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This paper presents an algorithm for analyzing social situations within a robot. 
We contribute a method that allows the robot to use information about the 
situation to select interactive behaviors. This work is based on interdependence 
theory, a social psychological theory of interaction and interpersonal situation 
analysis. Experiments demonstrate the utility of the information provided by the 
situation analysis algorithm and of the value of this method for guiding robot 
interaction. We conclude that the situation analysis algorithm offers a viable, 
principled, and general approach to explore interactive robotics problems.
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1.	 Introduction

Sociologists and social psychologists have long recognized the importance of the 
situation as a determining factor of interpersonal interaction (Kelley et al., 2003; 
Kelley & Thibaut, 1978; Rusbult & Lange, 2003). Solomon Asch, a renowned psy-
chologist, stated that, “most social acts have to be understood in their setting and 
lose meaning if isolated.” (as cited in Kelley & Thibaut, 1978 pg. 4). If a goal of 
artificial intelligence is to understand, imitate, and interact with humans then re-
searchers must develop theoretical frameworks that will allow an artificial system 
to, (1) understand the situation-specific reasons for a human’s social behavior, and 
(2) consider the situation’s influence on the robot’s social behavior. Understand-
ing human interactive behavior is critical as it implies that the robot will then be 
capable of predicting and planning for future interactions and their consequences. 
Recognition of the situational impacts on a robot’s own interactive behavior is 
similarly necessary if robots will be expected to operate in the presence of humans 
in social settings such as the home or the workplace.
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This paper contributes an algorithm for extracting situation-specific informa-
tion and uses this information to guide interactive behavior. For our purposes, 
a social situation describes the environmental factors, outside of the individuals 
themselves, which influence interactive behavior. The objectives of this paper are 
to (1) introduce the human–robot interaction community to the ideas of interde-
pendence theory; (2) present a novel algorithm for situation analysis developed 
by the authors from interdependence theory that provides a robot with informa-
tion about its social environment; and (3) demonstrate that the algorithm provides 
information that can be profitably used to guide a robot’s interactive behavior. 
Simulation experiments accomplish the final objective. These simulations first 
demonstrate that the algorithm is applicable to robotics problems involving col-
laborations among humans and robots and then examine the algorithm’s effective-
ness across a wide expanse of social situations.

Consider, as a running example, an industrial accident involving a toxic spill 
and injured victims. A teleoperated robot is assigned to rescue victims and an au-
tonomous robot operates simultaneously to cleanup the spill. During the cleanup, 
both the human and the robot will select behaviors directed towards the effort. 
Perhaps due to the properties of the spilled material, the victims need to be cleaned 
before being rescued. In this case, the success of the cleanup depends entirely on 
both robots working together. Alternative chemical spills will allow the robot and 
the human to operate in an independent manner, with victims being rescued sepa-
rately from the cleanup. In either case, the situation should influence the autono-
mous robot’s decision to coordinate its cleanup behavior with the human or to 
operate independently. Moreover, the effectiveness of the cleanup will depend on 
the robot’s ability to characterize the situation and to use this characterization to 
select the appropriate behaviors.

The remainder of this paper begins by first summarizing related research. 
Next, our algorithm is described, followed by a set of experiments used to examine 
the algorithm. This article concludes with a discussion of these results and direc-
tions for future research.

2.	 Related work

Many researchers have explored human–robot interaction within a single social 
situation. Breazeal examines situations involving emotive dialogue between a hu-
man and a robot (Breazeal, 2002). Pineau et al. explore an assistive situation con-
cerning elderly residents of a retirement home and a robot (Pineau, Montemerlo, 
Pollack, Roy, & Thrun, 2003). Several researchers have explored interactive situa-
tions involving museum tour guides (see Fong, Nourbakhsh, & Dautenhahn, 2003 
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for a review). We, however, currently know of no direct consideration of the theo-
retical aspects of social situations as applied to interactive robots.

Social psychologists, on the other hand, have long considered the situation-
specific aspects of interpersonal interaction (Kelley & Thibaut, 1978). The use of 
social situations for examining social interaction is widespread within both neu-
roscience (Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003) and experimen-
tal economics (Berg, Dickhaut, & McCabe, 1995). Interdependence theory is a 
social psychological theory developed by Kelley and Thibaut as a means for un-
derstanding and analyzing interpersonal situations and interaction (Kelley & Thi-
baut, 1978). Interdependence theory began as a method for investigating group 
interaction processes and evolved over the authors’ lifetimes into a taxonomy of 
social situations categorizing interpersonal interactions (Kelley et al., 2003; Kel-
ley & Thibaut, 1978). It is often described as one of the most influential theories 
for exploring interpersonal relationships and has been characterized by some as 
a type of social exchange theory (Sears, Peplau, & Taylor, 1991). The term inter-
dependence specifies the extent to which one individual of a dyad influences the 
other. Using interdependence theory as a basis of analysis, psychologists have re-
cently developed an atlas of interpersonal situations that maps social situations to 
a multi-dimensional interdependence space (Kelley et al., 2003). The social situ-
ations that occupy this space are not ad hoc constructions. Rather, they represent 
real situations experienced by real people in the world (Kelley, 1979). Some situ-
ations, such as the prisoner’s dilemma, have been the focus of intense research 
involving human subjects spanning decades (Axelrod, 1984). Thus, if we expect 
robots to interact with untrained people in real world environments, it is impor-
tant for robots to master these situations.

