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Abstract. This paper investigates the problem of user interface design and 
evaluation for autonomous teams of heterogeneous mobile robots. We explore 
an operator modeling approach to multi-robot user interface evaluation. 
Specifically the authors generated GOMS models, a type of user model, to 
investigate potential interface problems and to guide the interface 
development process. Results indicate that our interface design changes 
improve the usability of multi-robot mission generation substantially. We 
conclude that modeling techniques such as GOMS can play an important role 
in robotic interface development. Moreover, this research indicates that these 
techniques can be performed in an inexpensive and timely manner, potentially 
reducing the need for costly and demanding usability studies.   
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1 Introduction 
 
This paper investigates the problem of user interface design and evaluation for 
teams of heterogeneous, cooperative, and (generally) autonomous mobile 
robots. As part of  NAVAIR’s Intelligent Autonomy program, the purpose of 
this research is to reduce the burden of deploying teams of heterogeneous 
robots and conducting multi-robot missions. The methods we detail, however, 
are general purpose and applicable to virtually any software interface. 
Moreover, we contend that these methods hold special promise for developers 
of multi-robot systems.    

Our approach is motivated by the notable challenges multi-robot systems 
present to user interface designers. Currently, as the size of the multi-robot 
team increases, so do the startup, running, and maintenance demands placed 
on the user [1]. Users can become overwhelmed with situation awareness 
information in high workload environments. Moreover, because multi-robot 



applications tend towards mission critical domains, such as search and rescue 
and military domains, users must be capable of quickly and easily assessing 
important situation information while also being shielded from insignificant 
or redundant information.  

This paper details a modeling approach to multi-robot user interface 
evaluation. This approach is used to assess the effectiveness of novel interface 
and algorithmic changes made to an existing multi-robot software toolset. 
Roboticists have traditionally conducted usability experiments to gauge the 
state of their interface designs [2]. Usability experiments, however, are 
expensive, time-consuming, and too cumbersome for effective interface 
development [3]. Moreover, for specialized software, such as multi-robot 
mission specification systems, usability testing typically requires difficult to 
find domain experts to assess the interface design. Alternatively, random or 
semi-random subject populations are used. These populations, however, tend 
to have little or no experience with the application in question, whereas, in 
reality, the target population may have significant experience with either 
previous versions or similar types of software. These reasons serve as a 
motivation to explore alternatives to formal usability studies such as GOMS 
(Goals, Operators, Methods and Selection rules) modeling [4]. 
 

2 Related Work 
 
At least two aspects of user interface design differentiate existing evaluations 
in robotics from those in software engineering and HCI. First, within robotics 
researchers typically evaluate user interface designs at the system architecture 
level (e.g., [5]), rather than at the level of particular algorithms and features. 
Some exceptions exist [2]. Software engineering practices and Human 
Computer Interaction (HCI) researchers, on the other hand, routinely examine 
the user interface implications of specific changes to existing software 
packages (e.g., [6]) as well as conducting system level evaluations. Second, 
usability studies represent the majority of formal user interface evaluations 
within robotics [2]. The software engineering and HCI disciplines, on the 
other hand, employ a wider array of user interface techniques including 
heuristics and user modeling [5]. A GOMS model is a type of user model that 
describes the knowledge a user must posses in order to perform tasks with the 
system [3]. Research by Yanco et al. represents the only example of GOMS 
based user interface design evaluation within robotics located to date [7]. 
Yanco et al. focus on the challenge of a specific robotics domain and a 
usability coding scheme inspired by GOMS. Our intention, rather, is to 
explore the use of GOMS as a primary means of evaluating incremental 
additions to a multi-robot user interface.  
 



3 User Interface Modeling  
 
A GOMS model explicitly represents the knowledge that a user must have in 
order to accomplish goals using an interface [3]. Natural GOMS Language 
(NGOMSL) is one method for explicitly representing GOMS models [8]. 
NGOMSL is a structured language notation in program form (see examples 
below). As a knowledge representation, a GOMS model can also serve to 
characterize ongoing user decisions or as a description of what a user must 
learn. Moreover, because user goals tend to be constrained by interface 
design, GOMS models can quantitatively predict aspects of usability such as 
the efficiency and simplicity of procedures.  
 A user interface analyst conducts a GOMS analysis by a describing in 
detail the goals, operators, methods, and selection rules a user must follow for 
a set of tasks. A goal is something that a user tries to accomplish. For 
example, one goal resulting from our GOMS analysis is to edit the parameters 
of a robot behavior. An operator is an action that a user executes. An example 
of an operator is moving the cursor to a screen location. A method is a 
sequence of operators for accomplishing a goal. The following example 
method (in NGOMSL) accomplishes the goal of adding a mission behavior:  

