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Abstract— This work presents the evaluation of two mission
specification and task allocation architectures. These architec-
tures, described in part 1 of this paper, present novel means with
which to integrate a case-based reasoning (CBR) mission planner
with contract net protocol (CNP) based task allocation. In the first
design, the CBR and runtime-CNP architecture, the case-based
mission planner generates mission plans that support necessary
behaviors for CNP-based task allocation and execution. In the
second design, the CBR and premission-CNP architecture, task
allocation takes place during mission specification. The results
of an empirical evaluation of the CBR and runtime-CNP across
three naval scenarios is described. Finally, we briefly describe
an earlier usability evaluation of the CBR and premission-CNP
architecture using goals, operators, methods, and selection rules
modeling.

I. INTRODUCTION

Fielding teams of highly heterogeneous robots poses many
logistical challenges for their operators. As these teams and
their missions grow more complex, it becomes increasingly
important to examine systems in which this complexity can
be offloaded from the user. This work evaluates two such
systems. In the first, a case-based planner is used to assist
the user in generating complex multi-robot missions that
support runtime task allocation via CNP-based negotiation [1].
This system, the CBR and runtime-CNP architecture, allows
for the rapid creation of missions where task assignment is
deferred until needed, thus allowing the team to better handle
dynamic environments with uncertain objectives. The second
system, the CBR and premission-CNP architecture, integrates
task allocation and mission specification during the mission
creation process. Leveraging the user’s knowledge of the
component tasks of the mission, the CBR and premission-CNP
architecture creates mappings between the tasks and robots
that ensure the mission goals are achievable by the team.

Part 2 of this work presents the empirical evaluation of
both the CBR and runtime-CNP architecture and the CBR
and premission-CNP architecture while a detailed description
of both architectures is provided earlier in part 1 [2]. Here,
the performance of the CBR and runtime-CNP system is
examined in the context of three naval scenarios: naval mine

clearance, vessel interception, and target tracking. Finally, an
earlier usability evaluation of the CBR and premission-CNP
system is discussed.

II. BACKGROUND AND RELATED WORK

Mission specification, the process in which a detailed series
of steps to accomplish a mission is generated, can be an
arduous process for those who field multi-robot systems. As a
result, a number of mission specification systems and tools
have been developed to aid the user in generating these
plans. One such tool, used as the basis for this work, is the
MissionLab robotics software toolset [3].

MissionLab presents a graphical interface with which a user
can generate FSA mission plans for one or more robots. Recent
research has looked at incorporating case-based reasoning
tools within MissionLab to further streamline the mission
specification process [4]. The architectures evaluated here, and
detailed in part 1 of this paper, expand on this work. These
CBR/CNP architectures augment the case-based planner with
market-based task allocation to assist in creation of missions
for highly heterogeneous teams in uncertain environments.

Both the premission and runtime CBR/CNP architectures
evaluated afford different advantages to the user. The pre-
mission architecture, for instance, allows the user to rapidly
specify complex multi-task, multi-robot missions via a task-
based interface. While many systems exist which combine
off-line mission planning and task allocation [5][6], the pre-
mission architecture differs from them in several regards.
Many of these architectures integrate task allocation directly
in to the planning process via constraint matching. The CBR
and premission-CNP system, on the otherhand, is capable
of making finer-grained allocation decisions by not only
determining if a robot can perform the task, but also how
well it can perform the task. A notable exception to this, the
M+ architecture [7], provides similar task decomposition and
allocation before mission execution. The CBR and premission-
CNP architecture, however, differentiates itself through the use
of a powerful interface with which the user can easily generate,
modify, verify, and reuse mission specifications.



The runtime architecture’s strength, on the other hand, lies
in the ability to generate missions when the user may not know
the details of the mission objectives during specification. The
CBR and runtime-CNP architecture attempts to address this
problem by aiding the user in the specification of missions
that encapsulate on-line market-based task allocation [8]. A
number of market-based task allocation architectures have
been created, many of which are discussed in [8] and [9].
Of these, however, the most closely related are M+ [7] and
MURDOCH [10]. The M+ architecture provides both task
decomposition as well as on-line task reallocation in a manner
similar to the runtime system. The M+ architecture assumes,
however, that the tasks and a partial task ordering are known
at the time of mission specification. The CBR and runtime-
CNP system task allocation strategy, similar to that used in
MURDOCH, generate the robot-to-task mappings at runtime
as the tasks are introduced into the environment. The runtime
architecture and MURDOCH do differ, however, in their task
reallocation strategy.

