

Multi-robot User Interface Modeling

Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

Mobile Robot Lab
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0250
{alan.wagner, endo, pulam, arkin}@cc.gatech.edu

Abstract. This paper investigates the problem of user interface design and
evaluation for autonomous teams of heterogeneous mobile robots. We explore
an operator modeling approach to multi-robot user interface evaluation.
Specifically the authors generated GOMS models, a type of user model, to
investigate potential interface problems and to guide the interface
development process. Results indicate that our interface design changes
improve the usability of multi-robot mission generation substantially. We
conclude that modeling techniques such as GOMS can play an important role
in robotic interface development. Moreover, this research indicates that these
techniques can be performed in an inexpensive and timely manner, potentially
reducing the need for costly and demanding usability studies.

Keywords. User interface design, Goals Operators Methods Selection Rules
(GOMS), Contract Network Protocol (CNP), Case-Based Reasoning (CBR)

1 Introduction

This paper investigates the problem of user interface design and evaluation for
teams of heterogeneous, cooperative, and (generally) autonomous mobile
robots. As part of NAVAIR’s Intelligent Autonomy program, the purpose of
this research is to reduce the burden of deploying teams of heterogeneous
robots and conducting multi-robot missions. The methods we detail, however,
are general purpose and applicable to virtually any software interface.
Moreover, we contend that these methods hold special promise for developers
of multi-robot systems.

Our approach is motivated by the notable challenges multi-robot systems
present to user interface designers. Currently, as the size of the multi-robot
team increases, so do the startup, running, and maintenance demands placed
on the user [1]. Users can become overwhelmed with situation awareness
information in high workload environments. Moreover, because multi-robot

applications tend towards mission critical domains, such as search and rescue
and military domains, users must be capable of quickly and easily assessing
important situation information while also being shielded from insignificant
or redundant information.

This paper details a modeling approach to multi-robot user interface
evaluation. This approach is used to assess the effectiveness of novel interface
and algorithmic changes made to an existing multi-robot software toolset.
Roboticists have traditionally conducted usability experiments to gauge the
state of their interface designs [2]. Usability experiments, however, are
expensive, time-consuming, and too cumbersome for effective interface
development [3]. Moreover, for specialized software, such as multi-robot
mission specification systems, usability testing typically requires difficult to
find domain experts to assess the interface design. Alternatively, random or
semi-random subject populations are used. These populations, however, tend
to have little or no experience with the application in question, whereas, in
reality, the target population may have significant experience with either
previous versions or similar types of software. These reasons serve as a
motivation to explore alternatives to formal usability studies such as GOMS
(Goals, Operators, Methods and Selection rules) modeling [4].

2 Related Work

At least two aspects of user interface design differentiate existing evaluations
in robotics from those in software engineering and HCI. First, within robotics
researchers typically evaluate user interface designs at the system architecture
level (e.g., [5]), rather than at the level of particular algorithms and features.
Some exceptions exist [2]. Software engineering practices and Human
Computer Interaction (HCI) researchers, on the other hand, routinely examine
the user interface implications of specific changes to existing software
packages (e.g., [6]) as well as conducting system level evaluations. Second,
usability studies represent the majority of formal user interface evaluations
within robotics [2]. The software engineering and HCI disciplines, on the
other hand, employ a wider array of user interface techniques including
heuristics and user modeling [5]. A GOMS model is a type of user model that
describes the knowledge a user must posses in order to perform tasks with the
system [3]. Research by Yanco et al. represents the only example of GOMS
based user interface design evaluation within robotics located to date [7].
Yanco et al. focus on the challenge of a specific robotics domain and a
usability coding scheme inspired by GOMS. Our intention, rather, is to
explore the use of GOMS as a primary means of evaluating incremental
additions to a multi-robot user interface.