 Method for goal: add behavior KLM op  Time(s) 
Step 1: Locate add behavior icon M 1.2 
Step 2: Move cursor to add behavior icon P 1.1 

 Step 3: Click mouse button  BB 0.2 
 Step 4: Think-of new icon location M 1.2 
 Step 5: Move cursor to new location P 1.1 
 Step 6: Click mouse button BB 0.2 
 Step 7: Return with goal accomplished Total 3.0 

Finally, a selection rule (also in NGOMSL) routes control to the correct 
method for accomplishing a goal when many possible methods are possible.  
 A GOMS analysis begins by first describing a top-level goal and its 
associated high-level operators and by then iteratively replacing these 
operators in a breadth-first manner with methods and selection rules that 
accomplish each goal until all of the operators are primitive and cannot be 
further analyzed. The analyst may choose his or her own primitive operators, 
but typically, standard primitive operators from the Keystroke-Level Model 
(KLM) are used [3]. These primitives offer a well-documented mean time of 
operation and in some cases functional estimates.  
 Once the GOMS analysis is complete, the analyst can perform a 
qualitative evaluation of the interface to examine the efficiency, consistency, 
and cleanliness of the design. The analyst can also use the GOMS model to 
estimate the execution time of specific user tasks and the amount of effort that 
it will take users to learn procedures represented in the model.  



 GOMS modeling, however, is not without limitations. The execution and 
efficiency predictions generated from a GOMS model assume error-free 
performance. A GOMS model therefore represents a best-case evaluation of 
an interface. Still, GOMS models provide a valuable baseline for comparison 
of interface changes. GOMS modeling can also require subjective decisions 
and judgment calls. In spite of these subjective decisions, the analyst 
objectively constructs the majority of the model based on the actual state of 
the interface design. Overall, GOMS modeling serves more to guide interface 
development than to completely replace usability testing [6].      
 
4 A Case Study in Multi-robot User Interface Modeling 
 
GOMS modeling has been successfully employed within HCI and software 
engineering [7, 9], but is relatively unknown within robotics [7]. It is our 
contention that GOMS assessments of multi-robot user interface designs 
could play a vital role in the generation and rapid prototyping of future multi-
robot system interfaces. To explore this hypothesis we conducted a detailed 
GOMS analysis of features recently added to the MissionLab toolset [9]. 
 MissionLab allows users to generate multi-robot missions in the form of a 
FSA (Finite State Acceptor) in which nodes representing the robot’s 
behaviors are connected via directed edges representing the robot’s perceptual 
trigger schemas. The FSA serves as a flexible robot mission and can be 
stored, copied, or edited as needed to generate novel missions. This software 
system also features a Case-Based Reasoning (CBR) wizard that abstracts 
entire multi-robot missions as cases to be matched to the user’s needs (Figure 
1 left) [2]. The CBR wizard can also use cases as high-level drag-and-drop 
robot tasks, hence simplifying the mission creation procedure.  
 Our current investigation considers a scenario where multiple, 
heterogeneous robots are available for tasking. With respect to mission 
generation, multi-robot tasking presents additional challenges to the user.  In a 
system of many robots, or when each robot affords unique capabilities, the 
user may have to assign each task to a robot. The generation of a multi-robot 
mission, in this case, demands (1) the user delineate the tasks necessary for 
the mission, and (2) the user assign each of these tasks to a specific robot or 
robots. The CBR wizard eases the first challenge but does not assist with the 
second. 
 To manage these challenges we have developed a novel method for 
generating multi-robot missions which employs a Contract Net Protocol 
(CNP) working in conjunction with the CBR Wizard to reduce the burdens 
placed on the user (see [10] for a review of multi-robot CNP). In its most 
general form, CNP is an auction-style algorithm in which the robots of a 
multi-robot system produce bids based on their estimate of their ability to 
perform the auctioned task. Typically, when the auction closes CNP assigns 



the highest bidder the task. Our system uses CNP as a method to aid the user 
by assigning robots to specific tasks prior to the start of the mission. In this 
role, the goal of the pre-mission CNP system is thus to generate an a priori 
mapping of robots to available pre-mission tasks.  
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Fig. 1. Integrated CBR-CNP system for multi-robot mission generation 

This system operates by first relaying a set of robot requirements and task 
requirements to a CNP task allocation component (Figure 1 right). The CNP 
component then conducts an auction resulting in a robot-to-task mapping. The 
system then uses this mapping to retrieve a sub-mission from CBR memory 
for each robot. Using additional user task preferences, these sub-missions are 
adapted into a single full mission. Finally, the system presents the complete 
mission with robot-to-task assignments to the user for acceptance, alteration, 
or rejection.  

