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Abstract 
This article presents a method for using outcome matrices for 
social phrase selection. An outcome matrix is a computational 
representation of interaction often used to represent a social 
decision problem. Typically an outcome matrix lists the potential 
actions that a robot or agent might select and how the selection of 
each possible action will impact both the agent and their 
interactive partner. Here we examine the possibility of replacing 
the social actions listed in a matrix with phrases that could be 
spoken by the robot. We show that doing so allows one to utilize 
several tools from interdependence theory and game theory. 

 Introduction   
Social psychologists define interaction as influence—
verbal, physical or emotional—by one individual on 
another (Sears, Peplau, & Taylor, 1991). This definition of 
interaction centers on the influence individuals have on one 
another. Hence, one’s representation of interaction must 
also include information about the actions each individual 
is considering, the influence that the selection of a pair of 
actions would have on each individual, and information 
about who is interacting. 
 Outcome matrices contain all of this information 
(Wagner, Creating and Using Matrix Representations of 
Social Interaction, 2009). An outcome matrix not only 
identifies the individuals interacting but also contains 
information about the actions available to both individuals 
and the influence that results from the selection of each 
pair of actions. If we allow a social action to include verbal 
statements then outcome matrices can serve as a method 
for deliberating over distinct verbal phrases and gauging 
how these phrases will impact both the agent and the 
human. Moreover, this approach allows one to use tools 
from interdependence and game theory for phrase selection 
(Kelly & Thibaut, 1978).  
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 This article examines the use of outcome matrices as a 
method for phrase selection. We assume that the intelligent 
agent has at their disposal a limited set of known phrases. 
These phrases serve as the agent’s universal set of actions. 
From this set, a subset of appropriate phrases is selected 
based on the agent’s perceptual recognition of the 
environment. Stereotyping is used to create a further subset 
of the remaining phrases. This final set of phrases is 
incorporated into the outcome matrix representation.  
 An outcome matrix explicitly represents little 
information related to common ground. In fact, the only 
mutual understanding that the robot and the human are 
assumed to have is rudimentary knowledge of how a 
selected phrase would influence both individuals. We 
argue that the robot’s use of outcome matrices for the 
selection of phrases does in fact ground the phrase with 
respect to its influence on both individuals. Put another 
way, our method does not assume or argue that the robot 
has any understanding of what the phrases mean. Rather, 
their value during an interaction is completely determined 
by the outcome values within the matrix at that time. 
Hence the phrases are grounded in these outcome values 
and common ground is established when these outcome 
values are mutually recognized.        

This article does not examine the problem of creating or 
understanding human-robot dialog. Rather we simply 
present a method by which a robot can select a phrase, 
whether spoken or otherwise, resulting from an interaction 
with a person. The key contribution of this paper is to 
present phrase selection as a form of social action 
selection, thereby suggesting that the phrase selection 
problem is a decision theory problem which can be 
represented as an outcome matrix. Moreover, use of the 
outcome matrix representation leaves at our disposal the 
various tools from interdependence theory. For example, 
the outcome matrix’s position in the interdependence space 
can be calculated and the resulting values can be used to 
influence the selection of a phrase or the robot can 
transform the matrix to reflect include its own internal 
disposition. We examine the use of these interdependence 
theory tools in greater detail below.    



Related Work 
Many researchers have examined human-robot dialog. 
Much research has been devoted to developing robots that 
learn the words for objects in an environment (Chauhan & 
Lopes, 2010)(Iwahashi, Sugiura, Taguchi, Nagal, & 
Taniguchi, 2010). Others have focused on specific portions 
of dialog such as adjectives (Petrosino & Gold, 2010) or 
spatial language (Skubic, Perzanowski, Schultz, & Adams, 
2002). Investigations of timing and turn-taking are 
plentiful (Chao & Thomaz, 2010) (Spiliotopoulos & etal, 
2001). Scheutz et al. developed an architecture that 
expressed and verbally responded to a human’s 
affect(Scheutz, Schermerhorn, & Kramer, 2006). 
 Representations for interaction have a long history in 
social psychology and game theory (Kelly & Thibaut, 
1978)(Osborne & Rubinstein, 1994). Interdependence 
theory, a type of social exchange theory, is a psychological 
theory developed as a means for understanding and 
analyzing interpersonal situations and interaction (Kelly & 
Thibaut, 1978). The term interdependence specifies the 
extent to which one individual of a dyad influences the 
other. Interdependence theory is based on the claim that 
people adjust their interactive behavior in response to their 
perception of a social situation’s pattern of rewards and 
costs. Thus, each choice of interactive behavior by an 
individual offers the possibility of specific rewards and 
costs—also known as outcomes—after the interaction. 
Interdependence theory represents interaction and social 
situations computationally as an outcome matrix (Figure 
1). An outcome matrix represents an interaction by 
expressing the outcomes afforded to each interacting 
individual with respect each pair of potential behaviors 
chosen by the individuals.  

