cooperative
machines.

Further benefits obtained from using local, user-own nearby
vs. remote cloud resources are rapid access to such nearby
devices and improved privacy, e.g., by users retaining complete
control over their data rather than placing it into the cloud (e.g.,
voice, pictures, and etc.). The outcome is that a PCloud no
longer limits mobile applications to run on single devices.
Instead, it exploits the capabilities of the variety of devices
available in most homes, offices, and elsewhere. Advantages
derived from using PClouds vs. single devices include the
followings:

Combined and augmented abilities. While mobile devices
are imbued with many built-in sensors, the interpretation of
sensor outputs can benefit from increased computational
abilities and from data captured previously and/or stored
elsewhere, e.g., in nearby desktop PCs or in the cloud. An
example explored in our work is face recognition, using a
camera on a smartphone (i.e., a local sensor) to capture images,
but leveraging other network-accessible resources for
computationally intensive work, and to deal with the fact that
recognition accuracy also depends on the extent of the face
database.

Improved usability. While the small form factors of mobile
devices restrict their display and keyboard sizes, this is not the
case for the large-display TV in a user’s home (or his friend’s)
and the keyboard attached to his home desktop machine. We
demonstrate new and secure methods for accessing and
using/sharing such capabilities available on nearby networked
devices that are owned by users and/or their friends or other
cooperative parties.

Increased ‘scope’. Referring to the fact that a device’s
limited storage and current context (e.g., physical location) can
benefit from data resident in the remote cloud and captured by
other devices, storage aggregating data from the remote cloud
and all user-owned devices is shown capable of delivering
improved accuracy and utility for services offered to end users.
An example is the aforementioned face recognition service.

High availability. Studies [1-5] show that applications on
battery-operated devices can gain performance and availability
and extend their battery lives by offloading computationally
expensive tasks from local to remote resources. PCloud,
therefore, offers ways to seamlessly tie applications running on
battery-operated devices with both nearby and remote
resources. In this paper, we show how a neighborhood-watch

application can gain performance and accuracy benefits from
running across such networked sets of machines.

PCloud is similar in spirit to vendor-specific solutions for
integrated use of shared devices, such as Apple’s AirPlay and
Microsoft’s Smart Glass as well as DLNA, but in contrast to
those solutions operating only across ‘compatible’ vendor-
certified entities, PClouds have no such constraint, by using a
simple model of device interaction realized at a level of
abstraction ‘below’ that of vendor-specific software, i.e., at the
system level. Specifically, the Cirrostratus implementation of
PCloud operates as a set of extensions of the Xen hypervisor,
including arbitrary other Xen-based devices and also
interacting with non-virtualized entities like Android-based
smart phones, via device-resident ‘agents’.

Generalizing our earlier work on ‘device clouds’ [1],
Personal Clouds make the following new technical
contributions:

 They manage and dynamically compose distributed
networked resources that are from both local/personal and
remote/public devices and machines, where any of those
entities can be active participants in running the services
desired by end users, and all resources in the PCloud are
available to the applications being run. The neighborhood
watch application in the paper, for instance, takes
advantage of PCloud to run its face recognition service
both with and without remote cloud connectivity, albeit at
different levels of fidelity based on where and how it runs.

 Device participation in any PCloud is guided by
permissions and policies controlled through social network
services (SNS), thus making it possible to share devices
owned by different end users and/or residing at different
locations. This is done in a privacy-preserving manner, via
a system level service for authentication and authorization
that uses Facebook’s ‘Friends’ lists to look up and encode
the relationships of users’ participating devices. With such
SNS-defined access policies, Cirrostratus can extend and
alter a user’s PCloud without the need for direct and
repeated user interaction or consultation.

 PClouds protect end user privacy by tagging data – like
photos – with meta-data about the devices on which it is
captured, the users to which it belongs, and other such
semantic information. This makes it possible to
automatically ‘sync’ data across of all of the devices
owned by some PCloud user, e.g., with a privacy-protected
repository maintained on her home desktop vs. storing
such data in some remote SNS not controlled by her. The
user can then selectively upload photos from the repository
to the SNS, and/or she can use a PCloud-provided service
that gathers photos from the SNS, e.g., from those who are
encoded as ‘friends’ and have expressed their intent to
share their pictures on Facebook.

 The PCloud runtime tracks the availability of networked
resources and decides what resource should be granted to
a PCloud instance to meet current demand. This is guided
by policies in Cirrostratus aware of current device
capabilities and network conditions. An example is a face
recognition service located on three different platforms – a

mobile device, a nearby home desktop, and a remote cloud
– with different location choices determined by current
network connectivity and machine load, thus providing
different levels of performance to PCloud users.

