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Abstract

Deception is utilized by a variety of intelligentssems ranging from insects to human beings. It
has been argued that the use of deception is acatod of theory of mind [2] and of social
intelligence [4]. We use interdependence theory gentie theory to explore the phenomena of
deception from the perspective of robotics, anddéwelop an algorithm which allows an
artificially intelligent system to determine if dgation is warranted in a social situation. Using
techniques introduced in [1], we present an alborithat bases a robot's deceptive action
selection on its model of the individual it's atfeting to deceive. Simulation and robot
experiments using these algorithms which investigite nature of deception itself are
discussed.

Keywords: deception, game theory, interdependence theagraction, hide-and-
seek, theory of mind.

1. Introduction

Deception has a long and deep history with resfethe study of intelligent systems.
Biologists and psychologists argue that decepti®nulbiquitous within the animal
kingdom and represents an evolutionary advantageht deceiver [5]. Primatologists
note that the use of deception serves as an impgtdential indicator of theory of mind
[2] and social intelligence [4]. Researchers irsthéelds point to numerous examples of
deception by non-human primates. From a robot&igérspective, the use of deception
and the development of strategies for resistingideieceived are important topics of

study especially with respect to the military domf].



But what is deception? McCleskey notes that demep$ a deliberate action or series
of actions brought about for a specific purpose [8haley recognizes that deception
often includes information provided with the intenf manipulating some other
individual [9]. Ettinger and Jehiel offer a relatédfinition describing deception as, “the
process by which actions are chosen to manipuktefd so as to take advantage of the
erroneous inferences [10].” This definition hasacléies to game theory but does not
relate to many of the passive, unintentional exasplf deception found in biology. We
adopt a definition for deception offered by BonddaRobinson that encompasses
conscious and unconscious, intentional and unilmealt acts of deception. These authors
describe deception simply aa false communication that tends to benefit the
communicatof5].

This paper investigates the use of deception bynamous robots. We focus on the
actions, beliefs and communication of the deceiwet, the deceived. Specifically, our
central thesis is that modeling of the individualbe deceived is a critical factor in
determining the extent to which a deceptive behawith be effective. In other words, a
robot must have specific knowledge about the imtial that it is attempting to
deceive—the mark—in order for the deceptive action to be effectiitas worth noting
that a deceiver's knowledge of the mark need noexgicit. The exploration of this
thesis is important both for the creation of deiseptobots and for developing a better
understanding of the nature of deception itself.

Consider, for example, the use of camoufld&@@mouflage is the use of natural or
artificial material to allow an otherwise visibléject to remain indiscernible from the

surrounding environment [7]. The act of camouflggassumes that the mark has specific



perceptual characteristics, such as color visionroBot that relies on infrared, for
example, will not be deceived by color-based cataguig.

We will use the following example to illustraterodeas: a valuable robotic asset
operates at a military base. The base comes urtimkaand is in danger of being
overrun. If the robot is discovered by the attaskénen they will gain valuable
information and hardware. The robot must hide aldcs a deceptive strategy that will
reduce the chance that it will be encountered. dginout this article we will use this
running example to explain portions of the theaadtunderpinnings of our approach as
well as to develop experiments based on the example

The remainder of this paper begins by first sunay relevant research. Next, we
use game theory and interdependence theory to rreadmwut the theoretical
underpinnings of deception and to develop prelimjirzgorithms for the effective use of
deception on a robot. Finally, we present a seoiegxperiments which attempt to
investigate the veracity of our thesis. The artiobacludes with a discussion of these
results including directions for future researchd ahe ethical implications of our

research.

