INFORMATION SECURITY CENTER

Virtuoso: Narrowing the
Semantic Gap in Virtual
Machine Introspection

Brendan Dolan-Gavitt', Tim Leekt, Michael Zhivicht, Jonathon
Giffin", and Wenke Lee"

" Georgia Institute of Technology
T MIT Lincoln Laboratory

{brendan,giffin,wenke}@cc.gatech.edu
{tleek,mzhivich}@lIl.mit.edu

This work was sponsored by IARPA under Air Force Contract FA8721-05-C-0002.
Opinions, interpretation, conclusions and recommendations are those of the

authors and are not necessarily endorsed by the United States Government.

Virtual Machine Introspection

-

Security . & N\
Int t (/ |
Apps ntrospection ,a’\/, L
Guest VM
Security VM (insecure)
Hypervisor

1]

NV

Standard virtualization security layout: insecure guests, isolated security apps in their own
VM.

Oakland’| |

Virtuoso

5/24/201 |

Open Problem: The Semantic Gap

® |solation can provide security

® |solation makes it hard to see what’s going
on

® View exposed by VMM is low-level (physical
memory, CPU state)

® Need to reconstruct high-level view using
introspection routines

Oakland ’1 | Virtuoso 5/24/201 | ;

Isolation is not a panacea; it makes it hard to see what’s going on. The view the VMM gives is
not what we want.

What You VWant...

. LT

Th—

Processes

Drivers

Networking

Oakland 'I | Virtuoso 5/24/201 |

These are the objects relevant to security monitoring.

What You Get

AB45300 : P O et o N ettt $W.5....L%.2.
Ba453ca: ech3

AB453e0: bb&a

B845400 : b2f f

0845420 : 881

B845440 : 755b

845460 : edc3 T

B845450 : 53ed ' : =58
B848400 : BEEY ... C..C.3.45.C..C..... 0 =&
Ba484ca : 73 7878 . .Processor driver does not supp
B8454e0 : 558b ort IRP_MN_SURPRISE_REMOVAL...U.
A845500 : BO?5 ...P...V.S.E..E.V.p{.~. MFait iU
Ba45520 :] — —" JO— ¥ N— e o TRTR Ut
0845548 : aeea C xtP...tUHtHHtZ2HE .Huy....
AB48560 D S T G L IaPaTe s B #T¢ e & iuIa T taTats
Ba4555a B et atats A e e o OO e
8848500 : Tif B R e] Wy
AB485ca : B88b n...tm.. B[tV LB LGRUGELN..
B8455e0 : 3 B e N e e s e e
B845600 : O i PR e e B P B R N et
AB48620 : 8odbV.W.¥eieennann e e
Ba45640 : sissasl| epannd Yesterdaw I o
B845660 : 3 mansic bR o Mmoo erasre
BB48680 : B6ca U..S.].W.{{W.u..M..Y...
Ba45600 : 78c6 S 2 et oo d B
Ba486ca : 16al

084860 : c288

Ba43700 : 6a88

Ba48720: 7587

B843748 : ; c218

Ba43760 : 33 4843

Ba43750 : eddd

aa457aa ddae

Ba437ca: aaaa

B8457e0: 481c

A845500 : A48b

Ba43520 : a16a

0845540 : B5be

AB43860 8981

Oakland 'l | Virtuoso 5/24/201 |

This is the view exposed by the VMM -- physical memory. This is from a memory dump of a
Windows 2003 system.

Introspection Challenges

® |ntrospection routines are currently built
manually

® Building routines requires detailed
knowledge of OS internals

® Often requires reverse engineering

® OS updates and patches break existing
introspection utilities

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Note story about sec. vendor that had to spend 60 hours reverse engineering Vista’s new
TCP/IP stack. Virtuoso can reduce this to a few minutes by a non-expert.

