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Abstract. This paper investigates the problem of user interfdesign and
evaluation for autonomous teams of heterogeneoumlenmbots. We explore
an operator modeling approach to multi-robot usderface evaluation.
Specifically the authors generated GOMS modelgjpa bf user model, to
investigate potential interface problems and to dguithe interface
development process. Results indicate that ounfate design changes
improve the usability of multi-robot mission gentwa substantially. We
conclude that modeling techniques such as GOMSnan important role
in robotic interface development. Moreover, thise@ch indicates that these
techniques can be performed in an inexpensiveiarayt manner, potentially
reducing the need for costly and demanding usgtstitdies.
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1 Introduction

This paper investigates the problem of user interfdesign and evaluation for
teams of heterogeneous, cooperative, and (generallionomous mobile
robots. As part of NAVAIR’s Intelligent Autonomyr@gram, the purpose of
this research is to reduce the burden of deploy@&agns of heterogeneous
robots and conducting multi-robot missions. Thehods we detail, however,
are general purpose and applicable to virtually @oftware interface.
Moreover, we contend that these methods hold speianise for developers
of multi-robot systems.

Our approach is motivated by the notable challemgeli-robot systems
present to user interface designers. Currenthfthassize of the multi-robot
team increases, so do the startup, running, andtemgince demands placed
on the user [1]. Users can become overwhelmed sittlation awareness
information in high workload environments. Moregveecause multi-robot



applications tend towards mission critical domaswh as search and rescue
and military domains, users must be capable ofkdyiiand easily assessing
important situation information while also beingedtied from insignificant
or redundant information.

This paper details a modeling approach to multetobser interface
evaluation. This approach is used to assess thetiwiness of novel interface
and algorithmic changes made to an existing malibt software toolset.
Roboticists have traditionally conducted usabilityperiments to gauge the
state of their interface designs [2]. Usability exments, however, are
expensive, time-consuming, and too cumbersome ftactave interface
development [3]. Moreover, for specialized softwasech as multi-robot
mission specification systems, usability testingidglly requires difficult to
find domain experts to assess the interface degiljernatively, random or
semi-random subject populations are used. Theselgtoms, however, tend
to have little or no experience with the applicatio question, whereas, in
reality, the target population may have significaxperience with either
previous versions or similar types of software. Sehgeasons serve as a
motivation to explore alternatives to formal usipistudies such as GOMS
(Goals, Operators, Methods and Selection rules)etivogi [4].

2 Related Work

At least two aspects of user interface design diffeate existing evaluations
in robotics from those in software engineering &@l. First, within robotics
researchers typically evaluate user interface desig the system architecture
level (e.g., [5]), rather than at the level of partar algorithms and features.
Some exceptions exist [2]. Software engineeringctmas and Human
Computer Interaction (HCI) researchers, on therdtl@d, routinely examine
the user interface implications of specific chandesexisting software
packages (e.g., [6]) as well as conducting sysevel levaluations. Second,
usability studies represent the majority of formakr interface evaluations
within robotics [2]. The software engineering an€IHdisciplines, on the
other hand, employ a wider array of user interfé@ehniques including
heuristics and user modeling [5]. A GOMS model tgfe of user model that
describes the knowledge a user must posses in rgerform tasks with the
system [3]. Research by Yanco et al. represent®ithe example of GOMS
based user interface design evaluation within robadbcated to date [7].
Yanco et al. focus on the challenge of a specifibotics domain and a
usability coding scheme inspired by GOMS. Our ititen rather, is to
explore the use of GOMS as a primary means of atialy incremental
additions to a multi-robot user interface.



3 User Interface Modeling

A GOMS model explicitly represents the knowledgat th user must have in
order to accomplish goals using an interface [3tuxal GOMS Language
(NGOMSL) is one method for explicitly representi@OMS models [8].
NGOMSL is a structured language notation in progfarm (see examples
below). As a knowledge representation, a GOMS maedal also serve to
characterize ongoing user decisions or as a déiscripf what a user must
learn. Moreover, because user goals tend to betragmesd by interface
design, GOMS models can quantitatively predict ergpef usability such as
the efficiency and simplicity of procedures.

