
NFSlicer: Data Movement Optimization
for Shallow Network Functions

Anirudh Sarma Hamed Seyedroudbari Harshit Gupta Umakishore Ramachandran Alexandros Daglis
Georgia Institute of Technology

Abstract—Network Function (NF) deployments on commodity
servers have become ubiquitous in datacenters and enterprise
settings. Many commonly used NFs such as firewalls, load
balancers and NATs are shallow—i.e., they only examine the
packet’s header, despite the entire packet being transferred on
and off the server. As a result, the gap between moved and
inspected data when handling large packets exceeds 20×. At
modern network rates, such excess data movement is detrimental
to performance, hurting both the average and 90% tail latency of
large packets by up to 1.7×. Our thorough performance analysis
identifies high contention on the NIC-server PCIe interface and
in the server’s memory hierarchy as the main bottlenecks.

We introduce NFSlicer, a data movement optimization imple-
mented as a NIC extension to mitigate the bottlenecks stemming
from data movement deluge in deployments of shallow NFs on
commodity servers. NFSlicer only transfers the small portion
of each packet that the deployed NFs actually inspect, by
slicing the packet’s payload and temporarily storing it in on-
NIC memory. When the server later transmits the processed
packet, NFSlicer splices it to its previously sliced payload. We
develop a software-based emulation platform and demonstrate
that NFSlicer effectively minimizes data movement between the
NIC and the server, bridging the latency gap between small and
large packet NF processing. On a range of shallow NFs handling
1518B packets, NFSlicer reduces average and 90% tail latency
by up to 17% / 29%, respectively.

I. INTRODUCTION

Network Functions (NFs) have been transitioning from spe-
cialized middleboxes to virtualized counterparts on commodity
servers [25], [28], [37], [50], which increases their flexibility
and facilitates their deployment, boosting their ubiquity in
enterprise and datacenter settings [48]. The vast majority of
internet traffic that targets an online service is first filtered
through several NFs deployed on general-purpose servers,
offering functionality such as load balancing within the data-
center, and applying forwarding and firewall rules. Due to the
latency-sensitive nature of modern online services, the latency
incurred on each packet’s NF processing is an important figure
of merit.

NFs as a workload are extremely network-bandwidth inten-
sive, as they typically involve minimal processing per received
packet. Modern high-bandwidth NICs are therefore a welcome
addition to NF-handling servers, as they enable better resource
consolidation in the datacenter. However, a side-effect of
increasing line rates is unprecedented network traffic moving
on and off the server, promoting data movement to a first-order
performance determinant for latency-sensitive NFs.

Fig. 1 exemplifies the impact of network data movement,
by showing the end-to-end response latency distribution for

0 1 2 3 4 5 6 7 8 9 10 11
Latency (us)

0
20
40
60
80

100

Pe
rc

en
til

e 64B
512B
1024B
1518B

Fig. 1: L2 forwarder NF latency CDF for variable size packets
at 7Mpps arrival rate, measured on directly connected client-
server machines equipped with 100G NIC (details in §V).

an L2 forwarder NF handling network traffic of four different
packet sizes. While the base latency for all packet sizes is the
same (∼4.5µs), the latency gap quickly grows as a function
of packet size to 1.7× between 1518B and 64B packets. Al-
though the latency difference may initially seem intuitive, L2
forwarders, like many NFs used in production, are shallow—
i.e., they only operate on packet headers, hence processing
cost is insensitive to packet size. We therefore posit that the
observed latency gap is primarily attributed to redundant data
movement. Given the deluge of large-packet network traffic—
video will account for 82% of internet traffic by 2022 [7]—
mitigating inefficiencies in its handling is critical.

In this work, we propose NFSlicer, a data movement op-
timization implemented as a NIC extension to mitigate the
latency overheads encountered by shallow NF when handling
large packets. NFSlicer is a software-hardware co-design that
minimizes data movement between a server executing shallow
NFs and its NIC, by only transferring the small subset of the
packet the NFs need. The core of NFSlicer is a new basic on-
NIC operation, called packet Slice & Splice: as each network
packet bound to be processed by a shallow NF arrives from
the network, NFSlicer slices the packet’s payload, temporarily
stores it in on-NIC memory resources, and extends the packet’s
header with special metadata. After a CPU on the server
executes the NF of the received header and transmits it back
to the network, NFSlicer uses these metadata to locate the
outgoing packet’s corresponding payload and splices it back
to the header to reconstruct the full packet before placing it
on the wire. Slice & Splice addresses large-packet handling
inefficiency at its source, shrinking server-NIC data transfers
by more than 20× for large packets.

The basic idea of payload slicing for shallow NFs was
recently introduced by Goswami et al.’s PayloadPark [15].
Although NFSlicer’s design bears strong similarity with Pay-
loadPark, our contributions are distinct. PayloadPark employs

1

a partial Slice & Splice approach on a programmable switch
to improve link goodput. In contrast, NFSlicer demonstrates,
for the first time, (i) the system-level effects of redundant
on-server network data movement; and (ii) the performance
gain potential that is only attainable by eliminating it with full
payload slicing, which is beyond the capabilities of switch-
based solutions. We further show that NFSlicer’s NIC-based
mechanism is fundamentally more scalable than switch-based
approaches. Overall, while PayloadPark and NFSlicer share
significant conceptual similarities, they are complementary
mechanisms with distinct strengths.

In summary, we make the following contributions:
• We conduct a thorough microarchitectural study and

identify that the noticeable latency gap between large- and
small-packet NF processing is attributed to redundant data
movement. Our analysis identifies the primary bottleneck
on the PCIe interface, and on memory bandwidth to
a lesser extent. Thus, the only solution to bridge that
latency gap is to reduce the amount of data moved.

• We design the protocol and hardware extensions neces-
sary to realize NFSlicer as a NIC extension.

• We develop a software emulation platform to evalu-
ate NFSlicer’s performance improvement potential for a
range of shallow NFs. Under the throughput limitations
of our emulation platform, we show that for MTU-size
(i.e., 1500B) packets, NFSlicer improves the median and
90% tail latency of shallow NFs by 17–20% and 9–29%,
respectively. We further show that for higher packet rates,
the tail latency improvement potential grows to 55%.

• We synthesize a hardware implementation of NFSlicer to
quantify the resource needs and added latency of the Slice
& Splice operation, demonstrating NFSlicer’s feasibility.

The rest of the paper is organized as follows. §II provides
brief background on NFs, typical network packet sizes, and
modern NIC capabilities. §III and §IV describe NFSlicer’s
design and our corresponding emulation platform implemen-
tation, respectively. We detail our methodology in §V and
evaluate NFSlicer in §VI. We present a hardware implementa-
tion and our synthesis results in §VII. Finally, §VIII discusses
limitations and potential extensions, §IX covers related work,
and §X concludes.

II. BACKGROUND

A. Network Functions and Modern NF Deployment
NFs broadly range from network architecture controllers

implementing SDN control functionality to simple networking
utilities such as software switches, routers, Network Address
Translators (NAT), firewalls, intrusion detection systems, load
balancers, WAN optimizers and flow monitors [33]. Several of
these NFs such as firewalls, load balancers, NAT, and switches
are “shallow”—i.e., they do not require the entire packet for
processing, as they only inspect and modify the packet’s L2–
L4 headers. NFSlicer’s data movement optimization is directly
applicable to all such shallow NFs.

Historically, NFs were usually deployed on specialized mid-
dleboxes. However, the recent trend of NF virtualization has

triggered a major shift from such middleboxes to commodity
off-the-shelf servers. The reason for this transition is not
performance, but rather ease of deployment and improved
resource consolidation in multi-tenant cluster environments.

B. Large-Packet Dominance of Internet Traffic

NFSlicer is an optimization specifically targeting large
network packets, which dominate Internet traffic. A large
contributor to this trend is the growing demand for video,
in the form of IPTV, media streaming, surveillance, etc. To
illustrate, video accounted for 58% of total internet traffic
in 2018 [49] and is expected to grow to 82% by 2022
[7]. We empirically confirm the prevalence of large-packet
network traffic by crunching a packet capture from an Internet
backbone link provided by the Center for Applied Internet
Data Analysis [4]. We find that 49% of all packets are at
least 1400B and 57% are larger than 500B. More importantly,
large packets completely dominate the data volume moved on
the Internet: 84% / 93% of total data volume is attributed to
packets ≥1400B / ≥500B, respectively. As most of this traffic
is routed through several NFs deployed on commodity servers,
NFSlicer’s optimization for large-packet NF processing has
broad applicability.

