Creating and Using Matrix Representations of Social

Interaction
Alan R. Wagner

Georgia Institute of Technology
85 Fifth Street NW
Atlanta, GA 30308

1-404-894-9311

alan.wagner@cc.gatech.edu

ABSTRACT

This paper explores the use of an outcome matrixaas
computational representation of social interactmuitable for
implementation on a robot. An outcome matrix expessthe
reward afforded to each interacting individual witkspect to
pairs of potential behaviors. We detail the usethaf outcome
matrix as a representation of interaction in sop&ichology and
game theory, discuss the need for modeling theti®bderactive
partner, and contribute an algorithm for creatingcome matrices
from perceptual information. Experimental resultplere the use
of the algorithm with different types of partnensdain different
environments.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence ]: Robotics —autonomous vehicles,
operator interfaces

General Terms
Algorithms, Human Factors.

Keywords

Mental model, interaction, Interdependence theory.

1. INTRODUCTION

Many scientists have recently come to recognizestioéal aspects
of intelligence [1]. In contrast to purely cogngivntelligence,
which is most often described by problem solvingitgband/or
declarative knowledge acquisition and usage, sotitdllect
revolves around an individual’'s ability to effeetly understand
and respond in social situations [2]. Neurosciengfvidence is
beginning to emerge supporting theories of soaiglligence [3].
From a roboticist's perspective, it then becometinah to ask
how this form of intelligence could play a rolethre development
of an atrtificially intelligent robot. As an initiatep, one must first
consider which concepts are most important to sotiligence.

Social interaction is one fundamental concept [&ocial
psychologists definesocial interaction as influence—verbal,
physical, or emotional—by one individual on anottig}. If a
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goal of artificial intelligence is to understandhitate, and interact
with humans then researchers must develop compngdti
representations for interaction that will allow anificial system
to: (1) use perceptual information to generateréfsresentation
for interaction; (2) represent its interactions hwi variety of
human partners in numerous different social enwrents; and
(3) afford the robot guidance in selecting intekgchctions.

This paper presents a representation that allowbat to manage
these challenges. A general, established, computdti
representation for social interaction that is net tto specific
social environments or paradigms is presentedNfeover, we
contribute a preliminary algorithm that allows aob to create
representations of its social interactions fromectr verbal
communication. Simulation results demonstrate dgorghm in
several different domains and with numerous differgpes of
partners. The purpose of this paper is to introdiheeoutcome
matrix as an important potential representation gicial
interaction in artificial systems and demonstratenethod for
generating outcome matrices. This paper begins iogt f
summarizing relevant research.

2. RELATED WORK

Representations for interaction have a long histiorysocial
psychology and game theory [4, 6]. Interdependaheery, a
type of social exchange theory, is a psychologitatory
developed as a means for understanding and anglyzin
interpersonal  situations and interaction [4]. Therm
interdependence specifies the extent to which ndividual of a
dyad influences the other. Interdependence theobased on the
claim that people adjust their interactive behaworesponse to
their perception of a social situation’s patternrefvards and
costs. Thus, each choice of interactive behavioamyndividual
offers the possibility of specific rewards and sestlso known as
outcomes—after the interaction. Interdependence oryhe
represents interaction and social situations coatjmurtally as an
outcome matrix (figure 1). An outcome matrix regms an
interaction by expressing the outcomes afforded etach
interacting individual with respect each pair ofgrdial behaviors
chosen by the individuals.

Game theory also explores interaction. Moreovemeagtheory has
been described as “a bag of analytical tools” td ane'’s
understanding of strategic interaction [6]. As artwh of applied
mathematics, game theory thus focuses on the formal
consideration of strategic interactions, such &s dkistence of
equilibriums and economic applications [6]. Gameotly and



interdependence theory both use the outcome ntatnigpresent
interaction [4, 6]. Game theory, however, is lirditey several
assumptions, namely: both individuals are assumdx toutcome
maximizing; to have complete knowledge of the ganwtuding
the numbers and types of individuals and each iddal's
payoffs; and each individual's payoffs are assunwedbe fixed
throughout the game. Because it assumes that chdild are
outcome maximizing, game theory can be used torméte
which actions are optimal and will result in an égtum of
outcome. Interdependence theory does not make
assumptions and does not lend itself to analysisduylibrium of
outcomes. Numerous researchers have used gamey theor
control the behavior of artificial agents in mudtent
environments (e.g. [7]). We do not know of any thate used
interdependence theory. The use of interdependgre®y is a
crucial difference between this work and previowgestigations
by other researchers using game theory to contrel docial
behavior of an agent.