A user interface analyst conducts a GOMS analygi® describing in
detail the goals, operators, methods, and selenties a user must follow for
a set of tasks. A goal is something that a usestibo accomplish. For
example, one goal resulting from our GOMS analigsie edit the parameters
of a robot behavior. An operator is an action enaser executes. An example
of an operator is moving the cursor to a screemtion. A method is a
sequence of operators for accomplishing a goal. fitlewing example
method (in NGOMSL) accomplishes the goal of addingission behavior:

Met hod for goal: add behavi or KLM op Ti ne(s)
Step 1: Locate add behavior icon M 1.2
Step 2: Mve cursor to add behavior icon P 1.1
Step 3: dick nmouse button BB 0.2
Step 4: Think-of new icon |ocation M 1.2
Step 5: Move cursor to new | ocation P 1.1
Step 6: dick nmouse button BB 0.2
Step 7: Return with goal acconplished Tot al 3.0

Finally, a selection rule (also in NGOMSL) routesntrol to the correct
method for accomplishing a goal when many possii#éhods are possible.

A GOMS analysis begins by first describing a tepel goal and its
associated high-level operators and by then iterigti replacing these
operators in a breadth-first manner with methodd selection rules that
accomplish each goal until all of the operators @nienitive and cannot be
further analyzed. The analyst may choose his ooher primitive operators,
but typically, standard primitive operators frome tKeystroke-Level Model
(KLM) are used [3]. These primitives offer a wetl@imented mean time of
operation and in some cases functional estimates.

Once the GOMS analysis is complete, the analyst parform a
qualitative evaluation of the interface to examihe efficiency, consistency,
and cleanliness of the design. The analyst canwdsothe GOMS model to
estimate the execution time of specific user tasidthe amount of effort that
it will take users to learn procedures represeintéde model.



GOMS modeling, however, is not without limitatiofi$e execution and
efficiency predictions generated from a GOMS modesume error-free
performance. A GOMS model therefore representsséedzse evaluation of
an interface. Still, GOMS models provide a valuaidseline for comparison
of interface changes. GOMS modeling can also regsiibjective decisions
and judgment calls. In spite of these subjectiveisiens, the analyst
objectively constructs the majority of the modetdeh on the actual state of
the interface design. Overall, GOMS modeling sermese to guide interface
development than to completely replace usabilityitg [6].

4 A Case Study in Multi-robot User Interface Modeling

GOMS modeling has been successfully employed witi@i and software
engineering [7, 9], but is relatively unknown withiobotics [7]. It is our
contention that GOMS assessments of multi-robotr uiseerface designs
could play a vital role in the generation and rgmidtotyping of future multi-
robot system interfaces. To explore this hypothessconducted a detailed
GOMS analysis of features recently added toMissionLab toolset [9].

MissionLab allows users to generate multi-robot missiondianform of a
FSA (Finite State Acceptor) in which nodes représgn the robot’s
behaviors are connected via directed edges repinegehe robot’s perceptual
trigger schemas. The FSA serves as a flexible rabission and can be
stored, copied, or edited as needed to generate nagsions. This software
system also features a Case-Based Reasoning (CBRjdwthat abstracts
entire multi-robot missions as cases to be matthede user’s needs (Figure
1 left) [2]. The CBR wizard can also use casesigb-level drag-and-drop
robot tasks, hence simplifying the mission creapicocedure.

Our current investigation considers a scenario revhenultiple,
heterogeneous robots are available for tasking.hWitspect to mission
generation, multi-robot tasking presents additiatelllenges to the user. In a
system of many robots, or when each robot afforigue capabilities, the
user may have to assign each task to a robot. @hergtion of a multi-robot
mission, in this case, demands (1) the user deéniee tasks necessary for
the mission, and (2) the user assign each of tteskes to a specific robot or
robots. The CBR wizard eases the first challengedbes not assist with the
second.

To manage these challenges we have developed & nmethod for
generating multi-robot missions which employs a tGast Net Protocol
(CNP) working in conjunction with the CBR Wizard teduce the burdens
placed on the user (see [10] for a review of nmakiet CNP). In its most
general form, CNP is an auction-style algorithmwhich the robots of a
multi-robot system produce bids based on theinrest of their ability to
perform the auctioned task. Typically, when thetiaumccloses CNP assigns



the highest bidder the task. Our system uses CNPnasthod to aid the user
by assigning robots to specific tasks prior to stet of the mission. In this
role, the goal of the pre-mission CNP system is ttmugenerate an a priori
mapping of robots to available pre-mission tasks.
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Fig. 1. Integrated CBR-CNP system for multi-robot missg@meration

This system operates by first relaying a set obtobquirements and task
requirements to a CNP task allocation componerguffei 1 right). The CNP
component then conducts an auction resulting mbatrto-task mapping. The
system then uses this mapping to retrieve a subionisrom CBR memory
for each robot. Using additional user task prefeespthese sub-missions are
adapted into a single full mission. Finally, thesteyn presents the complete
mission with robot-to-task assignments to the dsemlacceptance, alteration,
or rejection.