To assess the usability of the new features the authors created two GOMS 
models, one for the base system (no CBR or CNP) and one for the integrated 
CBR-CNP system. Both models evaluate the general methods available to 
users for creating multi-robot multi-task missions, beginning with the decision 
to build a new mission and ending with a complete mission. In some cases, 
the analyst made judgment calls concerning which GOMS operator to use or 
execution time estimates. As much as possible the analyst strived to maintain 
consistency across both models. Each model required approximately 20-30 
hours to construct and was created by the lead author using guidelines 



available from [3]. Additional supplementary data and both complete models 
are available at www.cc.gatech.edu/ai/robot-lab/onraofnc/data/goms-2005/.  
 
5 Results  
 
5.1 Mission Generation Time Predictions  
 
The time required to generate a mission is determined from the method 
and operator execution times in the GOMS model [3]. The base system 
GOMS model predicts the generation time of a multi-robot multi-task 
mission to be a function of both the number of robots in the mission and 
the complexity of the tasks each robot is to perform. The mission 
generation time of the base system in seconds, 

gbt , is predicted to be: 

  ChnCgnBnAhgnt gb +++=),,(   (1) 

where n is the number of robots, g is the average number of behaviors per 
task, and h is the average number of triggers per task. Table 1 lists model 
coefficients. Thus, 78.3 seconds are required to generate any mission without 
regard to the number of robots or the complexity of the mission. The mission 
generation time incurs a further cost of 26.7 seconds for each additional robot 
represented by the second term. The number of behaviors and triggers 
composing a task is also expected to have large impact on the mission 
generation time. As shown by equation (1) 34.8 seconds are necessary per 
robot and per behavior or trigger. Alternatively, one can estimate the mission 
generation cost as: 
  ττ CnBnAnt gb 2),( ++=    (2) 

where τ is the number of tasks. Equation (2) assumes that all tasks require the 
same number of behaviors and triggers ( hg +=τ2 ) and that a single task 

is equivalent to a single behavior and a trigger. This, however, is generally not 
the case and equation (2) is offered solely for comparison to the integrated 
CBR-CNP GOMS model. 

Table 1. Model coefficient values. 

 Initial Model Coefficient Values Refined Model Coefficient Values 
A 78.30 74.22 
B 26.70 18.28 
C 34.80 32.08 
D 85.30 77.92 
E 24.30 19.56 

 The integrated CBR-CNP GOMS model, on the other hand, predicts the 
generation time of a multi-robot multi-task mission will only be a function of 



the number of tasks. In this case, the mission generation time in seconds, 
git , 

is governed by: 
  ττ EDt gi +=)(      (3) 

where τ is the number of tasks. The integrated CBR-CNP model incurs a 7.0 
seconds greater startup cost ( AD − ). This cost is primarily due to the need 
to select the option for CBR-CNP. Users incur a further cost for each task. 
Because the integrated system abstracts from the user the assignment of each 
robot to a task, mission generation is independent of the number of robots. 
Moreover, comparing equations (2) and (3), we note that the models predict 
that the integrated CBR-CNP system requires approximately 44.3 seconds 
less per task ( EC −2 ; assumes a single robot) than the base system given 
that the assumptions mentioned above hold.  
 