Example Outcome Matrices

Example Social Situation Example Interaction
Individual 1 Robo
1 1 guide-to-  observe-
a a, 5 victim victims
e
5 0 £ perform- 5 8
S g2 & cPr
S &5 0 c 5 5
k] ©
2 0 8 E 5 |\ 8
< a2 T fight-fire
2|l o 8 0 0
Figure 1. Example outcome matrices are depicted abe.

The right hand side depicts an outcome matrix repreenting an
actual interaction encountered by the robot in the
experiments. The left hand side depicts a social tsation.

Social situations abstractly represent interactions A

dependent situation is depicted on the left and amdependent
situation is depicted on the right.

This work differs from much of current human-roboteraction
research in that our work investigates theoretiaspects of
human-robot interaction. Typically, HRI researchplexes the
mechanisms for interaction, such as gaze followisgiooth
pursuit, face detection, and affect characterinafi@).

3. REPRESENTING INTERACTION

The outcome matrix is a standard computationalesgptation for
interaction [4]. It is composed of information albothe
individuals interacting, including their identitghe interactive
actions they are deliberating over, and scalar aynéc values
representing the reward minus the cost, or theoows, for each
individual. Thus, an outcome matrix explicitly repents
information that is critical to interaction. Typlba the identity of
the interacting individuals is listed along the dimions of the
matrix. Figure 1 depicts an interaction involvingptindividuals.
In this article the term individual is used to icalie either a
human or a social robot or agent. We will focusioteraction
involving two individuals—dyadic interaction. An tmome
matrix can, however, represent interaction invajvimore than
two individuals. The rows and columns of the matnsist of a

list of actions available to each individual duritig interaction.
Finally, a scalar outcome is associated with eattora pair for
each individual. Outcomes represent unitless chaimgthe robot,
agent, or human’s utility. Thus, for example, aticome of zero
reflects the fact that no change in the individsialtility will
result from the mutual selection of that actiorrpai

Because outcome matrices are computational refegeTs, it is
possible to describe them formally. Doing so alldarspowerful
and general descriptions of interaction. The notagpresented

thesgyere draws heavily from game theory [6]. A représtion of

interaction consists of 1) a finite gdtof interacting individuals;
2) for each individuali O N a nonempty setd of actions; 3)
the utility obtained by each individual for eachmtznation of

actions that could have been selected [4]. Laa'} 0A' be an

arbitrary actionj from individual i's set of actions. Let

(alj ,al'(\l ) denote a combination of actions, one for each

individual, and IetuI denote individuali’s utility function:
u' (a% ,...,ali\l ) - [ is the utility received by individualif the
1 N
[IRERRRE:D
used to denote an outcome matrix. The supersdriist used to

individuals choose the action(:a ) The termO is

express individuai's partner. Thus, for example,‘sI denotes the

action set of individual and A_I denotes the action set of

individuali’s interactive partner.

3.1 Representing Social Situations

The term interaction describes a discrete evetiith two or
more individuals select interactive behaviors ag p&a social
situation or social environment. Interaction hagrbelefined as
influence—verbal, physical, or emotional—by oneiwundlial on
another [5]. The term situation has several définf. The most
apropos for this work is “a particular set of cimtstances existing
in a particular place or at a particular time [9).’50cial situation,
then, characterizes the environmental factors, ideit®f the
individuals themselves, which influence interactivehavior. A
social situation is abstract, describing the gdneattern of
outcome values in an interaction. An interaction, the other
hand, is concrete with respect to the two or modividuals and
the social actions available to each individualr Egample, the
prisoner’s dilemma describes a particular typeaaia situation.
As such, it can, and has been, instantiated in noumsedifferent
particular social environments ranging from banfzberies to the
trenches of World War | [10]. Interdependence tigsrstate that
interaction is a function of the individuals intetiag and of the
social situation [4]. A dependent situation, fommple, is a social
situation in which each partner's outcome depernushe other
partner’s action (Figure 1 left). An independenuaiion, on the
other hand, is a social situation in which eachrgats outcome
does not depend on the partner's action (Figureight)r
Although a social situation may not afford interaoct all
interactions occur within some social situationtetfdependence
theory represents social situations involving ipé&esonal
interaction as outcome matrices (see figure 1 fographical
depiction of the difference).



