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ABSTRACT  
Psychologists note that humans regularly use categories to 
simplify and speed the process of person perception [1]. The 
influence of categorical thinking on interpersonal expectations is 
commonly referred to as a stereotype. This research explores the 
construction and use of stereotypes in human-robot interaction. 
We present a novel algorithm that creates generalized models of a 
robot’s interactive partner. The results of this work have potential 
implications for social robotics, autonomous agents, and possibly 
psychology.  

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence ]: Robotics – autonomous vehicles, 
operator interfaces 

General Terms 
Algorithms, Human Factors. 

Keywords 
Mental model, interaction, interdependence theory, game theory. 

1. INTRODUCTION 
Macrae and Bodenhausen suggest that categorical thinking 
influences a human’s evaluations, impressions, and recollections 
of the target. The influence of categorical thinking on 
interpersonal expectations is commonly referred to as a 
stereotype. For better or for worse, stereotypes have a profound 
impact on interpersonal interaction [2]. Information processing 
models of human cognition suggest that the formation and use of 
stereotypes may be critical for quick assessment of new interactive 
partners [3]. From the perspective of a roboticist the question then 
becomes, can the use of stereotypes similarly speedup the process 
of partner modeling for a robot?  

This question is potentially critical for robots operating in 
complex, dynamic social environments, such as search and rescue. 
In environments such as these the robot may not have time to 
learn a model of its interactive partner through successive 
interactions. Rather, the robot will likely need to bootstrap its 
modeling of the partner with information from prior, similar 

partners. We argue that stereotypes can serve this purpose. 

This paper presents an algorithm for creating and using 
stereotyped partner models to hasten learning about a robot’s 
interactive partner. Our techniques are not tied to specific social 
environments or paradigms. Moreover, the algorithm contributed 
is not just limited to robots per se, but rather constitute a general 
investigation of the use of stereotypes by robots, agents, or 
interactive control software. This extended briefly outlines our 
algorithm for building and using stereotype partner models.  

2. STEREOTYPE PARTNER MODELS 
We use the term partner model (denoted 
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robot’s mental model of its interactive human partner. The 
superscript -i is used to express individual i's partner. Our partner 
model contains three types of information: 1) a set of partner 

features ( )i
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,,1 K ; 2) an action model,  
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utility function 
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to denote the action model and utility function within a partner 
model. Partner features are used for partner recognition. Partner 
features allow the robot to recognize the partner in subsequent 
interactions. The partner’s action model contains a list of actions 
available to that individual. The partner’s utility function includes 
information about the outcomes obtained by the partner when the 
robot and the partner select a pair of actions.  

Sears, Peplau and Taylor define a stereotype as an interpersonal 
schema relating perceptual features to distinctive clusters of traits 
[4]. Hence a stereotype is a type of generalized partner model 
used to represent a collection or category of individual partner 
models. Thus, the creation of stereotypes requires the creation of 
these generalized partner models. Moreover, to be useful, 
techniques capable of matching a new interactive partner’s 
perceptual features to an exiting stereotype must exist. Stereotype 
building will therefore be a two phase process. First, we cluster 
partner models with the centriods of the clusters becoming the 
partner model stereotype. Next, using the cluster centroids as data, 
we learn a mapping from partner features to the stereotypes.  

2.1 Building Stereotypes 
The building stereotypes algorithm (Figure 1) takes as input a new 
partner model. The first step of the algorithm adds the new model 
to the model space. Next each model in the space is assigned to a 
unique cluster. The third and fourth steps perform agglomerative 
clustering, iterating through each cluster and, if the clusters meet a 
predetermined distance threshold, merging them. Equations (1) 
and (2) from section 2.2 (below) for partner model distance are 
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used to determine if the clusters meet the predetermined distance 
threshold for merging. The cluster centroids that remain after step 

four are the stereotypes, denoted nss ,,1 K . A list of stereotype 

models is kept by the robot.  

 

Figure 1.  Algorithms for building stereotypes. The building 
stereotypes algorithm operates by clustering partner models 
and then constructing as classifier mapping a partner’s 
perceptual features to a stereotype.  

In the next phase we use the C4.5 algorithm to create decision 
trees, denoted ψ , mapping the partner’s perceptual features to the 
stereotype. Line 7 from Figure 1 creates data for the C4.5 
algorithm by pairing each model’s perceptual features to a 
stereotype. In the final steps, this data is used to train a classifier 
mapping partner features to the stereotyped model.  

The stereotype building algorithm makes two important 
assumptions. First, it assumes the existence of a distance function, 
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, , capable of measuring the difference between two 

partner models. We describe below our method for measuring 
partner model distance (see section 2.2). If, however, additional 
information (such as the partner’s beliefs, motivations, goals, etc.) 
is added to the partner model, then creating a distance function 
may become difficult because this information may not naturally 
have a measure for determining distance. Second, the stereotype 
building algorithm assumes that partner models can be merged to 
create new partner models. In order to merge a partner model one 
must merge the components of the partner model. For this work 
that meant merging the action models and utility functions. Action 
models were merged by adding an individual action to the 
stereotype only if the action was included in half of the data that 
composed the merged model. Similarly, merged utility values 
were derived from the average utility value of the composition 
utility functions. 

To use a stereotype the robot simply converts a newly 
encountered partner’s perceptual features into an instance of data 

for the classifier and then uses the classifier to select the correct 
stereotype model. One important question is how the algorithm 
reacts to partners that conflict with its stereotypes. Briefly, if 
interaction with the new partner does not match what is predicted 
by the stereotype, then the model for the individual can be altered 
and add back to the partner model space resulting in a more 
generalized stereotype.   

2.2 Determining Model Accuracy 
But how do we measure the distance from one partner model to 
another? For example, given a particular human partner with 

action set 
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the robot’s partner model 
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? We 
address this problem by viewing action models and utility 
functions as sets. The action model is a set of actions and a utility 

function is a set of triplets ( ℜ∈− riaia ,, ) containing the 

action of each individual and a utility value. We can then do set 
comparisons to determine the accuracy of the robot’s partner 

model 
i

m
−

. 

Two types of error are possible. Type I error (false positive) 
occurs if an action or utility is added to the robot’s partner model 

(
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) which is not in the actual model (
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m
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). Type II error 
(false negative) occurs if an action or utility in the actual model 

(
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) is not included in robot’s partner model (
i

m
−

). The two 
types of errors are averaged in the equation, 
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to create d, an overall measure of model accuracy (or distance) for 

either an action model (
a

d ) or a utility function (
u

d ). To 
determine overall partner model accuracy we average the error 
from both components of the partner model,  
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Building Stereotypes Algorithm 

Input : Partner Model 
i

m
−

. 

Output :  Classifier ψ  mapping 
i

m
−

.features to a 

stereotype. 

Cluster phase    

1.  Add 
i

m
−

 to partner model space 

2. for  all models in model space  
3. make a cluster 

4. while centroid_distance ( ) kcc kj <, ,  

5. merge_clusters ( )kj cc ,  

Function learning phase  
6. for  all models n in model space 

7. set data[n]�make_pair( i
m

−
.features, centroid) 

8 ψ �build_classifier( data  ) 

9. return  ψ  