C. Advanced NICs

In the last few years, we have witnessed an explosion
in NIC capabilities, both in terms of added functionality
and/or programmability. It is now common for modern NICs
to offer specialized hardware for networking functionality
offload, such as checksum computations and encryption. As
what we should be accelerating on NICs is still unclear, a
second growing trend is the provisioning of programmable
hardware resources on the NIC [26], [35], [39], [45].

Two technological trends are contributing to the evolution
of NICs in these directions. First, the end of Moore’s Law
is pushing architects toward hardware specialization, which is
fueling an appetite for in-network computing [47]. Architects
have found renewed interest in the quest for networking
and application functionality that can be moved from the
CPU to specialized hardware residing in network gear, such
as switches and NICs. Second, increasing line rates (com-
mercial NICs can already drive 2x200G of network traffic
[41]) require more pins, which in turn require larger dies
and more available on-NIC silicon that can be leveraged to
offer additional functionality. Given the momentum for NIC
evolution and specialization, NFSlicer is an appealing NIC
extension promising significant latency gains for an important
workload class that can be realistically deployed in production
environments in the near future. We consider a hardened IP
block as the most fitting implementation of NFSlicer’s Splice
& Splice operation, as it is a basic primitive that can be
leveraged across shallow NFs. However, in the near term, a
soft form of the operation can also be implemented on a NIC
with programmable hardware resources.

2

Payload

Header

Payload

Token

Header

Token

Header

Ingress

Egress
PCIe

Memory

NIC Server

CPU
executing

shallow NF

Header

Fig. 2: NFSlicer overview.

ETH IP
DSCP

Payload Index Payload removed

NFSlicer Token (64 bits)

TCP/UDP Generation #

Fig. 3: Packet layout after being processed by NFSlicer.

III. NFSLICER DESIGN

We begin this section with NFSlicer’s design overview,
elaborate on the software-hardware interface to enable packet
slicing, and then describe the Slice & Splice pipeline.

A. Overview

NFSlicer is a NIC extension designed to avoid moving a
packet’s payload between a server and its NIC, by temporarily
storing it in on-NIC memory resources. Fig. 2 displays a
high-level view of NFSlicer’s operation. As a full packet
arrives from the network, the NIC slices its entire payload and
stores it in local memory. The payload is replaced by a small
token, which serves as a unique identifier to retrieve the sliced
payload later, on the packet’s egress path. The transformed
packet is then transferred to the server, where the server applies
its shallow NF processing and transmits it back to the NIC.
On the packet’s egress, NFSlicer uses the embedded token to
retrieve the packet’s corresponding payload and splices it to the
processed header, before transmitting the reconstructed packet
on the wire. As pointed out in §I, the design of NFSlicer’s
mechanism is similar to Goswami et al.’s PayloadPark [15],
with the following key differences: (i) NFSlicer targets a NIC-
based implementation rather than a switch-based implementa-
tion that has to conform to fundamental limitations associated
with RMT (Reconfigurable Match Table) pipelines; and (ii)
instead of partial payload slicing to improve network link
goodput, NFSlicer enables entire payload slicing to eliminate
data movement bottlenecks between the NIC and the server.

B. Software-Hardware Interface

Fig. 3 shows NFSlicer’s software-hardware interface. We
use the IP header’s DSCP field, by setting it to a special
value to mark packets that have been sliced. We use the value
0b111111, which is reserved for experimental/local use [23].
When NFSlicer has available resources to slice and buffer an
incoming packet’s payload, it sets the DSCP special value,
removes the packet’s payload, and extends its header with the
NFSlicer token, a 64-bit value that uniquely identifies a sliced
packet’s corresponding payload. The token is later used on the
packet’s egress path—after it has been processed by the NF on
the server—to retrieve the packet’s corresponding payload for

empty?
- Decrement TTL
- Increment cur. index
- Forward packet to NF

Separate packet into
header and payload

- Set DSCP = 0b111111
- Attach token to header
- Increment cur. index

Packet
Ingress

Gen# TTL
Metadata Table

Yes

-

DSCP valid?

valid
egress

pkt?
- Remove token
- Restore DSCP field
- Reattach payload

Unmodified packet /
Pass packet through

Packet
Egress

Yes

No

Store payload and DSCP PC
Ie

(from
/to server)

header
only

W
ire

(fr
om

/to
 n

et
w

or
k)

DROP
No

Yes

No

Yes

DSCP payload
Payload Table

Update

size ≥
 THR?

No

N
N

Extract
token

TTL==0

cu
r.

in
de

x

Fig. 4: Slice & Splice pipeline. Top half: slice op; bottom half:
splice op. Thick lines highlight the common path.

reconstruction. §III-C details the purpose of the token’s two
fields—payload index and generation number.

C. Slice & Splice Operation

Fig. 4 shows the steps involved in NFSlicer’s Slice & Splice
operations. NFSlicer uses the payload table to store the sliced
payloads, and a corresponding metadata table to keep track of
occupancy and ensure correctness while splicing. Each table
has N entries and an index points to the next available entry.
N is provisioned to comfortably accommodate the bandwidth-
delay product of maximum arrival rate of slice-worthy packets
and the maximum expected average service time of the target
deployment’s shallow NFs. Slice-worthy denotes the size be-
low which slicing yields diminishing performance gains. For
a target 100G system, we experimentally found this value to
be 500B, which we denote as threshold (THR).

Table entries are allocated in FIFO order—i.e., the index is
incremented after each arrival of a packet of size ≥ THR. Each
entry in the metadata table comprises a generation number
and a Time-To-Live (TTL) field. TTL enables a low-cost
stale-entry garbage collection mechanism; as soon as a stored
payload’s TTL hits zero, the entry is discarded. The generation
number is used to verify—on a packet’s egress—that the
payload retrieved from the payload table is a correct match.

a) Slice operation: The thick lines in Fig. 4’s top half
show the workflow in NFSlicer’s slice operation for the com-
mon case. When a packet arrives on the ingress path, NFSlicer
first checks if the packet is large enough to justify slicing
(size ≥ THR). If so, NFSlicer creates a token containing the
current index of the entry where the payload will be placed,
and increments this index to point to the next empty entry.
It then splits the packet into its corresponding header and
payload, and stores the payload and DSCP field in the payload
table. Finally, NFSlicer marks that the packet has been sliced
by setting the packet header’s DSCP field to 0b111111 and
extends the header with the token before sending it to the
server for NF Processing. A packet may be forwarded to the
server without getting sliced for two reasons: (i) it is not slice-
worthy (i.e., size < THR); or (ii) the current index does not
point to an available entry—i.e., not finding readily available
space in NFSlicer’s structures does not cause a packet drop.

3

b) Splice operation: The thick lines in Fig. 4’s bottom
half show the workflow in NFSlicer’s splice operation for
the common case. Once the packet arrives from the server
for transmission, NFSlicer checks the DSCP field to confirm
if the packet was previously sliced. A non-sliced packet is
transmitted out on the wire without further steps. For sliced
packets, NFSlicer removes and parses the token to obtain
the index to the stored payload, restores the packet’s original
DSCP field and payload, transmits the reconstructed packet to
the network, and resets the metadata table’s entry to zero.

c) Payload timeouts: NFs may explicitly drop packets as
part of their operation (e.g., block rule of a firewall). NFSlicer
thus requires a garbage collection mechanism to reclaim
entries of dropped packets. We use the TTL field to set a
validity duration for each metadata/payload table entry. A new
packet on the ingress path that finds the current index pointing
to an entry with a non-zero TTL is forwarded to the server for
NF processing without getting sliced. NFSlicer decrements the
pointed entry’s TTL field and advances the current index. As
the table index operates in FIFO order and each entry’s TTL is
decremented on each access, the TTL represents the number
of allowable table wrap-arounds before an entry is evicted. In
rare events of extreme processing delay spikes on the server, an
outgoing sliced packet may not find its corresponding stored
in the payload table, in which case the packet is dropped. Such
occurrences indicate transient system overload conditions, and
dropping packets has been recently used as a mechanism for
improved performance predictability and overload control for
microsecond-scale latency-sensitive services [5], [51], [52].
Therefore, NFSlicer’s rare TTL-induced packet drops will be
masked by throttling already happening at higher levels of
the network stack. Besides, latency-sensitive applications, like
NFs, typically have a maximum acceptable tail latency to
preserve QoS (e.g., 10× of average service time). The TTL can
be configured to accommodate the application’s acceptable tail
latency, so that any forced packet drops only occur for packets
that are way overdue their acceptable response time. For
example, given that the base buffering capacity is provisioned
to accommodate for the expected average service time, setting
TTL to 10 would allow 10 buffer wraparounds, hence allowing
at least 10× average service time residency.

d) Payload retrieval correctness: As shown in Fig. 3,
the NFSlicer token consists of two fields: the 64-bit token’s
lowest-order log2 N bits encode the payload index, the re-
maining bits encode a generation number, which is required
to guarantee correct payload splicing on a packet’s egress.
The generation number is unique per entry and is incremented
whenever a new entry is inserted into the metadata/payload
table. On the egress path, the generation number encoded in
the outgoing packet’s token is matched against the generation
number stored in the metadata tables to prevent erroneous
splicing of a newer packet’s payload to an older outgoing
packet’s header, a rare situation that arises when an entry’s
TTL has expired and a delayed response packet corresponding
to that evicted entry is transmitted from the server.