In previous work, we presented a situation analggerithm that
calculated characteristics of the social situatmminteraction
(such as interdependence) when presented with taprog matrix
[11]. The interdependence space is a four dimeasispace
which maps the location of all interpersonal sositlations [4].
A matrix’s location in interdependence space presiimportant
information relating to the interaction. Informaticuch as the
level of interdependence can indicate to the rabetsensitivity
of the partner's outcomes to the robot’s actions.aksistive
therapy domains, for example, the outcomes of tgept may
rely on the action selection of the robot. Our lssshowed that
by analyzing the interaction, the robot could lreteelect
interactive actions. Thus, using an outcome matx a
representation of interaction can benefit the roimoterms of
selecting the best action.

A computational representation for interaction dtoafford the
robot guidance in selecting interactive actionstcOme matrices
afford several simple action selection stratediég most obvious
method is to choose the action that maximizes thigotis

outcome. This strategy is termeghax_own An individual's use

of the max_ownstrategy results in egoistic interactive behavior.

Alternatively, the robot may select the action thaximizes its
partner’s outcome, a strategy ternmmadx_other An individual's
use of themax_otherstrategy results in altruistic behavior. Yet
another action selection strategy is for the rotwotselect the
action that maximizes the sum of its and its paineutcome.
The use of this strategy results in a cooperatiyle f behavior.
Outcome matrices afford many other simple actiofectien
strategies (see [11] for other examples). Prewoark in robotics
and planning which employ a similar representatifor
controlling a robot or agent generally focus omax_own game
theoretic action selection strategy. To the bestwofknowledge
action selection strategies such wrmx_other have not been
investigated.

3.2 Partner Modeling

Several researchers have explored how humans gewstmtal
models of robots (e.g. [12]). A mental model iseart used to
describe a person’s concept of how something irwibwéd works

[13]. We use the term partner model (denotaaI ) to describe a
robot’s mental model of its interactive human partiWe use the

term self model (denotedn') to describe the robot’'s mental
model of itself. Again, the superscript is used to express
individuali's partner [6].

An exploration of how a robot could model its humpartner
should begin by considering what information wil bollected in
this model. Our partner model_contains_, three tygeésformation:

1) a set of partner feature(sfl_I N ); 2) an action model,
A™': and 3) a utility functionu . We use the notation
m '.A"" andm ' u™" to denote the action model and utility

function within a partner model.

Partner features are used for partner recogniffantner features
allow the robot to recognize the partner in subsatu
interactions. The partner’s action model contairistaof actions
available to that individual. The partner’s utilfiynction includes
information about the outcomes obtained by thengarivhen the

robot and the partner select a pair of actions. ifffiermation
encompassed within our partner models does noesept the
final word on what types of information should beluded in
such models. Information about the partner's bglighowledge,
personality, etc. could conceivable be includethese models.

Outcome Matrix Creation Algorithm
Input:  Self Model mI , Partner Modelm_I .
Output: Outcome matrixO.

Create empty outcome matfx

Set O.partner = x(m_I . features ) O.robot =
“r obot ”, O.columns=m' .A', O.rows=m™ .A”

For each pair(a'j ,alzl ) in all rows and columns
o' (a'j ,alz' ) cmu (a'j ,a;' )

o~ (aij ,alzi ) e (aij ,alzi )
Return O

Interact-and-update Algorithm

=i S
fn . situation e,....eq

Input: partner fl_I

features

Pre-intera(_:tion _ _
1. setm' = y(ej.-..en), m ' = z(fl_I o, f
2. OutcomeMatrixCreationAIgorithr(mI ,m_I )

. S L
3. Seta =max_ovvr1(OI ), o =0' (a',a '),
o I e I B I N B
a =mx_own(O ), o =0 |a,a
Interact

4. Perform aI

Update

. —i
Perceivevaluea , o
i

i i
, 0

_i*_
If a # a

updatem A '=a"', m_l_u(a_I )

e I
elseifo # o
update m ' _u(aI a ): o
i* i =i _i)_ i
. If o # o then update m ula ,a |=o0
—-i . —i
.foralla  inm

if p(a_ i )< k then deletea '

Figure 2. Algorithms for creating and using outcone matrices.
The algorithm successively updates the partner mote
achieving greater outcome matrix creation accuracy.The
function x maps partner features to a partner ID,y maps
situation features to the robot's self model, and maps partner
features to a partner model.