3 User Interface Modeling

A GOMS model explicitly represents the knowledge that a user must have in
order to accomplish goals using an interface [3]. Natural GOMS Language
(NGOMSL) is one method for explicitly representing GOMS models [8].
NGOMSL is a structured language notation in program form (see examples
below). As a knowledge representation, a GOMS model can also serve to
characterize ongoing user decisions or as a description of what a user must
learn. Moreover, because user goals tend to be constrained by interface
design, GOMS models can quantitatively predict aspects of usability such as
the efficiency and simplicity of procedures.
 A user interface analyst conducts a GOMS analysis by a describing in
detail the goals, operators, methods, and selection rules a user must follow for
a set of tasks. A goal is something that a user tries to accomplish. For
example, one goal resulting from our GOMS analysis is to edit the parameters
of a robot behavior. An operator is an action that a user executes. An example
of an operator is moving the cursor to a screen location. A method is a
sequence of operators for accomplishing a goal. The following example
method (in NGOMSL) accomplishes the goal of adding a mission behavior:

 Method for goal: add behavior KLM op Time(s)
Step 1: Locate add behavior icon M 1.2
Step 2: Move cursor to add behavior icon P 1.1

 Step 3: Click mouse button BB 0.2
 Step 4: Think-of new icon location M 1.2
 Step 5: Move cursor to new location P 1.1
 Step 6: Click mouse button BB 0.2
 Step 7: Return with goal accomplished Total 3.0

Finally, a selection rule (also in NGOMSL) routes control to the correct
method for accomplishing a goal when many possible methods are possible.
 A GOMS analysis begins by first describing a top-level goal and its
associated high-level operators and by then iteratively replacing these
operators in a breadth-first manner with methods and selection rules that
accomplish each goal until all of the operators are primitive and cannot be
further analyzed. The analyst may choose his or her own primitive operators,
but typically, standard primitive operators from the Keystroke-Level Model
(KLM) are used [3]. These primitives offer a well-documented mean time of
operation and in some cases functional estimates.
 Once the GOMS analysis is complete, the analyst can perform a
qualitative evaluation of the interface to examine the efficiency, consistency,
and cleanliness of the design. The analyst can also use the GOMS model to
estimate the execution time of specific user tasks and the amount of effort that
it will take users to learn procedures represented in the model.

 GOMS modeling, however, is not without limitations. The execution and
efficiency predictions generated from a GOMS model assume error-free
performance. A GOMS model therefore represents a best-case evaluation of
an interface. Still, GOMS models provide a valuable baseline for comparison
of interface changes. GOMS modeling can also require subjective decisions
and judgment calls. In spite of these subjective decisions, the analyst
objectively constructs the majority of the model based on the actual state of
the interface design. Overall, GOMS modeling serves more to guide interface
development than to completely replace usability testing [6].

4 A Case Study in Multi-robot User Interface Modeling

GOMS modeling has been successfully employed within HCI and software
engineering [7, 9], but is relatively unknown within robotics [7]. It is our
contention that GOMS assessments of multi-robot user interface designs
could play a vital role in the generation and rapid prototyping of future multi-
robot system interfaces. To explore this hypothesis we conducted a detailed
GOMS analysis of features recently added to the MissionLab toolset [9].
 MissionLab allows users to generate multi-robot missions in the form of a
FSA (Finite State Acceptor) in which nodes representing the robot’s
behaviors are connected via directed edges representing the robot’s perceptual
trigger schemas. The FSA serves as a flexible robot mission and can be
stored, copied, or edited as needed to generate novel missions. This software
system also features a Case-Based Reasoning (CBR) wizard that abstracts
entire multi-robot missions as cases to be matched to the user’s needs (Figure
1 left) [2]. The CBR wizard can also use cases as high-level drag-and-drop
robot tasks, hence simplifying the mission creation procedure.
 Our current investigation considers a scenario where multiple,
heterogeneous robots are available for tasking. With respect to mission
generation, multi-robot tasking presents additional challenges to the user. In a
system of many robots, or when each robot affords unique capabilities, the
user may have to assign each task to a robot. The generation of a multi-robot
mission, in this case, demands (1) the user delineate the tasks necessary for
the mission, and (2) the user assign each of these tasks to a specific robot or
robots. The CBR wizard eases the first challenge but does not assist with the
second.
 To manage these challenges we have developed a novel method for
generating multi-robot missions which employs a Contract Net Protocol
(CNP) working in conjunction with the CBR Wizard to reduce the burdens
placed on the user (see [10] for a review of multi-robot CNP). In its most
general form, CNP is an auction-style algorithm in which the robots of a
multi-robot system produce bids based on their estimate of their ability to
perform the auctioned task. Typically, when the auction closes CNP assigns