3.	 Situation-based human–robot social interaction

Interdependence theory underlies our framework for situation-based human–
robot interaction. The following section briefly summarizes the aspects of inter-
dependence theory that are used in this work. Next, an algorithm, which uses 
aspects of interdependence theory to produce information about social situations 
is detailed. Afterwards, we develop a complete computational process by which a 
robot can use perceptual information to guide interactive behavior.

3.1	 Interdependence theory

Interdependence theory is based on the claim that people adjust their interactive 
behavior in response to their perception of a social situation’s pattern of rewards 
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and costs. Thus, each choice of interactive behavior by an individual offers the 
possibility of specific rewards and costs — also known as outcomes — after the 
interaction. Interdependence theory represents social situations computationally 
as an outcome matrix (Figure 1). Outcome matrices are the social psychological 
equivalent to game theory’s normal form game. An outcome matrix represents a 
social situation by expressing the outcomes afforded to each interacting individual 
with respect to the pairs of behavior choices selected by the dyad. Figure 1 shows 
the outcome matrix for our toxic spill cleanup example. In the dependent situation 
in Figure 1, the robot receives outcome equal to the number of hazards if both the 
robot and the human cooperate and choose to cleanup hazards, but receive a zero 
outcome if they do not cooperate. Critics of interdependence theory often state 
that (1) it ignores the non-economic aspects of interpersonal interaction such as 
altruism and (2) that it assumes people are rational, outcome maximizers. Kel-
ley responds to these criticisms directly, stating that the non-economic aspects of 
interaction can also be included in a description of a person’s outcomes and that 
the theory does not presume either rationality or outcome maximization (Kel-
ley, 1979). Rather, as will be explained shortly, individuals often transform so-
cial situations to include the irrational aspects of socialization such as emotion or 
social bias.
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Figure 1.  This figure depicts two example outcome matrices for the cleanup of a toxic 
spill and the rescue of victims by a human and a robot. During any one interaction, both 
individuals choose to either rescue a victim or clean up a hazard. The outcomes resulting 
from each pair of choices are depicted in the cells of the matrix. The human’s outcomes 
are listed below the robot’s outcomes. In the leftmost matrix, the outcomes for the human 
and the robot are independent of the other’s action selection. In the rightmost matrix, the 
outcomes of the human and the robot largely depend on the other’s action selection.
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Kelley and Thibaut conducted a vast analysis of both theoretical and experi-
mental social situations and were able to generate a space that mapped particu-
lar social situations to the dimensional characteristics of the situation (Kelley & 
Thibaut, 1978). This interdependence space (Figure 2 depicts three of the four 
dimensions) is a four dimensional space consisting of: (1) an interdependence 
dimension, (2) a correspondence dimension, (3) a control dimension, and (4) a 
symmetry dimension. The interdependence dimension measures the extent to 
which each individual’s outcomes are influenced by the other individual’s actions 
in a situation. In a low interdependence situation, for example, each individual’s 
outcomes are relatively independent of the other individual’s choice of interac-
tive behavior. A high interdependence situation, on the other hand, is a situation 
in which each individual’s outcomes largely depend on the action of the other 
individual. Correspondence describes the extent to which the outcomes of one 
individual in a situation are consistent with the outcomes of the other individu-
al. If outcomes correspond then individuals tend to select interactive behaviors 
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Figure 2.  Three dimensions of interdependence space are depicted above (Kelley et 
al., 2003). Interdependence theory represents social situations computationally as an 
outcome matrix within this interdependence space. The dimensions depicted above are 
interdependence, correspondence, and basis of control. Planes within this space denote 
the location of some well-known social situations, including the prisoner’s dilemma 
game, the trust game, and the hero game. A matrix’s location allows one to predict pos-
sible results of interaction within the situation.
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resulting in mutually rewarding outcomes, such as teammates in a game. If out-
comes conflict then individuals tend to select interactive behaviors resulting in 
mutually costly outcomes, such as opponents in a game. Control describes the way 
in which each individual affects the other’s outcomes in a situation. In some situ-
ations individuals must exchange action for reaction, such as situations involving 
buying and selling. Alternatively, some situations demand that individuals coordi-
nate their actions to produce a result, as in the rescue of a victim that is too heavy 
to be saved by one individual alone. Symmetry describes the balance of a situa-
tion’s outcomes in favor of one individual over another. In a symmetric situation, 
both individuals have equal influence over their partner’s outcomes. Asymmetric 
situations, on the other hand, place more influence over the situation’s outcomes 
in one individual than in the other.

A matrix’s location in interdependence space provides important information 
relating to the situation. For example, in a situation of low interdependence the 
robot should generally select the behavior that maximizes its own outcome, be-
cause its choice of action will not have a large impact on the outcome of its partner. 
We term the process of deconstructing a matrix into its interdependence space 
dimensions situation analysis. As will be demonstrated, the information provided 
by situation analysis can be used to profitably guide interactive behavior selection 
by a robot.