To assess the usability of the new features theoasitreated two GOMS
models, one for the base system (no CBR or CNP)aedor the integrated
CBR-CNP system. Both models evaluate the generahads available to
users for creating multi-robot multi-task missiobeginning with the decision
to build a new mission and ending with a compleission. In some cases,
the analyst made judgment calls concerning whictMSperator to use or
execution time estimates. As much as possible iléyst strived to maintain
consistency across both models. Each model reqaipptdoximately 20-30
hours to construct and was created by the leadoauiking guidelines



available from [3]. Additional supplementary datadeboth complete models
are available at www.cc.gatech.edu/ai/robot-latdofrrc/data/goms-2005/.

5 Results
5.1 Mission Generation Time Predictions

The time required to generate a mission is detezthifrom the method
and operator execution times in the GOMS model T3]e base system
GOMS model predicts the generation time of a mudbet multi-task
mission to be a function of both the number of rshim the mission and
the complexity of the tasks each robot is to penforThe mission
generation time of the base system in secoaggs,is predicted to be:

ty (N,g,h) = A+ Bn +Cgn +Chn (1)

wheren is the number of robotg is the average number of behaviors per
task, andh is the average number of triggers per task. Tablists model
coefficients. Thus, 78.3 seconds are required teigge any mission without
regard to the number of robots or the complexityhef mission. The mission
generation time incurs a further cost of 26.7 sdsdor each additional robot
represented by the second term. The number of bmkaand triggers
composing a task is also expected to have largeaétmpn the mission
generation time. As shown by equation (1) 34.8 sdscare necessary per
robot and per behavior or trigger. Alternativelyeocan estimate the mission
generation cost as:

ty,(n,7) = A+Bn+2Cnr 2
wheret is the number of tasks. Equation (2) assumesath&dsks require the
same number of behaviors and triggeps & g + h) and that a single task

is equivalent to a single behavior and a triggéiis,Thowever, is generally not
the case and equation (2) is offered solely for gamson to the integrated
CBR-CNP GOMS model.

Table 1. Model coefficient values.

Initial Model Coefficient Values Refined Model Gtieient Values

A 78.30 74.22
B 26.70 18.28
C 34.80 32.08
D 85.30 77.92
E 24.30 19.56

The integrated CBR-CNP GOMS model, on the othadharedicts the
generation time of a multi-robot multi-task missiill only be a function of



the number of tasks. In this case, the missionrgd¢ioa time in seconda,gi .

is governed by:

ty(r) =D +Er 3)
wheret is the number of tasks. The integrated CBR-CNPehotturs a 7.0
seconds greater startup cof & A). This cost is primarily due to the need
to select the option for CBR-CNP. Users incur d@hfer cost for each task.
Because the integrated system abstracts from #retlus assignment of each
robot to a task, mission generation is independérthe number of robots.
Moreover, comparing equations (2) and (3), we nb&t the models predict
that the integrated CBR-CNP system requires apprataly 44.3 seconds
less per task 2C — E ; assumes a single robot) than the base system give
that the assumptions mentioned above hold.

5.2 Learning Effort Predictions

The effort required to learn how to generate a inisss determined from
the number and length of the methods in the GOMSlehd3]. User
learning effort is estimated from the number of N@EL statements in
each model. The total humber of NGOMSL statementsthe model
describes the amount of procedural knowledge a msest have in order
to use all aspects of the software system. Useanitrg describes the
process of learning this procedural knowledge. lemsodels with fewer
individual statements require less effort to learn.

The GOMS model of the base system (no CBR or CinEluded 187
individual statements that encompassed the proesdumecessary for
creating a multi-robot multi-task mission. The GOMSBodel of the
integrated CBR-CNP system, in contrast, included bperators. We,
therefore, expect the base system to require appedgly 21.3 % more
procedural knowledge.