Since PCloud participants can range from entire virtual
machines running on servers or in the cloud to agents operating
on low end devices, PCloud instances can operate across the
wide spectrum of low end devices, to high end non-virtualized
or virtualization-capable mobile devices to server systems. We
demonstrate the utility of this generality with both micro-
benchmarks and realistic use cases. The first use case
implements neighborhood-watch functions. It uses face
recognition to distinguish neighbors from friends from others,
where Cirrostratus orchestrates its use of network-accessible
resources in the home and/or on remote cloud machines. Using
local resources offers rapid response, but may suffer in terms of
accuracy due to limited volumes of face data on the home
machine. Additional use of remote machines improves
accuracy by drawing on the cloud’s global scope and data. The
second use case shares devices and content among friends,
where the SNS serves to establish secure interactions across
friends’ devices. The applications enabled by this functionality
include playing a video on say, a friend’s large-screen display,
capturing sound from other devices, and playing sound where
desired.

Experimental evaluations in Section V demonstrate the
utility of leveraging multiple nearby resources for enhancing
the capabilities of single mobile devices. Performance results,
for instance, show a 53% reduction in execution time for a
compute-intensive service on a PCloud vs. on a single device in
addition to a 74% saving in energy consumption. Results also
show how the use of ‘friend’ relationships present on social
network services make it possible to securely employ diverse
devices in PClouds: a ten-fold increase in data scope via SNS-
maintained data results in improved accuracy for the outputs of
certain data-intensive tasks.

II. MOTIVATING USE CASES

This section describes us how Personal Clouds can leverage
surrounding and cloud resources to provide end users with
enhanced application functionality and performance.

A. Neighborhood Watch

A neighborhood watch is a community group organized by
residents to forestall crimes and vandalism. Tasks include
watching for suspicious activities and persons, notifying each
other of such events, alerting neighbors about relevant local
issues, and reporting certain events to external parties like the
police. In this context, a face recognition service can be used to
classify persons seen in the neighborhood as residents vs.
others, e.g., using images taken by neighborhood or home
cameras and stored in homes’ image repositories. Such a
service should be always-on, even when Internet connectivity
is not present or when power is out, the latter requiring its
ability to run on single battery-driven devices. At the same time,
face recognition accuracy heavily depends on the size of the
dataset being used [8], with small sample data for each face,
i.e., a narrow ‘scope’ of data, resulting in over-fitting and
making recognition unlikely. Also important is the

computational capacity available for running these codes, with
their compute requirements directly related to database size.
Further, when images are seen, it must detect and identify
potential threats in a timely manner. This makes the network
bandwidth and latency between cameras and computing
resources running the service critically important.

PCloud’s functionality supporting services like
neighborhood is the following. First, the face recognition
service can, of course, run on a single device, using the photos
resident on it, but second, it can obtain a wider scope of data
(e.g., people’s faces in this case) than those existing on a single
user’s device by also accessing a user’s home image repository,
as well as using remote data available via SNS (or even in
neighbors’ home repositories). Third, the service can benefit
from both home machines’ and remote cloud resources’
computational capacities depending on local vs. remote
network conditions. Section V describes additional
implementation details about how PClouds backed by
Cirrostratus permit the face recognition service to run with
these diverse configurations.

B. Display Sharing among Friends

With high quality video clips and photos with multi-million
pixels, recent smart phones have become equipped with high
resolution displays and high performance processors. Small
screen sizes continue to hamper user experiences, however.
PClouds permit mobile devices seamless access to nearby large
screen displays. Our previous work demonstrated this
capability [1], but it required all personal cloud devices (e.g.,
display, keyboard, and processors) to be virtualized and owned
by the same user. PClouds extend device sharing to also
include non-virtualized devices and those owned by friends.
Specifically, users can share any capability of any nearby
device (e.g., a large display in this case), enabled by the use of
social network services (SNS): the Cirrostratus infrastructure
implementing this functionality ensures (i) that the device
issuing a sharing request is actually owned by a designated
friend who is identified via SNS, (ii) that the request recipient
is the intended PCloud, and (iii) that no one else is currently
using the chosen target device (i.e., the display). Secure,
access-controlled sharing is realized with a security service
implementing the X.509 specification and using the SNS to
maintain ‘friend’ relationships; the devices currently supported
include a user’s home displays, storage devices, keyboards, and
machines, devices in friends’ homes (even image repositories
they wish to export), and remote cloud resources.

III. PERSONAL CLOUD – SOFTWARE ARCHITECTURE

PClouds are realized as a multi-level software architecture
designed to operate within dynamically changing external
environments. Fig. 1 depicts the main components of the
proposed architecture.

Applications. An application is a set of services running on a
PCloud instance. An example is a media player consisting of a
storage service holding a content file, a decoding service
generating a video stream from the file, and a screen service
projecting the video stream. The PCloud API permits cloud
instance creation, query of and access to currently available
services, and the construction of new services for a given one.

Figure 1. Personal Cloud Architecture

Services. Applications running in some PCloud instance
can transparently access both local and remote services. This
approach is similar to that of the Android Service
implementation in the sense that it separates computing
intensive or hardware access parts of applications from their
main execution flows.

PCloud Instance. Each PCloud presents the illusion of a
single machine. Its resources may be distributed across some
set of networked devices, but they are accessed in exactly the
same fashion as done by traditional applications (e.g., open,
read, and write system calls). An instance’s lifecycle
transitions from its initialized, to started, to terminated states.