3.2	 The situation analysis algorithm

Situation analysis is a general technique we developed from interdependence the-
ory to provide a robot with information about its social situation. As an algorithm, 
it can be used in an on-line or an off-line manner to provide information about 
any social situation represented by an outcome matrix. Thus, in theory, a robot 
could use situation analysis as a tool to investigate potential social situations it 
might encounter or situations that have occurred in the past among others. The 
input to the algorithm is an outcome matrix representing the social situation. The 

The Situation Analysis Algorithm

Input: Outcome matrix O
Output: interdependence space tuple 〈α, β, χ, δ〉.

1.	 Use procedure from Figure 3 to deconstruct the outcome matrix.
2.	 Use the equations in Table 1 to calculate the dimensional values 

for the interdependence space tuple.
3.	 Return the tuple

Box 1.  An algorithm for the analysis of a social situation.



	 Analyzing social situations for human–robot interaction	 283

algorithm outputs a tuple, 〈α, β, γ, δ〉, indicating the situation’s location in the four 
dimensional interdependence space. Situation analysis involves (1) deconstruct-
ing the outcome matrix into values representing the variances in outcome and 
(2) the generation of the dimensional values for the interdependence space. Box 1 
describes situation analysis algorithmically.

The first step is matrix deconstruction. This procedure iteratively separates the 
values in the input or raw outcome matrix into three separate matrices (Figure 3) 
(Kelley & Thibaut, 1978). The Bilateral Actor Control (BAC) matrix represents 
the variance in outcome resulting from the robot’s own interactive decisions. This 
matrix thus quantifies the robot’s control over its own outcomes. The Mutual Part-
ner Control (MPC) matrix, on the other hand, represents the variance in outcome 
resulting from a partner’s interactive decisions and thus quantifies a partner’s con-
trol over the robot’s outcomes. Finally, the Mutual Joint Control (MJC) matrix 
represents the variance in outcome resulting from both the robot’s and its partner’s 
joint interactive decisions. In other words, the MJC matrix describes how each 
individual is affected by his, her, or its joint actions. As depicted in Figure 3, all 
outcome variance occurs in the BAC matrix when deconstructing an independent 
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Figure 3. The procedure (from Kelley & Thibaut, 1978) for deconstructing a social situation is presented 
above. This procedure is an analysis of variance of the outcome matrix that deconstructs the raw outcome 
matrix into three new matrices (the BAC, MPC, and MJC) representing different forms of control over the 
situation’s outcomes. The outcome values for each of these three matrices are produced from the raw 
outcome matrix by iteratively 1) adding the noted cells, 2) dividing by the number of actions, and 3) 
subtracting the individual’s mean outcome value. The variances of each matrix type are generated by 
calculating the outcome range for each choice of behavior and each individual. Because this example is of an 
independent situation, the MPC and MJC matrices do not vary. 

Figure 3.  The procedure (from Kelley & Thibaut, 1978) for deconstructing a social situ-
ation is presented above. This procedure is an analysis of variance of the outcome matrix 
that deconstructs the raw outcome matrix into three new matrices (the BAC, MPC, and 
MJC) representing different forms of control over the situation’s outcomes. The outcome 
values for each of these three matrices are produced from the raw outcome matrix by 
iteratively (1) adding the noted cells, (2) dividing by the number of actions, and (3) 
subtracting the individual’s mean outcome value. The variances of each matrix type are 
generated by calculating the outcome range for each choice of behavior and each indi-
vidual. Because this example is of an independent situation, the MPC and MJC matrices 
do not vary.
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situation. This procedure results in values for variables BC, PC, JC individually 
representing the variance of both the robot’s and the human’s outcomes in the 
situation. The subscripts in this figure denote the variance of the outcome for the 
robot (R) and the human (H) respectively.

Once the variances for the situation have been computed these values can be 
used to calculate the situation’s location in interdependence space. This is accom-
plished using equations (1–4) from Table 1. Equations (1) and (2) are from (Kelley 
& Thibaut, 1978). Equations (3) and (4) are contributions of this work. Equation 
(3) subtracts the outcome resulting from joint action by the individuals from the 
outcome resulting from partner and individual control. This value is then nor-
malized. Equation (4) subtracts one individual’s control over their own outcomes 
from the other individual’s control. This value is normalized with respect to both 
individuals’ outcomes. These values constitute the tuple 〈α, β, γ, δ〉, the situation’s 
location in interdependence space.

Table 1.  Calculation of the interdependence space dimensions given the variances from 
Figure 3.
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3.3	 Using situation analysis to select interactive behaviors

The situation analysis algorithm presented above begs several questions. Notably, 
(1) how are the outcome matrices created? (2) How is the location in interdepen-
dence space used to control a robot’s behavior? (3) Does knowing a situation’s 
location in interdependence afford valuable information for determining which 
behavior to select? This section addresses each of these questions in turn.