Full Packets Headers Only

Envisioned
NFSlicer

implementation

Emulation
platform

SeNFSlicer
Middlebox

SeNFServerClientClient

ClientClient SeServer

Fig. 5: NFSlicer software emulation platform developed as a
DPDK application.

IV. IMPLEMENTATION

We envision NFSlicer as a hardware mechanism imple-
mented on a NIC. In this work, we evaluate the Slice &
Splice technique’s performance effect by developing a soft-
ware emulation platform, which allows us to accomplish
three significant goals without undergoing the considerable
engineering effort of developing a fully functional hardware
prototype: (i) verify the protocol’s functional correctness, (ii)
evaluate the technique’s performance improvement potential,
and (iii) study the microarchitectural bottlenecks on the NF
server when handling packets of different sizes. We emulate
the envisioned NFSlicer functionality of the NIC in software,
on a separate server. Fig. 5 shows how the emulation platform
decomposes the envisioned NFSlicer-enabled server into two
servers, directly connected with a 100G link: a “middlebox”
and an “NFServer”. All traffic between clients and the NF-
Server flows through the middlebox, which performs the Slice
& Splice functionality. The NFServer receives sliced instead
of full-size packets of the client-originating packet flows, but
executes unmodified shallow NFs.

The middlebox’s Slice & Splice operations are imple-
mented as a DPDK-based NF, which is performed in a run-
to-completion fashion: a packet is received, processed and
transmitted by a core before retrieving the next packet. A CPU
core polls for packet arrivals on a specific port’s RX descriptor
ring, performs the Slice or Splice operation, and enqueues
the transformed packet in the transmit queue. We maintain
per-core arrays of payload_t and metadata_t structures
(Listing 1) to store payloads and their corresponding metadata,
respectively. Array sizes are specified at initialization and
are provisioned to sustain the emulation platform’s peak NF
processing bandwidth-delay product. We further discuss array
size provisioning for a hardware-based NFSlicer implemen-
tation, where buffering capacity is constrained by hardware
limitations, in §VII. The middlebox performs a Slice or a
Splice operation on each incoming packet, depending on its
direction: client-to-server (ingress), or server-to-client (egress).

a) Slice operation: For each packet received on the
ingress path, the middlebox determines the packet’s payload
size that must be sliced and stored in memory in order to
forward the smallest possible packet to the NFServer. The

4

1 / / s t r u c t t o ho ld t h e p a y l o a d
2 s t r u c t p a y l o a d t {
3 u i n t 1 6 t sz ; / / s i z e o f p a y l o a d a c t u a l l y s t o r e d
4 u i n t 8 t p a c k e t d s c p ; / / t o r e s t o r e on e g r e s s
5 c h a r b l k [MAX PAYLOAD] ;
6 } ;
7

8 / / keep t r a c k o f e n t r y occupancy
9 s t r u c t m e t a d a t a t {

10 u i n t 6 4 t g e n e r a t i o n n u m b e r ;
11 u i n t 8 t t t l ; / / t t l = 0 i n d i c a t e s an empty e n t r y
12 } ;
13

14 / / t a b l e o f s t o r e d p a y l o a d s
15 s t r u c t p a y l o a d t p a y l o a d s [MAX TABLE SIZE] ;
16

17 / / t a b l e o f m e t a d a t a s t r u c t u r e
18 s t r u c t m e t a d a t a t m e t a d a t a t a b l e [MAX TABLE SIZE] ;
19

20 / / m e t a d a t a a t t a c h e d t o t h e s l i c e d p a c k e t
21 s t r u c t t o k e n t {
22 u i n t 6 4 t key ; / / i n d e x and g e n e r a t i o n number
23 } t o k e n ;

Listing 1: Emulation platform’s Slice & Splice structures.

middlebox maintains an index into the payloads array to
store the payload after slicing. If the metadata_table
is found full, the packet is forwarded to the NFServer un-
modified. Otherwise, the middlebox sets the ttl to a prede-
fined threshold and increments the generation number in the
metadata_table. After storing the payload and the DSCP
field in the payloads array, the middlebox appends a token
to the packet containing the payload’s index in the array and
the generation number.

b) Splice operation: For each packet received on the
egress path, the middlebox parses the DSCP field to determine
if the packet has been sliced. It then parses the packet’s token
to obtain the index and the generation number of the corre-
sponding payload stored in the array, which it verifies against
the index and generation number in the metadata_table.
On successful verification, the middlebox retrieves the payload
from the payloads array; re-attaches it to the packet; re-
stores the packet_dscp; clears the ttl field; and enqueues
the packet for transmission to its destination.

c) Emulation platform performance scaling: The emula-
tion platform parallelizes the Slice & Splice operations across
multiple cores to keep up with the available network line rate.
We scale its processing by employing Receive Side Scaling
(RSS). We instantiate private instances of the aforementioned
data structures per core to avoid synchronization overheads
and employ symmetric RSS [53] to ensure that each packet is
processed by the same core on its ingress and egress path.

V. METHODOLOGY

a) Experimental Platform: In order to isolate system
effects as a consequence of packet sizes alone, we employ
a setup as illustrated in Fig. 6. NFServer is the device under
test, on which the evaluated NFs are deployed. The NFSlicer
Middlebox emulates the Slice & Splice functionality, as de-
scribed in §IV. To collect end-to-end latency measurements

TRex
Load Client

NFSlicer
Middlebox

NF server

TRex
Measuring

Client (1Kpps)

Port 0 Port 0 Port 1

Port 0 Port 1

Port 0

Fig. 6: Experimental setup to measure end to end latency of
a client in the presence of network load.

that accurately represent server-side behavior, we employ two
separate clients. The Load Client offers knobs to configure
the packet size and rate, thus controlling the NFServer’s
operational region/utilization. The Load Client’s traffic flows
to the NFServer through the Middlebox.

The Measuring Client’s role is to take end-to-end latency
measurements that accurately reflect the server-side latency
effects on our envisioned production hardware-based NFSlicer
deployment, which is currently emulated in software by the
Middlebox. The Measuring Client is therefore deployed with
the following two provisions. First, to avoid measuring bias
due to client-side queuing effects, the Measuring Client emits
packets at a low fixed rate and measures each packet’s end-
to-end latency [58]. Second, the Measuring Client’s packets
do not flow through the Middlebox, to avoid biasing measure-
ments with the high latency of the software-based Slice &
Splice functionality’s implementation. Despite bypassing the
Middlebox, our measured end-to-end latency is representative
because a hardware-based NFSlicer implementation would
introduce a minuscule fixed latency overhead on each packet,
as we show in §VII. Although the Measuring Client’s packets
do not get sliced, the vast majority of traffic received on the
NFServer (>99.9% in all our experiments) originates from the
Load Client and does get sliced. Therefore, this methodology
allows us to accurately observe the systems-level effects of
reduced on-server data movement, which is reflected on the
resulting end-to-end latency of the Measuring Client’s packets.
All latency numbers in the evaluation are reported from the
Measuring Client, averaged across three 30-second runs.