 
Figure 1. An example of an independent situation is depicted on 
the left and an example of a dependent situation is depicted on the 
right. In the example of an independent situation,, the action 
selection of the second individual does not have an effect the 
outcome received by the first individual. In the dependent 
example, on the other hand, the action selection of the second 
individual results in a gain or lose of 6 units of outcome (a 
measure of utility) by the first individual.     

Representing Interaction 
The outcome matrix is a standard computational 
representation for interaction (Kelly & Thibaut, 1978). It is 
composed of information about the individuals interacting, 
including their identity, the interactive actions they are 
deliberating over, and scalar outcome values representing 
the reward minus the cost, or the outcomes, for each 
individual. Thus, an outcome matrix explicitly represents 
information that is critical to interaction. Typically, the 
identity of the interacting individuals is listed along the 
dimensions of the matrix. Figure 1 depicts an interaction 
involving two individuals. In this article the term 
individual is used to indicate either a human or a social 
robot or agent. We will focus on interaction involving two 
individuals—dyadic interaction. An outcome matrix can, 
however, represent interaction involving more than two 
individuals. The rows and columns of the matrix consist of 
a list of actions available to each individual during the 
interaction. Finally, a scalar outcome is associated with 
each action pair for each individual. Outcomes represent 
unitless changes in the robot, agent, or human’s utility. 
Thus, for example, an outcome of zero reflects the fact that 
no change in the individual’s utility will result from the 
mutual selection of that action pair.    

Because outcome matrices are computational 
representations, it is possible to describe them formally. 
Doing so allows for powerful and general descriptions of 
interaction. The notation presented here draws heavily 
from game theory (Osborne & Rubinstein, 1994). A 
representation of interaction consists of 1) a finite set N of 
interacting individuals; 2) for each individual Ni ∈  a 
nonempty set iA  of actions; 3) the utility obtained by each 
individual for each combination of actions that could have 

been selected (Gibbons, 1992). Let  iAi
j

a ∈  be an 

arbitrary action j from individual i’s set of actions. Let 
( )N

kaja ,,1
K  denote a combination of actions, one for 

each individual, and let iu  denote individual i’s utility 

function: ( ) ℜ→N
kajaiu ,,1

K  is the utility received by 

individual i if the individuals choose the actions 
( )N

kaja ,,1
K . The term O  is used to denote an outcome 

matrix. The superscript -i is used to express individual i's 
partner. Thus, for example, iA  denotes the action set of 
individual i and iA−  denotes the action set of individual 
i’s interactive partner.  

Phrases as Outcome Matrix Actions 
Verbal statements can have a powerful influence both on 
one’s self and on one’s interactive partner. As mentioned 
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Figure 2 The figure above depicts the iterative refinement of set of phrases based on context and stereotyping. The robot begins with a 
universal set of phrases (left). Recognition of tools in the environment refines the possible set of phrases to be applicable to the context 
involving the tools located. Next, perceptual features related to the stereotype of a fire fighter are recognized. These features refine the set 
of phrases down to a single phrase.    

 
an outcome matrix acts as a computational representation 
of interaction. The information contained within an 
outcome matrix explicitly represents the decision problem 
faced by the agent or robot. We argue that this decision 
problem often involves selecting the most appropriate 
verbal statement. In this case we consider the robot to have 
a set ܣ௜ such that ௝ܽ

௜ א  ௜ is a verbal statement. Theܣ
selection of the verbal statement ௝ܽ

௜ א  ௜ will result inܣ
outcome ሺ݋௜,  ௜ሻ for the robot and its partner. The robotି݋
selects the statement based only on the outcome values. 
Still, the outcome values themselves may be influenced by 
many different factors, such as the context or 
characteristics of the interactive partner.   
 The robot or agent thus has a finite, but possibly large, 
set of phrases representing the actions available to it. This 
universal set of phrases, ܣ௎, includes all possible phrases 
available to the robot in all contexts and with all partners. 
At this point we do not offer insight as to how the robot 
generates or constructs such a set. Learning phrases from 
interactions with others seems to be the most obvious 
route. Keep in mind, however, that for this process to be 
viable, the robot must also learn the outcome values for 
such phrases. Simply learning the phrase itself would not 
be of value.  

Refining the Set of Phrases 
Social scientists claim that interaction is function of both 
interactive individuals (A and B) and the context (C), 
formally ݂ሺܣ, ,ܤ  ሻ (Rusbult & Van Lange, 2003). Withܥ
respect to interactive phrase selection, the robot must have 
a process for down selecting the set of possible phrases to 
those phrases available for a given partner in a given 
context. In the section that follows we describe such a 
process.    