The creation of outcome matrices that accurately reflect a robot or agent’s so-
cial environment is a current topic of investigation for several research groups. 
Vorobeychik, Wellman, and Singh, for instance, have explored the use of ma-
chine learning techniques to determine the outcome values in an outcome matrix 
(Vorobeychik, Wellman, & Singh, 2005). Nevertheless, the absence of a general 
approach for creating outcome matrices has not impeded their use in numerous 
fields. Neuroscience researchers, for example, use the value of money to directly 
populate the outcome matrix (see Sanfey, Rilling, Aronson, Nystrom, & Cohen, 
2003 as an example). Moreover, a great deal of work has considered the challenge 
of representing uncertainty within an outcome matrix (Osborne & Rubinstein, 
1994). Results range from probabilistic expectations over the utility values to cu-
mulative probability functions that model normative human responses capturing 
several types of psychological phenomena (Kahneman & Tversky, 1992). More-
over, often the actual values within the cells of a matrix are less important than 
the relation of one cell to another cell. For example, it is typically more valuable to 
know which action in an outcome matrix provides maximal reward than it is to 
know the actual value of the reward provided. We therefore assume that a method 
for creating the outcome matrix from a social situation exists and that the outcome 
matrix created accurately reflects the social situation including its uncertainty. For 
the experiments conducted as part of this research, the number of hazards and 
victims perceived is used to construct the outcome matrix (Figure 1). These ma-
trices expand upon the human–robot cleanup situation described previously. In 
these examples, both the human and the robot select either an action to rescue a 
victim or to cleanup a hazard. The outcome for each pair of selected actions, in this 
case, is a function of the number of victims and hazards in the environment. The 
functions in Figure 1 were selected to give the autonomous robot a preference for 
cleanups and the teleoperated robot a preference for victims. Preferences such as 
these might result from the configuration of each robot. In the independent situa-
tion, for example, if the robot chooses to cleanup a hazard and the human chooses 
to rescue a victim, then the human obtains an outcome equal to the number of 
victims and the robot obtains an outcome equal to the number of hazards. In the 
dependent condition, on the other hand, positive outcome is only obtained if both 
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the robot and the human select the same action. A situation such as this could oc-
cur if victims must be cleaned prior to be being rescued.

Before discussing how this information is used to control a robot’s behavior, 
we consider strategies by which the outcome matrix can be directly used to select 
actions. The most obvious method for selecting an action from an outcome matrix 
is to simply choose the action that maximises the robot’s outcome. We term this 
strategy max_own. Alternatively, the outcome matrix can be transformed to create 
a new, different matrix that the robot uses to select a behavior. Table 2 lists several 
different methods for transforming an outcome matrix. In the case of max_other 
the partner’s outcome values are swapped with the robot’s outcome values. The 
max_joint transformation, on the other hand, replaces the robot’s outcomes with 
the sum of the robot and its partner’s outcome. Once an outcome matrix has been 
transformed, the max_own strategy is used to select an action. This simple tech-
nique of transforming the outcome matrix and then using the max_own strategy 
to select a behavior serves as a control strategy and has the benefit of changing 
the character of the robot’s response without consideration of the actual actions 
involved.

Because the situation analysis algorithm simply provides information, this 
information could theoretically be used in many different ways to aid action se-
lection. For instance, rules could directly map a situation’s location to a particu-
lar action. Alternatively, the information could be used to select transformations 

Table 2.  A list of several simple matrix transformations. The list is not exhaustive.
Transformation 
name

Transformation mechanism Social character

max_own No change Egoism — the individual selects the ac-
tion that most favors their own outcomes

max_other Swap partner’s outcomes with 
one’s own

Altruism — the individual selects the 
action that most favors their partner

max_joint Replace outcomes with the sum 
of the individual and the partner’s 
outcome

Cooperation — the individual selects 
the action that most favors both their 
own and their partner’s outcome

max_diff Replace outcomes with the differ-
ence of the individual’s outcome 
to that of the partner

Competition — the individual selects 
the action that results in the most rela-
tive gain to that of its partner

min_diff Maximize the value of the action 
that has the minimal difference to 
that of the partner.

Fairness — the individual selects the ac-
tion that results in the least disparity

min_risk Maximize the value of the action 
that has the greatest minimal 
outcome

Risk-aversion — the individual selects 
actions that result in the maximal guar-
anteed outcomes
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(Table 2). One advantage of the latter method is that it does not require knowledge 
of the actions available to the robot. Rather, the situation’s interdependence space 
location is used to alter the character of the robot’s response independent of inter-
active actions available. Another advantage of this approach is that, one can test 
a specified set of transformations at a given location to determine which trans-
formation is best at that location. In this manner, a mapping of interdependence 
space location to transformation can be developed which is independent of the 
individuals interacting and the actions available. As will be discussed in the next 
section, our initial step for this research was creating this mapping of situation 
location to transformation.

Finally, does knowing a situation’s location in interdependence space afford 
valuable information? We approached this question empirically by performing 
two experiments in simulation. The first experiment investigates the value of this 
information in a practical scenario. The second experiment considers the value of 
knowing the situation’s location over the entire interdependence space.

3.4	 Mapping a situation’s location to a transformation

A mapping from a situation’s location to a transformation can be described for-
mally as the function f : L → T where L is the interdependence space location and T 
is the space of possible transformations. We subdivide the interdependence space 
into three areas of interest to robotics researchers, namely high interdependence 
(αR ≥ 0.75) and low correspondence (β ≤ 0), high interdependence (αR ≥ 0.75) 
and high correspondence (β > 0) and low interdependence if αR < 0.75. These 
areas are abbreviated as lhl, lhh, ll respectively. The area lhl represents situations in 
which the robot’s outcomes greatly depend on its partner but the robot and the 
human do not select actions towards the same goal, potentially resulting in poor 
outcomes for the robot. The area lhh, on the other hand, describes situations in 
which the robot’s outcomes also greatly depend on its partner and both the robot 
and the human select actions towards the same goal. Finally, the area ll represents 
the location of situations in which the robot’s outcomes do not greatly depend 
on its partner. Thus L = {lhl, lhh, ll} describes the domain of f. The codomain of f is 
T = {max_own, min_own, max_other, min_other, max_joint, min_joint, max_diff, 
min_diff, min_risk} (see Table 2 for descriptions), the set of transformations con-
sidered as part of this work.

