
Automatic Identification of Bee Movement Using Human
Trainable Models of Behavior

Adam Feldman1, Tucker Balch2

1. Georgia Institute of Technology, Atlanta, Georgia 30332, USA. Corresponding
author: storm@cc.gatech.edu

2. Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Abstract
Identifying and recording subject movements is a critical, but time-consuming step in
animal behavior research. The task is especially onerous in studies involving social
insects because of the number of animals that must be observed simultaneously. To
address this, we present a system that can automatically analyze animal movements, and
label them, on the basis of examples provided by a human expert. Further, in conjunction
with identifying movements, our system also recognizes the behaviors made up of these
movements. Thus, with only a small training set of hand labeled data, the system
automatically completes the entire behavioral labeling process. For our experiments,
activity in an observation hive is recorded on video, that video is converted into location
information for each animal by a vision-based tracker, and then numerical features such
as velocity and heading change are extracted. The features are used in turn to label the
sequence of movements for each observed animal. Our approach uses a combination of k-
nearest neighbor (KNN) classification and hidden Markov model (HMM)
techniques. The system was evaluated on several hundred honey bee trajectories
extracted from a 15 minute video of activity in an observation hive. Additionally,
simulated data and models were used to test the validity of the behavioral recognition
techniques.

Keywords: Behavior Recognition, Bee Movements, Hidden Markov Models, Biological
Inspiration.

1. Introduction
A honey bee colony is a “superorganism” – a system composed of thousands of simple
individuals that exhibits apparently intelligent behavior. As such, honey bees are popular
subjects of study for behavioral neurobiologists and behavioral ecologists who seek to
understand how system level behavior emerges from the activities of thousands of
interacting individual animals. Currently, when a researcher studies honey bee colony
behavior, animals in an observation hive are videotaped and the resulting tape is viewed
and hand-labeled [Seeley 1995]. Typically this requires the observer to watch the video
many times, and is a rather time-consuming process. If honey bee behaviors could be
recognized and identified automatically, research in this area could be greatly
accelerated.

Our objective is to develop a system that can learn to label behavior automatically on the
basis of a human expert’s labeling of example data. This could save the researcher time,
which could be better used by the researcher evaluating the automatically labeled data.

The behaviors of interest are sequential activities that consist of several physical motions.
For example, bees commonly perform waggle dances (see Figure 1). These waggle
dances consist of a sequence of motions: arcing to the right, waggling (consisting of
walking in a generally straight line while oscillating left and right), arcing to the left,
waggling, and so on [v. Frisch 1967]. In this work we have focused on dancing,
following, and active hive work as behavioral roles to be identified.

Figure 1: Pattern of waggle dance: S is waggling segment, R and R’ are return
runs (alternating between left and right). (Note: we are seeking permission to use
this image).

We define these behaviors as follows. A follower is a bee who follows a dancer, but
does not perform the waggle segments, while a bee accomplishing active hive work is
neither a dancer nor a follower, yet moves around with apparent purpose. We distinguish
behaviors from constituent motions they are composed of. Arcing, waggling, moving
straight, and loitering are examples of motions, which are sequenced in various ways to
produce behaviors. Accordingly, in order for a software system to recognize behaviors, it
must also identify the motions that make them up. And conversely, if we know which
behavior a bee is executing, we can better identify the constituent motions.

The system described in this paper is designed to label a bee’s motions and then identify,
from motion sequences, the animal’s behavior. There are several steps in the operation of
our system. First, bees in an observation hive are videotaped. Then, a tracker extracts x-
and y-coordinate information for each bee [Bruce et al 2000]. From raw location data,
quantitative features of motion (such as velocity and heading change) are computed. A k-
nearest neighbor (KNN) classifier identifies motions from these features (the classifier
has been previously trained using data labeled by an expert) [Mitchell 1997]. The labels
are:

• ARCING_LEFT (AL) – The bee is moving in a counter-clockwise direction
• ARCING_RIGHT (AR) – The bee is moving in a clockwise direction
• STRAIGHT (S) – The bee is moving steadily in a fairly straight line
• WAGGLE (W) – The bee is moving straight while oscillating left and right
• LOITERING (L) – The bee is moving very slowly in a non-specific direction

• DEAD_TRACK (D) – The bee is not moving at all

Finally, the motion sequences are evaluated using a hidden Markov model, which
identifies predicted labels of the data set (motions) and inferred behaviors. Hidden
Markov models (HMMs), explained in detail below, are convenient models of behavior
that can also be used for recognition tasks. An HMM describes likely sequences of
motion that correspond to specific behaviors. In our application HMMs are used to
increase accuracy by “smoothing” the labels across the data set.