III. EVALUATION

Because task allocation is integrated with mission speci-
fication at different timeframes for each of the two designs
(during mission execution vs. during mission specification),
the evaluation of each necessitates a different approach. The
CBR and runtime-CNP design integrates task allocation during
mission execution. We evaluate this approach through a series
of experiments conducted in simulation using the MissionLab
robotic software toolset. These experiments evaluate the CBR
and runtime-CNP architecture against two different baseline
systems in which the task allocation system is altered. The
CBR and premission-CNP design provides task allocation
during the mission specification stage. Therefore, we discuss
the usability impact of this design on the mission specification
process.

A. CBR and Runtime-CNP Design Evaluation

In order to evaluate the integrated CBR and runtime-CNP
architecture four sets of experiments were conducted. The first
two experiments compare the CBR and runtime-CNP system’s
task allocation strategy against that of a baseline system in a
naval mine clearance (NMC) and target interception domain.
The third and fourth experiments compare the CBR and
runtime-CNP architecture against a similar system in which
the ability to reallocate tasks in response to dynamic mission
parameters is lesioned. The experimental setup of each of these
is described below.

1) Random Allocation Experiments: The first two exper-
iments conducted with the CBR and runtime-CNP system
test our hypothesis that the intelligent allocation decisions
of CBR and runtime-CNP architecture will increase mission
performance over alternative allocation strategies utilizing less
information. Additionally, we hypothesize that any advantages
conferred by the CBR and runtime-CNP architecture will
increase with the team size when compared to the baseline

Fig. 1. Overview of the mission area for the NMC scenarios. Circles indicate
the initial deployment points of the robots.

system. The domains chosen to test these hypotheses were
naval mine clearance and target interception.

In the NMC mission, the team of robots locates nine mines
within the mission area (figure 1). The team is tasked with
approaching the mines and then neutralizing them. Team sizes
of two to six robots were used in addition to a command
and control vehicle which monitors the mission progress.
During mission execution, the command and control vehicle
is responsible for reporting the location of each mine found.
Upon discovery of a mine, the command and control vehicle
generates a call for proposals detailing the position of the
mine. The available robots in the mission area place bids
on the mine disposal task where the bid for each robot n is
calculated as 1

dist(robotn,mine) . The robot with the highest bid
wins the contract to disarm that particular mine. This process
is continued until all the mines in the mission area have been
neutralized. The experiment consisted of 50 trials. Each set
of fifty trials was repeated with teams ranging from 2 to 6
robots placed in random valid positions (i.e. unmanned surface
vehicles are not placed on land) within the mission area. The
mission completion time and cost in terms of the distance
traveled by the team was measured.

The CBR and runtime-CNP architecture was compared
against a control. This baseline system used the same mission
plan as generated by the CBR planner. It did not, however,
use CNP-based task allocation. Instead, when a mine was dis-
covered, a random robot was assigned the task of neutralizing
it. Data pertaining to mission completion time and the cost in
terms of the distance traveled by the team was collected over
fifty runs for team sizes ranging from 2 to 6 robots.

In the second experiment, both systems were compared
within a target interception scenario. In a target intercep-
tion mission, a robot must overtake a mobile surface vessel
launched from a near by pier (figure 2). The vessel interception
experiments used a highly heterogeneous team of unmanned
underwater vehicles (UUV), unmanned aerial vehicles (UAV),
and unmanned surface vehicles (USV). Each vehicle type had
differing velocity and fuel consumption characteristics.

Similarly to the NMC experiment, two sets of trials were
conducted; the first with the system utilizing the CBR and
runtime-CNP system, the second with the control. In the



Fig. 2. Mission area used for interception scenario. Enemy vessel originates
from the location marked pier.

TABLE I

TEAM MAKEUP FOR CBR AND RUNTIME-CNP TARGET INTERCEPTION

EXPERIMENT.