The self model also contains an action model andtility

function. The action model contains a list of agticavailable to
the robot. Similarly the robot’'s utility functionnéludes
information about the robot’'s outcomes.

3.3 From Interaction to Outcome Matrix

The proposed representation has the following elksnahich
must be filled in: the identity of the individuaisteracting, the
actions for each individual, and the outcomes atégl for each
pair of actions and each individual. The robot niilstin this
information in the order listed because, for examgthe identity
of the robot’s partner could influence which actiare available
to the partner.

We have thus sketched the outline of an algoritbmcfeating
outcome matrices from the robot’s model of itselfl ats partner.
Figure 2 (top) depicts the algorithm. The algorittakes as input
the self model and the partner model and produnesuscome
matrix as output. The first step of the algorithraates an empty
outcome matrix. The second step of the algorithrts tbe
partner’s ID and both the robot’s and the partnacsons. This

step uses the functiomto map perceptual features to a unique

label or ID. ID creation provides a means of attaghthe
perception of an individual to what is learned frameracting
with that individual. In theory, any method thabpides a unique
ID from perceptual features should work in thisoaithm. We
have not, however, explored this claim experiméntdtinally,

for each pair of actions in the action models, wse each

individual’s utility function (uI and u_l) to assign an outcome
for the pair of actions.

It should be apparent that the Outcome Matrix Goaatlgorithm

simply fills in the matrix with missing informatioMoreover, the
accuracy of the outcome matrices created by therigdimn

depends entirely on the accuracy of the informationtained in
the self and partner models. This begs the questibere does
the information for the models come from? The iatérand-
update algorithm serves this purpose.

The Interact-and-update algorithm uses informati@arned
during an interaction to revise its partner andotomodels.
Norman notes that humans continually revise thental models
with additional interaction [13]. Our algorithm elopgs a similar
strategy, updating its representation of its hurpantner with
each additional interaction. The algorithm works [iyst
predicting the action the partner will select ahd butcomes the
robot and the partner will obtain. Then, in the atedphase, the
algorithm adjusts the partner model.

Figure 2 (bottom) depicts the algorithm. For clarthe algorithm
is divided into three phases: pre-interaction,rete and update.
During the pre-interaction phase the robot selewtslels, calls
the Outcome Matrix Creation algorithm constructthg matrix,

selects an action and sets its predictions for ititeraction.

During the interact phase the robot performs thieacFinally, in

the update phase, the robot adjusts its partnerhtodaccount
for the actual outcome obtained and actions pegdrm

The interact-and-update algorithm takes as inp& plartner
features and situation features. Partner features used to
recognize and/or characterize the robot's intevactpartner.
Similarly, situation features are perceptual fesgurused to
characterize the environment. The algorithm bebinsising the

situation features to retrieve a self model. Thecfiony maps
situation features to subsets of the robot’'s actenhand utility
values. Thus the robot’s model of itself dependsttan type of
environment in which it is interacting. The partsdieatures are
used to retrieve a model of the partner. The fonciselects the
partner model from a database of partner models thvé greatest
number of equivalent features. During initializatiche partner
model database is seeded with a model of the rdfjuis the
database always contains at least one model. Dutirg
interaction phase the robot performs the actioniriguthe update
phase of the algorithm, the robot first perceiveg taction
performed by its partner and the outcome both dt e partner
obtain. Next, if the partner action does not mateh prediction,
then the action is added to the model if it did erist and the
outcome for the action pair is updated. If, on d¢tieer hand, the
robot predicted the correct action but did not fethe correct
outcome then the outcome is updated in the panetel. Next,
if the outcome the robot obtained differed from trebot’s
prediction then the robot updates its own modeldftect the
received outcome. Finally actions and associatedoowe values
which have less thak probability of usage based on previous
experience are removed. This prevents the modei frecoming
filled with rarely used actions. Successive magican be created
by looping to line 3.

Line 7 updates the outcome value to match the pead@utcome
value when an unexpected action is encountereithelfaction is
unknown, then robot does not yet have informatiboua the
outcome values of all action pairs. In this casmitst make an
assumption as to their value. As currently presktite algorithm
assigns a single outcome value to all action paiespective of
the robot's action. This assignment results in wivaet call an
action independence assumptiariThe robot is assuming that, for
the unknown action pairs, the partner receivesstdme outcome
regardless of the robot’s choice of action. Alt¢ivey, we could
have assumed that for unknown action pairs the hureeeives
the same outcome as the robot. Either of thesemrgdins is
equally valid as the values simply serve as plalciehs and allude
to the robot’s current ignorance of the human’soacpreference.