the highest bidder the task. Our system uses CNP as a method to aid the user
by assigning robots to specific tasks prior to the start of the mission. In this
role, the goal of the pre-mission CNP system is thus to generate an a priori
mapping of robots to available pre-mission tasks.

User Interface

CNP
Task Allocation

CBR
Adaptation

CBR Memory

MissionRequirements
Preferences

Task-based
Constraints

Sub-Missions

1

2 3

3 4

Fig. 1. Integrated CBR-CNP system for multi-robot mission generation

This system operates by first relaying a set of robot requirements and task
requirements to a CNP task allocation component (Figure 1 right). The CNP
component then conducts an auction resulting in a robot-to-task mapping. The
system then uses this mapping to retrieve a sub-mission from CBR memory
for each robot. Using additional user task preferences, these sub-missions are
adapted into a single full mission. Finally, the system presents the complete
mission with robot-to-task assignments to the user for acceptance, alteration,
or rejection.

To assess the usability of the new features the authors created two GOMS
models, one for the base system (no CBR or CNP) and one for the integrated
CBR-CNP system. Both models evaluate the general methods available to
users for creating multi-robot multi-task missions, beginning with the decision
to build a new mission and ending with a complete mission. In some cases,
the analyst made judgment calls concerning which GOMS operator to use or
execution time estimates. As much as possible the analyst strived to maintain
consistency across both models. Each model required approximately 20-30
hours to construct and was created by the lead author using guidelines

available from [3]. Additional supplementary data and both complete models
are available at www.cc.gatech.edu/ai/robot-lab/onraofnc/data/goms-2005/.

5 Results

5.1 Mission Generation Time Predictions

The time required to generate a mission is determined from the method
and operator execution times in the GOMS model [3]. The base system
GOMS model predicts the generation time of a multi-robot multi-task
mission to be a function of both the number of robots in the mission and
the complexity of the tasks each robot is to perform. The mission
generation time of the base system in seconds,

gbt , is predicted to be:

 ChnCgnBnAhgnt gb +++=),,((1)

where n is the number of robots, g is the average number of behaviors per
task, and h is the average number of triggers per task. Table 1 lists model
coefficients. Thus, 78.3 seconds are required to generate any mission without
regard to the number of robots or the complexity of the mission. The mission
generation time incurs a further cost of 26.7 seconds for each additional robot
represented by the second term. The number of behaviors and triggers
composing a task is also expected to have large impact on the mission
generation time. As shown by equation (1) 34.8 seconds are necessary per
robot and per behavior or trigger. Alternatively, one can estimate the mission
generation cost as:
 ττ CnBnAnt gb 2),(++= (2)

where τ is the number of tasks. Equation (2) assumes that all tasks require the
same number of behaviors and triggers (hg +=τ2) and that a single task

is equivalent to a single behavior and a trigger. This, however, is generally not
the case and equation (2) is offered solely for comparison to the integrated
CBR-CNP GOMS model.

Table 1. Model coefficient values.

 Initial Model Coefficient Values Refined Model Coefficient Values
A 78.30 74.22
B 26.70 18.28
C 34.80 32.08
D 85.30 77.92
E 24.30 19.56

 The integrated CBR-CNP GOMS model, on the other hand, predicts the
generation time of a multi-robot multi-task mission will only be a function of

the number of tasks. In this case, the mission generation time in seconds,
git ,

is governed by:
 ττ EDt gi +=)((3)

where τ is the number of tasks. The integrated CBR-CNP model incurs a 7.0
seconds greater startup cost (AD −). This cost is primarily due to the need
to select the option for CBR-CNP. Users incur a further cost for each task.
Because the integrated system abstracts from the user the assignment of each
robot to a task, mission generation is independent of the number of robots.
Moreover, comparing equations (2) and (3), we note that the models predict
that the integrated CBR-CNP system requires approximately 44.3 seconds
less per task (EC −2 ; assumes a single robot) than the base system given
that the assumptions mentioned above hold.