We propose that the context and interactive partner 
operate by selecting subsets of a universal set of phrases. 
The robot begins with a universal set of phrases 
representing all phrases it has available. At startup, the 
robot surveys its environment generating a context vector, 
 ௖, which includes perceptual information related to theݒ
robot’s context. The context vector and the universal set of 
phrases are used as input to a function that produces a 
subset of phrases available in that particular context.    
 Next or possibly concurrently, the robot generates a 
partner feature vector, ݒ௣, that includes perceptual 
information related to the robot’s interactive partner. The 
partner feature vector and the context related subset of 
phrases are used as input to a function generated a further 
subset of phrases.    
   

Using Context and Stereotypes to refine the set of Phrases 

Universal Set of Phrases Context Subset Partner Subset 

1 “I can assist with the axe” 
2 “I can assist with the baton” 
3 “I can assist with a 
stethoscope” 
4 “How can I help you?” 
5 “Do you want coffee?” 
6 “Yes” 
7 “No?” 

1 “I can assist with the axe” 
2 “I can assist with the 
baton” 
 

1 “I can assist with the 
axe” 

Image example from 
experiment 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 The figure above depicts a situation in which the human asks the question, “Will you help me?” The robot has several different 
potential phrases to choose from. Below the matrix underneath each potential robot phrase, the robot disposition that would choose that 
phrase is listed. For example, a malevolent disposition would choose the phrase “No, I won’t let you succeed.”    

 Stereotypes and stereotyping allow for the learning of 
categories of individuals. Sears, Peplau and Taylor define a 
stereotype as an interpersonal schema relating perceptual 
features to distinctive clusters of traits (Sears, Peplau, & 
Taylor, 1991). A stereotype is a type of generalized model 
of one’s partner used to represent a collection or category 
of individual partner models. The creation of stereotypes 
requires the creation of these generalized partner models. 
Moreover, to be useful, techniques must exist which are 
capable of matching a new interactive partner’s perceptual 
features to an existing stereotype. In previous work we 
developed algorithms for stereotype building and for 
matching a new partner to an existing stereotype (Wagner, 
Extended Abstract: Using Stereotypes to Understand One's 
Interactive Partner, 2010). 
 With respect to phrase selection, the use of stereotypes 
allows the robot to match collections of phrases to the 
particular categories of people. Figure 2 presents an 
example in which we have used this process of refining the 
set of phrases. In this example the robot begins with seven 
phrases in the universal set. The robot recognizes particular 
objects in the environment. These objects map to a 
particular subset of the universal phrase set. Next, the robot 
uses the perceptual characteristics of the person to create a 
feature vector. This feature vector is used to select a 
stereotype. The selected stereotype includes information 
related to which phrases remain viable during the 
interaction. The ordering of the refinement steps is not 
important; either the subset based on the stereotype or on 
the context may be performed first.  

   Allowing Disposition to influence Phrase 
Selection  

Disposition refers to a natural tendency or predilection 
towards doing something or acting in a particular way. We 

can imbue the robot with a particular type of disposition by 
having it prefer one type of action selection strategy over 
another. Outcome matrices afford several simple action 
selection strategies. The most obvious method is to choose 
the action that maximizes the robot’s own outcome. This 
strategy is termed max_own. A robot’s use of the max_own 
strategy over the course of many interactions results in 
egoistic disposition—the robot tends to do what is best for 
itself without regard to others. Alternatively, the robot may 
select the action that maximizes its partner’s outcome, a 
strategy termed max_other. A robot’s use of the max_other 
strategy results in an altruistic disposition. Yet another 
action selection strategy is for the robot to select the action 
that maximizes the sum of its and its partner’s outcome 
(max_joint). The use of this strategy results in a 
cooperative disposition. The min_diff action selection 
strategy, on the other hand, selects the action that 
minimizes the difference in outcome between the robot and 
the human, resulting in a fair or just disposition. Outcome 
matrices afford many other simple action selection 
strategies (see (Wagner, The Role of Trust and 
Relationships in Human-Robot Social Interaction, 2009) 
for other examples).  
 Figure 3 depicts an example in which the robot is asked 
a question. Six different phrases are available as a 
response. For this example, the robot’s disposition 
uniquely determines the phrase that the robot selects. If the 
robot’s disposition is malevolent, then the robot chooses 
the min_other action selection strategy resulting in the 
selection of the phrase “No, I won’t let you succeed”. If the 
robot’s disposition is competitive then the robot selects the 
max_diff action selection strategy resulting in the selection 
of the phrase “No, but I’ll help myself”. Figure 3 depicts 
several other examples.  