There are a number of algorithms that operate on HMMs that we can leverage in this
work. In our system, the output from the KNN classifier is used as input to the Viterbi
algorithm over a fully connected HMM. In this way, incorrect classifications that are
statistically unlikely can be discarded or corrected. For example, if there is a series of
ARCING_RIGHT data points with a single ARCING_LEFT in the middle, it is likely
that the single ARCING_LEFT is an error and should really be an ARCING_RIGHT,
even though the features quantitatively designate an ARCING_LEFT. The HMM
technique will correct mistakes of this nature. The HMM is also used to determine the
behavior. By creating an HMM for each of the possible behaviors, the correct behavior
can be chosen by determining which HMM most closely fits the data.

Our hypothesis is that this system will provide a means of labeling new data with
reasonable accuracy. Note that since the overall goal of this recognizer is to identify
behaviors automatically, it is not necessary to be able to label every data point precisely.
If a majority of individual motions can be labeled properly, then it will be possible to
infer the correct behavior (dancer, follower, etc).

2. Background and Related Work

2.1 k-Nearest Neighbor
The k-nearest neighbor (kNN) classifier is a classification technique that classifies data
points based on their location in an n-dimensional feature space (where n is the number
of features). For training, and evaluation, a data set to be classified is broken into two
parts – a training set and a test set. The training set is manually labeled, and is used to
“train” the system to be able to classify the rest of the data (the test set). Values are first
normalized so that every dimension of the feature space is uniform (such as from 0 to 1).

Classification works by evaluating each test set point in the populated feature space and
finding the k nearest neighbor points (geometrically). Each possible label for the test
point is scored according to distance to each of the k points. The score is incremented by
a value proportional to the inverse squared distance from the test point. After scoring,
whichever label has the highest score is the label that is given to the test point. In this
way, test set points are classified based on the labels of the points that they are near in the
feature space [Mitchell 1997].

This technique works well, but has a limitation when applied to our application. k-
nearest neighbor considers each data point individually, without considering the sequence

of data points as a whole. Therefore, for our application, we also employ hidden Markov
models to take advantage of this additional contextual information.

2.2 Hidden Markov Models
If we assume an observed agent acts according to a Markov model, we can employ
HMM-based approaches to identify its behavior. Hidden Markov models (HMMs) can
be used as models of sequenced behavior. They consist of a series of states, observations
and transitions. The states represent the topography of the model, with the model being
in one state at any given time. We assume that the animals we are observing act
according to a Markov model, where each state in the model corresponds to a motion,
and sequences of motions are behaviors. As we observe the animal however, we make
certain observation errors (thus it is a Hidden model). The observations correspond to the
output of the system being modeled. For each state, there is some probability for each
possible observation occurring. Additionally, HMMs require a probability table for the
initial state. This table is the probability of beginning any sequence in each state. An
HMM can be thought of as a graph where each state is a node and each transition with
non-zero probability is a link. An HMM’s topology reflects the topology of the behavior
it models (e.g. the top diagram in Figure 4 models a waggle dance).

Once the parameters of an HMM are provided (or learned), it can be used to answer the
following question: “Given an observation sequence, what is the most likely state
sequence that created it?” We use the Viterbi algorithm to do this [Rabiner 1989]. The
Viterbi algorithm takes as input a specified HMM (states, observations, and probability
distributions) and an observation sequence in order to compute the most likely state
sequence.