We did not conduct experiments to confirm thisutesHowever, if
one assumes that additional procedural knowledgeltein less accuracy,
then this result corroborates related prior usgbitudies conducted by
our lab [2]. This earlier work examined the usetlod CBR wizard for a
variety of mission generation tasks and found thaimproved the
accuracy of mission generation on tasks requirimgp trobots by
approximately 33%. Our GOMS models indicate thas timcrease in
accuracy may partially result from the reduced vimakl on the user. Our
models also predict that less accuracy will be gdimvhen generating a
single robot mission compared to a multi-robot naes This was also
found to be the case in [2].



5.3 Comparison of Model Estimationsto Actual Expert Performance

The results from the previous two sections clearlg quantitatively indicate
the value of the CBR-CNP. As far as the case simdgncerned, these results
are sufficient. We decided, however, to also ingast the methodology itself
by examining the accuracy of the predicted exeautimes for both GOMS
models. In particular, we hoped to determine (1)thi& primitive KLM
operators used for the models accurately refleetguerimental values for
expert users and (2) if these primitive operatoesimmune to experimenter
bias. To accomplish this, we conducted an expetinievolving system
experts. These experiments attempted to gauge dbersxy of both the
overall models and of several GOMS methods thaldcineen use to refine the
models. The experiment required the expert to ereatlti-robot multi-task
missions 20 times using both the base system amdntbgrated CBR-CNP
system. During data collection, time data was réedrrelated to all of the
users’ actions. The experts used for the studyismusof six members of the
same research lab including three authors of yiep We hypothesized that
because GOMS operators consist of low-level priragisuch as individual
key strokes that experimenter bias would be minirktdreover, the authors
decided which GOMS methods to compare after expariation but before
analyzing the data. Thus, no subject knew which @ithe experiment would
be used.

Table 2. Predicted and actual execution times.

Predicted Exec. Empirical Exec. Refined Exec.
Time (s) Time (s) Time (s)
Base System 1662.9 187.80+ 20.02 1522.3
CBR-CNP 133.9 53.96+ 7.75 117.04

Table 2 lists the mean execution times for both ititegrated and base
systems. The models predict that the execution foneapproximately the
same missiontf = 2,g =11, h =117 = 2) will require about 12.4 times
the execution time on the base system than on ritegrated CBR-CNP
system. Empirical results indicate that the ac&xacution times are less for
both systems (based on five of six subjects). Tlk&periments reveal that the
execution time on the base system requires appeigiyn 3.5 times the
execution time compared to the integrated CBR-Ciéfesn.

There are several possible reasons for the disnogp between the
predicted and empirical results. First, some piimibperator execution times
may not be correct for this particular experimé&wng and Kieras found that
mouse movements are more accurately estimated Fitish Law than by the
Keystroke-Level Model (KLM) time of 1.2 sec usedrdnigl1]. Second, the



base system model does not assume that the usarseikhortcuts although
some subjects did. Third, neither model factorstha performance gains
associated with repeatedly constructing the sanssiaomns. Regardless of the
precise gains in performance realized by one systesn the other, the most
important point is that the GOMS models accuraiietiicate the utility of the
CBR-CNP interface changes.
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Fig. 2. A scatter diagram of the experimental executiometfor expert users on five

GOMS methods is depicted. Error bars represent @k%he two rightmost methods

are from the base model. The next two methodsrame the CBR-CNP model and the
leftmost method occurred in both models. The biaendnd on the dashed line depicts
the execution time for each method predicted byG¥MS models. The left of each

dashed line depicts the actual time for three éxmmters. The right of each dashed
line depicts the time for experimentally naive expesers.

Figure 2 depicts the predicted execution times actdal execution times for
several arbitrarily selected methods in the GOMSlet® The independent
variable represents the GOMS method selected amdi¢pendent variable
describes the subject's execution time. THes/ No/ OK Met hod (see
appendix for GOMS methods) occurs in both GOMS nrwdand
experimental conditions. Thel ace Task Method and theSel ect
Overlay Method occur in only the CBR-CNP model and experimental
condition. Finally, theAdd Behavi or Met hod (presented in section 3)
and theAdd Trigger Method occur in the base system model and
experimental condition. The dashed line denotesekeeution time predicted
by the models. The subjects to the left of eachheddine are also the



experimenters. The subjects to the right of théneéddine are naive subjects.
The figure shows that the execution time predicifrom our initial model
are significantly greater then the actual expeecexion times. As a result, we
can now revisit the model and update the executiores for greater
accuracy. Table 1 compares the initial model coigffits to refined model
coefficients. Table 2 presents execution times dasethese refined models.
The predicted execution times for both refined ni@a@ee closer to the actual
execution times.