2. Related Work

Game theory has been extensively used to expl@elienomena of deception. As a
branch of applied mathematics, game theory focuseshe formal consideration of
strategic interactions, such as the existence afliequms and economic applications
[11]. Signaling games, for example, explore deceptly allowing each individual to
send signals relating to their underlying type [12pstly versus cost-free signaling has

been used to determine the conditions that fosteesty. Floreano et al. found that



deceptive communication signals can evolve whemnlitions conducive to these signals
are present [13]. These researchers used bothaionukexperiments and real robots to
explore the conditions necessary for the evolutibcommunication signals. They found
that cooperative communication readily evolves whatot colonies consist of
genetically similar individuals. Yet when the rolmmtlonies were genetically dissimilar
and evolutionary selection of individuals ratheartlcolonies was performed, the robots
evolved deceptive communication signals, which,eiample, compelled them to signal
that they were near food when they were not. Fluyest al.’s work is interesting because
it demonstrates the ties between biology, evolytasrd signal communication and does
SO on a robotic platform.

Ettinger and Jehiel have recently developed arthém deception based on game
theory [10]. Their theory focuses on belief mangtidn as a means for deception. In

game theory, an individual'sype t UOT,, reflects specific characteristics of the
individual and is privately known by that individu&ame theory then definesbalief
as, p ( 4 |ti), reflecting individuali's uncertainty about individuail's type [11]. Ettinger

and Jehiel demonstrate the game theoretical impoetaf modeling the mark. Still, their
definition of deception as “the process by whichams are chosen to manipulate beliefs
SO as to take advantage of the erroneous inferemceasrongly directed towards game
theory and their own framework. The question themains, what role does modeling of
the mark play for more general definitions of ddimepsuch as those offered by [5]. As
mentioned above, our goal is to explore the phemanté deception from as general a

perspective as possible. Our belief is that bynigithis broad approach we will uncover



aspects of the phenomena of deception that applyusbto robot-robot interaction, but
also to human-robot and interpersonal interaction.

Deception can also be explored from a social psgdical perspective.
Interdependence theory, a type of social exchahgery, is a psychological theory
developed as a means for understanding and anglymierpersonal situations and
interaction [14]. The term interdependence spexiie extent to which one individual of
a dyad influences the other. Interdependence thisobased on the claim that people
adjust their interactive behavior in response tirtiperception of a social situation’s
pattern of rewards and costs. Thus, each choidet@factive behavior by an individual
offers the possibility of specific rewards and soflso known as outcomes) after the
interaction. Interdependence theory and game theaeqresent social situations
computationally as an outcome mat outcome matrix represents a social situation
by expressing the outcomes afforded to each ittagamdividual with respect each pair

of potential behaviors chosen by the individuals.

3. Representing Interactions



The outcome matrix is a standard computationalessprtation for interaction [14]. It is
composed of information about the individuals iatting, including their identity, the
interactive actions they are deliberating over, scalar outcome values representing the
reward minus the cost, or the outcomes, for eadivitlual. Thus, an outcome matrix
explicitly represents information that is critidal interaction. Typically, the identity of

the interacting individuals is listed along the dimsions of the matrix.

Independent versus Dependent matrices

Independent Social Dependent Social
Situation Situation

Individual 1 Individual 1
1 1 1 1
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Figure 1. An example of an independent situatioddpicted on the left and an example of a dependent
situation is depicted on the right. In the exampiean independent situation,, the action selectibthe
second individual does not have an effect the au&coeceived by the first individual. In the depamtde
example, on the other hand, the action selectidhe&econd individual results in a gain or los& aohits

of outcome (a measure of utility) by the first ividual.

Figure 1 depicts an interaction involving two indwals. In this article, the term
individual is used to indicate a human, a socidlotp or an agent. We will focus on
interaction involving two individuals: dyadic intation. An outcome matrix can,
however, represent interaction involving more thamo individuals. The rows and
columns of the matrix consist of a list of actianailable to each individual during the
interaction. Finally, a scalar outcome is assodiatgth each action pair for each

individual. Outcomes represent unitless changeenrobot, agent, or human’s utility.



Thus, for example, an outcome of zero reflectsfalcethat no change in the individual's
utility will result from the mutual selection ofdahaction pair.

Because outcome matrices are computational repegsms, it is possible to
describe them formally. Doing so allows for powérand general descriptions of
interaction. The notation presented here draws ilyednom game theory [11]. A
representation of interaction consists of [15]:

1) a finite setN of interacting individuals;

2) for each individuai ON a nonempty sef\' of actions; and
3) the utility obtained by each individual for eachrdmnation of actions that could

have been selected.