2.3 Related Work
Traditionally, hidden Markov models have been used in speech recognition tasks.
However, they can also be used in gesture recognition tasks. Unfortunately, most
available HMM toolkits are geared for speech recognition, and require adapting for
general gesture recognition. In light of this, the Georgia Tech Gesture Toolkit GT2k
[Westeyn et al 2003] was created. The GTK was designed as an all-purpose gesture
recognition toolkit, and supports such projects as American Sign Language recognition
[Brashear et al 2003].

Another type of behavior recognition was studied by Kwun Han and Manuela Veloso
[Han and Veloso 1999]. They examined identifying the behavior of autonomous robots,
as applied to robotic soccer. Their framework uses hidden Markov models to recognize
the behaviors of the robotic agents.

Couzin and Franks [Couzin and Franks 2003] have used video tracking techniques to
identify certain movements in ants in order to understand their behavior. Our work is
distinct in that our system can learn from suggestions given by an expert.

3. Approach
Our system is composed of several components. Figure 2 provides an overview,
illustrating the flow of data from one component to the next. First, a video camera
records bees in the observation hive. This video is passed to a tracker, which extracts
coordinate information to be used by the human labeler (creating the training set) and
then by the kNN classifier. The output of the kNN classifier is used as an observation
sequence by the Viterbi algorithm (with an HMM) to generate the most likely state
sequence. This final sequence is the labels determined by the system.

Figure 2: Overview of our system.

3.1 Tracker
Tracking software is necessary to convert the bee videos into data that can be used by
other software [Bruce et al 2000 and Khan et al 2003]. In our experiments, some bees
were removed from the hive and individually painted, by applying a drop of brightly
colored paint (such as red or green) to each bee’s back. A video camera was then trained
on a section of the hive, and a recording was created. The tracker is then applied to the
recording. For each frame of the video, the tracker is able to identify the location of each
painted bee that is visible. Since the speed of the video is 30 frames per second, we now
have the coordinate information of each (visible) painted bee every 0.033 seconds. This
is enough information to get a clear picture of the bee’s movements.

3.2 TeamView
The TeamView software (Figure 3) is used to visualize and hand label the data sets. The
files that contain the x- and y- coordinate information (from the tracker) are loaded into
TeamView. When the files are played, the main viewing window displays the position of
each bee currently in the field. The lines behind each “bee” are a trail, showing where
the bee has been over the last x frames (where x is definable by the user). The labeling
options allow a user to mark a segment of the video and apply any label to a specific bee.
In this way, it is possible to label the motions of each bee across the entire data set.
Further, once data is labeled, the labels will be displayed next to the bee they are
associated with. The advantage to using this software is the speed with which a human
can label the data, as compared to more traditional pen and paper method of using a
stopwatch and the original video.

Bees Camera Tracker Labeler
(Training Set)

kNN
Classifier

HMM

Labeled
Output

Figure 3: TeamView software. Labeling options appear to the right of
the main viewing window, while playback controls are at the bottom. The
displayed labels were previously created using this software.

3.3 Data Generation and Feature Extraction
The data used in this system begins as video of bees in the hive, prepared for analysis by
the tracker, as discussed above. Once the coordinate information for each tracked bee is
obtained from the tracker, numerical features of motion that are used to determine the
bee’s motion are extracted. All features are calculated for each tracked bee during every
frame in which it is visible. Since all values are normalized, the units of measurement
can be disregarded. Seven features that were extracted and examined for their usefulness
(where t is the current frame in time):

• Instantaneous Speed (v0) – from time t-1 to t
• Speed over a Window (v1) – from t-3 to t+3
• Raw Heading (h0) – from t to t+1
• Heading Change over a Small Window (h1) – from t-1 to t+1
• Heading Change over a Large Window (h2) – from t-20 to t+20
• Speed times Heading (sh0) – multiply h1 and v0
• Average Speed times Heading (sh1) – average of sh0 values from t-5 to t+5

3.4 k-Nearest Neighbor Classification
Before kNN classification can be used, the appropriate features must be determined.
From the information generated by the tracker, seven features are available. It is possible
to use all seven of these features, however, it is beneficial to reduce this number if not all
features are useful in classification. Reducing the number of features (and therefore the
dimensionality of the feature space) will result in simpler and quicker computation,
greatly reducing the working time of the system. Also, in some cases, more dimensions

can make things worse – they are harmful to classification. This is because two points
close to each other in a dimension that does not affect labeling would seem closer
together in feature space than if that dimension were not included. For example, bee
color has nothing to do with what motion a bee is performing, so it would not be a useful
feature. Yet by including it, two bees of similar color who are performing different
motions may appear (in feature space) to be more similar than two bees that are
performing the same motion (and therefore warrant the same label) but are very different
colors.