5.2 Learning Effort Predictions 
 
The effort required to learn how to generate a mission is determined from 
the number and length of the methods in the GOMS model [3]. User 
learning effort is estimated from the number of NGOMSL statements in 
each model. The total number of NGOMSL statements in the model 
describes the amount of procedural knowledge a user must have in order 
to use all aspects of the software system. User training describes the 
process of learning this procedural knowledge. Hence, models with fewer 
individual statements require less effort to learn.   
 The GOMS model of the base system (no CBR or CNP) included 187 
individual statements that encompassed the procedures necessary for 
creating a multi-robot multi-task mission. The GOMS model of the 
integrated CBR-CNP system, in contrast, included 147 operators. We, 
therefore, expect the base system to require approximately 21.3 % more 
procedural knowledge.  
 We did not conduct experiments to confirm this result. However, if 
one assumes that additional procedural knowledge results in less accuracy, 
then this result corroborates related prior usability studies conducted by 
our lab [2]. This earlier work examined the use of the CBR wizard for a 
variety of mission generation tasks and found that it improved the 
accuracy of mission generation on tasks requiring two robots by 
approximately 33%. Our GOMS models indicate that this increase in 
accuracy may partially result from the reduced workload on the user. Our 
models also predict that less accuracy will be gained when generating a 
single robot mission compared to a multi-robot mission. This was also 
found to be the case in [2]. 
   



5.3 Comparison of Model Estimations to Actual Expert Performance  
 
The results from the previous two sections clearly and quantitatively indicate 
the value of the CBR-CNP. As far as the case study is concerned, these results 
are sufficient. We decided, however, to also investigate the methodology itself 
by examining the accuracy of the predicted execution times for both GOMS 
models. In particular, we hoped to determine (1) if the primitive KLM 
operators used for the models accurately reflected experimental values for 
expert users and (2) if these primitive operators are immune to experimenter 
bias. To accomplish this, we conducted an experiment involving system 
experts. These experiments attempted to gauge the accuracy of both the 
overall models and of several GOMS methods that could then use to refine the 
models. The experiment required the expert to create multi-robot multi-task 
missions 20 times using both the base system and the integrated CBR-CNP 
system. During data collection, time data was recorded related to all of the 
users’ actions. The experts used for the study consisted of six members of the 
same research lab including three authors of this paper. We hypothesized that 
because GOMS operators consist of low-level primitives such as individual 
key strokes that experimenter bias would be minimal. Moreover, the authors 
decided which GOMS methods to compare after experimentation but before 
analyzing the data. Thus, no subject knew which part of the experiment would 
be used.  

Table 2. Predicted and actual execution times. 

 Predicted Exec. 
Time (s) 

Empirical Exec. 
Time (s) 

Refined Exec. 
Time (s) 

Base System 1662.9 187.80 ± 20.02 1522.3 
CBR-CNP 133.9 53.96 ± 7.75 117.04 

  
 Table 2 lists the mean execution times for both the integrated and base 
systems. The models predict that the execution time for approximately the 
same mission ( 2,11,11,2 ==== τhgn ) will require about 12.4 times 

the execution time on the base system than on the integrated CBR-CNP 
system. Empirical results indicate that the actual execution times are less for 
both systems (based on five of six subjects). These experiments reveal that the 
execution time on the base system requires approximately 3.5 times the 
execution time compared to the integrated CBR-CNP system.  
 There are several possible reasons for the discrepancy between the 
predicted and empirical results. First, some primitive operator execution times 
may not be correct for this particular experiment. Gong and Kieras found that 
mouse movements are more accurately estimated from Fitts’ Law than by the 
Keystroke-Level Model (KLM) time of 1.2 sec used here [11]. Second, the 



base system model does not assume that the user will use shortcuts although 
some subjects did. Third, neither model factors in the performance gains 
associated with repeatedly constructing the same missions. Regardless of the 
precise gains in performance realized by one system over the other, the most 
important point is that the GOMS models accurately indicate the utility of the 
CBR-CNP interface changes.      
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Fig. 2. A scatter diagram of the experimental execution time for expert users on five 
GOMS methods is depicted. Error bars represent 95% CI. The two rightmost methods 
are from the base model. The next two methods are from the CBR-CNP model and the 
leftmost method occurred in both models. The blue diamond on the dashed line depicts 
the execution time for each method predicted by the GOMS models. The left of each 
dashed line depicts the actual time for three experimenters. The right of each dashed 
line depicts the time for experimentally naïve expert users.  

Figure 2 depicts the predicted execution times and actual execution times for 
several arbitrarily selected methods in the GOMS models. The independent 
variable represents the GOMS method selected and the dependent variable 
describes the subject’s execution time. The Yes/No/OK Method (see 
appendix for GOMS methods) occurs in both GOMS models and 
experimental conditions. The Place Task Method and the Select 
Overlay Method occur in only the CBR-CNP model and experimental 
condition. Finally, the Add Behavior Method (presented in section 3) 
and the Add Trigger Method occur in the base system model and 
experimental condition. The dashed line denotes the execution time predicted 
by the models. The subjects to the left of each dashed line are also the 



experimenters. The subjects to the right of the dashed line are naïve subjects. 
The figure shows that the execution time predictions from our initial model 
are significantly greater then the actual expert execution times. As a result, we 
can now revisit the model and update the execution times for greater 
accuracy. Table 1 compares the initial model coefficients to refined model 
coefficients. Table 2 presents execution times based on these refined models. 
The predicted execution times for both refined models are closer to the actual 
execution times.      