Team Size Team Composition
2 Robots UUV, USV
3 Robots UUV, USV, UAV
4 Robots UUVx2, USV, UAV
5 Robots UUVx2, USVx2, UAV
6 Robots UUVx2, USVx2, UAVx2

interception mission, the command and control vehicle, repre-
senting a distant surveillance aircraft, would generate a call for
proposals detailing the target’s last known position, heading,
and velocity. When responding to this call for proposals, the
team members first accept or reject it based on their ability to
intercept the target. If the call for proposals is accepted, the
bid submitted is calculated for robot n as rangen−dist(robotn,i)

rangen
,

where i is the interception point. This allows the team to
minimize the percentage of fuel used by the interceptor and
thus maximize the ability of the team to respond to future
goals. For the control, task allocation is decided by randomly
selecting a robot from the set of robots that accept the call for
proposals.

This experiment was repeated with teams ranging from 2 to
6 robots in random positions in the mission area for 50 trials
in each configuration. The team composition for each of these
experiments is shown in Table I, while the maximum velocity
and maximum range for each of the robot types is shown in
Table II. Data was collected pertaining to mission execution
time and fuel consumption of the team.

2) Static Task Allocation Experiments: A second series of
experiments was conducted in order to measure the ability
of the CBR and runtime-CNP system to respond to chang-
ing conditions during mission execution. These experiments
were conducted to examine the hypothesis that the CBR and
runtime-CNP system will afford significant advantages over
systems without task reassessment and reallocation, especially
in dynamic and potentially hostile missions.

Two sets of experiments were conducted to test this hy-
pothesis. The first set of experiments reexamines the NMC
scenario. Similar in setup to the first NMC experiment, a team

TABLE II

MAXIMUM VELOCITY AND RANGE FOR ROBOT TYPES IN INTERCEPT

SCENARIO

Robot Type Maximum Velocity Maximum Range
UUV 2.5 m/s 90km
USV 20 m/s 1152km
UAV 20 m/s 144km

TABLE III

FAULTS USED IN NMC SCENARIOS

Set Faults
1 At t = 30, USV 1 velocity reduced by 50%

At t = 60, USV 2 velocity reduced by 75%
2 At t = 30, USV 1 velocity reduced by 75%

At t = 70, USV 1 velocity increase by 400%
At t = 90, USV 3 velocity reduced by 25%

3 At t = 30, USV 1 fails
At t = 60, USV 2 velocity reduced by 75%

4 At t = 30, USV 1 fails
At t = 70, USV 2 fails

of four identical USVs are tasked with eliminating a number
of mines within a litoral environment. During the execution
of the mission, however, a series of faults were injected to
abstractly simulate a variety of scenarios that may occur during
mission execution. These faults, occurring at set times within
the mission, fall into two categories: partial and full. Partial
faults are meant to abstractly represent any situation that may
affect the velocity of the robot. Examples of a partial faults
may be rough weather or partial motor failure. Full faults, on
the other hand, represent situations that prevent the robot from
accomplishing the mission. These can include manipulator
failure in the case of an NMC scenario or total motor failure.

Four trials of 10 runs were executed. Each trial introduces a
set of two to three faults during each run. Two trials introduce
partial faults while the other two trials introduce full faults.
Table III shows the faults used in each of the four trials. Each
set of the four trials were repeated twice, once with the CBR
and runtime-CNP system and once with the baseline system.
When a fault occurs to a robot within the CBR and runtime-
CNP system, it will renege its contract if it is executing a task
and request for the task to be reallocated (possibly to the same
robot). The baseline system only supports static allocation.
That is, once a robot has been awarded a contract for a
task, it will execute the task until the task is complete. The
heuristic used to calculate bids for the robots in both system
was b = vn

dist(robotn,mine) , where vn is the velocity of robot
n. Performance was measured for both the CBR and runtime-
CNP system and the static allocation system by measuring
mission success rates and mission execution time.

In the final set of experiments, a target tracking scenario
was examined. In this scenario, a target object is transported
from a location on the mainland, across a channel, to an island
where it is then taken by air out of the mission area (figure



Fig. 3. Mission area used for target tracking scenario. Target begins on the
mainland depicted on the top left of the mission area, travels to the island,
and then flies from the mission area.