Given the preceding description, the challenge then is to determine for each 
location in L which transformation from T results in the greatest overall net out-
come. To do this we created a random matrix and then used the situation analysis 
algorithm to determine the matrix’s location in interdependence space until we 
had 1000 matrices in each area lhl, lhh, ll. Random matrices consisted of an empty 
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matrix populated with random numbers between 0 and 24. Next, for every matrix 
in each area lhl, lhh, ll, we iterated through the set T altering the matrix according 
to the transformation’s specification (Table 2). Afterward, a simulated robot selects 
the action from the transformed matrix that maximizes its outcome. The robot’s 
simulated partner also selects an action from the original matrix that maximizes 
its outcome. Finally, the robot’s outcome resulting from the action pair (as dictated 
by the original matrix) is recorded. Figure 7 in Section 4.1 graphically depicts this 
procedure and the other experimental procedures used.

Table 3 presents the mean outcome resulting from each transformation at each 
location. The transformation that results in the greatest mean outcome for each 
location is shaded. Note that the difference in mean outcome for several of the 
transformations is not great. This lack of difference reflects the similarity of the 
transform in the particular area of interdependence space. More importantly, it 
foreshadows the need of a robot to interact with its partner in a variety of situa-
tions located at different positions in interdependence space in order to determine 
the partner’s transformation preference or type. The table indicates that max_own, 
max_joint, and min_risk are the best transformations of the group of possible 
transformations in low interdependence, high interdependence/high correspon-
dence, and high interdependence/low correspondence situations respectively. 
From this data the function f mapping interdependence space location to transfor-

mation takes the following form, f(l *) = *
max_own
max_joint
min_risk

 for 
l * = ll
l * = lhh
l * = lhl

 where l * is the in-

Table 3.  The cells denote the mean outcome obtained by the transformation at each 
location. The shaded cells indicate the mean of the best transformation. The confidence 
interval is included for all values.
Low interdependence High interdependence/high 

correspondence
High interdependence/low 
correspondence

Transformation Mean 
outcome

Transformation Mean 
outcome

Transformation Mean 
outcome

max_own 13.47 ± 0.46 max_own 15.01 ± 0.39 max_own 14.27 ± 0.41
min_own 10.36 ± 0.46 min_own   8.75 ± 0.40 min_own 7.712 ± 0.38
max_other 11.67 ± 0.43 max_other 15.10 ± 0.36 max_other   7.80 ± 0.37
min_other 11.86 ± 0.43 min_other 10.52 ± 0.42 min_other 12.94 ± 0.42
max_joint 12.90 ± 0.43 max_joint 16.03 ± 0.34 max_joint 13.40 ± 0.42
min_joint 11.16 ± 0.44 min_joint   9.55 ± 0.41 min_joint 10.52 ± 0.43
max_diff 11.41 ± 0.46 max_diff 10.41 ± 0.43 max_diff   9.93 ± 0.47
min_diff 12.08 ± 0.42 min_diff 12.48 ± 0.43 min_diff 12.10 ± 0.41
min_risk 13.08 ± 0.41 min_risk 14.82 ± 0.38 min_risk 14.79 ± 0.37
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terdependence space location generated by the situation analysis algorithm. This 
function can also be visualized as the decision tree in Figure 4.

3.5	 A computational process for situation analysis

Assuming that outcome matrices can be generated and given the mapping from 
interdependence location to transformation developed in the preceding section, 
a computational process can be developed that selects a robot’s behavior from its 
perception of the situation. This computational process is depicted in Figure 5. 
The right side of this figure depicts a stepwise procedure for generating interactive 
action from perception. The first step is the creation of an outcome matrix. In our 
experiments, these either were derived perceptually using matrices in Figure 1, or 
generated by populating an empty matrix with random values. The next two steps 
consist of the situation analysis algorithm described in Section 3.2, which results 
in an interdependence space tuple. This tuple is then mapped to a transforma-
tion using the function f (also depicted in Figure 4). The transformation is used to 
transform the original matrix in the next step. The transformation process results 
in the construction of an outcome matrix on which the robot can act — the effec-
tive situation (Kelley & Thibaut, 1978). In the final step, the robot selects the action 
in the effective situation that maximizes its own outcome. The left side of Figure 5 
depicts an example run through the procedure. The next section discusses our 
empirical examination of this process.

 

 

Interdep.

Corresp.