Both clients are based on the TRex scalable, open-source
DPDK traffic generator [6]. Given our work’s focus on large
packets, the Measuring Client generates 1518B packets at
1Kpps, TRex’s lowest available rate. All four server-grade
machines are 2-socket Intel Xeon 4214 processors with 256GB
of RAM and a dual-port 100G ConnectX-6 Dx EN Mellanox
NIC, running Ubuntu 16.04.7 LTS. We disable all power
management features and OS scheduling on the CPU cores
involved in the experiments and only use cores and memory
of the socket the NIC is directly attached to.

b) Measurement tools: In addition to TRex’s in-
built support for end-to-end latency measurements, we use
intel-cmt-cat [22] for microarchitectural event measure-
ments, and Intel’s Processor Counter Monitor [2] toolset:
pcm-memory.x for memory traffic and pcm-pcie.x for

5

PCIe utilization. We also use DDIOTune [11] to configure
DDIO in the microarchitectural study.

c) Shallow NFs used: We evaluate four NFs which
process L2–L4 headers. In order to measure end-to-end packet
latency, we configure the NFs to operate in loopback—i.e.,
regardless of the NF processing, the ingress and egress occurs
through the server’s same port. Table I briefly describes each
NF’s functionality. The L2 forwarder, QoS metering, and
Firewall, are adapted from a set of applications provided by
DPDK [1]. The fourth NF implements a formally verified
NAT—VigNAT [55]. In addition to the four raw NFs, we also
evaluate an NF service chain comprising Firewall followed
by VigNAT. We developed the NFs and NFSlicer emulation
platform using DPDK version 20.02.1.

VI. EVALUATION

This section first evaluates NFSlicer’s achieved latency
reduction for a range of shallow NFs (§VI-A). We then
demonstrate the sensitivity of latency improvement to the
fraction of packet payload sliced (§VI-B) and packet arrival
rate (§VI-C), and compare NFSlicer to a switch-based packet
slicing approach like PayloadPark [15]. Finally, we perform
an extensive microarchitectural analysis to pinpoint the source
of latency overhead for large packets, shedding light on the
origins of NFSlicer’s achieved latency improvements (§VI-D).

A. Performance Impact of Packet Slicing

Fig. 7 shows the response latency CDF for four different
shallow NFs and an NF chain, ordered left to right by
increasing computational intensity. All plots are at 4Mpps
(Million packets per second), the maximum packet arrival rate
the emulation platform can sustain before its NIC saturates,
as observed by non-negligible packet drops. In all cases, the
NFServer can sustain the packet rate with a single core.

We observe similar trends across NFs. First, while the
minimum latency for all packet sizes is the same (∼4.5µs),
the larger the packets, the higher the NF’s resulting response
latency. Taking L2 forwarder as an example (Fig. 7a), 512B
packets exhibit a p50 response latency of 5µs, which grows
to 5.4µs for 1024B packets and to 6µs for 1518B packets
(see blue lines); p90 response latency grows even faster with
packet size, corresponding to 5.8µs, 6.9µs, and 7.3µs for
512B, 1024B, and 1518B packets, respectively.

Second and most importantly, by slicing packet payloads
and preventing large network data transfers on and off the
NFServer, NFSlicer noticeably shifts the latency distribution

NF Description

L2 Forwarder Modifies ethernet addresses and is used as a bridge
between interfaces

QoS Metering Measures traffic arrival rate and classifies packets
into groups of corresponding rates

Firewall Performs routing and access control

VigNAT A formally verified Network Address Translator,
which maps different IP address spaces

TABLE I: Shallow NFs used in our evaluation.

of all packets to the left, equalizing all of them to the best-
case latency of small (64B) packets, regardless of the original
packet size (see orange lines).

Third, the less computationally intensive the NF, the larger
the latency gap between small and large packets, as processing
events join data movement as a performance determinant. To
illustrate, the 3.8% / 9.5% p50 / p90 latency gap between
baseline and sliced handling of 512B packets in the case of
L2 forwarder, shrinks to a 2.3% / 4.1% p50 / p90 latency gap
for the more computationally intensive VigNAT. However, the
latency gap for 1518B packets remains considerable regardless
of the NF, ranging from 19.7% p50 and 18.5% p90 for VigNAT
to 20.2% p50 and 28.6% p90 for L2 forwarder. NFSlicer also
benefits our evaluated NF chain, which combines our two most
compute-heavy NFs: Firewall and VigNAT. NFSlicer improves
the 50p / 90p latency of 512B packets by 4.5% / 5.6% and
of 1518B packets by 18.8% / 9.4%. In summary, NFSlicer
delivers considerable end-to-end latency reduction for all
shallow NFs, with benefits growing with packet size. Across
all evaluated NFs, for 1518B packets, NFSlicer improves 50p
latency by 17.0–20.2% and 90p latency by 9.4–28.6%.

B. Sensitivity to Payload Size Reduction and Comparison to
Switch-Based Packet Slicing

NFSlicer is designed to reduce the amount of data moved
between the NIC and the server executing shallow NFs to the
bare minimum. A similar Slice & Splice approach can also
be implemented in programmable switches, as demonstrated
in the recent work PayloadPark [15]. PayloadPark’s intended
goal is to boost the goodput of switch-server links, by slicing
off a fixed-size chunk (160B) of each packet’s payload. A side-
effect of the approach is that data movement on/off the server
is also reduced, partially capturing NFSlicer’s benefits. How-
ever, as we will demonstrate next, switch-based approaches
face considerable limitations in terms of performance and
scalability, and therefore cannot subsume NFSlicer.

a) Performance: We modify our emulation platform to
slice a configurable fraction of each packet’s payload, to mea-
sure the latency impact as a function of payload size reduction.
Fig. 8 shows the average end-to-end latency reduction as a
function of the amount of payload sliced, where 0% represents
the baseline case of full packet delivery (no slicing) and
100% represents NFSlicer’s default operation, which slices
each packet’s whole payload, reducing all packets down to
a fixed size of a single cache block (64B).

While the general observations regarding NFSlicer’s oppor-
tunity as a function of packet size and for different NFs are
similar to §VI-A, Fig. 8 additionally demonstrates that latency
reduction is relative to the packet size reduction fraction—i.e.,
partial payload slicing will only yield a fraction of the benefits
of full payload slicing. Vertical dashed lines indicate the opera-
tional point of a switch-based solution like PayloadPark, which
reduces packet payloads by 160B, corresponding to 36% / 17%
/ 11% of 512B / 1024B / 1518B packets, respectively. While
slicing 160B captures most of the benefits for 512B packets,
it misses out on significant opportunity for larger packets. For

6

Packet Size 512B 1024B 1518B No slicing SlicedPacket Size 512B 1024B 1518B No slicing Sliced

4 5 6 7 8 9
Latency (us)

0
20
40
60
80

100

Pe
rc

en
til

e

(a) L2 forwarder.

4 5 6 7 8 9
Latency (us)

0
20
40
60
80

100

(b) QoS Metering.

4 5 6 7 8 9
Latency (us)

0
20
40
60
80

100

(c) Firewall.

4 5 6 7 8 9
Latency (us)

0
20
40
60
80

100

(d) VigNAT.

4 5 6 7 8 9 10 11
Latency (us)

0
20
40
60
80

100

(e) NF chain.

Fig. 7: Latency CDFs for packets of different sizes processed by a range of shallow NFs at a fixed arrival rate of 4Mpps:
baseline (i.e., No slicing) versus sliced with NFSlicer. The NF chain comprises Firewall followed by VigNAT.

Packet Size 512B 1024B 1518B Slice size 160B 320BPacket Size 512B 1024B 1518B Slice size 160B 320B

0 20 40 60 80 100
% payload sliced

20
15
10

5
0

Av
g

la
te

nc
y

re
du

ct
io

n%

(a) L2 forwarder.

0 20 40 60 80 100
% payload sliced

20
15
10

5
0

(b) QoS Metering.

0 20 40 60 80 100
% payload sliced

20
15
10

5
0

(c) Firewall.

0 20 40 60 80 100
% payload sliced

20
15
10

5
0

(d) VigNAT.

0 20 40 60 80 100
% payload sliced

20
15
10

5
0

(e) NF chain.

Fig. 8: Average latency reduction compared to no slicing as a function of fraction of payload sliced for shallow NFs at 4Mpps.
Vertical lines mark the slicing fraction corresponding to 160B (PayloadPark [15]) and 320B of sliced payload per packet.

instance, for the L2 forwarder NF (Fig. 8a), slicing 11% of a
1518B payload only reduces latency by 2%, instead of 17%
with NFSlicer’s full payload slice.