Intuitively the algorithm directly updates the ootee values and
actions. Hence the algorithm is susceptible to enoMachine
learning algorithms could be used to reduce thiceptibility.

Ng, for example, describes inverse reinforcemeatniag as the
problem of learning a task’'s reward function. Hes halso

developed techniques for learning from a teachét. [Ve have
begun to explore the use of clustering techniqoesd in partner
model learning and our development of methods fatrim

creation is ongoing research. Numerous game thiearsthods,
such as Bayesian games, also exist for handlingrtaioty [6].

Unfortunately space limitations prevent a detagedmination of
error reduction techniques.

3.4 Determining Model Accuracy
The preceding discussion raises an important cqurestiow do we

measure partner model accuracy? For example, givgarticular
human partner with action seh ' .A~
m ' u”", how close is the robot's partner modai ' to the

and utility function

.
actual model m ' ? We address this problem by viewing action
models and utility functions as sets. The actiordehds a set of



actions and a utility function is a set of tripletntains the action
of each individual and a utility value. We can thdon set
comparisons to determine the accuracy of the rebpértner

=i
modelm .

Two types of error are possible. Type | error @afsositive)
occurs if an action or utility is added to the robgartner model

(m™") which is not in the actual modeF(n_I ). Type Il error
(false_negative) occurs if an action or utility time a_ctual model

([m_I ) is not included in robot's partner modeh( ' ). Both of
these types of error must be included in a measiusetion model
or utility function accuracy. Moreover, a utilityriction value
was not considered present in the model if theevdiffered from
the actual value by an amount greater than onedd&iermine
Type | error we calculate the number of actionsutilities in

m™" which are not in“m™'

_i * _i
) m - m
actions or utilities inm_I . Thus, 5 , is the number of
|
actions in the robot's model that are not in théualc model
divided by the number of actions in the robot's lodVodel
accuracy, as oppose to inaccuracy, is calculated

_i *
m - m

1 5
|
of actions or utilities in bothm ' and [m_I as a percent of
‘I] =i —i‘
m nm
[T
m
models divided by the number of actions in the actmodel.
Finally, the two types of errors are averaged ia #guation,

Cnl Thus,

i ox i i
‘m'—mI ‘Dm'nm'
- 5 +0, (1)
|

d=0g1 ‘D _i‘
m

as a percent of the number of

, iIs the number of actions in both

4.1 Controlling Human Behavior

Evaluating the robot’s ability to model its intetime partner

requires control over its interactive partner’s &ébr. In essence,
we need the human partner to act in a predefinednara
Laboratory experiments involving controlled humaghéavior are
standard in many psychology experiments [5]. Thegeeriments
typically require that the experimenter's confederfollow a

predefined script often acting the part of a fellsubject. This
script explains how the person should behave inoélithe

situations he or she will face in the experimentmuch the same
way, our evaluation of the robot’s ability to moded partner

requires that the human partner act in a scriptadner. We use
the termactor scriptto describe a predefined set of interactive
instructions that the human will follow when intetiag with the
robot. Actor scripts are used in the experimenes@nted in this
work.

An actor script is created by first delineating #iteations that the
human-robot dyad will encounter. Once the situaibave been
determined, the human’s actions can be dictatedsaneral
different ways. One method is to assign the humasocial
character and to then select actions in accordawitle the
assigned character. For example, if the human sgg@ed the
social character of altruist then the human wilesethe outcome

asMatrix action that most favors the robot's outconis complete

the actor script, actions are determined for eaderaction,
possibly being contingent on the robot’s prior bebig and a list

. Type Il error can be calculated as the number or flowchart is created that the human follows whetgracting

with the robot.