Several other points are also of interest. Fastindicated by figure 2, no
experimenter bias is apparent. This is importantabee it increases the
subject pool for potential user interface experitaeflence, it appears that
expert subjects can be drawn from the authors efsthdy itself, given the
restrictions outlined above; possibly further redgcthe challenge of user
interface evaluation. Second, GOMS experimentsr@best to experimental
error. A data collection error occurred for onejeab($4) and another subject
misunderstood the direction§3). The data collection erroff) resulted in
elimination of this subject’s mission execution ¢imesults (in Table 2) but
did not affect the subject’'s data collected whilempleting the GOMS
methods (data in Fig. 2). Subject 4's misunderstandf the directions
resulted in fewer data points for tAdd Behavi or Met hod (~150 versus
~220 normal). In spite of this experimental erempugh data was collected to
produce statistically significant conclusions. Ufigb studies often face
similar challenges and must completely exclude ftata some subjects due
to errors such as these. Nevertheless, because Gidd8ls are constructed
from low-level user interface primitives, data frahese subjects could still
be salvaged.

Overall, both GOMS models and our experimentalltesindicate the
value of the CBR-CNP user interface. Moreover, oadeling results and
empirical results can be used for additional fuinterface design evaluations
of this system.

6 Conclusions

This paper has investigated user interface modelwsga method for
evaluating multi-robot interface design. We compateo GOMS models,
one representing the base system with additioratufes for multi-robot
multi-task mission generation and the other with@uir results indicate that
these new multi-robot mission generation featurdss&ntially improve the
usability of theMissionLab software. We intend to evaluate future interface
designs using the same techniques, which may iadhd construction of a
GOMS library of expert operator execution times.isTkhould aid in the
construction of more accurate future models.



We believe, and our case study has shown, thaelngdtechniques such
as GOMS can play an important role in robotic if#ee development.
Moreover, our work indicates that researchers eafopm these techniques in
a relatively inexpensive and timely manner. It i8 sincere hope that other
robotics researchers will consider the lessonsriest here, and in detail by
HCI specialists [3], when designing user interfades critical robot
applications operating in hazardous environments.
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Appendix
Met hod for goal: select yes-no-ok KLM op Ti me(s)
Step 1: Locate yes-no-ok button M 1.2
Step 2: Move cursor to yes-no-ok button P 1.1
Step 3: Cick nouse button BB 0.2
Step 4: Return with goal acconplished Tot al 2.5
Refined Total 1.14
Met hod for goal: place task KLM op Ti me(s)
Step 1: Think-of placenment point M 1.2
Step 2: Move cursor to placenment point P 1.1
Step 3: Cick nouse button BB 0.2
Step 4: Verify that placenment point is correct M 1.2
Step 5: Return with goal acconplished Tot al 3.7
Refined Total 0.91
Met hod for goal: select overlay KLM op Ti me(s)
Step 1: Locate nane in the file |ist box M 1.2
Step 2: Move cursor to the file nane |ocation P 1.1
Step 3: Cick nouse button BB 0.2
Step 4: Locate ok button M 1.2
Step 5: Move cursor to ok button P 1.1
Step 6: dick nmouse button BB 0.2
Step 7: Forget overlay name and return Tot al 5.0
Refined Total 1.82
Met hod for goal: add trigger KLM op Ti me(s)
Step 1: Locate trigger icon M 1.2
Step 2: Move cursor to trigger icon |location P 1.1
Step 3: Cick nouse button BB 0.2
Step 4: Locate trigger tail behavior |ocation M 1.2
Step 5: Move cursor to trigger tail behavior P 1.1
Step 6: Press nouse button down B 0.1
Step 7: Locate trigger tip behavior M 1.2
Step 8: Mve cursor to tip behavior P 1.1
Step 9: Rel ease npuse button B 0.1
Step 10: Return with goal acconplished Tot al 7.3
Refined Total 0.87