PayloadPark’s 160B slicing capability is partially imple-
mentation-specific and not a fundamental upper bound for ev-
ery possible switch-based implementation. However, switches
have rigid performance constraints and the maximum amount
of data they can slice without sacrificing throughput will
always be bound by their SRAM interface’s width and their
provisioned RMT pipeline’s number of stages. To illustrate,
a hypothetical switch-based implementation with double the
payload slicing capability (320B instead of 160B, marked by
vertical dotted lines in Fig. 8) roughly doubles the latency
improvement potential of switch-based solutions, but still
leaves NFSlicer with a considerable headway. Using the same
L2 forwarder example, doubling slicing capability to 320B
improves latency reduction for 1518B packets to 4.8%, still
leaving a 3.6× gap with NFSlicer. Furthermore, while Fig. 8
shows average latency, the improvement opportunity is even
larger for tail latency; for instance, NFSlicer’s p90 latency
improvement for 1518B packets is 5.6× higher compared to
a hypothetical switch-based implementation slicing 320B per
packet (not shown due to space constraints).

b) Scalability: In addition to the aforementioned per-
formance limitations, switch-based approaches have inherent
scalability limitations compared to NFSlicer. While a switch-
based solution’s hardware requirements grow with the cluster
size, NFSlicer’s scalability is virtually infinite, as hardware re-
quirements on each server’s NIC are unaffected by deployment
scale. Fig. 9 demonstrates this fact with a first-order model,
instrumented with data derived from PayloadPark [16], which
offers two data points: the average SRAM utilization of the
used 100G switch is 26% and 38% with 4 and 8 40G NIC
NF servers, respectively. The most optimistic extrapolation
indicates that switch-based slicing can support up to 38 40G

2 4 8 16 32 64
of servers connected to switch

100

200

300

Sw
itc

h
SR

AM
av

g
ut

iliz
at

io
n

(%
) 40G PayloadPark

40G Extrapolation
100G Extrapolation

Fig. 9: Scalability study of SRAM requirements for a switch-
based implementation, assuming a 100G switch. Blue/orange
lines correspond to servers with 40G/100G NICs, respectively.

servers. Furthermore, a simple application of Little’s Law
suggests that by upgrading the NICs on the servers from 40G
to 100G (to mirror our experimental evaluation setup), the
switch can only support up to 8 servers.

In conclusion, although switch-based approaches like Pay-
loadPark and NIC-based approaches like NFSlicer share me-
chanics, their effects on system behavior optimization only
partially overlap. NFSlicer is capable of slicing a packet’s
whole payload—rather than only a small subset—at line rate,
thus completely ameliorating detrimental performance effects
due to excess data movement. NFSlicer also scales perfectly
with cluster size, but, unlike PayloadPark, does not improve
link goodput, as the entire packet traverses the link between
the switch and the server. Given the complementary strengths
of switch-based and NIC-based approaches, they can be com-
bined to achieve all three desirable qualities: data movement
minimization, link goodput improvement, and scalability.

C. Sensitivity to Packet Arrival Rate

The latency gap between small and large packet processing
grows with the packet arrival rate. Unfortunately, the increased

7

1 2 3 4 5 6 7
Packet Rate (Mpps)

5
6
7
8
9

Av
g

La
te

nc
y

(u
s)

1 2 3 4 5 6 7
Packet Rate (Mpps)

90
th

 p
er

ce
nt

ile

La
te

nc
y

(u
s) 64B

256B
512B
1024B
1518B

Fig. 10: Latency gap between small and large packets growing
with packet arrival rate. Results for an L2 forwarder NF.

0 1 2 3 4 5 6 7 8 9 10
Latency (us)

0
20
40
60
80

100

Pe
rc

en
til

e

Single core
Dual core

64B
1518B
64B
1518B

Fig. 11: L2 forwarder latency CDF for 64B and 1518B packets
at 6.5Mpps. Using a dedicated core to handle the measuring
client’s traffic does not affect the latency gap between small
and large packets.

network bandwidth requirements on our emulation platform’s
Middlebox (which needs to sustain 2× the target packet
arrival/transmission rate) limit the peak sustainable arrival rate
of 1518B packets to 4Mpps. Therefore, we demonstrate the
effect of this growing gap as a function of packet arrival rate
by removing the NFSlicer Middlebox and directly connecting
the Load Client to the NF server, which allows us to almost
double the peak packet rate to 7Mpps.

Fig. 10 shows the average and p90 latency as a function of
packet rate for an L2 forwarder NF. The 1.2× average latency
gap between 64B and 1518B packets at 4Mpps is reduced to
1.05× at 1Mpps, but grows to 1.46× at 7Mpps. A similar, and
more pronounced, trend appears for p90 latency: the 1.4× gap
between 64B and 1518B packets at 4Mpps drops to 1.08× at
1Mpps, but grows to 1.55× at 7Mpps.

In addition, we experimentally verify that for the packet
rate range sustainable by the emulation platform (1–4Mpps),
latency results of a 1518B-packet stream that reaches the
NFserver after getting sliced by the middlebox are equivalent
to those of a direct client-to-server 64B packet stream. In
other words, from the measuring client’s perspective, loading
the NF server with large packets that are sliced by NFSlicer
down to 64B is equivalent to directly loading the server with
64B packets, without any prior slicing involved. We use this
equivalence throughout the next section of our evaluation to
study on-server effects of full-size versus sliced large packets
at a fixed packet rate of 6.5Mpps, which is significantly higher
than the emulation platform’s peak sustainable rate of 4Mpps.

D. Microarchitectural Study

We now embark to pinpoint the underlying sources of the
performance gap between small and large packet handling.

64 512 1024 1518
Packet Size (bytes)

0.3
0.5
0.7
0.9
1.1
1.3

M
iss

 R
at

io
 (%

)

DDIO ways=2
DDIO ways=8

Fig. 12: LLC miss ratios for varying packet sizes.

0 1 2 3 4 5 6 7 8 9 10 11 12
Latency (us)

0
20
40
60
80

100

Pe
rc

en
til

e

DDIO off
DDIO ways=2
DDIO ways=8

64B
1518B
64B
1518B

Fig. 13: L2 forwarder latency CDF of 64B and 1518B packet
under different DDIO configurations.

Given the high similarity in behavior across the evaluated NFs,
we focus on L2 forwarder as a representative NF for this in-
depth microarchitectural study. Considering the microarchitec-
tural components exercised by the path of packets processed
by an NF, the culprit may be any of the following: the CPU,
the LLC, the memory, and the NIC-processor I/O interface
(i.e., PCIe). We perform a series of experiments to isolate the
impact of each component.

a) CPU: Although per-packet processing requirements
for our NFs of focus are insensitive to packet size, we inves-
tigate whether larger packet size introduces adverse queuing
effects at the core or private caches (L1/L2), by separating
the load and measuring streams to be handled on different
cores (both on the socket local to the NIC). Fig. 11 shows the
results. Unsurprisingly, both latency curves slightly shift to
the left, as the measuring client now receives responses from
a dedicated core. However, the latency improvement with the
addition of a second core is minimal and, most importantly,
the relative latency gap between small and large packets
remains unchanged. We thus conclude that the performance
gap between small and large packets is not attributed to a
processing bottleneck or contention in private caches.

b) Cache (LLC): Modern DDIO technology [21] steers
incoming packets directly into a portion of the LLC. In cases
of extreme contention, incoming packets may be evicted from
the LLC to memory before they are consumed by a core. This
effect, known as “leaky DMA” [52] can have adverse effect
on performance. We investigate if that’s the case with growing
packet size, by studying LLC behavior.

Fig. 12 shows the L2 forwarder NF’s LLC miss ratio under
two DDIO configurations: (i) the default one, which dedicates
two LLC ways for network traffic injection1, and (ii) an 8-
way DDIO configuration. We observe that a 20-fold increase
in packet size results in a 3× miss ratio increase under the

1Unless stated otherwise, this default DDIO configuration has been used
throughout this paper’s evaluations.

8

64 512 1024 1518
Packet Size (bytes)

0
4
8

12
16
20

GB
/s

DDIO off
DDIO ways=2
DDIO ways=8

Fig. 14: Total memory bandwidth utilization under different
DDIO configurations.

default 2-way DDIO configuration. However, the absolute
LLC miss ratio remains negligible (less than 1%) in all cases,
therefore, it cannot be a performance determinant responsible
for a 55% gap in end-to-end p90 latency (see dashed lines in
Fig. 13). This assessment is further confirmed by the 8-way
DDIO configuration: the LLC miss ratio for large packets is
2.2× lower than 2-way DDIO (Fig. 12), but the small vs.
large packet latency gap is largely insensitive to the DDIO
configuration (dashed vs. solid lines in Fig. 13). We thus
conclude that larger packets do not result in noteworthy LLC
contention, so LLC behavior is not the latency gap’s culprit.

c) Memory bandwidth utilization: Fig. 14 displays the
memory bandwidth consumed under three different DDIO
configurations: 2-way (default), 8-way, and off. The 2-way
DDIO configuration offers enough cache capacity to keep all
packets up to 512B LLC-resident, resulting in no memory
traffic. For larger packets, some network data spills to memory,
generating non-zero bandwidth consumption, which, however,
is too modest to justify the latency gap between small and large
packets. In contrast to 2-way DDIO, Fig. 14 shows that 8-way
DDIO completely captures network data movement within the
LLC, as memory bandwidth use remains zero for all packet
sizes. Despite that difference, Fig. 13 shows that the 1518B-
packet latency curves almost overlap for 2-way and 8-way
DDIO. Hence, the latency gap between small and large packet
handling is not attributed to memory effects.