Interdependence
space dimension 

values 

0≤β

0>β

min_risk 
transformation

max_joint 
transformation 

max_own 
transformation 

Transformation selection 

75.0<Rα

75.0≥Rα

Figure 4.	 A mapping of interdependence space location to outcome matrix transformation.
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4.	 Experiments and Results

The preceding discussion has described how an outcome matrix can be mapped 
to a location in interdependence space and how information about the matrix’s 

A Computational Process for Situation Analysis 

Perception 

Conversion of perceptual 
stimuli into outcome matrix 

Given Situation 

Transformation type 

Action selected 
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select the action maximizing 

outcome 
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Transform the outcome matrix 

Matrix deconstruction: Generate 
variances from outcome matrix 
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dimension values 
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Figure 5.	 This figure depicts the algorithmic process contributed by this work. The process 
consists of six steps. The first step generates an outcome matrix. The second step analyzes the 
matrix’s variances. The third step computes the situation’s interdependence space dimensions. 
These two steps constitute the process of situation analysis. The fourth step selects a transfor-
mation and in the fifth step, the transformation is applied to the outcome matrix resulting in 
the effective situation. Steps 4 and 5 constitute the transformation process. Finally, an action is 
selected.
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location can be used to select a robot’s interactive action. We have not yet shown, 
however, that the information afforded by the situation analysis algorithm results 
in better interactive behavior on the part of the robot. The experiments presented 
in this section, therefore, examine the value of the information generated by the 
situation analysis algorithm. Value here is operationalized as increase in net out-
come. Both experiments test the hypothesis that the use of the situation analysis 
algorithm will result in an increase in net outcome when compared to alternative 
control strategies.	 The first experiment uses the computational process 
from Figure 5 to guide a simulated robot’s action selection in the cleanup and res-
cue example described in Section 1. The second experiment generalizes the results 
from the first experiment to the entire interdependence space and compares the 
algorithm to a larger number of control strategies.

4.1	 Situation analysis in practice

To revisit the scenario described in the first section, a teleoperated robot attempts 
to rescue victims of an industrial accident while an autonomous robot works to 

Figure 6.	 The simulation environment used for the cleanup and rescue experiment is depicted 
above. The experiment required that a teleoperated robot rescue victims while an autonomous 
robot performs a cleanup. Experimental conditions included independent versus dependent 
situations and the use of our situation analysis algorithm versus a control strategy. The teleop-
eration interface used by the human is depicted the right.
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cleanup a spill. We considered two scenarios in simulation: one involving greater 
dependence (high interdependence condition) and another involving little de-
pendence (low interdependence condition). Notionally, because of the properties 
of the chemical the high interdependence condition requires that the victims be 
cleaned before being rescued. Thus, in this condition, the robots must both coop-
erate in order to complete the rescue task successfully. In the low interdependence 
condition, both robots can operate independently of one another. This scenario 
is based on the well-studied foraging problem in robotics (Arkin, 1998). Figure 6 
depicts the layout. Potential victims and hazards for cleanup are located within a 
disaster area. A disposal area for hazardous items is located towards the bottom 
and a triage area for victims is located to the right.

This experiment compares the net outcome obtained by both robots as well as 
the number of victims rescued and hazards cleaned in four separate conditions. In 
the experimental conditions, the autonomous robot used the computational pro-
cess depicted in Figure 5 to select its action. In the control conditions, the autono-
mous robot consistently selected the behavior that maximized its own outcome 
without consideration of its partner (max_own). The experimental and control 
condition were explored in both high interdependence situations and low interde-
pendence situations. A high interdependence situation was created by populating 
the dependent outcome matrix from Figure 1. Similarly, a low interdependence 
situation was created by populating the independent outcome matrix from the 
Figure 1. Thus, the experiment consisted of the following four conditions: high 
interdependence-situation analysis, high interdependence-control strategy, low 
interdependence-situation analysis, low interdependence-control strategy. In all 
conditions, the teleoperated robot selected the behavior that maximized its own 
outcome without consideration of its partner (max_own). The primary author 
controlled the teleoperated robot. Because the teleoperated robot employs a static 
strategy, experimenter bias is eliminated.

Figure 7 describes the experimental procedure used (middle procedure). First, 
a random number of victims and hazards were generated. Next, the victims and 
hazards were randomly placed in the environment. In the low interdependence 
condition, the autonomous robot perceives the number of victims and hazards 
and uses the independent matrix from Figure 1 to create its outcome matrix. In 
the high interdependence condition, the autonomous robot uses the dependent 
matrix to create its outcome matrix. The outcome matrix is then tested using the 
situation analysis algorithm and the control strategy. The behaviors that the robot 
selects are actually collections of actions that direct the robot to locate the closest 
attractor, pickup the attractor, transport the attractor to a disposal area where it is 
dropped off and finally return to a staging area. The MissionLab mission specifica-
tion system was used. MissionLab is a graphical software toolset that allows users 
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Figure 7.  The procedures used to create and use outcome matrices are depicted above. 
The left side details the procedure used to generate Table 3. This procedure first iterates 
through all matrices in each areas lhl, lhh, ll and then iterates through the set of transfor-
mations to produce the matrix the robot will use to select actions. The middle procedure 
first creates a random number of victims and hazards. Next, an independent and depen-
dent matrix is created from the number of victims and hazards. Finally, in the control 
conditions, max_own is used to select an action. In the test procedure, situation analysis 
is used to select an action. The right most procedure, first generates a random matrix and 
then transforms the matrix with respect to a control matrix or uses situation analysis. The 
robot selects an action from the transformed matrix. The interaction example at the bot-
tom denotes the method used to determine how much outcome each individual receives 
from the presentation of an outcome matrix.
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to generate mobile robot behavior, test behaviors in simulation, and execute col-
lections of behaviors on real, embodied robots (MacKenzie, Arkin, & Cameroon, 
1997).