Contributions

® VWe generate introspection routines
automatically

® No knowledge of OS internals or reverse
engineering required

® Routines can be regenerated easily for new
OS versions / patches

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Only programmer’s knowledge of public system APIs needed.

|ldea: Code Extraction

Security VM Guest VM

Hypervisor

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

|ldea: Code Extraction

Security VM Guest VM

Hypervisor

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

|ldea: Code Extraction

Security VM Guest VM

Hypervisor

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

|ldea: Code Extraction

Introspection

\\

Security VM Guest VM

Hypervisor

I) :
Y Oakland’| | Virtuoso 5/24/201 |

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

|ldea: Code Extraction

Introspection

\\

Security VM Guest VM

Hypervisor

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

|ldea: Code Extraction

Introspection

\\

Security VM Guest VM

Hypervisor

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

Goals

® Generality: generate useful introspection
programs on multiple operating systems

® Reliability: generate working programs using
dynamic analysis

® Security: ensure that programs are
unaffected by guest compromise

I : :
Y Oakland’| | Virtuoso 5/24/201 |

These goals mirror the results we present later on.

Challenges

® Assume no prior knowledge of OS
internals

® Code extraction must be whole-system
® Much of the code we want is in the kernel

® Existing work (BCR, Inspector Gadget) only
extracts small pieces of userland code

I : :
Y Oakland’| | Virtuoso 5/24/201 |

We don’t quite get to no a priori knowledge, but close (mallocs).

Overview

’ \
4)

ﬂ Training Environment L Traces

Trace Logger &

Training Phase

I) :
Y Oakland’| | Virtuoso 5/24/201 |

Make clear here that we write a small in-guest program that gets the data we
want!

Overview

) . & Preprocessing

4 ~N . o o - N
Instruction Dynamic Slicing W

_ Traces Merging Program

_
Translation &

Analysis Phase

I) :
Y Oakland’| | Virtuoso 5/24/201 |

Once we have the traces, we process them and translate them into an out-of-guest
Introspection program.

Overview

Security VM | c . Untrusted VM
: e r
P ,’ﬁ/ A f 3
Runtime Y @,’ :
4]) O
Introspection N e User
Program
\'A%
R
I
T
E
Kernel

Runtime Phase

I) :
Y/ Oakland’| | Virtuoso 5/24/201 |

The introspection program can then be deployed to a Security VM to monitor our untrusted
VM and applications.

Training

* Write in-guest training program
using system APls

#}define = WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {

EnumProcesses (pids, 256, &outcb);

return O;

}

I) :
Y Oakland’| | Virtuoso 5/24/201 |

Writing the in-guest program to list processes is easy: just call
EnumProcesses.

Training

* Write in-guest training program
using system APls

fdefine WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {
DWORD *pids = (DWORD *) malloc(256);
DWORD outcb;

EnumProcesses (pids, 256, &outcb);

return O;

}

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Of course, you need a little bit of
boilerplate.

Training

* Annotate program with start/end
markers

fdefine WIN32 LEAN AND MEAN
#include <windows.h>

#include <psapi.h>

#pragma comment (lib, "psapi.lib")
#include <stdio.h>

#include "vmnotify.h"

int main(int argc, char **argv) {
DWORD *pids = (DWORD *) malloc(256);
DWORD outcb;

vm_mark buf_ in(&pids, 4);
EnumProcesses (pids, 256, &outcb);
vm_mark buf out(pids, 256);
return O;

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Next, inform Virtuoso of where logging should begin and end, and where the buffer containing the output of the introspection
iS.

!

This produces instruction traces. They’re not x86, but QEMU.