Let aj OA'" be an arbitrary actiop from individuali’s set of actions. Le(a},...,aﬁ)
denote a combination of actions, one for each iddal, and letu' denote individual's
utility function, whereu'(a®,...,a" ) - O is the utility received by individul if the
individuals choose the actior(a},...,ak'“). The termO is used to denote an outcome
matrix. A particular outcome within a matrix can bgpressed as a function of an
outcome matrix and an action pair, thG)é(a‘z,al‘i) =,0'. The variableo denotes an
outcome value. The ter)o’ denotes that it is individu&ls outcome from the first row

and second column of the matrix. The supersciips used to express individués

partner. Thus, for exampled' denotes the action set of individuand A denotes the

action set of individuall's interactive partner. As mentioned above, anviadial’s type

t'OT', is determined prior to interaction, reflects sfieccharacteristics of the



individual and is privately known by that individua\ belief p'(tft'), expresses

individuali's uncertainty about individuals type.

3.1 Representing Social Situations

The term interaction describes a discrete eventhith two or more individuals select
interactive behaviors as part of a social situaborsocial environment. Interaction has
been defined as influence—verbal, physical, or @nat—by one individual on another
[16]. The term situation has several definitionseTmost apropos for this work is “a
particular set of circumstances existing in a patér place or at a particular time”
(World English Dictionary, 2007). A social situatio then, characterizes the
environmental factors, outside of the individudderhselves, which influence interactive
behavior. A social situation is abstract, descghtine general pattern of outcome values
in an interaction. An interaction, on the otherdhas concrete with respect to the two or
more individuals and the social actions availalbles&ch individual. For example, the
prisoner’s dilemma describes a particular typeoafa situation. As such, it can, and has
been, instantiated in numerous different particatarial environments ranging from bank
robberies to the trenches of World War | [17]. tdependence theorists state that
interaction is a function of the individuals intetiag and of the social situation [18].
Although a social situation may not afford interawt all interactions occur within some
social situation. Interdependence theory represestgial situations involving
interpersonal interaction as outcome matrices.

In previous work, we presented a situation analysigorithm that calculated
characteristics of the social situation or intd@ct(such as interdependence) when

presented with an outcome matrix [3]. The interdelemice space is a four-dimensional



space which maps the location of all interpersaswdial situations [19]. A matrix’s
location in interdependence space provides impbriaformation relating to the
interaction. The interdependence and correspondelirensions are of particular
importance for recognizing if a situation warrardsception. The interdependence
dimension measures the extémiwhich each individual’s outcomes are influenbgdhe
other individual's actions in a situation. In a lomterdependence situation, for example,
each individual's outcomes are relatively indeperae the other individual’s choice of
interactive behavior (Figure 1 left for example)high interdependence situation, on the
other hand, is a situation in which each indivitkialutcomes largely depend on the
action of the other individual (Figure 1 right fexample). Correspondence describes the
extentto which the outcomes of one individual in a ditba are consistent with the
outcomes of the other individual. If outcomes cgpand then individuals tend to select
interactive behaviors resulting in mutually rewaglioutcomes, such as teammates in a
game. If outcomes conflict then individuals tends&dect interactive behaviors resulting
in mutually costly outcomes, such as opponents garme. Our results showed that by

analyzing the interaction, the robot could bet&dest interactive actions [3].

3.2 Partner Modeling

Several researchers have explored how humans gewatmtal models of robots (e.g.
[20]. A mental model is a term used to describe®n’s concept of how something in
the world works [21]. We use the term partner mgdehotedm™) to describe a robot’s

mental model of its interactive human partner. We the term self model (denoted )

to describe the robot's mental model of itself. igahe superscripi is used to express

individuali's partner [11].



In prior work, Wagner presented an interact-andatg algorithm for populating
outcome matrices and for creating increasingly eateumodels of the robot’s interactive
partner [1]. The interact-and-update algorithm ¢atted a model of the robot’s partner

consisting of three types of information:

1) aset of partner featurd$,” ..., f,");

2) an action model,A™ ; and

3) a utility functionu™.