We also study the DDIO off configuration as an interesting
case where memory bandwidth usage does affect the latency
gap between small and large packets. When DDIO is disabled,
all network traffic moves on and off the server through
memory, resulting in significant memory bandwidth usage, as
shown in Fig. 14. Fig. 13 shows that putting memory accesses
on the critical path has a direct impact on latency, even
more so for larger packets, where the increased latency effect
is amplified due to increased queuing on highly contended
memory. The additional increase in the latency gap between
small and large packets in the DDIO off configuration (dotted
lines in Fig. 13) is attributed to memory bandwidth contention.

d) PCIe utilization: Fig. 15 shows PCIe utilization as a
function of packet size. While, as expected, PCIe utilization
grows linearly with packet size, this trend clearly contrasts
trends of memory and cache miss ratio behavior (when DDIO
is enabled). The NIC moves entire packets over PCIe to the

64 512 1024 1518
Packet Size (bytes)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

GB
/s

No slicing
NFSlicer

Fig. 15: NIC-generated DMA traffic over PCIe.

on-server memory hierarchy, regardless of the fact that the
NF executing on the CPU only operates on a small fraction of
the entire packet. Aggregate data movement between the NIC
and server memory hierarchy grows to 21GBps, or 67% of the
theoretical peak of the PCIe3x16 interface our NIC is attached
to. At such high utilization, it is common for severe queuing
effects to emerge, directly hurting the latency of individual
packets. In contrast, NFSlicer results in a constant low PCIe
bandwidth use of only 1.9GBps, regardless of packet size.

Given our previous microarchitectural analyses showing that
the processor, private caches, LLC, and memory are far from
being performance bottlenecks, we conclude that the most
likely culprit for the significant latency gap between small and
large packets is data movement over PCIe. NFSlicer’s Slice
& Splice approach effectively alleviates this data movement
bottleneck. By selectively transferring only the fraction of the
packet that is needed by the deployed NF, it reduces data
movement over PCIe by up to 24×, bridging the latency gap
between small and large packet handling.

VII. TOWARD A HARDWARE NFSLICER IMPLEMENTATION

We envision NFSlicer as a hardware IP block on future
NICs. Though the focus of this paper has been to present a
thorough study of the system-level effects due to high net-
work data transfer rates and the demonstration of NFSlicer’s
performance improvement promise, we have also embarked
on preliminary hardware design and synthesis to showcase
NFSlicer’s feasibility for hardware implementation, and to
provide area and power estimates.

NFSlicer’s pipeline consists of simple logic; the main
hardware cost comes in the form of payload storage, which
is implemented as SRAM. In this section, we describe a
hardware implementation for a 100G NIC and use Synopsys
tools to acquire area, power, and timing estimates. We then
outline strategies for scaling this IP block up for higher line
rates.

We provision the SRAM as a static array of N M -byte
entries, sized to accommodate the bandwidth-delay product of
our target NF deployments. N is dictated by the maximum
packet arrival rate. As NFSlicer only slices packets ≥ 500B,
the maximum packet arrival rate at 100G is 1

40ns . M is
dictated by the largest packet payload NFSlicer needs to
accommodate, corresponding to 1518B packets. Finally, the
highest average end-to-end latency in our experiments is 9.3µs

9

wdata

SRAM

addr0
7

256

rdata

256

addr17
0

46

256

Add FSM

Ingress
State

1

Egress
State

25
6256

1

1

256256

Read
Payload

256

1

G
en#

0
249

index

0

TTL

249

7
data

57
index
data

7

2

If NF header
& size >=THR

TTL--

TTL=0 &
update
gen # Store

payload Attach token
to packet

TTL==0?
(empty?)

Add

From
 / to server

Fr
om

 /
to

 n
et

w
or

k

Gen #
matches?

Extract
token

Check if
NF header

TTL = 0Read
payload

Fig. 16: Architectural diagram of ingress (upper half) and egress (lower half) Slice & Splice pipelines.

for the NF chain, which also includes the roundtrip latency
between the server and the client. By over-provisioning for
an average service time of 10µs, N = 10µs

40ns = 250. Overall,
our hardware design provisions N × M bytes = 355KB of
SRAM for packet payload storage, which—to put things into
perspective—is smaller than a private L2 cache of a modern
multicore server.

Fig. 16 shows the high-level architecture of the ingress
and egress pipelines of our NFSlicer hardware design. After
verifying our design’s functional correctness at the RTL level,
we used the Synopsys Design Compiler and an open-source
15nm technology node library [38] to extract power, area and
timing estimates from our design. We find that the NFSlicer
pipeline can sustain the target line rate of 100Gbps with a
256-bit interface and a cycle time of 2.56ns (i.e., ∼400MHz
frequency). The NFSlicer pipeline adds only 3 cycles on the
ingress path and 2 cycles on the egress path, for a total of
12.8ns on each packet’s roundtrip time. The design accounts
for an area of 6.4mm2 and 2.4 Watts of peak power, dominated
by active power.

Scaling the NFSlicer pipeline’s capabilities for higher line
rates (200Gbps+) is straightforward, via two design knobs:
frequency and interface width. Given our design’s low fre-
quency of 400MHz, scaling it by 3− 4× is possible without
microarchitectural changes. For a given frequency, increasing
the interface width from 256 to 512 bits can double NFSlicer’s
sustainable line rate, without bearing significant microarchitec-
tural restructuring of the pipeline either. For higher line rates,
SRAM buffering structures need to scale to accommodate
the higher bandwidth-delay product. Due to NFSlicer’s logic
simplicity, the pipelines’ area is dominated by the provisioned
SRAM and hence scales almost linearly with it. Area is
typically not a major concern for modern NICs, which require
large dies to drive enough pins in support of growing line rates,
resulting in sparse silicon resource utilization on the die.

VIII. DISCUSSION

New interfaces. Our microarchitectural analysis found the
PCIe I/O interface as the main bottleneck for servers han-
dling shallow NFs at high network bandwidth. The limits
of PCIe under high DMA rates have been thoroughly stud-
ied before [40]. Even if new off-chip interfaces ameliorate
PCIe limitations, bottlenecks due to intensive data movement
may emerge in other system components. Our experiment
with DDIO disabled demonstrated that increased queuing in
memory can have detrimental effects, an effect that will only
grow with increasing network line rates [51]. By eliminating
unnecessary data movement, NFSlicer ameliorates any on-
server bottlenecks associated with data deluge, regardless of
the specific component they are exhibited on.
Limitations. NFSlicer stores sliced packet payloads in on-
NIC memory resources. As this payload placement requires
packets processed by the NFs to be transmitted by the same
NIC they were received from, the technique is not directly
applicable to multi-NIC servers. A possible extension could
apply to dual-NIC servers that apply a known packet steering
pattern, receiving packets on NIC A and transmitting them on
NIC B. In such case, dedicated direct inter-NIC connectivity
(e.g., Mellanox Socket Direct [42]) would allow NIC A to
forward packet payloads to NIC B without utilizing on-server
resources for such transfers.
Additional opportunities. Our experiments in §VI-D demon-
strated that NFSlicer’s benefits grow further when DDIO is
disabled, because of increased latency and contention exposed
by data transfers from/to memory. We expect to see an even
more pronounced effect if the network ring buffers used by
the NFs are mapped on a remote socket, as inter-socket links
introduce considerable latency and bandwidth limitations [9].

In addition to its performance gains, we expect NFSlicer
to also deliver a secondary benefit in terms of energy re-
duction. NFSlicer drastically reduces data movement over
PCIe (Fig. 15), which should more than offset the NIC’s
power draw increase due to the introduction of Slice &
Splice operations. Data movement in general dominates energy

10

consumption, and off-chip interfaces are particularly energy-
hungry: transferring data over an off-chip interface consumes
1–2 orders of magnitude more energy than accessing a local
memory structure (i.e., a cache) [8], [18]. An accurate energy
reduction evaluation would require end-to-end measurement
including a hardware NFSlicer implementation. To get a first-
order estimate, we measured our entire NFServer’s power draw
as a function of packet size. At a 7Mpps processing rate, power
draw drops from 230 to 221 Watts when the packet size is
reduced from 1518B to 64B.