In order to determine which features are helpful and which are useless (or harmful) in
determining the label of a data point, we conducted a sensitivity analysis. Every
combination of the seven available features – from each one individually to all seven
together – was tested by applying the kNN algorithm to a large training set. The
combination of features that resulted in the highest accuracy (defined as the percent of the
test points labeled correctly) were considered the most useful, and are the only features
used in the rest of the experiments.

In our experiments, the training set is made up of 1000 points of each type of labeled
motion. This ensures fair representation, despite frequency disparities among the labels
(unlike some other methods of selecting the training set). The importance of this can be
found in the infrequency of our most useful label – WAGGLE. This label is very telling
due to its appearance only during a dance. However, WAGGLE points make up only
0.1% of the data. Therefore, choosing a random sampling of 6000 data points would
result in few, if any, WAGGLE points being chosen.

As discussed above, kNN classification usually results in a single label being chosen for
each point (the label with the highest score for that point). However, in order to provide
the HMM with as much useful information as possible, instead of only recording the
highest-scored label, this system actually records the (normalized) scores for all the
labels. This information represents a sort of “confidence” level in the kNN classification.
The advantage of this technique over traditional kNN methods is that when the classifier
is wrong (because the correct answer has the second highest score, for example), the
HMM can use the fact that the correct answer has a relatively high score, instead of
simply being given the wrong information. This has the effect of helping to account for
the large amount of noise in the data.

3.5 Hidden Markov Model
The kNN algorithm is very good at classifying data points based on features that are
similar in value to those in the training set data. However, there are several reasons why
the correct label does not directly reflect the features. For example, often while a bee is
arcing right, it will jitter, causing the features to look like there are some frames of
loitering or arcing left in the middle. In this case, the classifier will label these frames
differently. What we want is to “smooth” these places where the data isn’t representative
of what is really going on. Since the kNN classifier only considers each point
individually, this time series information is lost. Thus, we turn to Hidden Markov
Models.

Although many HMMs use a specific topology, we used a fully connected HMM, as we
would like our system to learn this topology automatically. Instead, we want to use the
HMM to statistically smooth the labels we have already determined with the kNN
classifier. Therefore, we connect all of the states, and use the training data to determine
the probability of each transition (see Figure 4). It should be noted that this technique
may result in certain transition probabilities to drop to zero, causing the HMM to no
longer be fully connected.

Figure 4: Possible HMM, after removing transitions with a probability
less than 0.005, and observation probability table determined in the
experiment discussed below. Cell (x, y) of the observation table shows the
probability of observing x while being in state y.

Once the HMM is specified, it will be used by the Viterbi algorithm to determine the
most likely state sequence for a given observation sequence. It does this by using time
series information to correct “glitches” which are statistically unlikely. For example, if
there is a single ARCING_LEFT label in the midst of a series of ARCING_RIGHT
labels, the Viterbi algorithm will decide that the ARCING_LEFT is an observation
witnessed from the ARCING_RIGHT state since the low transition probabilities
between ARCING_LEFT and ARCING_RIGHT make it very unlikely that the state
changed twice here.

The observation sequence given to the algorithm is actually the output from the kNN
classifier. For each iteration (corresponding to one time step in the dataset), the HMM
multiplies the values in the observation probabilities table by the scores from the kNN

Observation Probabilities
AL AR D L W S

AL .944 .032 .011 .095 .004 .031
AR .003 .812 .008 .095 .003 .044
D .000 .000 .889 .087 .000 .002
L .013 .066 .087 .648 .000 .029
W .004 .003 .000 .000 .987 .004
S .034 .083 .003 .071 .003 .888Straight

(S)

Dead
Track
(D)

Loitering
(L)

0.016

0.97

0.98 0.99

0.007

0.017

Arcing
Left
(AL)

Arcing
Right
(AR)

Waggle
(W)

0.015 0.014

0.012 0.008

0.98 0.97 0.98

(and then normalizes) to create the new table that it will use for that iteration. In this
way, the HMM is able to take advantage of the added information that the kNN records.