We use the notatiom™. A" and m™.u™ to denote the action model and utility

function within a partner model. The dot is usedctmvey that the action model and

utility function are contained within an overallrpger modelm' . Wagner used partner
features for partner recognition. Partner featusegh as hair color, height, and age,
allow the robot to recognize the partner in subsatinteractions. The partner’s action
model contained a list of actions available to thdividual. The partner’s utility function
included information about the outcomes obtainedheypartner when the robot and the
partner select a pair of actions. Wagner showed the@ algorithm could produce
increasingly accurate partner models which, in tuesulted in accurate outcome
matrices. The results were, however, limited ttitaot dynamic, models of the partner.
The self model also contains an action model antlity function. The action model
contains a list of actions available to the ro®imilarly the robot’s utility function

includes information about the robot’s outcomes.

4. Deceptive Interaction

This article explores deceptive interaction. Weestigate deceptive interaction with

respect to two individuals—the mark and the degeiltas important to recognize that

10



the deceiver and the mark face different problems laave different information. The
mark simply selects the action that it believed miximize its own outcome, based on
all of the information that it has accumulated. Tdexeiver, on the other hand, acts in
accordance with Bond and Robinson’s definition afception, providing a false
communication for its own benefit [5]. With respeotour running example, the robot
acts as the deceiver—providing false informationoaiss whereabouts. The mark then is
the enemy soldier searching for the robot. We asbume henceforth that the deceiver
provides false communication through the perfornearaf some action in the
environment. The sections that follow begin by exang the phenomena of deception,
how to decide when to deceive, and finally provalenethod for deciding how to

deceive.

4.1 The Phenomena of Deception

Bond and Robinson’s definition of deception implikes following five steps:
1. The deceiver selects a false communication to mnéns
2. The deceiver transmits the information containedthwi the false
communication.
3. The information is received by the mark.
4. The mark interprets the information.

5. The interpreted information influences the marlékestion of actions.

11



lfigure 2 A grasshopper uses camouflage to decmanpal predators. In thls case, color and shaping
transmitted by the grasshopper falsely communiteteresence of rock and moss masking the presénce
the grasshopper.

Consider, for instance, the use of camouflage leygitasshopper in Figure 2. First, the
grasshopper’s biological processes produce a tasanunication in the form of color
changes to the grasshopper’s body. The grasshappkénge in color is transmitted
visually to its surroundings. Predators receive \isial information and interpret the
information to indicate that no grasshopper exatghat location. This interpretation

inhibits the predator from selecting predation lvatrz.

12



MissionLab Simulation Environment
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Figure 3

An example environment, true matrix, amtliced matrix is pictured above. The environment

contains three corridors in which the deceiver kiie. The true matrix reflects the deceiver’s krexge

of the action it intends to select. In the true nimabn the left the deceiver has randomly seledtesl
CGoLeft action. The matrix depicts the deceiver’s outcormes their dependence on the mark’s action.
The true matrix to the right depicts the decisioobjem faced by the mark with the outcomes thatldou
result given the action selected by the deceivle ihduced matrix depicts the mark’s decision pobl
after the false communication. The outcome valti&swere arbitrarily chosen.

13



Outcome matrices can be used to reason abouittla®ien faced by the deceiver and
the mark. Leta’,a;,a) and a",a)',a)’ represent generic actions possessed by the

deceiver and the mark respectively. We use the tarenmatrixto describe the outcome
matrix representing the actual outcome obtainedhdiin the mark and the deceiver had
the false communication not occurred. From a gameeretic point of view, this is a
situation of asymmetric information [22]. With resjh to our running example, the true
matrix represents the different outcome patterssiltieg when the robot and enemy
select hide and search actions. Figure 3 depidsstienario assuming that the value in
terms of utility of locating the deceiver is +10dar10 if the deceiver does not locate the
mark. A key facet of deception is the fact that dieeeiver knows the true matrix but the
mark does not. Consider, for instance the true imagsulting from the deceiver’s
decision to hide in the left corridor. The true mabn the left side of Figure 3 depicts
the matrix from the deceiver’'s perspective. The tmatrix on the right side of Figure 3
depicts the deceiver’'s understanding of the detipimblem faced by mark. It includes
the true outcome values that the mark will recddyechoosing to search the center or