In our experiments, the robot's human partner wssigaed a
predetermined list of perceptual features that wesed by the
robot for identification or as evidence of the parts type.
Moreover, the human’s actions were scripted. Ireotkords, the
human selected a predefined series of actionsatbig contingent
on the robot's prior actions and the experimentahdition.
Because the experiments controlled for the humgeatures and
actions, all experiments could be conducted bynglaihuman
partner. Still, a pilot study involving three diféat humans (a 20
year old American woman, a 20 year old Indian-Aceami
woman, and a 33 year old American male) was coweduttt rule
out the possibility of experimenter bias. The stedynpared the
outcome matrices created by the robot when inteigdh the

to created, an overall measure of model accuracy for either an game environment with each different human. Noediffice was

action model da) or a utility function (du). To determine
overall model
components of the partner model,

- _d?+d
2

d (2)

4., EXPERIMENTAL METHODOLOGY
Three components make up a human robot interactiha—+ebot,
the human, and the environment. This research eglthe
robot’s social behavior. Thus, we must controltfoe behavior of
the human and the environment. In the section filllaws we
present a method to control for the human’s behravio

accuracy we average the error fronthbo

found.

4.2 Controlling the Environment

The use of predefined social situations as a metbiodxploring
human interactive behavior has become a
methodological tool for psychologists, economistsnd a
neuroscientists [15]. We control the environment bging
predefined, arbitrary social situations. These alosituations
determined the pattern of outcome values receiwethé robot
and the human. Each partner type was assigned litragy
preference over his/her actions. These actions vessegned
utilities in a top down fashion. For instance, fiwice officer in
the search and rescue environment might be assignetility
function of limt-access=1, direct-traffic=0,
search-for-victi me-1. Keep in mind that our goal is to
determine if, and how well the robot can learn adetoof its
partner. Hence it suffices to create an arbitraitityufunction for

common



the robot’s partner to gauge if the robot can le¢ammodel. We
tested also the algorithm on dependent and indegmersituations
(figure 1).

4.3 Experimental Setup

We conducted both simulation experiments and reatldv
experiments to test the proposed algorithm. Ourukition
experiments utilized USARSIim, a collection of robmbdels,
tools, and environments for developing and tessegrch and
rescue algorithms in high-fidelity simulations.

We created five different environments in USASimtést the
generality of our algorithm. The household envireminmodeled
a small studio apartment and contained couches.ed h
television, etc. (Figure 3 top left). The museumviemment
modeled a small art and sculpture gallery and doatbpaintings,
statues, and exhibits (Figure 3 top right). The istise

environment modeled a rehabilitation suite (FigBiteottom left).
The prison environment modeled a small prison aowitained
weapons, visiting areas, and a guard station (Eigurbottom
right). The search and rescue environment (not ahonodeled a
disaster area and contained debris fields, smal,fivictims, and
a triage area.

Figure 3. Four of the USARSIm environments used irthe
simulation experiments.

The USARSIm model of the Pioneer DX robot was usedll

experiments. The robot had both a camera and a lasge
finder. The robot used speech synthesis to comrateguestions
and information to the human partner. Speech redtiogn
translated the spoken information provided by theman.

Microsoft's Speech SDK provided the speech synthesid
recognition capabilities.

Table 1. Partner features and feature values

Feature Name Values

Gender <man,woman>
Height <tall,medium,short>
Age <young,middling,old>
Weight <heavy,average,thin>
Hair color <blonde,black,brown,red>
Eye color <blue,green,brown>
Tool 1 <axe,gun,stethoscope,baseball-cap>
Tool 2 <oxygen-mask,badge,medical-kit,backpack>

The real world environment was 5x5 meter maze énstirape of a
cross (Figure 6). One branch of the cross contaitatiins from a
notional disaster (babies) and the other branchagoed hazard
items such as a biohazard.

5. EXPERIMENTS

Simulation experiments were conducted to gatheuracy data.
Real robot experiments were conducted to demoestthe
feasibility of this approach on real-world situatesnbodied
systems. We will describe the simulation experiradinst.

We hypothesized that continued interaction wouldulte in

improved partner model accuracy—both accuracy efprtner’s
action model and of the partner’s utility functiofwo simulation
experiments were conducted to test this hypotheBi first

experiment examined interaction with a single partrype

(doctor) in each different environment. Each envinent resulted
in a different action model and utility functionrfthe robot. In the
search and rescue environment, for example, thet rieblped to
locate trapped victims. In the museum environmentthe other
hand, the robot acted as a security guard patgailie museum. A
second simulation experiment explored interactionai single
environment (search and rescue) with four differgmes of
individuals: policeman, firefighter, doctor, andtizén. Each
different type of partner had a unique action moaledl utility

function. For example, the firefighter preferred search for
hazards and the doctor preferred to save victims.