3.5.1 Behavior Recognition
The tasks of motion identification and behavior recognition are usually treated separately
with recognition accuracy being dependent on the accuracy of the motion identifier. Our
system, however, completes these two tasks in parallel, allowing each to assist the other.
This is done by creating an HMM, as above, for each possible behavior. The behaviors
considered are:

• Dancer – The bee is performing a series of waggle dances
• Follower – The bee is following a Dancer
• Active – The bee is neither a Dancer or Follower, yet moves around the hive

with apparent purpose
• Inactive – The bee simply loiters about, not moving in a distinct direction

Each HMM is trained on a data set made up of only the corresponding behavior (as
provided by a human expert labeler). Thus, the model for a dancer is different from the
model for a follower. These HMMs are then connected via a null, start state, which
allows movement to every state in every HMM. However, there is no movement back to
the start state, nor between each smaller HMM (See Figure 5).

This technique allows the Viterbi algorithm to choose the best sequence of motions, by
falling into the sub-set of the HMM which best models the data. Simultaneously, the
algorithm can best choose the sub-set (and thus the behavior) because it is the one that
most closely fits the observations.

Figure 5: Behavioral HMM, which is made up of a start state and the four sub-
models, one for each behavior.

S1 S2

S3 S4

S5 S6

S1 S2

S3 S4

S5 S6

S1 S2

S3 S4

S5 S6

S1 S2

S3 S4

S5 S6

Start

Behavior 2

Behavior 4

Behavior 1

Behavior 3

3.6 Methods
To test this classification system, we began with a data set consisting of fifteen minutes
of video of honey bee behavior in an observation hive. The tracker was used to extract
the features, while TeamView was used for hand labeling. There were three human
labelers, each labeling five minutes (1/3) of the data. The data was then broken into a
training set, consisting of the last one third of the data, and a test set, consisting of the
first two thirds. The test set was put aside for accuracy validation after training the
system.

First, the training set was prepared for use by the kNN classifier by having 1000 points of
each label randomly extracted and placed in feature space. The remainder of the training
set was then labeled, using the technique described above. The data was separated by
(human determined) behaviors, and the labels, along with the manually determined
“correct” labels, were then examined to find the observation and transition tables and the
initial state probabilities of each sub-model. These were then combined to form the
overall, behavioral HMM.

To establish the accuracy of the system, these 6000 points in feature space and HMM
parameters were used to automatically label the test set, labeling both the motion of each
data point and the behavior of each entire track (bee). In this phase of the experiment, the
correct labels are not known by the system – instead they are only used to evaluate its
accuracy.

Finally, to test the techniques employed by this system, two additional experiments were
conducted. First, artificial data was generated following the behavioral models created
from the actual bee data. By generating this data, we were able to control the amount of
noise present in the features. Data was generated by defining a locus (between -1 and 1
along each dimension) for each of the six class of points, then adding a random amount
of Gaussian noise to each dimension (feature). The noise level parameter, n, was equal to
3 standard deviations, such that the vast majority of noise added was between –n and n.

Second, we created artificial “behavioral models” which did not correspond directly to
any behaviors, but could be used to demonstrate the effectiveness of the technique in
cases when the behavioral models were very distinct from one another. These models
were manually created to be very different from each other. Using these models we
generated artificial data (as described above), varying the noise level to test effectiveness.
For simplicity, these models contain only five states. The transition tables for each of the
four simulated behaviors are in Table 1.

Table 1: Transition tables of the four simulated behavioral models.

Table 2: Fractional breakdown of accuracy, first with the kNN classifier,
then with the addition of the HMM. Final column shows number of
occurrences of each label in the test set.