5.2 Learning Effort Predictions

The effort required to learn how to generate a mission is determined from
the number and length of the methods in the GOMS model [3]. User
learning effort is estimated from the number of NGOMSL statements in
each model. The total number of NGOMSL statements in the model
describes the amount of procedural knowledge a user must have in order
to use all aspects of the software system. User training describes the
process of learning this procedural knowledge. Hence, models with fewer
individual statements require less effort to learn.
 The GOMS model of the base system (no CBR or CNP) included 187
individual statements that encompassed the procedures necessary for
creating a multi-robot multi-task mission. The GOMS model of the
integrated CBR-CNP system, in contrast, included 147 operators. We,
therefore, expect the base system to require approximately 21.3 % more
procedural knowledge.
 We did not conduct experiments to confirm this result. However, if
one assumes that additional procedural knowledge results in less accuracy,
then this result corroborates related prior usability studies conducted by
our lab [2]. This earlier work examined the use of the CBR wizard for a
variety of mission generation tasks and found that it improved the
accuracy of mission generation on tasks requiring two robots by
approximately 33%. Our GOMS models indicate that this increase in
accuracy may partially result from the reduced workload on the user. Our
models also predict that less accuracy will be gained when generating a
single robot mission compared to a multi-robot mission. This was also
found to be the case in [2].

5.3 Comparison of Model Estimations to Actual Expert Performance

The results from the previous two sections clearly and quantitatively indicate
the value of the CBR-CNP. As far as the case study is concerned, these results
are sufficient. We decided, however, to also investigate the methodology itself
by examining the accuracy of the predicted execution times for both GOMS
models. In particular, we hoped to determine (1) if the primitive KLM
operators used for the models accurately reflected experimental values for
expert users and (2) if these primitive operators are immune to experimenter
bias. To accomplish this, we conducted an experiment involving system
experts. These experiments attempted to gauge the accuracy of both the
overall models and of several GOMS methods that could then use to refine the
models. The experiment required the expert to create multi-robot multi-task
missions 20 times using both the base system and the integrated CBR-CNP
system. During data collection, time data was recorded related to all of the
users’ actions. The experts used for the study consisted of six members of the
same research lab including three authors of this paper. We hypothesized that
because GOMS operators consist of low-level primitives such as individual
key strokes that experimenter bias would be minimal. Moreover, the authors
decided which GOMS methods to compare after experimentation but before
analyzing the data. Thus, no subject knew which part of the experiment would
be used.

Table 2. Predicted and actual execution times.

 Predicted Exec.
Time (s)

Empirical Exec.
Time (s)

Refined Exec.
Time (s)

Base System 1662.9 187.80 ± 20.02 1522.3
CBR-CNP 133.9 53.96 ± 7.75 117.04

 Table 2 lists the mean execution times for both the integrated and base
systems. The models predict that the execution time for approximately the
same mission (2,11,11,2 ==== τhgn) will require about 12.4 times

the execution time on the base system than on the integrated CBR-CNP
system. Empirical results indicate that the actual execution times are less for
both systems (based on five of six subjects). These experiments reveal that the
execution time on the base system requires approximately 3.5 times the
execution time compared to the integrated CBR-CNP system.
 There are several possible reasons for the discrepancy between the
predicted and empirical results. First, some primitive operator execution times
may not be correct for this particular experiment. Gong and Kieras found that
mouse movements are more accurately estimated from Fitts’ Law than by the
Keystroke-Level Model (KLM) time of 1.2 sec used here [11]. Second, the

base system model does not assume that the user will use shortcuts although
some subjects did. Third, neither model factors in the performance gains
associated with repeatedly constructing the same missions. Regardless of the
precise gains in performance realized by one system over the other, the most
important point is that the GOMS models accurately indicate the utility of the
CBR-CNP interface changes.