TABLE IV

ROBOT CHARACTERISTICS FOR TRACKING SCENARIO

Robot Type Maximum Velocity Mobility Stealth
UUV 5 m/s Sea Yes
UGV 10 m/s Land No
USV 10 m/s Sea No
UAV 15 m/s Air, Sea, Land No

3). The team deployed in the mission area is responsible for
tracking this object by following the transportation vehicle in
a stealthy manner when possible. A robot that is stealthy in
this scenario, means that the robot has low visibility (e.g.
a UUV). The component tasks within this scenario are a
series of tracking tasks based on the current mobility type
(land, sea, or air) of the target, the target’s current position,
and stealth requirements. A team of four robots was used in
this scenario: a UUV, UGV, UAV, and USV. Each vehicle
has differing velocities, mobility, and stealth characteristics.
These characteristics are summarized in table IV. The mobility
characteristics of each vehicle determine what kind of targets
can be tracked. (i.e. a UUV can track other underwater vessels
or surface vessels). A robot’s attempts to track a target outside
of its mobility value results in failure and a potential reneging
on its contract for that task.

During task allocation, each robot’s bid for the task was
calculated as vn

dist(robotn,target) , where vn is the velocity of
robot n. In addition, the bid is halved if the robot is not
considered stealthy. Similar to the NMC scenario, four trials
of 10 runs were executed for both the CBR and runtime-CNP
system and the baseline. Two of the four contained only partial
faults while the other two sets contained full faults. Table V
shows the faults used in each of the four trials. In each trial,
team members were placed in a random, valid location in the
mission area. Mission performance was measured as mission
success rates. In this case, a mission is considered successful
if the target is actively tracked by a team member at least 50
percent of the mission duration.

TABLE V

FAULTS USED IN TARGET TRACKING SCENARIOS

Set Faults
1 At t = 30, UAV velocity reduced by 90%

At t = 60, USV velocity increased by 50%
2 At t = 20, UUV velocity reduced by 50%

At t = 40, UAV velocity reduced by 40%
At t = 60, USV velocity reduced by 25%

3 At t = 30, UUV fails
At t = 45, UAV velocity reduced by 50%

4 At t = 20, UAV fails
At t = 40, USV velocity reduced by 50%

B. CBR and Premission-CNP Design Evaluation

We recently reported [11] on the use of Goals, Operators,
Methods, and Selection rules modeling (GOMS)[12][13] to
evaluate the usability of both the underlying base system as
well as to evaluate the impact of the CBR and premission-
CNP design. In this earlier research a series of GOMS models
was developed to characterize the base MissionLab system
in addition to the system augmented with the premission
CBR-CNP. GOMS models are a technique used in interface
modeling to explicitly represent the knowledge users utilize to
accomplish a particular goal with a user interface. To generate
the GOMS model, a user interface analyst details the particular
goals, operators, methods, and selection rules a user must
follow to accomplish a task with the interface.

In a GOMS model, a goal represents a self-contained
set of actions to accomplish a particular task. For mission
specification as described here, a goal might be to add a new
behavior to the robot’s FSA. Operators represent primitive
actions within the interface such as moving the mouse or
clicking a button. Methods represent a sequence of operators
that accomplish a goal.

Once models of both the base system and the CBR and
premission-CNP system have been created, they allow for
the verification, comparison, and quantization of a number of
interface characteristics1.

Through the analysis of these GOMS models, it was found
that the mission creation time using the base system could be
approximated by the function: t(n, τ) = A + Bn + 2Cnτ ,
where n represents the number of robots in the mission, τ
represents the number of component tasks in the mission, and
A,B, and C represent constant time factors within the model
such as mouse clicks or cursor movement.

In contrast, the premission CBR/CNP-based system was
found to have mission generation time approximated by the
function: t(τ) = D+Eτ , where τ is the number of component
tasks and D and E are constant time factors in the model.
From the analysis of the base system, it can be seen that for
a given value of τ , the time required for mission creation
increases linearly with the number of robots for the base
system. When utilizing the CBR and premission-CNP design,

1The full models generated in the GOMS evaluation can be found at
http://www.cc.gatech.edu/ai/robot-lab/onraofnc/data/goms-2005/.
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Fig. 4. Predicted cost for specifying a mission with a variable number of tasks
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however, mission creation time is constant with respect to the
number of robots in the mission. Figure 4 depicts the predicted
cost for generating missions using both systems for a variable
number of tasks and team sizes. A more thorough discussion
of these models, results, and additional verification of these
models can be found in [11].