right corridor. The deceiver’s task is to providéormation or to act in a way that will
influence the mark to selea’ =GoCent er, a)' =GoRi ght rather thana," =GoLeft . To
do this, the deceiver must convince the mark thahéd selection of =GoLef t is less
beneficial then it actually is; 2) the selectionalf =GoCent er, a}' =GoRi ght is more

beneficial then is actually is or 3) both.
The deceiver accomplishes this task by providiriglse communication, i.e. a set of
tracks leading elsewhere. This communication isefddecause it conveys information

which falsely reflects the outcome of a particidation choice. The false communication

14



results in another matrix which we term thmeluced matrix (Figure 3 bottom). The

induced matrix represents the situation that theefaommunication has been led the
mark to believe is true. In our running examples thding robot might create muddy
tracks leading up to the center corridor (the falgsnmunication) while in fact the robot
is actually hiding in the left corridor.

The preceding discussion has detailed severalc bideractive situations and
concepts underlying deception. Numerous challergjdéisconfront the deceiver. The
deceiver must be able to decidlea situation justifies deception. The deceiver nalso
be capable of developing or selecting a strategt thill communicate theright
misleading information to induce the desired matnyron the mark. For instance, a robot
capable of deceiving the enemy as to its whereahoust first be capable of recognizing
that the situation demands deception. Otherwisgeiteption strategies are useless. In the
sections that follow, we first develop a methodt thlhows the robot to determine if

deception is necessary. Afterward, we detail a ogktbr how to deceive.

4.2 Deciding when to Deceive’

Recognizing if a situation warrants deception sadly of importance. Although some
application domains (such as covert operations)hintdemand a robot which simply
deceives constantly and many other domains will aleima robot which will never

deceive, this article focuses on robots which witkcasionally need to deceive. The
problem then for the robot, and the purpose of iistion, is to determine on which

occasions the robot should deceive.

! Portions of this discussion have also appear¢dagner & Arkin, 2009)] 2009 IEEE.
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Section 3.1 detailed the use of outcome matrisea eepresentation for interaction
and social situations. As described in that sectsmtial situations represent a generic
class of interactions. We can then ask what typsoofal situations justifies the use of
deception? Our answer to this question will be wikpect to the dimensions of the
interdependence space. Recall from section 3.1thieainterdependence space is a four-
dimensional space describing all possible soctahtibns (see [3] for a depiction of the
interdependence space). Posed with respect tatbelépendence space, our task then
becomes to determine which areas of this spaceibdesituations that warrant the use of
deception and to develop and test an algorithm tists whether or not a particular
interaction warrants deception.

As before, Bond and Robinson’s definition of ddomp providing a false
communication for one’s own benefit, will serveas starting place [5]. With respect to
the task of deciding when to deceive there are key conditions in the definition of
deception. First, the deceiver providesfadse communication and second that the
deceiver receives benefit from this action. The fact that the communicatisrfalse
implies conflict between the deceiver and the méfrikhe deceiver and the mark had
corresponding outcomes a true communication cowddekpected to benefit both
individuals. The fact that the communication isséaldemonstrates that the deceiver
cannot be expected to benefit from communicatiohschv will aid the mark. In our
running example, a robot that leaves tracks leattings actual hiding position is not
deceiving because it is providing a true commuicatOn the other hand, all signals
leading the mark away from the robot’s hiding plack benefit the robot and not benefit

the mark.

16



This figure is provided as a separate attachment

Figure 4 A two dimensional representation of thielidependence space showing the correspondence
dimension (X) and the interdependence dimensionig¥resented above. Areas of low interdependence
(independent outcomes bottom half of graph) tertdaavarrant deception because the actions of ek m

will have little impact on the deceiver. Similarlgreas of correspondence (right portion of the ljrajm

not require false communication as actions bersffor the mark are also beneficial for the deceilteis

only the top left of the graph, representing aieashich the deceiver depends on the actions ofrihek

and is also in conflict with the mark, in which dption is warranted.