Label
Accuracy

(without HMM)
Accuracy

(with HMM)
Total Occurrences

in test set
ARCING_LEFT 0.791 0.866 2059
ARCING_RIGHT 0.688 0.715 2407
DEAD_TRACK 0.901 0.665 5920
LOITERING 0.744 0.812 113285
WAGGLE 0.591 0.511 1550
STRAIGHT 0.371 0.461 5343
Total 0.733 0.787 130564

4. Results

4.1 Feature Selection
Every combination of the seven available features was tested by applying the k-nearest
neighbor algorithm to a large training set. This resulted in 127 possibilities (zero features
was not an option). The combination of features that resulted in the highest accuracy
(defined as the percent of the test points labeled correctly) is h2, v1, and sh1. Therefore
we consider only these features in the rest of the experiments.

It is interesting to note that accuracies using these three features plus combinations of
other features ranged from 58.9% to 73.0%, while the accuracy of using only these three
features was 73.1%. This demonstrates that having extra features can reduce accuracy.

State 1 State 2 State 3 State 4 State 5
State 1 0.50 0.50 0.00 0.00 0.00
State 2 0.00 0.50 0.50 0.00 0.00
State 3 0.00 0.00 0.50 0.50 0.00
State 4 0.00 0.00 0.00 0.50 0.50
State 5 0.50 0.00 0.00 0.00 0.50

State 1 State 2 State 3 State 4 State 5
State 1 0.50 0.50 0.00 0.00 0.00
State 2 0.00 0.50 0.00 0.00 0.50
State 3 0.00 0.00 0.50 0.50 0.00
State 4 0.33 0.00 0.33 0.33 0.00
State 5 0.00 0.00 0.50 0.00 0.50

State 1 State 2 State 3 State 4 State 5
State 1 0.00 0.50 0.00 0.00 0.50
State 2 0.00 0.50 0.50 0.00 0.00
State 3 0.00 0.00 0.50 0.50 0.00
State 4 0.50 0.00 0.00 0.50 0.00
State 5 0.00 0.00 0.50 0.00 0.50

State 1 State 2 State 3 State 4 State 5
State 1 0.50 0.00 0.00 0.00 0.50
State 2 0.00 0.50 0.00 0.00 0.50
State 3 0.00 0.00 0.50 0.50 0.00
State 4 0.00 0.33 0.00 0.33 0.33
State 5 0.50 0.00 0.00 0.00 0.50

4.2 Classification Results
Table 2 shows the fractional accuracy of the system for each label type. As indicated, the
system achieved an overall accuracy of about 78.7%. Further, the overall accuracy
increased by over 5.5% by including the use of the HMM to “smooth” the results of the
kNN classifier. Finally, the accuracy in determining the behavior was 45.9%.

5. Discussion
As we hypothesized, the use of an HMM in conjunction with a kNN classifier provides
higher accuracy than a kNN classifier alone. The HMM improved overall accuracy by
5.5%, above the 73.3% accuracy of only the kNN. The two labels that correspond to the
vast majority of the data (LOITERING and DEAD_TRACK) are very similar to one
another, both in features and in appearance. Due to this fact, and some ambiguity among
the human labelers, misclassifications between them are less important than other
misclassifications. If these two labels were combined into one, the accuracy of the
system would be approximately 92%.

Another label that caused many problems for the system was STRAIGHT. This label
was included because we wanted to make the system as general as possible. However,
none of the common bee behaviors (dancing, following, active hive work) seem to rely
on this label. Therefore, it would be possible to eliminate this label. Removing all points
labeled STRAIGHT from consideration would increase the accuracy by about 2.5%, to
81.2% (or about 95% after combining LOITERING and DEAD_TRACK).

Table 3 shows the performance of the system on simulated data, generated by following
the models created from the actual bee data. The system performed reasonably well with
low noise levels, yet accuracy dropped off quickly with rising noise levels.

We hypothesize that these errors arise because the four behaviors are so like one another.
This means that the transition probability table for each behavior is very similar to the
transition probability tables of the other behaviors. To test this hypothesis, we created
artificial models with parameters we could vary to see which affected performance.