PCloud Runtime. The runtime brings up a PCloud instance
for an application, with its ‘intent’ interface used to describe
resource requirements, e.g., a large screen with HD resolution,
presence of a face recognition service, etc. It also allocates
resources for the services being asked for a given instance.

System Services. These are used to authorize applications to
run, and for actions requiring global knowledge, such as
authentication and a data storage with global scope, so they
directly interact with Cirrostratus.

Cirrostratus. These set of extensions of the Xen hypervisor
discover and monitor both locally and globally network-
reachable resources, in order to maintain a pool of distributed
resources accessible to each end user. The PCloud runtime
draws resources from this pool and combines them to establish
and maintain PCloud instances.

A. Applications

Designed to support existing programing models and
minimize code development, a PCloud application operates
much like one running on a single device or machine. It runs a
simple preamble to create a PCloud instance, then runs its
services, the latter able to use all of the resources in PCloud.

It is the responsibility of Cirrostratus and its runtime to
ensure resource availability in lieu of changing network
conditions and resource use by others.

B. Services

PCloud services are like those described in the Intel
processing framework [24], but differ in implementation in
that they use local ‘service proxies’ for the services that are
run remotely. Specifically, for each remotely run service, the
runtime instantiates a local proxy that reveals how to reach the
remote service, what service is required for dependency, and
what resources are needed to run it. State information is
maintained, as well, relayed by the runtime to the actual
remote service location. The current API has operations to
enumerate, attach, use, and detach services, and to create and
launch new ones. System services differ from others in that
they are always present and available.

C. The Personal Cloud Instance

The ‘resources’ presented in a PCloud instance are either
services or devices, and for both types of participants,
Cirrostratus exposes and maintains their capabilities. For
instance, a desktop machine can separately expose devices like
its disk storage, processing capacity (CPU), and large display.
This means that a PCloud application can run across say, the
CPU of a laptop, the storage on a desktop, the keyboard of a
smartphone, and a separate large-screen display of a TV, all as
if it were running on a single platform offering all of those
device resources.

Other than running the aforementioned preamble, the use
of hypervisor-level technologies in Cirrostratus makes it
possible for entirely unmodified single-machine applications
to run across such virtual platforms. However, users may wish
to impose constraints on the platforms being constructed. For
this reason, the PCloud runtime provides additional APIs for
an application to guide a construction of such platforms: the
‘Intent’ runtime module and API can be used to submit a list
of required services along with their required capabilities. An
example is the ‘re-wiring’ of a user’s display device, to say,
move the depiction of a streaming video currently being
viewed by the user on his laptop screen to his large home TV
display. A PCloud instance supporting this example may
continue to use the exact same laptop resources as before, and
simply add the large home TV as a screen resource.

D. The Personal Cloud Runtime

The PCloud runtime’s tasks are (i) to establish a PCloud
instance with services per a user’s request or ‘intent’ – the
Intent module, (ii) to decide which resources are most suitable
for running requested services – the ‘Composition’ module,
and (iii) to manage the certificate of the device owner for
authentication – the ‘Access Control’ module. The Intent
module builds a list of services requested by an application and
determines the types of resources needed to run them. Based on
its inputs, the Composition module interacts with the
Cirrostratus layer to allocate resources, the latter mapping the
best-fit resources to requested services, and it establishes a
PCloud instance with such resources and services.

Figure 2. Using a Personal Cloud between people identified via a SNS

The Access Control module works with the authentication
system service checks access permissions for the resources
requested for some specific user.

E. System Services

System services provide global information to other PCloud
components and to user-created applications and services. Two
default current system services are: (i) the authentication
service and (ii) the user data aggregation service. They both
interact with social network services (SNS) to authenticate the
users of resources joining a PCloud platform, permit/deny
requests for resources, and they also use the SNS as a
repository of user data for the applications running with a
PCloud instance. Authentication leverages the SNS, and
aggregation is a special storage service that assembles data
about users from both their local disks and the remote clouds,
to create a virtual storage service for each cloud instance. The
purpose is for the services running on that cloud to have access
to the data they need. Like others, system services also use
local proxies.

F. Cirrostratus

Cirrostratus extends or earlier work on Stratus and its
‘device clouds’ [1] in three substantial ways. First, Stratus
device clouds required all active cloud participants to be fully
virtualized platforms running the Xen hypervisor. Cirrostratus
also permits non-virtualized devices like Android-based
smartphones to be active participants. Second and more
important is the use of SNS to implement the access control
methods needed for device sharing across ‘friends’ and for
access to friends’ data, the latter increasing the data scope
available to individual participants. Third, Cirrostratus is able
to use remote cloud services (e.g., Amazon EC2) as PCloud
resources, thus substantially increasing PCloud functionality
and capabilities. Fourth, for all such resources, it is the
responsibility of Cirrostratus to maintain status information of
about participants’ devices, via active device and network
monitoring. The ‘Coordination’ module carries out these tasks.
Finally, Cirrostratus’ ‘transport’ layer, termed ‘Data Exchange’

in Fig. 1, is a straightforward extension of the data exchange
protocol developed for Stratus.