Subject Execution Time on GOMS Methods

-1

0

1

2

3

4

5

6

7

8

GOMS Methods

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

Model S1 S2 S3 S4 S5 S6

Yes/No/OK
Method

Place Task
Method

Select Overlay
Method

Add Behavior
Method

Add Trigger
Method

Fig. 2. A scatter diagram of the experimental execution time for expert users on five
GOMS methods is depicted. Error bars represent 95% CI. The two rightmost methods
are from the base model. The next two methods are from the CBR-CNP model and the
leftmost method occurred in both models. The blue diamond on the dashed line depicts
the execution time for each method predicted by the GOMS models. The left of each
dashed line depicts the actual time for three experimenters. The right of each dashed
line depicts the time for experimentally naïve expert users.

Figure 2 depicts the predicted execution times and actual execution times for
several arbitrarily selected methods in the GOMS models. The independent
variable represents the GOMS method selected and the dependent variable
describes the subject’s execution time. The Yes/No/OK Method (see
appendix for GOMS methods) occurs in both GOMS models and
experimental conditions. The Place Task Method and the Select
Overlay Method occur in only the CBR-CNP model and experimental
condition. Finally, the Add Behavior Method (presented in section 3)
and the Add Trigger Method occur in the base system model and
experimental condition. The dashed line denotes the execution time predicted
by the models. The subjects to the left of each dashed line are also the

experimenters. The subjects to the right of the dashed line are naïve subjects.
The figure shows that the execution time predictions from our initial model
are significantly greater then the actual expert execution times. As a result, we
can now revisit the model and update the execution times for greater
accuracy. Table 1 compares the initial model coefficients to refined model
coefficients. Table 2 presents execution times based on these refined models.
The predicted execution times for both refined models are closer to the actual
execution times.

 Several other points are also of interest. First, as indicated by figure 2, no
experimenter bias is apparent. This is important because it increases the
subject pool for potential user interface experiments. Hence, it appears that
expert subjects can be drawn from the authors of the study itself, given the
restrictions outlined above; possibly further reducing the challenge of user
interface evaluation. Second, GOMS experiments are robust to experimental
error. A data collection error occurred for one subject (S4) and another subject
misunderstood the directions (S3). The data collection error (S4) resulted in
elimination of this subject’s mission execution time results (in Table 2) but
did not affect the subject’s data collected while completing the GOMS
methods (data in Fig. 2). Subject 4’s misunderstanding of the directions
resulted in fewer data points for the Add Behavior Method (~150 versus
~220 normal). In spite of this experimental error, enough data was collected to
produce statistically significant conclusions. Usability studies often face
similar challenges and must completely exclude data from some subjects due
to errors such as these. Nevertheless, because GOMS models are constructed
from low-level user interface primitives, data from these subjects could still
be salvaged.
 Overall, both GOMS models and our experimental results indicate the
value of the CBR-CNP user interface. Moreover, our modeling results and
empirical results can be used for additional future interface design evaluations
of this system.

6 Conclusions

This paper has investigated user interface modeling as a method for
evaluating multi-robot interface design. We compared two GOMS models,
one representing the base system with additional features for multi-robot
multi-task mission generation and the other without. Our results indicate that
these new multi-robot mission generation features substantially improve the
usability of the MissionLab software. We intend to evaluate future interface
designs using the same techniques, which may include the construction of a
GOMS library of expert operator execution times. This should aid in the
construction of more accurate future models.

 We believe, and our case study has shown, that modeling techniques such
as GOMS can play an important role in robotic interface development.
Moreover, our work indicates that researchers can perform these techniques in
a relatively inexpensive and timely manner. It is our sincere hope that other
robotics researchers will consider the lessons described here, and in detail by
HCI specialists [3], when designing user interfaces for critical robot
applications operating in hazardous environments.