We conducted thirty trials in each of the four conditions. In these experi-
ments, interaction occurs when both individuals (autonomous robot and teleop-
erated robot, or both simulated robots) are presented with an outcome matrix and 
simultaneously select actions from the matrix receiving the outcome that results 
from the action pair. We recorded the number of victims rescued and the hazards 
collected after each trial. We predicted that the situation analysis algorithm would 
outperform the control strategy in the dependent condition but not in the inde-
pendent condition. Independent situations, by definition, demand little consid-
eration of the partner’s actions. Thus, in these situations, the autonomous robot’s 
performance is not affected by the actions of the partner. Dependent situations, 
on the other hand, demand consideration of the partner, and we believed that our 
algorithm would aid performance in these conditions.

Figure 8 illustrates the results from the cleanup and rescue experiment. The 
left two bars portray the results for the independent situation. In these conditions, 
the autonomous robot forages for hazards to cleanup and the human-operated 
robot forages for victims. Thus, in all of the 30 trials each robot retrieves either a 
victim or a hazard. As predicted, both robots faired equally well in this condition.

Cleanp and Rescue Experiment Results

30 30

8
18

30 30

4

4

282

173

532532

0

100

200

300

400

500

600

Independent Situation/Control
Robot

Independent Situation/Test
Robot

Dependent Situation/Control
Robot

Dependent Situation/Test
Robot

Experimental Condition

N
et

 O
ut

co
m

e

0

10

20

30

40

50

60

70
N

um
be

r o
f A

ttr
ac

to
rs

R
et

rie
ve

d

Rescued Victims Hazards Cleaned Net Outcome

Quantifying Situation Analysis Gains

1380713698

12035

13891
14330

15464

11500

12000

12500

13000

13500

14000

14500

15000

15500

16000

Maximum
Possible

Analyze
Situation

Max. Own
Outcome

Min. Diff Max. Joint Min. Risk

Mechanism for Interactive Behavior Selection

Ne
t O

ut
co

m
e

Figure 8.	 Results for the cleanup and rescue experiment are presented above. The line graph 
portrays the net outcome for each condition. The bars depict the number of hazards and vic-
tims retrieved. Hazards cleaned are shown above the number of victims rescued. The left two 
bars and line points depict the independent conditions for both the test and the control robot. 
In these conditions both the control and test robot perform equally well. The right two bars 
and line points examine the dependent situation. In this situation the test robot outperforms 
the control robot.
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In the dependent condition, the best possible score was thirty. The autono-
mous robot’s use of situation information results in ten additional victims being 
rescued. Thus, as predicted, in the dependent condition the autonomous robot’s 
use of situation information affords better performance than the robot that does 
not consider the situation. In this case, the information provided by our algorithm 
indicates to the autonomous robot that its outcomes for this situation rely on col-
laboration with its human-operated partner. The control strategy, on the other 
hand, fails to consider the partner’s role even though the situation demands col-
laboration, hence resulting in poorer performance.

Overall, this experiment demonstrates that the information resulting from an 
analysis of the social situation can improve a robot’s ability to perform interactive 
tasks similar to collaborative foraging. The algorithm we have proposed success-
fully uses perceptual stimuli in the environment to produce information about the 
social situation. Minimally, we have shown the feasibility of our approach and the 
potential importance of situational considerations in human–robot interaction, 
ideas which have not been investigated as a part of HRI in the past. Neverthe-
less, the results of this experiment are limited in several ways. First, the situations 
encountered as part of the experiment are derived from a limited portion of the 
interdependence space. Second, only a single control strategy was considered. The 
next experiment generalizes these results to the entire interdependence space and 
considers additional controls.

4.2	 Situation analysis over the entire interdependence space

Whereas the previous experiment only explored high interdependence or low in-
terdependence outcome matrices, this experiment considers outcome matrices 
from every corner of the interdependence space. We examine the algorithm’s per-
formance over thousands of different matrices representing a broad spectrum of 
the interdependence space. Because of time-constraints, it was not possible to test 
each of these matrices using interaction between a human and a robot. Rather, 
the human was replaced with an agent that selected the behavior that maximized 
its own outcome without consideration of its partner (max_own). The strategy 
employed by the human in the first experiment and the agent in this experiment 
were identical.

For this experiment, we also compare the algorithm’s performance to four dif-
ferent control strategies. For the first control strategy, the autonomous robot con-
sistently selected the behavior that maximized its own outcome without consider-
ation of its partner (max_own). For the second control strategy, the autonomous 
robot consistently selected the behavior that minimized the difference of its and its 
partner’s outcome (min_diff). For the third control strategy, the autonomous robot 
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consistently selected the behavior that maximizes the sum of its and its partner’s 
outcome (max_joint). For the final control strategy, the autonomous robot con-
sistently selected the behavior that resulted in the greatest guaranteed outcome 
(min_risk).

Figure 7 describes the experimental procedure used (right procedure). First, a 
random matrix is created from an empty matrix populated with random numbers 
between 0 and 24. The random matrix in this case does not have actions assigned. 
Hence, these matrices are abstract in the sense that the rewards and costs are asso-
ciated with selecting one of two non-specified actions. Once a matrix is created, it 
is presented to both the simulated robot and the agent. Both simultaneously select 
actions from the matrix receiving the outcome that results from the action pair. 
The simulated robot uses either situation analysis or a control strategy to deter-
mine which action to select from the matrix. This experiment was conducted as a 
numerical simulation and hence did not occur in a robot simulation environment. 
In other words, the simulated robot in this case was an agent that selects an action 
in accordance with the strategy dictated by the experimental condition, but did 
not actually have to perform the action in an environment. Consequentially, this 
experiment did not require perceptual generation of the outcome matrix and the 
actions selected by the agents did not affect the environment.