Fig. 2 illustrates an example of PCloud use between two
users. It illustrates how the aforementioned components relate
to others so that users can leverage their own network-
reachable resources as well as share others, in a secure fashion,
by interacting with a SNS

IV. SELECT IMPLEMENTATION DETAIL

Cirrostratus supports the Linux and Android systems
running on native or on virtualized hardware. This section
presents the detail about these implementation needed to
explain the performance results shown in Section V.

A. Cirrostratus

We review interesting aspects of the Data Exchange,
Coordination, and Composition modules.

Coordination. Cirrostratus uses the master/slave model to
manage the resource pool available for use by PClouds. Its
current implementation elects the one with the largest
performance index (defined later) as the master among nearby
devices. Battery-operated devices are precluded from that role,
because of the master’s computationally intensive workload
and the need for high availability. Slaves contribute resources
with certain capabilities.

Configuration. The configuration module runs on all
participating Cirrostratus devices. It uses static data as well as
online monitoring to gather information about the capabilities
of available device resources, and it provides such information
to the master for storage in a central PCloud repository of
device capabilities. There are also ‘knobs’ available to device
owners permitting them to control their devices’ degrees of
participation, including preventing certain device resources
from being used (e.g., a device’s display). Finally, there are
resource quotas to control device usage. The naming scheme
used in configuration translates <scr1.dt2.pcloud3.bob>
to the fact that Bob has the screen1 connected to the desktop2
in the personal cloud managed by PCloud3. A single user may
have multiple names, according to his location, say in the home
or office. The configuration module also supports resource
discovery. That is, if a new device joins any PCloud, this
module on the device reports the device’s capabilities to the
master of that PCloud upon discovery and registration.

Data Exchange. Data is exchanged via a publish-subscribe
transport termed M-Channel [1][15]. M-Channels create a
software layer for applications to communicate with others
transparent to underlying physical connections being used.

B. Resource Allocation

Resources are allocated to services. The current
implementation uses a simple allocation heuristic guided by
summary data about resource capabilities changed dynamically.
Allocation operates within stable allocation epochs, assuming
that (i) the status of resources and the network connection are
unlikely to change during the current epoch, and (ii) if changes
occur, they will persist during the next allocation epoch. We
have not yet considered multi-epoch allocation planning and/or
the evolution of allocations across multiple epochs in place

sophisticated allocation methods. We currently approximate the
status of each computational resource by computing its
performance index (PI) and its network connectivity. When N
is the number of processor cores in a device, and ω is a weight
assigned to its processor architecture, the PI is defined as
follows:

)}_1({
1

n

N

n
n CoreUtilfCoreClockFreqoMemorySizePI

MemorySize: RAM size of a resource in MB.
ClockFreqofCoren: Operational frequency of a core in MHz.

Util_Coren: Current utilization (0-1) of a core

As the metric for resource allocation, we can then estimate
the execution time, , of a service on any resource as:

≅
	 	 	 	 	 	

	

≅ 		 	 	 	 	 	 	 	

	∴ 	 ≅ 	

PCloud composition for an application with some set of
services, then, operates as follows. When the application
requires computation-related services, the composition module
interacts with Cirrostratus to obtain the performance index (PI)
and network connection status of each candidate
computational resource. Each service is then mapped to the
resource with the largest PI, as its initial allocation.
Subsequent runtime monitoring uses the service proxy to
obtain additional detail about service execution, including the
volume of data transmitted over the network and the elapsed
finish time for service requests. Allocations are changed when
service times substantially and consistently exceed previously
observed values; we have not yet investigated rigorously the
dynamic methods needed for runtime re-allocation. Our
alternative focus has been on showing PClouds to be viable
and useful for realistic application.

C. System Services

For brevity, we elide further detail about the
implementation of the PCloud runtime, instead describing
those system services critical to the ability of PClouds to span
distributed resources.

1) Authentication Service
The authentication service is implemented as a Facebook

app, and like other services, its proxy resides within each
PCloud instance. A user must install this app on her Facebook
account and create a Facebook group with the label
“DeviceShare.” By then listing appropriate Facebook friends,
she indicates her willingness to share the capabilities of devices
in her own PCloud with others in this group. Once the app is
installed on her Facebook account, the server hosting the app
generates and holds her certificate, based on the X. 509
standard.

The following example illustrates the authentication
process. Alice and Bob are Facebook friends and each install
the application on their accounts. One day, Alice visits Bob’s
house and wants to use his large display to share pictures with
him that reside on her phone. By running the Facebook app
(the authentication system service), Alice is shown the list of
people who are willing to share their resources with her.

Choosing Bob prompts the server to send out her request to his
PCloud along with Alice’s certificate. The access control
module in the runtime then verifies Bob’s resources she is
allowed to access. In terms of access rights, our current
implementation grants access to resources based on group
membership, either owner or guest. In this case, Alice belongs
to the guest group, while Bob is in the owner group. Alice’s
phone also receives the IP address of Bob’s network, along
with Bob’s certificate. With this information, the data exchange
module in Bob’s Cirrostratus establishes a connection to
Alice’s phone, whereupon her phone then becomes a ‘guest’
participant of Bob’s Cirrostratus PCloud.