IV. RESULTS

A. Random Allocation Experiments

Results of the naval mine countermeasures mission are
depicted in Figures 5 and 6. The cost as measured via the
distance traveled by team using the CBR and runtime-CNP
architecture was found to be significantly less than that of
the control for all team sizes. In most trials the CBR-CNP
controlled team traveled approximately 50% less for all team
sizes. In this experiment, the distance traveled by the control as
well as the time spent executing the mission usually increases
as team-size increases. In the case of the CBR/CNP-based
team, however, an increase in team size leads to more efficient
usage of the team as measured by the total distance traveled by
the team. This result highlights how the importance of proper
task allocation increases with the size of the team.

In the vessel interception experiments, a similar trend can
be seen. Figure 7 depicts the time until mission completion.
For all team sizes, the CBR/CNP-based team completes the
mission in significantly less time than the control. The team’s
fuel consumption, as depicted in Figure 8, also shows that the
CBR and runtime-CNP design performs significantly better
than the control. Both interception results and the NMC results
support our hypothesis, though the increase in performance
with team size is only marginal.

B. Static Allocation Experiments

Figures 9 and 10 depict the results of the NMC scenario
comparing the runtime system against a control only capable
of static task allocation. The percentage of successful missions
shows the importance of task reallocation when robot failure
occurs. The baseline system, unable to handle such failures,
completed only 30 percent of the trials. The CBR and runtime
CNP architecture also performed the task significantly faster
then the baseline system in these trials. In the trials in which
only partial failure occurred, however, performance of both

Fig. 5. a) Average time until removal of all mines for the CBR and runtime-
CNP design vs. control. Error bars indicate 95% confidence intervals.

Fig. 6. Average cost as measured by distance traveled during the mission
for the CBR and runtime-CNP design vs. control. Error bars indicate 95%
confidence intervals.

systems was similar. Both the baseline and the CBR and
runtime-CNP system were able to complete 100 percent of the
these trials. In addition, both systems performed equally well
in the trials with partial faults. This would seem to indicate
that, at least in the scenarios tested, the time taken to initiate
the auctions and reallocate the tasks (around 5 timesteps in
these experiments) negates the performance gains afforded by
reallocation when total robot failure does not occur.

The results of the final experiment, the target tracking
scenario, are summarized in figure 11. The performance of
the the CBR and runtime-CNP system, measured as the
percentage of successful missions executed, exceeded that of
the lesioned system for all trials. The CBR and runtime-
CNP system provided the means in with which to adapt
rapidly changing constraints of the tracking scenario mission,
supporting our stated hypothesis. The baseline system with
static task allocation, on the otherhand, more often resulted in
the robots attempting to perform tasks no longer achievable
(i.e. tracking a UGV with a UUV).

V. CONCLUSIONS

This work presented the evaluation of two approaches for
combining case-based reasoning mission specification with
a contract net protocol-based task allocation system. In the
CBR and runtime-CNP architecture, a CBR planner generates
mission plans for each robot that implements runtime task
allocation as well as plans for accomplishing any awarded



Fig. 7. Average time until interception of target vessel for the CBR and
runtime-CNP design vs. control. Error bars indicate 95% confidence intervals.

Fig. 8. Average cost as measured by percentage of fuel consumed by the
team for CBR and runtime-CNP design vs. control. Error bars indicate 95%
confidence intervals.
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Fig. 9. Mission success rates for the NMC scenario for each of the four sets
of faults.

tasks. This architecture was evaluated via simulation in three
naval scenarios. In this evaluation the CBR and runtime-
CNP evaluation has been shown to provide significant im-
provements over the static or random allocation strategies.
In addition, the results of these experiments show that the
runtime architecture is effective even in potentially adverserial
conditions. Finally, a brief overview of earlier work [11]
demonstrating the merits of the CBR and premission-CNP
architecture via a GOMS usability analysis was provided.
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