Training

® Run program in QEMU to generate
instruction trace

® Traces are in QEMU pOp format

INTERRUPT (0xfb,0x200a94,0x0)

TB_HEAD EIP(0x80108028)

MOVL_TO_ IM(0xO0)

OPREG_TEMPL_ MOVL A0 R(0x4)

SUBL_AO0 4()

OPS MEM STL TO AO(Ox1l,0xf186fe8,0x8103cfe8,
Oxffffffff,0x215d810,0x920£0,0x0)

OPREG_TEMPL MOVL R A0 (0x4)

MOVL_TO IM(Oxfb)

OPREG_TEMPL_ MOVL A0 R(0x4)

SUBL_AO0 4()

OPS MEM STL TO AO(Ox1l,0xf186fe4,0x8103cfe4,
Oxffffffff,0x215d810,0x920£0,0x£b)

Oakland’| | Virtuoso 5/24/201 |

Whole-System Traces

® |ncludes all instructions between start and
end markers

® |ncludes software and hardware interrupts
and exceptions

® |ncludes concrete addresses of memory
reads/writes

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Memory reads/writes are necessary so that we can do data flow analysis later.

Trace Analysis

® VVhat subset of this trace is relevant!?
® |nitial preprocessing:
® Remove hardware interrupts

® Replace malloc/realloc/calloc with
summary functions

® Next, executable dynamic slicing (Korel and
Laski, 1988) is done to identify relevant
Instructions

Oakland ’| | Virtuoso 5/24/201 | 9

System is doing a lot of other stuff that may not be relevant to the introspection at hand. HW
interrupts: clearly not relevant. Malloc & friends: implementation artifact.

Executable Dynamic Slicing

|. Follow data def/use chain backward,
starting with output buffer

2. Examine CFG and add necessary control
flow statements to slice (and their
dependencies)

3. Perform slice closure:

* [f any instance of an instruction is
included in the slice, all instances of that

instruction must be marked

@ Oakland ’1 | Virtuoso 5/24/201 | 20

YV

Data def/use chains give us our initial set of relevant instructions without control flow. Next
step operates on dynamic CFG. Slice closure is what makes it executable.

Trace Merging

® Since analysis is dynamic, we only see one
path through program

® So:run program multiple times and then
merge results

pd ~
~ PN
~ NS

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Note why we didn’t go with static analysis here: too much domain knowledge.

Trace Merging

® Since analysis is dynamic, we only see one
path through program

® So:run program multiple times and then
merge results

O\
W

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Note why we didn’t go with static analysis here: too much domain knowledge.

Program Translation

® Goal: convert in-guest => out-of-guest

® Generates Python code that runs inside
Volatility memory analysis framework

® Changes:
® Memory reads come from guest VM
® Memory writes are copy-on-write

® CPU registers become local vars

Oakland ’| | Virtuoso 5/24/201 |)

Why Python? Volatility written in Python. Any code generation would do though. Copy-on-
write is necessary so as not perturb the guest.

Translation Example
Original x86 QEMU uOps

[TB @0XC0253368L *]
IFLO TB HEAD EIP(0xc0253368)
IFLO INSN BYTES(0xc0253368, f6451c10')
* IFLO OPREG TEMPL MOVL A0 R(0X5)
* IFLO ADDL A0 IM(0xlc)
* IFLO OPS MEM LDUB TO AO(...)
* IFLO MOVL T1 IM(0x10)
* IFLO TESTL TO T1 CC()
IFLO INSN BYTES(0xc025336c,'89df’)
* IFLO OPREG_TEMPL MOVL TO R(0x3)
jnz 0xc02533a9 * IFLO OPREG TEMPL MOVL R _TO(0x7)
IFLO INSN BYTES(0xc025336e,'7539")
* IFLO SET CC_OP(0x16)
* IFLO OPS TEMPLATE JZ SUB(0x0,0x1)
IFLO GOTO TB1(0x60afcab8)
IFLO MOVL EIP IM(0xc0253370)
IFLO MOVL TO IM(0x60afcab9)
IFLO EXIT TB()

test byte [ebpt+0Oxlc],0x10
mov edili,ebx

Oakland 1 | Virtuoso 5/24/201 |

Example: a test and a conditional jump. Asterisks mean “included in slice”.