 Several other points are also of interest. First, as indicated by figure 2, no 
experimenter bias is apparent. This is important because it increases the 
subject pool for potential user interface experiments. Hence, it appears that 
expert subjects can be drawn from the authors of the study itself, given the 
restrictions outlined above; possibly further reducing the challenge of user 
interface evaluation. Second, GOMS experiments are robust to experimental 
error. A data collection error occurred for one subject (S4) and another subject 
misunderstood the directions (S3). The data collection error (S4) resulted in 
elimination of this subject’s mission execution time results (in Table 2) but 
did not affect the subject’s data collected while completing the GOMS 
methods (data in Fig. 2). Subject 4’s misunderstanding of the directions 
resulted in fewer data points for the Add Behavior Method (~150 versus 
~220 normal). In spite of this experimental error, enough data was collected to 
produce statistically significant conclusions. Usability studies often face 
similar challenges and must completely exclude data from some subjects due 
to errors such as these. Nevertheless, because GOMS models are constructed 
from low-level user interface primitives, data from these subjects could still 
be salvaged.        
 Overall, both GOMS models and our experimental results indicate the 
value of the CBR-CNP user interface. Moreover, our modeling results and 
empirical results can be used for additional future interface design evaluations 
of this system. 
 
6 Conclusions  
 
This paper has investigated user interface modeling as a method for 
evaluating multi-robot interface design. We compared two GOMS models, 
one representing the base system with additional features for multi-robot 
multi-task mission generation and the other without. Our results indicate that 
these new multi-robot mission generation features substantially improve the 
usability of the MissionLab software. We intend to evaluate future interface 
designs using the same techniques, which may include the construction of a 
GOMS library of expert operator execution times. This should aid in the 
construction of more accurate future models.    



 We believe, and our case study has shown, that modeling techniques such 
as GOMS can play an important role in robotic interface development. 
Moreover, our work indicates that researchers can perform these techniques in 
a relatively inexpensive and timely manner. It is our sincere hope that other 
robotics researchers will consider the lessons described here, and in detail by 
HCI specialists [3], when designing user interfaces for critical robot 
applications operating in hazardous environments.      
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Appendix 
 
Method for goal: select yes-no-ok KLM op Time(s) 
 Step 1: Locate yes-no-ok button  M 1.2  
 Step 2: Move cursor to yes-no-ok button  P 1.1 
 Step 3: Click mouse button    BB 0.2 
 Step 4: Return with goal accomplished  Total 2.5
      Refined Total 1.14 
Method for goal: place task KLM op Time(s) 
 Step 1: Think-of placement point   M 1.2 
 Step 2: Move cursor to placement point  P 1.1 
 Step 3: Click mouse button    BB 0.2 
 Step 4: Verify that placement point is correct M 1.2 
 Step 5: Return with goal accomplished  Total 3.7
       Refined Total 0.91 
Method for goal: select overlay KLM op Time(s) 
 Step 1: Locate name in the file list box  M 1.2 
 Step 2: Move cursor to the file name location P 1.1 
 Step 3: Click mouse button    BB 0.2 
 Step 4: Locate ok button    M 1.2 
 Step 5: Move cursor to ok button   P 1.1 
 Step 6: Click mouse button    BB 0.2 
 Step 7: Forget overlay name and return  Total 5.0
      Refined Total 1.82 
Method for goal: add trigger KLM op Time(s) 
 Step 1: Locate trigger icon    M 1.2 
 Step 2: Move cursor to trigger icon location P 1.1 
 Step 3: Click mouse button    BB 0.2 
 Step 4: Locate trigger tail behavior location M 1.2 
 Step 5: Move cursor to trigger tail behavior  P 1.1 
 Step 6: Press mouse button down    B 0.1 
 Step 7: Locate trigger tip behavior   M 1.2 
 Step 8: Move cursor to tip behavior   P 1.1 
 Step 9: Release mouse button    B 0.1 
 Step 10: Return with goal accomplished  Total 7.3 
      Refined Total 0.87 