Allowing Disposition to Influence Phrase Selection 

Disposition 

Robot’s Phrases 

Matrix 

“Let’s help 
each other” 

“Yes, I’ll do 
whatever 
you need” 

“Will you 
help me?” 

“If you 
help me” 

“No, I won’t 
let you 

succeed” 

“No, I don’t 
see any 

reason to” 

“No, but 
I’ll help 
myself” 

Egoist Altruist Fair Malevolent CooperativeCompetitive 

7 0 8 -1 0 9 
0 9 -4 -3 0 6 



    Interdependence Space Information  
In previous work, we presented a situation analysis 
algorithm that calculated characteristics of the social 
situation or interaction (such as interdependence) when 
presented with an outcome matrix (Wagner & Arkin, 
Analyzing Social Situations for Human-Robot Interaction, 
2008). The interdependence space is a four-dimensional 
space which maps the location of all interpersonal social 
situations (Kelley, Holmes, Kerr, Reis, Rusbult, & Van 
Lange, 2003). A matrix’s location in interdependence 
space provides important information relating to the 
interaction. The interdependence, correspondence, and 
symmetry dimensions may be of particular importance for 
phrase selection. The interdependence dimension measures 
the extent to which each individual’s outcomes are 
influenced by the other individual’s actions in a situation. 
In a low interdependence situation, for example, each 
individual’s outcomes are relatively independent of the 
other individual’s choice of interactive behavior (Figure 1 
left for example). A high interdependence situation, on the 
other hand, is a situation in which each individual’s 
outcomes largely depend on the action of the other 
individual (Figure 1 right for example). Correspondence 
describes the extent to which the outcomes of one 
individual in a situation are consistent with the outcomes 
of the other individual. If outcomes correspond then 
individuals tend to select interactive behaviors resulting in 
mutually rewarding outcomes, such as teammates in a 
game. If outcomes conflict then individuals tend to select 
interactive behaviors resulting in mutually costly 
outcomes, such as opponents in a game. Symmetry refers 
to the balance of control that one individual has over 
another’s outcomes. In a symmetric situation both 
individuals have equal ability to impact the other person’s 
outcomes. In an asymmetric situation, on the other hand, 
one individual has significantly more control over the other 
person’s outcomes. Our results showed that by analyzing 
the interaction, the robot could better select interactive 
actions (Wagner & Arkin, Analyzing Social Situations for 
Human-Robot Interaction, 2008).   

Analysis with respect to the interdependence space, 
which we call situation analysis, is another source of 
potentially valuable information for phrase selection. In 
this case, the interaction’s location in interdependence 
space could serve to influence characteristics of the phrase, 
such as tone, that is selected. For example, in an 
asymmetric situation the person in control may select a 
more demanding stance in the conversation. The person 
being controlled would likely assume a less demanding 
stance. Figure 4 presents examples of changes in tone that 
occur when the situation is located at different areas of the 
interdependence space.     

 

  

Summary and Conclusions 
This article has presented a method for using outcome 
matrices for social phrase selection. Typically outcome 
matrices represent a social decision problem in which both 
individuals select among different social actions. In the 
work presented here these social actions are replaced with 
phrases. Each phrase in the matrix includes outcome values 
indicating the change in influence that speaking the phrase 
would have on both agents. A method by which a universal 
set of phrases can be reduced to a subset appropriate for 
the context and the interactive partner has also been 
outlined. We have discussed a technique for using 
stereotypes to select phrases based on categories of 
individuals, the inclusion of disposition in phrase selection, 
and the use of interdependence space information. 
 Many of the methods that have been presented are 
preliminary in the sense that they have yet to be fully 
tested on an implemented system. Additionally, it is 
unclear if and how well this approach would scale to more 
dynamic and complex social systems. The described 
system, for instance, relies on a predetermined set of 
phrases. Learning of new phrases might be accomplished 
by directly copying statements made by the human and 
incorporating these statements into the robot’s universal set 
of phrases. Instantaneous phrase construction is not 
addressed and would likely be an important and necessary 
part of a system tasked with managing open ended dialog. 
Still, it is a potentially interesting question, how far the 
described system would go towards realistic dialog with a 

Figure 4 Examples of how the tone of a phrase might be
influenced by changes in interdependence space dimension. For
example, as the interdependence space dimension goes to
asymmetric the tone of the phrase could become more
demanding. 
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human. Even a partial system may allow the robot to 
interact in a more realistic manner. 
 Potential applications of the system might include a 
social robot that augments its existing social behavior with 
occasional phrases. Future work will focus on scalability 
and the development of applications based on a limited set 
of phrases.    
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