IX. RELATED WORK

a) Network data movement optimization: As growing
network line rates are gradually approaching data transfer
rates conventionally exclusive to memory systems, on-server
movement of network-injected data can drastically affect the
memory hierarchy’s—and, by extension, the whole system’s—
performance. Sutherland et al. demonstrated the negative per-
formance impact such memory bandwidth interference can
have on future systems, arguing for more sophisticated net-
work data movement policies within the memory hierarchy
[51]. A body of recent work focuses on optimizing network
data placement in the last-level cache, addressing performance
bumps of default DDIO behavior, such as the “leaky DMA”
problem [13], [52], [54]. CacheDirector implements intelligent
data placement policies to place each packet header in the
LLC slice closest to the core processing it [12]. Instead
of optimizing data movement within the server’s memory
hierarchy, NFSlicer directly decreases the volume of data
moved on/off the server and within its memory hierarchy.

b) NF frameworks: The growing popularity of NF
consolidation on general-purpose servers has given rise to
userspace packet processing frameworks which provide ease
of high-performance NF application development. NetVM
[19] employs VMs to provide function isolation and shared
pages for facilitating inter-VM communication. Netbricks [43]
improves upon this with containers and language-enforced
static checks to ensure packet isolation. Sadok et al. [46]
distribute packets to cores at a packet rather than flow granu-
larity to achieve even load distribution. Parabox [57] and NFP
[50] improve NF chain processing scalability via parallel and
distributed processing. NFSlicer’s focus is orthogonal to these
NF processing frameworks and can be combined with them to
accelerate shallow NF processing of large packets.

c) Hardware offloading: Programmable (RMT) switches
has seen wide applicability in offloading computation in recent
years. PayloadPark [15], which we have already extensively
discussed, leverages RMT switches for storing payloads. Pro-
grammable switches have also been leveraged to accelerate
other network-intensive applications, such as key-value stores
[24], [36]. Other prior work in this domain has improved
application performance of key-value stores [30]; improved NF
performance by increasing throughput and reducing latency
through FPGA offloads [31]; and utilized GPUs for NF
acceleration [17], [27], [56]. NFSlicer aims to improve the
performance of general-purpose servers handling NFs, which

have gained traction over specialized middleboxes due to their
flexibility, ease of programmability, and wide accessibility.

d) Advanced and reconfigurable NICs: As general-
purpose logic is running out of steam, hardware specialization
is picking up, and is evidenced in growing capabilities of mod-
ern NICs, taking the form of advanced offloads or increased
programmability. Hardened IP blocks implementing basic
networking operations such as checksums or encryption are
already commercialized in modern NICs, and there is a strong
wave for offloading more advanced functionality. For instance,
recent work demonstrates L5 protocol processing offloading
without having to migrate the L2–L4 stack onto the NIC [44].
Dagger [29] overcomes the limitations of the PCIe interface
by leveraging memory interconnects and alleviates software
overheads of the RPC stack by offloading it onto an FPGA-
based NIC. Ibanez et al. [20] demonstrate improvements in
nano-second scale RPCs by completely bypassing the memory
and cache hierarchy with a NIC-CPU co-design. NICA [10] in-
troduces a framework that expands the SmartNIC capabilities
of inline processing of application traffic to multiple tenants. A
significant body of work proposes new NIC architectures [26],
[34], while there have already been several successful attempts
of offloading critical applications or higher-level networking
functionality to advanced programmable NICs in production
environments [3], [14], [45].

NFSlicer introduces the Slice & Splice operation as a basic
building block and data movement optimization that can be
leveraged by any shallow NF. We note that the operation
could be implemented in modern programmable NICs that
offer sufficient resources to sustain NFSlicer’s functionality at
line rate. However, dedicating programmable resources on the
NIC to implement NFSlicer is both unnecessary and wasteful,
as the required functionality involves mostly storage and very
simple logic, making it a great fit for a hardened IP block.

Finally, for systems featuring programmable NICs, the Slice
& Splice operation represents a new distinct component that
an NF deployment framework [25] may determine to offload
to the NIC instead of entire NFs, as it is often infeasible to
fully offload all NFs in multi-tenant environments [32]. We
believe that implementing the Slice & Splice as a hardware-
accelerated operation in the NIC is a more resource-efficient
option usable by multiple NFs than offloading entire NFs.

X. CONCLUSION

This paper demonstrated that data movement is a first-
order performance determinant for NF processing of large
network packets. As shallow NFs only operate on packet
headers, we identified the opportunity to directly mitigate
the overhead of redundant data movement. We introduced
a packet Slice & Splice operation on the NIC to reduce
NIC-server data movement to only the small portion of each
packet that is needed by the shallow NFs executing on the
server. We developed an NFSlicer emulation platform and
showed an improvement on the median and 90th percentile
latency by 17–20% and 9–29%, respectively, for a range of
shallow NFs. We further showed that for higher packet rates

11

exceeding our emulation platform capabilities, the tail latency
improvement potential grows to 55%. Finally, our hardware
synthesis results showcased the practical feasibility of an
NFSlicer implementation as a hardware IP block on next-
generation NICs.

REFERENCES

[1] DPDK Sample Applications. https://doc.dpdk.org/guides/sample app
ug/index.html.

[2] Processor counter monitor (pcm). https://github.com/opcm/pcm.
[3] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,

Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In
Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 7:1–7:13, 2016.

[4] Center for Applied Internet Data Analysis (CAIDA). The CAIDA UCSD
Anonymized Internet Traces - equinix-nyc 20190117-130000. https:
//www.caida.org/catalog/datasets/passive dataset.

[5] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad
Alizadeh, and Adam Belay. Overload Control for µs-scale RPCs with
Breakwater. In Proceedings of the 14th Symposium on Operating System
Design and Implementation (OSDI), pages 299–314, 2020.

[6] Cisco. TRex Realistic Traffic Generator. https://trex-tgn.cisco.com/.
[7] Cisco. Cisco Visual Networking Index (VNI) Complete Forecast Update,

2018. https://www.cisco.com/c/dam/m/en us/network-intelligence/
service-provider/digital-transformation/knowledge-network-webinars/
pdfs/1211 BUSINESS SERVICES CKN PDF.pdf.

[8] Bill Dally. Challenges for Future Computing Systems. https://www.cs.
colostate.edu/∼cs575dl/Sp2015/Lectures/Dally2015.pdf, 2015.

[9] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything
you always wanted to know about synchronization but were afraid to
ask. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP), pages 33–48, 2013.

[10] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Sil-
berstein. NICA: An Infrastructure for Inline Acceleration of Network
Applications. In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), pages 345–362, 2019.

[11] Alireza Farshin. DDIOTune. https://github.com/tbarbette/fastclick/wiki/
DDIOTune.

[12] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan
Kostic. Make the Most out of Last Level Cache in Intel Processors.
In Proceedings of the 2019 EuroSys Conference, pages 8:1–8:17, 2019.

[13] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan
Kostic. Reexamining Direct Cache Access to Optimize I/O Intensive
Applications for Multi-hundred-gigabit Networks. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC), pages 673–689,
2020.

[14] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian M. Caulfield, Eric S. Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
Proceedings of the 15th Symposium on Networked Systems Design and
Implementation (NSDI), pages 51–66, 2018.

[15] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, and
Margo I. Seltzer. Parking packet payload with P4. In Proceedings of
the 2020 ACM Conference on Emerging Networking Experiments and
Technology (CoNEXT), pages 274–281, 2020.

[16] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh,
and Margo I. Seltzer. Parking Packet Payload with P4. CoRR,
abs/2006.05182, 2020.

[17] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue B. Moon. Packet-
Shader: a GPU-accelerated software router. In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 195–206, 2010.

[18] Mark Horowitz. 1.1 Computing’s energy problem (and what we can do
about it). In Proceedings of the 2014 International Solid-State Circuits
Virtual Conference (ISSCC), pages 10–14, 2014.

[19] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. In Proceedings of the 11th Symposium on
Networked Systems Design and Implementation (NSDI), pages 445–458,
2014.

[20] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad
Shahbaz, Changhoon Kim, and Nick McKeown. The nanoPU: A
Nanosecond Network Stack for Datacenters. In Proceedings of the 15th
Symposium on Operating System Design and Implementation (OSDI),
pages 239–256, 2021.

[21] Intel. DDIO - Data Direct I/O. https://www.intel.com/content/www/us/
en/io/data-direct-i-o-technology.html.

[22] Intel. Intel Resource Director Technology. https://github.com/intel/
intel-cmt-cat.