Cleanp and Rescue Experiment Results
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Figure 9.	 Results of this second experiment are presented above. The second bar from the left 
indicates the net outcome when our procedure is used. The next four bars are the controls for 
the experiment. Error bars indicate 95% confidence interval. Analyzing the situation resulted 
in the greatest net outcome of when compared to the control strategies. The leftmost bar por-
trays the maximum possible net outcome.
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In order to ensure coverage over the entire space, we examined one hundred 
trials each consisting of 1000 randomly generated outcome matrices. We recorded 
the outcome obtained by each individual for the pair of actions selected. We pre-
dicted that the net outcome received by the simulated autonomous robot would be 
significantly greater when the robot used the computational process from Figure 5 
when compared to the controls. We reasoned that, on average, the information 
provided by situation analysis would be valuable to the robot for its selection of its 
behavior. We thus hypothesized that the use of this information would result in a 
greater net outcome than the control strategies.

Figure 8 presents results for this experiment. The second bar from the left de-
picts the net outcome using our algorithm. The next four bars to the right indicate 
the net outcome for the control conditions. Our algorithm significantly outper-
forms the controls in all four conditions (p < 0.01 two-tailed, for all). The maxi-
mum possible outcome for a robot with complete a priori knowledge of all of its 
partner’s actions is also depicted to the left for reference.

The results confirm our prediction that use of the situation analysis algo-
rithm results in greater net outcome than does the use of the control strategies. 
The graph also indicates that our procedure outperforms several different control 
strategies. Furthermore, the results show that our procedure is beneficial on aver-
age to an agent or robot that will face many different social situations from unique 
locations in the interdependence space. Still, the algorithm performs far below 
the maximum possible. Better performance could likely be achieved by increas-
ing the size of the domain and codomain of f, the mapping from interdependence 
space location to transform (from Section 3.4). In this work, we subdivided the 
interdependence space into three areas, denoted lhl, lhh, ll. Greater subdivision 
of the space would make better use of the information provided by the situation 
analysis algorithm. We also limited the number of transformations considered to 
nine. Additional transformations would increase the algorithm’s performance if a 
novel transformation outperformed all other transformations at some location in 
the space.

The value of the situation analysis algorithm, as presented in this paper, stems 
from the very fact that it knows nothing of its interactive partner. The computa-
tional process does not assume anything about the partner. Rather it operates only 
on the information available within the outcome matrix. This is in contrast to game 
theory, which operates on the presumption of the partner’s rationality (Osborne 
& Rubinstein, 1994). We expect that the performance of this approach would in-
crease drastically as additional, partner specific, information is provided.
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5.	 Conclusions

This paper has introduced a method for capturing information about social situ-
ations and for using this information to guide a simulated robot’s interactive be-
havior. We have presented an algorithm for situation analysis and a computational 
process for using the algorithm. Our approach is derived from the social psycho-
logical theory of interdependence and has close ties to the psychology of human–
human interaction (Kelley & Thibaut, 1978). The value of knowing a situation’s 
location in interdependence space has been highlighted with experiments indicat-
ing that, on average, this information can aid in selecting interactive actions and 
that in some situations this information is critical for successful interaction and 
task performance.

One limitation of our approach is that it requires that the robot’s and its part-
ner’s utilities, as well as the actions available to both individuals, be represented in 
an outcome matrix. Nevertheless, researchers are developing methods to create 
these outcome matrices automatically (Vorobeychik, Wellman, & Singh, 2005). 
We also do not address the challenge of managing uncertainty in this article. Much 
work has already addressed this topic with respect to the outcome matrix (Os-
borne & Rubinstein, 1994). The uncertainty present in the outcome matrix will 
result in similar uncertainty in the situation’s location in interdependence space.

We have presented one method for using information about a situation’s lo-
cation to guide behavior selection. Our method relates the matrix’s location to 
a transformation of the matrix. For the most part, we have not used all of the 
information available. We did not, for example, explore the effect of a situation’s 
symmetry on the behavior of the robot. Symmetry describes the balance of con-
trol that the robot or its partner has over the other. The value of this dimension 
could play an important role in determining behavior. We intend to explore this 
possibility as part of future work. Moreover, we have assumed throughout that the 
partner consistently selects the max_own transformation. The exploration of dif-
ferent partner types will also be the fruits of future work. Additional avenues for 
future work will also focus on extending these results to real robots. We believe 
that the embodiment afforded by a real robot will present both new challenges and 
new opportunities.

In summary, it is our contention that this approach offers a general, principled 
means for both analyzing and reasoning about the social situations faced by a ro-
bot. The development of theoretical frameworks that include situation-specific in-
formation is an important area of study if robots are expected to move out of the 
laboratory and into one’s home. Moreover, because this work is based on research 
which has already been validated for interpersonal interaction, we believe that 
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it may eventually allow an artificial system to reason about the situation-specific 
sources of a human’s social behavior.
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