My Resume.

Interests:

Scalable Distributed Graph Computations

graph

Scalable Tensor Computations

tensor

Other Publications:

Talks Given:

References

  1. Battaglino, C., Ballard, G., & Kolda, T. (2017). A Practical Randomized CP Tensor Decomposition (in submission) [arXiv].
  2. Battaglino, C., & Mohindra, S. (2009). GPUOctave - Enabling GPU Computing for GNU Octave (Poster). In NVIDIA GPU Technology Conference.
  3. Battaglino, C., Pienta, R., & Vuduc, R. (2015). GraSP: Distributed Streaming Graph Partitioning. In Proceedings of the 1st ACM SIGKDD Workshop on High Performance Graph Mining (HPGM 2015), August 8th, 2015, Sydney, Australia.
  4. Li, J., Battaglino, C., Perros, I., Sun, J., & Vuduc, R. (2015). An input-adaptive and in-place approach to dense tensor-times-matrix multiply. In Proceedings of the ACM/IEEE Conference on High Performance Networking and Computing, SC 2015, November 15-20, 2015, Austin, Texas, USA. New York, NY, USA: ACM Press.
  5. Czechowski, K., Battaglino, C., McClanahan, C., Chandramowlishwaran, A., & Vuduc, R. (2011). Balance Principles for Algorithm-architecture Co-design. In Proceedings of the 3rd USENIX Conference on Hot Topic in Parallelism (pp. 9–9). Berkeley, CA, USA: USENIX Association. Retrieved from http://dl.acm.org/citation.cfm?id=2001252.2001261
  6. Czechowski, K., Battaglino, C., McClanahan, C., Iyer, K., Yeung, P.-K., & Vuduc, R. (2012). On the Communication Complexity of 3D FFTs and Its Implications for Exascale. In Proceedings of the 26th ACM International Conference on Supercomputing (pp. 205–214). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/2304576.2304604