Table 2. A list of actions for each type of partner

Partner Type Actions
Robot Sear chFor - x, Observe-x, Light-
X, Qui deTo-x
Policeman limt-access, direct-traffic,
search-for-victim
Firefighter renove-toxic-material, fight-
fire, rescue-victim npve-
debris
Doctor startlV, intobate, pefornCPR
Citizen run, cry, scream
Random Any of the above non-robot actions.

Each human partner type possessed particular vidued of the
partner features (Table 1 and Table 2). The vaioie3ool 1 and
Tool 2 were type specific the other values wereected at
random. For example, a firefighter might have tldofving
partner features: woman, short, young, thin, redtem, axe,
oxygen-mask. Action models consisted of three ar factions
and were also type specific. Similarly, utility vak were action
and type specific. Table 2 depicts the action meéts each type
of partner and the robot. Ground truth consistepretlefined sets
of actions and outcome values for a specific partgpe. For
example, a citizen partner was produced by 1) rarylselecting
the values for the partner features (except todighvare set to
baseball-cap and backpack for this type) 2) setthmgy action
model to that from Table 2 for citizen creating ad)dcreating
arbitrary utility values for the utility function.

Both simulation experiments involved 20 interactiowith a
partner. Prior to interacting, the robot used OpénG detect
objects in the environment and create the situdBatures. Next
the robot used synthesized speech and speech igocoda query
the partner for their features. Once the robot pathered the
information necessary to run the Interact-and-upddgorithm,
the algorithm was run, creating an outcome matrxli dahen
selecting an action from the matrix. Both the rolod its human
partner performed actions in simulation. The acpenformed by
the human was dictated by the actor script. If sheation was
independent then the robot received the outcomardégss of the



action selected by the human. If the situation deygendent, the
robot’'s outcome depended on the human’s actionalliyirthe
robot queries the human for the action it perforraed outcome
received.

Model accuracy in different environments for a
single partner type
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Figure 4. The graph depicts the results from the fst
simulation experiment involving different environments. The
results show that model accuracy increases with ctinued
interaction, eventually matching the ground truth.

Model accuracy for different partner types in single
environment
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Figure 5. The graph depicts the results from the send
simulation experiment involving different partner types. The
results again show that model accuracy increases thi
continued interaction, eventually matching the grouad truth.

During the experiment, we recorded the robot's rhaafeits
partner after each interaction. Equation (1) freention 3.2 was
used to calculate the accuracy with respect to ititévidual
components of the partner model. Equation (2) wasduto
calculate the overall accuracy of the parther modehe
independent variable in the first experiment wae thipe of
environment the robot encountered. The independarable in
the second experiment was the type of partner thigotr
encountered. The dependent variable for both simouala
experiments was model accuracy. Figure 4 depiegdhults for
the first simulation experiment. The graph showst thvith
continued interaction the accuracy of the actiondeho utility
function, and partner model increase, eventuallychiag the
ground truth. After the eleventh interaction, thewacy of all
models increases dramatically. This is because aflgerithm
purges the models of seldom used actions andiegilieducing
Type | error. In the dependent situation we se¢ dcauracy of
the utility values only reaches 64% after 20 intéoms. This is

because the dependent situation violates the attiependence
assumption discussed in section 3.3. Although éessirate, the
partner model in this case still contains all oé timformation
experienced during interaction with partner. Weeh&wnd that
machine learning techniques can improve this result

Figure 5 depicts the results for the second siraratAgain the
graph shows that the accuracy of all models ine®asith
continued interaction, eventually matching the gbutruth.
Violating the action independence assumption agasults in
decreased utility accuracy (63 percent). A randamingr type is
also included for comparison. The random partnéecsed any
action available to any partner type at random. @reph only
depicts action model accuracy for the random partpge. An
accuracy of 68 percent is achieved for the randartnpr type.

Interact and Update Algorithm ~ First Interaction
3

4
T

¥ \ ) =
Figure 6. Photos from the robot experiment. The robt
initially moves to observe the victim. After learnng the model
of its partner the robot moves to observe the hazdr The
leftmost four photos depict the robot as it moveshrough the
maze and selects actions. The fifth photo depictsdeo that the
robot sends to its human partner.