Translation Example

[TB @0XC0253368L *)]

IFLO TB HEAD EIP(0xc0253368)

IFLO INSN BYTES(0xc0253368, 'f6451cl10')
* IFLO OPREG TEMPL MOVL A0 R(0x5) A0 = EBP
* IFLO ADDL A0 IM(0xlc)
* IFLO OPS MEM LDUB TO AO(...)
* IFLO MOVL T1 IM(0x10)

AQ += UInt(0xlc)
TO = ULInt8(mem.read(A0,1))

* IFLO TESTL TO T1 CC() Tl = UInt(0x10)
IFLO INSN BYTES(0xc025336c, '89df') CC DST = TO & T1
* IFLO OPREG TEMPL MOVL T0 R(0x3) TO = EBX

* IFLO OPREG TEMPL MOVL R TO0(0x7)
IFLO INSN BYTES(0xc025336e,'7539')
* IFLO SET CC OP(0x16)

EDI = T0
CC OP = 0x16

* IFLO OPS TEMPLATE JZ SUB(0x0,0x1) . (Byte(CC_DST) == 0):
IFLO GOTO TB1l(0x60afcab8) Goto(0xc0253370)
IFLO MOVL EIP IM(0xc0253370) Goto(0xc02533a9)

IFLO MOVL TO IM(0x60afcab9)
IFLO EXIT TB()

Oakland 1 | Virtuoso 5/24/201 |

Translation to Python: conditional jump is now Python if statement.

Results: Generality

® Generated 6 useful introspection programs
on each of 3 operating systems

I) :
Y Oakland’| | Virtuoso 5/24/201 |

Windows: everyone uses it. Linux: we use it. Haiku: we don’t know its internals, no
temptation to cheat.

Introspection Programs

getpid Gets the PID of the currently running
process.

pslist Gets a list of PIDs of all running processes.

getpsfile Gets the name of an executable from its
PID.

Ismod Gets the base addresses of all kernel
modules.

getdrvfile Gets the name of a kernel module from its
base address.

gettime Gets the current system time.

Oakland ’| | Virtuoso 5/24/201 | 2%

Describe these by group and why relevant to security: examine features of processes and
drivers.

Results: Reliability

® Analysis is dynamic, so programs may be
incomplete

® How many traces are needed to produce
reliable programs!?

® Complicating factors: caching, difficulty of
deciding ground truth for coverage

Oakland ’1 | Virtuoso 5/24/201 | >7

Caching: early runs may execute much more code. Difficulty of ground truth: hard to say
what the complete set of code is, or how many paths (program testing has this problem too).

Windows pslist Reliability

Generated Program Reliability
0.9 |

0.85 - T % -

[
BRI
0.7.5 - “ % __ % -

0.65 - |

Success Rate

0.6 | | | | | |
0 2 4 6 3 10 12

Number of Traces

Oakland ’| | Virtuoso 5/24/201 |)8

This is cross—evaluation: take 24 traces, and then take differently sized random subsets to
create final program. Describe axes, then walk through one program => not reliable, 12
programs => pretty reliable. Mention caching effect again as explanation for why this graph

Results: Security

® Verified that introspection programs are not
affected by in-guest code manipulation

® Training program (pslist) generated on clean
system

® Resulting introspection program still detects
processes hidden by Hacker Defender

® Note: DKOM attacks can still be effective
against Virtuoso

I : :
Y Oakland’| | Virtuoso 5/24/201 |

DKOM is something we’ll look at in future work.

Limitations

® Multiple processes/IPC
® Multithreaded code (synchronization)

® Code/data relocation (ASLR)
® Self-modifying code

I : :
Y Oakland’| | Virtuoso 5/24/201 |

Multiple processes: key problem is that we don’t know where data for a specific process
might be at runtime. Multithreaded code: VM is paused, so waiting on a lock is bad.
Relocation: where’s our data? Self-modifying code: code is only translated once (kernel’s

Conclusions

® Programs generated by Virtuoso can be
useful, reliable, and secure

® Uses novel whole-system executable
dynamic slicing and merging

® Virtuoso can greatly reduce time and effort
needed to create introspection programs

- Weeks of reverse engineering vs. minutes
of computation

1] Oakland ’I | Virtuoso 5/24/201 |

VY

Stop here for questions, etc.