2) User Data Aggregation Service
The service used to collect user data consists of the

aggregate total of a user’s remote and local storage. Its remote
part extracts photos and user-written tags from SNS accounts
listed as ‘friends’, while the local part provides storage to
participants of Cirrostratus, e.g., so that it can aggregate all
photos from participating devices. The remote store is
comprised of a Facebook app and a remote storage service. If a
user installs this app on her account, it collects photos along
with tags from friends’ accounts that open their photos in
albums for friends or for the public to see. Since on Facebook,
tags of photos usually include information regarding who
appears in photos, the app can send both the photos and such
meta-data to some remote storage site. For the local synced
storage implementation, we use an rsync-based tool and
SparkleShare [23].

D. Implementation Setup

1) Virtualized Devices
We use an Intel Atom mobile platform with the Xen 4.1

hypervisor, running Linux and Android virtual machines. The
control domain of Xen hosts the PCloud runtime and its other
necessary components. For both Linux and Android on guest
domains, M-Channels link guest actions with PCloud
components.

2) Non-virtualized Devices
Cirrostratus uses ‘agents’ to interact with non-virtualized

mobile devices, such as actual Android phones or tablets, using
Google’s Android 4.0 Ice Cream Sandwich and 4.1 Jellybean.
The agent is a service module on the Java service layer that
essentially emulates the functionality resident in the control
domain (Dom0) of virtualized systems.

V. EXPERIMENTAL EVALUATION

The two case studies described in Section II are the basis for
demonstrating the utility and performance of the Personal
Cloud approach and implementation.

A. Neighborhood Watch with Face Recognition

1) Test-bed Configuration
The resource pool managed by Cirrostratus consists of two

desktops (N1, N2, respectively), an m1.large EC2 instance
(EC2) as well as a mobile device. Further, the neighborhood
watch application on a mobile device uses a camera connected
via Android on our virtualized Intel Atom platform. For non-
virtualized devices, the same software employs a camera
installed on the Nexus 7 tablet.

TABLE I. PARTICIPANTS IN THE NEIGHBORHOOD WATCH.

Name
The number of recognized faces

Faces in Facebook Standalone phone

A 32 10
B 23 16
C 24 9
D 35 11
E 14 5

The face recognition service operates in three different
configurations: (i) on a standalone mobile device, (ii) on a
PCloud instance with a set of ambient devices, and (iii)
simultaneously using a remote server running on the Amazon
EC2 instance as well as (ii). Each configuration performs the
tasks of the neighborhood watch application, which include
taking a photo, detecting and identifying faces on the photo,
returning results to a user, and starting all tasks over again
every 3 seconds. In addition, we introduce two cases in which
execution environments differ in terms of network status and
resource utilization. In exclusive execution mode, the
neighborhood watch is the only application that gains access to
all resources given by the PCloud, whereas in mixed execution
mode, other applications are allowed to simultaneously access
such resources. We use OpenCV 2.4.2 with the Eigen-face
algorithm [6] to build this application.

2) Evaluation Scenario
When some user monitors a street close to his house, he

runs the neighborhood watch app on his mobile device. The
app captures peoples’ images on the street periodically (every 3
seconds) and determines who they are. These result in capacity
queries sent to each configuration of the face recognition
service: (i) located on the device, (ii) a user-owned device, and
(iii) a remote server. For this use case, our current selection
heuristic is to initially choose the nearby service unless the
remote one, i.e., the Amazon instance, offers a performance
index that is twice as high. If a nearby service is not available,
the heuristic attempts to work with a remote cloud service.
Using the compute power on a mobile device is the last resort.

3) Results: The ‘Scope’ of Data
Five fellow students helped run the experiment by installing

the required Facebook app for the data aggregation service,
resulting in the remote store containing all photos and tags on
their respective Facebook accounts for identified friends, the
idea being to emulate several parties living in the same
neighborhood. We assume that a user A, in TABLE I, has a
mobile phone participating in the PCloud. The numbers of
faces listed in TABLE I use photos from the data aggregation
service attached to all participants (i.e., A, B, C, D, and E)
since all of them are in the ‘DeviceShare’ group in Facebook.
The numbers mentioned in TABLE I. refer only to those that
are sufficiently clear to permit our face recognition software to
correctly identify faces. Note that the total number of distinct
faces accumulated by the data aggregation service is 105, after
removing duplicated results, thereby demonstrating its ability
to provide a wider scope with a broader set of data set than that
available on any specific device.

 (a) User-experienced response times (b) Power consumption

Figure 3. (a) shows user-experienced response time in milliseconds for each
photo under different configurations, while (b) shows power consumption in
watts per configuration.