[23] Internet Assigned Numbers Authority (IANA). Differentiated Ser-
vices Field Codepoints (DSCP). https://www.iana.org/assignments/
dscp-registry/dscp-registry.xhtml.

[24] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing Key-
Value Stores with Fast In-Network Caching. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP), pages 121–
136, 2017.

[25] Georgios P. Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and
Gerald Q. Maguire Jr. Metron: NFV Service Chains at the True Speed
of the Underlying Hardware. In Proceedings of the 15th Symposium on
Networked Systems Design and Implementation (NSDI), pages 171–186,
2018.

[26] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas E. Ander-
son, and Arvind Krishnamurthy. High Performance Packet Processing
with FlexNIC. In Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXI), pages 67–81, 2016.

[27] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim,
and Sue B. Moon. NBA (network balancing act): a high-performance
packet processing framework for heterogeneous processors. In Proceed-
ings of the 2015 EuroSys Conference, pages 22:1–22:14, 2015.

[28] Teemu Koponen, Keith Amidon, Peter Balland, Martı́n Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram,
Ethan J. Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li,
Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott
Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wendlandt,
Alexander Yip, and Ronghua Zhang. Network Virtualization in Multi-
tenant Datacenters. In Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI), pages 203–216, 2014.

[29] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: efficient and fast RPCs in cloud microservices
with near-memory reconfigurable NICs. In Proceedings of the 26th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXVI), pages 36–51, 2021.

[30] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. KV-Direct:
High-Performance In-Memory Key-Value Store with Programmable
NIC. In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP), pages 137–152, 2017.

[31] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, and Peng Cheng. ClickNP: Highly
flexible and High-performance Network Processing with Reconfigurable
Hardware. In Proceedings of the ACM SIGCOMM 2016 Conference,
pages 1–14, 2016.

[32] Xiaoyao Li, Xiuxiu Wang, Fangming Liu, and Hong Xu. DHL: Enabling
Flexible Software Network Functions with FPGA Acceleration. In
Proceedings of the 38th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 1–11, 2018.

[33] Yong Li and Min Chen. Software-Defined Network Function Virtual-
ization: A Survey. IEEE Access, 3:2542–2553, 2015.

[34] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and
Aditya Akella. PANIC: A High-Performance Programmable NIC for
Multi-tenant Networks. In Proceedings of the 14th Symposium on
Operating System Design and Implementation (OSDI), pages 243–259,
2020.

[35] Linley Group. Mellanox Accelerates BlueField SoC. Microprocessor
Report, August 2017.

12

https://doc.dpdk.org/guides/sample_app_ug/index.html
https://doc.dpdk.org/guides/sample_app_ug/index.html
https://github.com/opcm/pcm
https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://trex-tgn.cisco.com/
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf
https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf
https://github.com/tbarbette/fastclick/wiki/DDIOTune
https://github.com/tbarbette/fastclick/wiki/DDIOTune
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml
https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml

[36] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy,
and Kishore Atreya. IncBricks: Toward In-Network Computation with an
In-Network Cache. In Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXII), pages 795–809, 2017.

[37] João Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Andrei
Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici. ClickOS and
the Art of Network Function Virtualization. In Proceedings of the 11th
Symposium on Networked Systems Design and Implementation (NSDI),
pages 459–473, 2014.

[38] Mayler G. A. Martins, Jody Maick Matos, Renato P. Ribas, André Inácio
Reis, Guilherme Schlinker, Lucio Rech, and Jens Michelsen. Open Cell
Library in 15nm FreePDK Technology. In Proceedings of the 2015
Symposium on International Symposium on Physical Design (ISPD),
pages 171–178, 2015.

[39] Mellanox. Innova™ Flex 4 Lx EN Adapter Card. https://www.mellanox.
com/related-docs/prod adapter cards/PB Innova Flex4 Lx EN.pdf.

[40] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. Understanding PCIe
performance for end host networking. In Proceedings of the ACM
SIGCOMM 2018 Conference, pages 327–341, 2018.

[41] NVIDIA Mellanox. 200Gb/s ConnectX-6 Ethernet Single/Dual-Port
Adapter IC. https://www.mellanox.com/products/ethernet-adapter-ic/
connectx-6-en-ic.

[42] NVIDIA Mellanox. Socket Direct Adapters. https://www.nvidia.com/
en-us/networking/ethernet/socket-direct/.

[43] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In
Proceedings of the 12th Symposium on Operating System Design and
Implementation (OSDI), pages 203–216, 2016.

[44] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran Liss, Adam
Morrison, and Dan Tsafrir. Autonomous NIC offloads. In Proceedings
of the 26th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-XXVI), pages
18–35, 2021.

[45] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. Commun. ACM, 59(11):114–122, 2016.

[46] Hugo Sadok, Miguel Elias M. Campista, and Luı́s Henrique M. K. Costa.
A Case for Spraying Packets in Software Middleboxes. In Proceedings
of The 17th ACM Workshop on Hot Topics in Networks (HotNets-XVII),
pages 127–133, 2018.

[47] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. In-Network Computation is a Dumb Idea Whose
Time Has Come. In Proceedings of The 16th ACM Workshop on Hot
Topics in Networks (HotNets-XVI), pages 150–156, 2017.

[48] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s
problem: network processing as a cloud service. In Proceedings of the
ACM SIGCOMM 2012 Conference, pages 13–24, 2012.

[49] Statista. Distribution of global downstream internet traffic as of october
2018, by category, 2018. https://www.statista.com/statistics/271735/
internet-traffic-share-by-category-worldwide/.

[50] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. NFP:
Enabling Network Function Parallelism in NFV. In Proceedings of the
ACM SIGCOMM 2017 Conference, pages 43–56, 2017.

[51] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra J. Marathe,
Dionisios N. Pnevmatikatos, and Alexandros Daglis. The NEBULA
RPC-Optimized Architecture. In Proceedings of the 47th International
Symposium on Computer Architecture (ISCA), pages 199–212, 2020.

[52] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Kate-
rina J. Argyraki, Sylvia Ratnasamy, and Scott Shenker. ResQ: Enabling
SLOs in Network Function Virtualization. In Proceedings of the 15th
Symposium on Networked Systems Design and Implementation (NSDI),
pages 283–297, 2018.

[53] Shinae Woo and KyoungSoo Park. Scalable TCP Session Monitoring
with Symmetric Receive-side Scaling. Technical report KAIST, 2012.

[54] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren Wang, Ilia Kurakin,
Charlie Tai, and Nam Sung Kim. Don’t Forget the I/O When Allocating
Your LLC. In Proceedings of the 48th International Symposium on
Computer Architecture (ISCA), pages 112–125, 2021.

[55] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina J. Argyraki,
and George Candea. A Formally Verified NAT. In Proceedings of the
ACM SIGCOMM 2017 Conference, pages 141–154, 2017.

[56] Kai Zhang, Bingsheng He, Jiayu Hu, Ze ke Wang, Bei Hua, Jiayi Meng,
and Lishan Yang. G-NET: Effective GPU Sharing in NFV Systems. In
Proceedings of the 15th Symposium on Networked Systems Design and
Implementation (NSDI), pages 187–200, 2018.

[57] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,
Aman Shaikh, and Zhi-Li Zhang. ParaBox: Exploiting Parallelism for
Virtual Network Functions in Service Chaining. In Proceedings of the
Symposium on SDN Research (SOSR), pages 143–149, 2017.

[58] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill:
Attributing the Source of Tail Latency through Precise Load Testing
and Statistical Inference. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA), pages 456–468, 2016.

13

https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_EN.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_EN.pdf
https://www.mellanox.com/products/ethernet-adapter-ic/connectx-6-en-ic
https://www.mellanox.com/products/ethernet-adapter-ic/connectx-6-en-ic
https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://www.statista.com/statistics/271735/internet-traffic-share-by-category-worldwide/
https://www.statista.com/statistics/271735/internet-traffic-share-by-category-worldwide/

	Introduction
	Background
	Network Functions and Modern NF Deployment
	Large-Packet Dominance of Internet Traffic
	Advanced NICs

	NFSlicer Design
	Overview
	Software-Hardware Interface
	Slice & Splice Operation

	Implementation
	Methodology
	Evaluation
	Performance Impact of Packet Slicing
	Sensitivity to Payload Size Reduction and Comparison to Switch-Based Packet Slicing
	Sensitivity to Packet Arrival Rate
	Microarchitectural Study

	Toward a Hardware NFSlicer Implementation
	Discussion
	Related Work
	Conclusion
	References

