
Using Stereotypes to Understand One’s Interactive P artner
(Extended Abstract)

 Alan R. Wagner
Georgia Institute of Technology

85 Fifth Street, Room S27
Atlanta, GA

1.404.894.9311

alan.wagner@gatech.edu

ABSTRACT
Psychologists note that humans regularly use categories to
simplify and speed the process of person perception [1]. The
influence of categorical thinking on interpersonal expectations is
commonly referred to as a stereotype. This research explores the
construction and use of stereotypes in human-robot interaction.
We present a novel algorithm that creates generalized models of a
robot’s interactive partner. The results of this work have potential
implications for social robotics, autonomous agents, and possibly
psychology.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles,
operator interfaces

General Terms
Algorithms, Human Factors.

Keywords
Mental model, interaction, interdependence theory, game theory.

1. INTRODUCTION
Macrae and Bodenhausen suggest that categorical thinking
influences a human’s evaluations, impressions, and recollections
of the target. The influence of categorical thinking on
interpersonal expectations is commonly referred to as a
stereotype. For better or for worse, stereotypes have a profound
impact on interpersonal interaction [2]. Information processing
models of human cognition suggest that the formation and use of
stereotypes may be critical for quick assessment of new interactive
partners [3]. From the perspective of a roboticist the question then
becomes, can the use of stereotypes similarly speedup the process
of partner modeling for a robot?

This question is potentially critical for robots operating in
complex, dynamic social environments, such as search and rescue.
In environments such as these the robot may not have time to
learn a model of its interactive partner through successive
interactions. Rather, the robot will likely need to bootstrap its
modeling of the partner with information from prior, similar

partners. We argue that stereotypes can serve this purpose.

This paper presents an algorithm for creating and using
stereotyped partner models to hasten learning about a robot’s
interactive partner. Our techniques are not tied to specific social
environments or paradigms. Moreover, the algorithm contributed
is not just limited to robots per se, but rather constitute a general
investigation of the use of stereotypes by robots, agents, or
interactive control software. This extended briefly outlines our
algorithm for building and using stereotype partner models.

2. STEREOTYPE PARTNER MODELS
We use the term partner model (denoted

i
m

−
) to describe a

robot’s mental model of its interactive human partner. The
superscript -i is used to express individual i's partner. Our partner
model contains three types of information: 1) a set of partner

features ()i
n

i
ff

−−
,,1 K ; 2) an action model,

i
A

−
; and 3) a

utility function
i

u
−

. We use the notation
ii

Am
−−

. and
ii

um
−−

.
to denote the action model and utility function within a partner
model. Partner features are used for partner recognition. Partner
features allow the robot to recognize the partner in subsequent
interactions. The partner’s action model contains a list of actions
available to that individual. The partner’s utility function includes
information about the outcomes obtained by the partner when the
robot and the partner select a pair of actions.

Sears, Peplau and Taylor define a stereotype as an interpersonal
schema relating perceptual features to distinctive clusters of traits
[4]. Hence a stereotype is a type of generalized partner model
used to represent a collection or category of individual partner
models. Thus, the creation of stereotypes requires the creation of
these generalized partner models. Moreover, to be useful,
techniques capable of matching a new interactive partner’s
perceptual features to an exiting stereotype must exist. Stereotype
building will therefore be a two phase process. First, we cluster
partner models with the centriods of the clusters becoming the
partner model stereotype. Next, using the cluster centroids as data,
we learn a mapping from partner features to the stereotypes.

2.1 Building Stereotypes
The building stereotypes algorithm (Figure 1) takes as input a new
partner model. The first step of the algorithm adds the new model
to the model space. Next each model in the space is assigned to a
unique cluster. The third and fourth steps perform agglomerative
clustering, iterating through each cluster and, if the clusters meet a
predetermined distance threshold, merging them. Equations (1)
and (2) from section 2.2 (below) for partner model distance are

Cite as: Using Stereotypes to Understand One’s Interactive Partner
(Extended Abstract), Alan R. Wagner, Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp. XXX-XXX. Copyright © 2010, International
Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

used to determine if the clusters meet the predetermined distance
threshold for merging. The cluster centroids that remain after step

four are the stereotypes, denoted nss ,,1 K . A list of stereotype

models is kept by the robot.

Figure 1. Algorithms for building stereotypes. The building
stereotypes algorithm operates by clustering partner models
and then constructing as classifier mapping a partner’s
perceptual features to a stereotype.