Table 4 shows the system’s accuracy using simulated, distinct behavior models. In this
case, the system achieved a high accuracy, reaching almost 90%, even with high noise
levels.

Table 3: Accuracy of simulated data
(using real behavioral models)

Table 4: Accuracy of simulated data
(using synthetic behavioral models)

The artificial models and data show that the technique is sound and that the system can
perform as desired. By using this artificial data, we can see that the root of the problem
lies in the fact that the models for the different behaviors are too similar. This is
illustrated in the accuracy with this simulated data – even with high levels of noise, the
behavior recognition is around 90% accurate. Further, the system correctly identifies
most behaviors (which is the ultimate purpose of the system) even when motion accuracy
is at only 50%.

The main failing of the system can be traced to trying to differentiate between models
that are too similar. We attribute this not to the behaviors being similar, but to poor
training of the models. First, our experiments made use of relatively small training sets –
future work will involve many more examples of each type of behavior, allowing for
more accurate model generation. Second, and even more important, we assumed that
behaviors persist for the entire duration of a bee’s presence. However, in reality, a bee
will switch behaviors. For example, it will enter the hive and find a suitable place to
begin dancing (Active Hive Bee), then it will dance for a time (Dancer), then it will move
to a new location (Active) and begin dancing again (Dancer). By not letting a bee change
behaviors, the models become diluted, and the all-important distinctiveness is lost.
Therefore, future work will focus on allowing a bee to change behavior throughout its
existence in the data set.

Using artificial models simulated the above goals of making the behavioral models more
distinct. Once this is accomplished, the system achieves reasonable performance. Thus,
it successfully demonstrates the effectiveness of its techniques.

Acknowledgements
We would like to thank Zia Khan and Frank Dellaert for the software used to track the
bees; and Kevin Gorham, Stephen Ingram, and Edgard Nascimento for TeamView and
for hand-labeling our data. We are also grateful to Tom Seeley for his advice on
observing bees, and his help in gathering data.

This project was funded under NSF Award IIS-0219850.

Noise
Level

Motion
Accuracy

Behavior
Accuracy

0.00 85.0% 85.1%
0.05 85.5% 85.8%
0.10 72.5% 73.8%
0.15 52.5% 54.6%
0.20 56.5% 55.3%
0.30 46.5% 51.1%

Noise
Level

Motion
Accuracy

Behavior
Accuracy

0.30 73% 100%
0.40 63% 90%
0.50 50% 89%

References
Brashear, H., T. Starner, P. Luckowicz, and H. Junker. Using multiple sensors for mobile sign language

recognition. In Proceedings of IEEE International Symposium on Wearable Computing, page In Press,
October 2003.

James Bruce, Tucker Balch, and Manuela Veloso. Fast and inexpensive color image segmentation for
interactive robots. In Proceedings of IROS-2000, Japan, October 2000.

Couzin, I.D. & Franks, N.R. (2003) Self-organized lane formation and optimized traffic flow in army ants.
Proc. R. Soc. Lond. B. 270, 139-146

Frisch, K. v. The Dance Language and Orientation of Bees. Cambridge, Massachusetts: Harvard
University Press, 1967.

Han, K., and M. Veloso. Automated Robot Behavior Recognition Applied to Robotic Soccer. In
Proceedings of IJCAI-99 Workshop on Team Behaviors and Plan Recognition., 1999.

Khan, Z., T. Balch, F. Dellaert. Efficient Particle Filter-Based Tracking of Multiple Interacting Targets
Using an MRF-based Motion Model. To appear in Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’03), 2003.

Mitchell, T. Machine Learning. Boston, Massachusetts: MIT Press & McGraw-Hill, 1997.

Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.
Proc. IEEE, 77(2): 257-286, 1989.

Seeley, T. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Cambridge,
Massachusetts: Harvard University Press, 1995.

Westeyn, T., H. Brashear, A. Atrash, and T. Starner. Georgia Tech Gesture Toolkit: Supporting
Experiments in Gesture Recognition. ICMI’03, November 5-7, 2003, Vancouver, British Columbia,
Canada.