4) Results: Performance
We first evaluate the elapsed time needed to identify a

person’s face via the neighborhood watch app. In the mixed
execution environment, the neighborhood-watch app sends a
face recognition service request every 3 seconds for 5 minutes.
Then the PCloud runtime and Cirrostratus build a PCloud
instance and allocate a resource for the service either on one of
the nearby devices (N1 or N2) or on the cloud (EC2). Fig. 3 is a
snapshot of the elapsed time to process one request. As seen in
Fig. 3(a), the service located on the nearby resource, Config. (ii)
(Nearby), shows the best response time when each service can
identify a given face. With Config (ii), transmitting states and
user data consumes 331ms out of the total elapsed time of
1335ms (about 24.7% of time). This includes the time needed
for the PCloud runtime to construct a PCloud instance to meet
the requirement of the Face recognition service before
transmitting them. However, most of the time is influenced by
the network connection status: the time is less for nearby
devices, compared to using the remote cloud, due to the
network delay.

Fig. 3(b) shows that power consumption is substantially
higher when the neighborhood watch runs on a single device.
This is in stark contrast to results shown for the ‘nearby’ and
‘cloud’ configurations: the energy consumption on the mobile
device of Config. (ii) and (iii) (Cloud) compared to (i)
(Standalone) is reduced by 74% and 77%, respectively. Even if
we omit CPU usage on the mobile device for each
configuration, it still follows the power consumption plot in Fig
3(b): this means that power savings are due to the fact that
compute-intensive face recognition functions can be
successfully offloaded to a suitable computing resource.

During the experiment, resource allocation takes place 19
times, due to changes in network condition and resource
availability, caused by other workloads being run. Fig. 4 shows
the user-experienced total response time taken to obtain
recognition results. If the resource is located on the cloud,
network delay is three times larger than when using the nearby
resource, as seen in Fig. 5, but the increased computational
capabilities of the cloud successfully offset that additional
delay. Fig. 6’s comprehensive comparisons show that for this
application, user-experienced response times are almost
identical no matter what resource is given to the service.

Figure 4. User-experienced total response times in milliseconds for face
recognition requests sent every 3 seconds for a 5 minute duration.

 (a) Service on the cloud (b) Service on nearby devices

Figure 5. Cumulative distribution functions of network delay when the
service runs on the cloud (EC2) or on a nearby device (N1,N2), respectively.

Figure 6. Average delays in milliseconds

B. Display Sharing

1) Testbed Configuration
We evaluate the costs of projecting a small screen on a

smartphone to a large nearby display. We use a 23-inch
monitor with full HD resolution (1900 x 1080) attached to a
desktop PC, participating in PCloud interacted with the master
in Cirrostratus, all connected to the mobile device via 802.11n.

Our Atom platform and the Nexus 7 offer 1024 x 600 and
1280 x 800 resolution, respectively. The authentication service
runs on an Amazon t1.micro instance hosting a Facebook app.

2) Evaluation Scenario
Suppose that Alice shows video clips of her newborn baby

when she visits Bob’s house. With a PCloud instance, if a
PCloud environment is set up at his home, she can easily depict
this clip, as long as both Alice and Bob are friends on
Facebook. In this case, Alice asks Bob to share the large TV

0

500

1000

1500

2000

2500

3000

3500

Config (i) Config (ii) Config (iii)

Transmitting Results to
the App

Processing

Transmitting States to a
PCloud instance

9

10

11

12

0 660 1320 1980 2640
P

ow
er

 C
on

su
m

pt
io

n
(w

at
t)

Time (milliseconds)

Standalone Mobile
Device
PCloud only with nearby
resources
PCloud with nearby +
cloud resources

0

500

1000

1500

2000

2500

1 21 41 61 81 101 121 141
Number of a face recognition service requests

Total Response Time

Network Delay

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000
milliseconds

0%

20%

40%

60%

80%

100%

60 70 80 90 100 110
milliseconds

0

500

1000

1500

2000

Cloud Nearby Cloud Nearby Cloud Nearby

Network Delay Computation Delay Total Response Time

with her, and he places her into the “DeviceShare” group in his
Facebook account. Assuming she already installed the
Facebook app for the authentication service, when she starts the
app, Facebook leads her to a server that hosts the app. Now the
app shows a list of people who are willing to share their
device’s capabilities by putting her on their “device share”
group. She selects Bob on the list.

If this is her first use of the authentication app, the
authentication service generates her certificate based on PKI
(X. 509 specification). The service also provides the IP address
of Bob’s Cirrostratus master along with her private/public key
pair. Authentication is completed when the PCloud software in
Alice’s phone starts a connection with Bob’s Cirrostratus
master, with all subsequent communications transmitted via a
secure M-Channel connection. Using this connection,
Cirrostratus is allowed to share with Alice’s device a list of all
permitted capabilities for guest users.

Our current implementation only supports two groups—the
owner group and the guest group, where only a member of the
owner group can adjust the capabilities being shared. The
Personal Cloud software in her phone, then, chooses the
desired display, lets the capability service know about its
selection, and finally, starts transmitting the mobile phone’s
screen to an appropriate PCloud instance. Before the
transmission takes place, the PCloud runtime in Bob’s house
initiates a PCloud instance including the large TV and begins
with the remote display service on the instance. Then the
desktop machine starts its VLC receiver as the remote display
service to project Alice’s screen on its display.