In the next phase we use the C4.5 algorithm to create decision
trees, denoted ψ , mapping the partner’s perceptual features to the
stereotype. Line 7 from Figure 1 creates data for the C4.5
algorithm by pairing each model’s perceptual features to a
stereotype. In the final steps, this data is used to train a classifier
mapping partner features to the stereotyped model.

The stereotype building algorithm makes two important
assumptions. First, it assumes the existence of a distance function,

()i
j

i
i mmd

−−
, , capable of measuring the difference between two

partner models. We describe below our method for measuring
partner model distance (see section 2.2). If, however, additional
information (such as the partner’s beliefs, motivations, goals, etc.)
is added to the partner model, then creating a distance function
may become difficult because this information may not naturally
have a measure for determining distance. Second, the stereotype
building algorithm assumes that partner models can be merged to
create new partner models. In order to merge a partner model one
must merge the components of the partner model. For this work
that meant merging the action models and utility functions. Action
models were merged by adding an individual action to the
stereotype only if the action was included in half of the data that
composed the merged model. Similarly, merged utility values
were derived from the average utility value of the composition
utility functions.

To use a stereotype the robot simply converts a newly
encountered partner’s perceptual features into an instance of data

for the classifier and then uses the classifier to select the correct
stereotype model. One important question is how the algorithm
reacts to partners that conflict with its stereotypes. Briefly, if
interaction with the new partner does not match what is predicted
by the stereotype, then the model for the individual can be altered
and add back to the partner model space resulting in a more
generalized stereotype.

2.2 Determining Model Accuracy
But how do we measure the distance from one partner model to
another? For example, given a particular human partner with

action set
ii

Am
−−

. and utility function
ii

um
−−

. , how close is

the robot’s partner model
i

m
−

 to the actual model
i

m
−*

? We
address this problem by viewing action models and utility
functions as sets. The action model is a set of actions and a utility

function is a set of triplets (ℜ∈− riaia ,,) containing the

action of each individual and a utility value. We can then do set
comparisons to determine the accuracy of the robot’s partner

model
i

m
−

.

Two types of error are possible. Type I error (false positive)
occurs if an action or utility is added to the robot’s partner model

(
i

m
−

) which is not in the actual model (
i

m
−∗

). Type II error
(false negative) occurs if an action or utility in the actual model

(
i

m
−∗

) is not included in robot’s partner model (
i

m
−

). The two
types of errors are averaged in the equation,





























−∗

−∩−∗

−+−

−−−

=
i

m

i
m

i
m

i
m

i
m

i
m

d 15.0

*

5.0 (1)

to create d, an overall measure of model accuracy (or distance) for

either an action model (
a

d) or a utility function (
u

d). To
determine overall partner model accuracy we average the error
from both components of the partner model,

2

udadi
d

+
=−

 (2)

3. REFERENCES
[1] C. N. Macrae and G. V. Bodenhausen, "Social Cognition:

Thinking Categorically about Others " Annual Review of
Psychology, vol. 51, pp. 93-120, 2000.

[2] J. A. Bargh, M. Chen, and L. Burrows, "Automaticity of
social behavior: direct effects of trait construct and
stereotype activation on action," Journal of Personality and
Social Psychology, vol. 71, pp. 230-44, 1996.

[3] G. V. Bodenhausen, C. N. Macrae, and J. Garst, "Stereotypes
in thought and deed: social-cognitive origins of intergroup
discrimination," in Intergroup Cognition and Intergroup
Behavior, C. Sedikides, J. Schopler, and C. A. Insko, Eds.
Mahwah, NJ: Erlbaum, 1998, pp. 311–36.

[4] D. O. Sears, L. A. Peplau, and S. E. Taylor, Social
Psychology. Englewood Cliffs, New Jersey: Prentice Hall,
1991.

Building Stereotypes Algorithm

Input : Partner Model
i

m
−

.

Output : Classifier ψ mapping
i

m
−

.features to a

stereotype.

Cluster phase

1. Add
i

m
−

 to partner model space

2. for all models in model space
3. make a cluster

4. while centroid_distance () kcc kj <, ,

5. merge_clusters ()kj cc ,

Function learning phase
6. for all models n in model space

7. set data[n]�make_pair(i
m

−
.features, centroid)

8 ψ �build_classifier(data)

9. return ψ