A demonstration experiment involving a real roboaswalso
conducted. In this experiment the robot was taskitll assisting
in a notional search and rescue environment. Thm®travas

capable of two actions: 1) moving to and obsenangctim and

2) moving to and observing a hazard. The robotauted with a
person acting as a firefighter. The firefighter vedso capable of
two actions: containing the hazard or rescuing wietims. The

firefighter arbitrarily preferred to contain hazardThe robot
received more outcome if the victims survived. Thietims

survived only if the robot and the firefighter wotkgether
observing and containing the hazard or rescuing wicems

(Figure 1 left side depicts the outcome matrix thus situation).
Initially the robot has no knowledge of the utilitynctions or a
model of its partner. The robot therefore setpégner model to
the robot’s self model. In other words the robctueises that its
unknown partner has the same actions and prefesexscit does.
During the first interaction the robot moves to ete the
victims. After the interaction, the robot receifesdback relating
to the partner’'s choice of action and outcomesudtiates its
partner model accordingly and during the next mtgon it

correctly moves to observe the hazard. The resldtaonstrate
the potential feasibility of this approach on aatib platform. In

depth experimentation on a fielded system is ama afefuture

work. Figure 6 shows the robot moving to obsene \fetim in

the first interaction and the hazard in the sedatetaction.

6. SUMMARY AND CONCLUSIONS

This paper has introduced a computational repratent for
interactions and social situations suitable forlenpentation on a
robot or software agent. We have discussed the eositign of



this representation, its ability to represent btteractions and
social situations, and formal operations related tioe
representation. Moreover, we have presented a nprelry
algorithm for the creation of the representation.

The algorithm we present assumes perceptual compesewhich
are difficult to achieve. It assumes that the rotar perceive 1)
the partner’'s action, 2) the partner’s outcome &aland 3) the
outcome obtained by the robot itself. These assiompmay limit
the current applicability of the algorithm. Nond#ss, as
demonstrated by the experiments, the perceptuatations of
this algorithm can be overcome. Moreover, activizgognition
and affect detection are current areas of actiseareh [16, 17].
Finally, it is important that the HRI community cemize the
importance of activity recognition and state detect This
research provides a theoretical motivation for ¢hessearch
topics. It may well be that the challenge of redeigry how a
robot’s behavior has impacted the humans intergatiith it is a
critical question facing the HRI community.

We have also assumed that the robot knows whabrectire
available to it. We believe that this is a reasémassumption.
We have not assumed that the robot has accuratsldaige of
the outcomes values resulting from the selectioanoéction pair.
We have simply assigned arbitrary initial valuestfee outcomes
and then the robot learns the true values througardctive
experience with the partner.

Although our results show that interactive experéercreates
increasingly accurate partner models, the actiovh wilities of
the robot’s partner were static, did not change, @emntained no
noise. Because the models were static they couldnbéeled.
Alternatively, as demonstrated in the random partype, the
partner could have continually selected random oasti or
received random utilities. Clearly in this caseslean be learned
about the partner. In a sense, the robot cannotvkwbat to
expect next from its partner. In normal interpeedointeraction
there are times when humans randomize their irtigeaactions,
such as in some competitive games. This algorithith have
limited success in these situations. Noise in tmfof inaccurate
perception of the human’s outcome values and axti®ranother
potential challenge. Fortunately, game theory mtesinumerous
tools for managing outcome uncertainty [6]. Morepwair own
results have demonstrated that outcome matricesradeg
gracefully with increased error [18]. Future workllvemploy
machine learning techniques to reduce overfitting.

Near-term practical applications of this work wolikkly focus
on environments where the outcomes of the robaisnpr are
readily available. In assistive therapy environreefdr example,
the robot could ask the patient if an exercise e@assing pain. An
entertainment robot, on the other hand, might gaisge outcome
in terms of amount of time spent interacting withe trobot.
Applications in areas such as autism are morecdiffbecause the
nature of the disease may limit the human’s outcexpression
capabilities.

Neuroscientists have shown that humans actively endleir
interactive partners [15]. Certainly the interper@lo mental
models maintained by humans are more complex ahdhan the
models used here. Our purpose is not to claim ttatpartner
models discussed here are the same as those foeohutey
humans, but rather to explore what minimal modelofgits
interactive partner a robot must perform in order interact

successfully with the partner and to present a auketlfor
achieving this modeling. Future work may add addiil
complexity and richness to the partner model. Walji believe
that accurate modeling of one’s interactive partaem important
component of social intelligence and hence a atitakill for a
robot to successfully operate in a dynamic sociglrenment.
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