3) Evaluation Results
TABLE II shows the elapsed time from when Alice sends a

request for display sharing for the first time to Bob’s
Cirrostratus. In this case, Alice has to first create her certificate.
As seen in TABLE II, it takes 1471.5ms to be ready to project
the screen on her mobile phone to Bob’s display, likely
superior to a case in which Alice and Bob try to wire these
devices manually. Further, with PKI and SSL connections
obtained by the authentication service, such sharing is done in
ways that respect access rights and provide end user security.

C. Discussion

Interesting to note about the neighborhood watch
application is that while local resources offer low latency
response, the increased data scope of remote resources can
offer improved accuracy, and in addition, for this application,
the substantially faster remote resources can also hide some of
the additional network delay seen for requests to the remote
cloud vs. local machines. Such tradeoffs are a general attribute
of the PCloud approach, encouraging future work combining
performance indices capturing such tradeoffs, with networking
data, and with indications of what may be most important to
end users when services are run, i.e., user ‘intent’. In fact, it is
because of the flexibility offered by PClouds that such
tradeoffs become possible, permitting mobile devices to opt for
‘best-fit’ resources in their current environments. The PCloud
approach supports such actions via continuous system
monitoring to understand the capabilities offered by currently
reachable resources (the performance index in this case) and
network connectivity.

TABLE II. ELAPSED TIME FOR DISPLAY SHARING

Task (message) From To
Time

(milliseconds)
Dev.

Initiate a certificate MO S 88.2 27.6
Return the certificate
and key pairs

S MO 213 35.3

Authentication All All 405 41
Send a display sharing
request

MO SM 140 66.3

Return a list of available
capabilities

SM MO 293 117.3

Notify a selection of a
display that wants to use

MO SM 179 55.8

Initiate a VNC
connection

SM MO 153.3 80

Total Elapsed time 1471.5 ms

MO: a mobile device, S: the authentication service, S M: a Cirrostratus master

Display sharing via PClouds demonstrates seamless and
secure ways to leverage nearby resources, supported by SNS-
based authentication and access control. Offline certificates [18]
can be used when remote SNS services cannot be reached.
More generally, efficient operation disconnected from remote
clouds is an obvious advantage provided by PClouds, for which
we are currently considering additional Cirrostratus
enhancements that can distinguish important from less
important services when a user wishes to run multiple services
on potentially scarce nearby resources.

VI. RELATED WORK

ThinkAir [20] proposes dynamic resource allocation on the
server side to maximize parallelism for offloaded workloads.
MAPCloud [19] models mobile application as a location-time
workflow (LTWs) and maps LTWs onto online resources with
2-tier clouds. Our work also considers two layers of resources,
nearby and remote clouds, but PClouds can share fine-grain
device capabilities among participants as well as perform
compute offloading. HomeOS [1] pursues goals similar to
those of PCloud. Like PCloud, it permits users to formulate and
enforce desired policies across all HomeOS devices, but it does
not exploit SNS to enable the access control and consequent
rich methods for device sharing present in PCloud. SBone [13]
uses social networks to create an overlay over existing social
network graphs for enabling devices to share content, state, and
computational resources. Cirrostratus shows the utility of
leveraging efficient local area networks, and it can compose a
new abstract at the finer granularity of individual device
‘capabilities’. We leverage well-known authentication
technology, with the innovative approach of using the
Facebook SNS as an authentication service. Our approach
implements a framework similar to [17], which suggests using
Google’s OpenSocial and Facebook’s Connect to provide APIs
for web-based social network applications, allowing users to
carry their identities across applications and devices.

Using remote resources to augment the compute
performance of mobile devices has been studied since [9].
Recent research like MAUI, CloneCloud, Mars [7], and
Cuckoo [5] address the question of how to find the compute
intensive portions of an application and move those between
battery-operated devices and high-performance backend
servers. The focus is on remote cloud servers, however, so
these systems do not have functionality that describes and can

exploit the varied capabilities present in the many and often
heterogeneous devices present in the nearby cyber-
environments targeted by our work. Similar to our own
previous work, Cloudlets [16] use small servers as nearby
computing resources to augment mobile devices, via virtual
machine migration, but the system does not support non-
virtualized devices. [12] suggests use cases similar to ours,
arguing that the use of smartphones heavily depends on context,
in particular, on other devices and places, and on the situations
users are experiencing.

VII. CONCLUSIONS AND FUTURE WORK

Personal Clouds are shown capable of substantially
augmenting the capabilities of mobile devices, and they can
alleviate their limitations, including lack of performance,
limited battery lives, and constrained form factors. They can
also deal with the restricted the ‘scope’ of the data currently
resident on each device. In contrast to remote cloud services
used by mobile devices, PClouds can also augment device
capabilities through the use of nearby devices. The outcome is
not only increased storage and computational capacities, but
also the creation of entirely new functionalities not available
from remote services, such as the ability to present images on
large displays, the potential to share content not resident in
remote clouds, and others. PClouds leverage Social Network
Services (SNS), i.e., those provided by Facebook, for
authentication, access control, and for secure device interaction.
Their hypervisor-level realization includes fully virtualized
devices as well as non-virtualized mobile devices. Performance
evaluations show PClouds capable of augmenting device
capabilities to improve their performance as well as enhance
the functionality seen by end users.