Acknowledgements

This research is funded as part of Navair’s Intelligent Autonomy program. We
would like to thank Ed Clarkson for lending his HCI expertise and Zsolt Kira,
Lilia Moshkina, and Eric Martinson for assisting with this research.

References

1. J.A. Adams. (2002) Critical Considerations for Human Robot Interface
Development, Proceedings of 2002 AAAI Fall Symposium, 1-8.

2. Y. Endo, D.C. MacKenzie, and R.C. Arkin. (2004) Usability Evaluation of High-
Level User Assistance for Robot Mission Specification, IEEE Transactions on
Systems, Man, and Cybernetics, 34, 168-180.

3. D. Kieras (1994). A guide to GOMS model usability evaluation using NGOMSL, In
M. Helander & T. Landauer (Eds.), The handbook of human-computer interaction.
(Second Edition), North-Holland Amsterdam.

4. S.K. Card T.P. Moran, and A.P. Newell (1983) The Psychology of Human-
Computer Interaction, Lawrence Erlbaum, Hillsdale, N.J.

5. D.C. MacKenzie and R.C. Arkin. (1998) Evaluating the Usability of Robot
Programming Toolsets, International Journal of Robotics Research, 17(4), 381-401.

6. B.E. John and D.E. Kieras. (1996) Using GOMS for User Interface Design and
Evaluation: Which Technique?, ACM Transactions on Computer-Human Interaction,
3(4), 287-319.

7. H. A. Yanco, J. L. Drury, and J. Scholtz. (2004) Beyond usability evaluation:
Analysis of human-robot interaction at a major robotics competition, Journal of
Human-Computer Interaction, 19, 117-149.

8. B.E. John and D.E. Kieras. (1996) The GOMS Family of User Interface Analysis
Techniques: Comparison and Contrast, ACM Transactions on Computer-Human
Interaction, 3(4), 320-351.

9. D.C. MacKenzie, R.C. Arkin, and J.M. Cameron. (1997) Multiagent Mission
Specification and Execution, Autonomous Robots, 4, 29-52.

10. M.B. Dias, R.M. Zlot, N. Kalra and A. Stentz. (2005) Market-Based Multirobot
Coordination: A Survey and Analysis, Carnegie Mellon University Tech Report CMU-
RI-TR-05-13.

11. Gong, R., and Kieras, D. (1994) A Validation of the GOMS Model Methodology
in the Development of a Specialized, Commercial Software Application. In
Proceedings of CHI, Boston, MA, USA, pp. 351-357.

Appendix

Method for goal: select yes-no-ok KLM op Time(s)
 Step 1: Locate yes-no-ok button M 1.2
 Step 2: Move cursor to yes-no-ok button P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Return with goal accomplished Total 2.5
 Refined Total 1.14
Method for goal: place task KLM op Time(s)
 Step 1: Think-of placement point M 1.2
 Step 2: Move cursor to placement point P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Verify that placement point is correct M 1.2
 Step 5: Return with goal accomplished Total 3.7
 Refined Total 0.91
Method for goal: select overlay KLM op Time(s)
 Step 1: Locate name in the file list box M 1.2
 Step 2: Move cursor to the file name location P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Locate ok button M 1.2
 Step 5: Move cursor to ok button P 1.1
 Step 6: Click mouse button BB 0.2
 Step 7: Forget overlay name and return Total 5.0
 Refined Total 1.82
Method for goal: add trigger KLM op Time(s)
 Step 1: Locate trigger icon M 1.2
 Step 2: Move cursor to trigger icon location P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Locate trigger tail behavior location M 1.2
 Step 5: Move cursor to trigger tail behavior P 1.1
 Step 6: Press mouse button down B 0.1
 Step 7: Locate trigger tip behavior M 1.2
 Step 8: Move cursor to tip behavior P 1.1
 Step 9: Release mouse button B 0.1
 Step 10: Return with goal accomplished Total 7.3
 Refined Total 0.87