Our ongoing and future work is exploring several additional
dimensions of service sharing and offloading. First, we are
exploring offloading computational services to accelerator
devices, like those accessible via OpenCL. Second, we are
experimenting with useful device-device interactions, including
those in which a user controls his large-screen display by
manipulating his smart phone’s screen. Third, also needed are
additional evaluations in actual home environments with less
mature Internet or Wi-Fi connectivity.

ACKNOWLEDGEMENTS

We gratefully acknowledge this work was funded in part by
Intel via the Intel Science and Technology Center for
Embedded Computing (ISTC-EC), and by additional support
provided by a gift from Nokia Corporation.

REFERENCES
[1] Minsung Jang, K. Schwan., "STRATUS: Assembling Virtual Platforms

from Device Clouds," 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp.476-483, July 2011

[2] M. R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R.
Govindan, “Odessa: enabling interactive perception applications on
mobile devices,” in Proceedings of the 9th Mobisys, 2011, pp. 43–56.

[3] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “Maui: making smartphones last longer with code
offload,” in Proceedings of the 8th Mobisys, 2010, pp. 49–62.

[4] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems, 2011, pp. 301–314.

[5] R. Kemp, N. Palmer, and T. Kielmann, “Cuckoo: a computation
offloading framework for smartphones,” Intl. Conf. on Mobile
Computing,, 2010.

[6] M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve
procedure for the characterization of human faces,” Pattern Analysis and
Machine Intelligence, vol. 12, no. 4, 1990.

[7] A. Cidon, T. M. London, S. Katti, C. Kozyrakis, and M. Rosenblum,
“MARS: adaptive remote execution for multi-threaded mobile devices,”
in Proceedings of the 3rd ACM SOSP Workshop on Networking,
Systems, and Applications on Mobile Handhelds, 2011, p. 1.

[8] M. Guillaumin, “Is that you? Metric learning approaches for face
identification,” In Twelfth International Conference on computer Vision,
2009.

[9] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” in ACM SIGOPS Operating Systems Review, 1999, vol.
33, no. 5, pp. 48–63.

[10] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,
“Wishbone: Profile-based partitioning for sensornet applications,” in
Proceedings of the 6th USENIX symposium on Networked systems
design and implementation, 2009, pp. 395–408.

[11] S. Kannan, A. Gavrilovska, and K. Schwan, “Cloud4Home -- Enhancing
Data Services with @Home Clouds,” 2011 31st ICDCS, pp. 539–548,
Jun. 2011.

[12] T. Matthews, J. Pierce, and J. Tang, “No smart phone is an island: the
impact of places, situations, and other devices on smart phone use,”
Research Report RJ10452, IBM, vol. 10452, 2009.

[13] S. Pravin, N. Nath, I., V. Ananthanarayanan, L. Han, “SBone: Personal
Device Sharing Using Social Networks,” Technical Report DCS-tr-666,
Rutgers University, 2010

[14] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: can
offloading computation save energy?,” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[15] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, K. Schwan.
"vManage: Loosely Coupled Platform and Virtualization Management in
Data Centers," In 6th ICAC, Barcelona, Spain, 2009

[16] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. "The
Case for VM-Based Cloudlets in Mobile Computing," IEEE Pervasive
Computing 8, 4, 14-23

[17] A. V. Ramachandran and N. Feamster, “Authenticated out-of-band
communication over social links,” In Proceedings of the first workshop
on Online social networks - WOSP ’08, p. 61, 2008.

[18] D. Bauer, D. Blough, and D. Cash, “Minimal information disclosure
with efficiently verifiable credential,”. In Proceedings of the 4th ACM
workshop on Digital identity management (DIM '08). pp. 15-24, 2008.

[19] M.R. Rahimi,; N. Venkatasubramanian, S. Mehrotra, A.V. Vasilakos,
"MAPCloud: Mobile Applications on an Elastic and Scalable 2-Tier
Cloud Architecture," Utility and Cloud Computing (UCC), 2012 IEEE
Fifth International Conference on , vol., no., pp.83,90, 5-8 Nov. 2012

[20] Kosta, S.; Aucinas, A.; Pan Hui; Mortier, R.; Xinwen Zhang, "ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading," INFOCOM, 2012 Proceedings IEEE , vol., no.,
pp.945,953, 25-30 March 2012

[21] X. Qiu, H. Li, C. Wu, Z. Li, and F. C. M. Lau, “Cost-minimizing
dynamic migration of content distribution services into hybrid clouds,”
2012 Proceedings IEEE INFOCOM, pp. 2571–2575, March 2012.

[22] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,”
2012 Proceedings IEEE INFOCOM, pp. 2716–2720, March 2012.

[23] SparkleShare, http://www.sparkleshare.org

[24] http://software.intel.com/sites/landingpage/perceptual_computing/docum
entation/html/

[25] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and P.
Bahl. 2012. “An operating system for the home,” In Proceedings of the
9th USENIX NSDI'12. USENIX Association, Berkeley, CA, USA, 25-
25