The second condition requires that the deceivegiveca benefit from the deception.
This condition implies that the deceiver’'s outcoraes contingent on the actions of the
mark. With respect to the interdependence spasectimdition states that the deceiver is
dependent upon the actions of the mark. In otherdsyothis is a situation of high
interdependence for the deceiver. If this conditreere not the case, then the deceiver
would receive little or no benefit from the decepti Again, relating back to our running
example, if the robot does not gain anything byrtgdrom the soldiers then there is no
reason for deception. Figure depicts a subspace of the interdependence spabe wit

respect to the two dimensions critical for deceptio
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Situational Conditions for Deception

Self Model m® ; Partner Modem"
Boolean indicating whether or not the situaticarrants deception.

Use the interact-and-update algorithm fromt§l¢reateQ’ from self modelm® and partner
model m"

Use the interdependence space algorithm frgrno [8alculate the interdependence space dimens
values<a,,8, v, 5> from the outcome matrix.

If o >k, and g <k,
return true

Else
return false

End if 0 2009 IEEE

Figure 5 An algorithm for determining whether @t a situation warrants deception is presented@bov
[23]. The algorithm takes as input the robot's setfdel and partner model. It uses the interactghte

algorithm from [1] to produce an expected outconarix for the situationO’ . Next the interdependence
space algorithm from [3] is used to generate therdependence space dimension val(te,se, ¥, 5> for

the situation. Finally, if the value for interdeplemce is greater then some application specifistaon kl

and the value for correspondence less than soneapm specific constankz, the situation warrants
deception.

Given the description above, we can construct gordhm for deciding when to
deceive (Figure 5). The aim is to determine iftaation warrants the use of deception.
The algorithm draws heavily from our previous wark the area of human-robot
interaction [1, 3]. The input to the algorithm isetrobot’s model of itself and of its
interactive partner. These models are used in ootipn with Wagner's interact-and-
update algorithm to produce an outcome mafdx i.e., the true matrix (example in
Figure 2) [1]. In the second step, the interdeprodepace mapping algorithm is used to
calculate the situation’s location in the interdegence space [3]. If the situation’s

location in the interdependence space indicatefsciult interdependencea(> k) and

conflict (g <k, ) then the situation can be said to warrant decapti

18



For robots, these conditions comprise necessatynbt sufficient conditions for
deception. Sufficiency also demands that the rdabotapable of producing a false
communication which will influence the mark in amnar beneficial to the deceiver. In
order for this to be the case, the deceiver mugt tiae ability to deceive. The presence
or absence of the ability to deceive rests upondbeeiver's action set. Section 4.4
explores the robot’s decision of how to deceive.

We contend the algorithm in Figure 5 allows aotdio recognize when deception is
justified. The following two sections test this Ioygpesis first qualitatively and

guantitatively.

4.2.1 Qualitative Comparison of Situational Conditions

In this section we qualitatively compare exampléshose situations which meet the
conditions for deception expounded in the previsetion from those which do not. Our
goal is to demonstrate that the algorithm in Figuraeets the same situational conditions
which intuitively reflect those situations that hams use deception. Additionally, we
strive to show that situations in which humans Iyaré ever, use deception are also
deemed not to warrant deception by our algorithime purpose of this analysis is to
provide support for the hypothesis that the algamitin Figure 5 does relate to the
conditions underlying normative interpersonal déocep It is challenging, if not

impossible, to show conclusively outside of a psyopical setting that indeed our

algorithm equates to normal human deception presess

Table1 lists 5 different game/interdependence theoraimas situations. Each situation

was used as the matri©® from the first step of our algorithm for the sitioaal
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conditions for deception. The values for constamse k;, = 066 and k, =—-033. The

rightmost column states whether or not the algorithdicates that the situation warrants
deception.

Table 1 Qualitative exploration of the deception chracteristics of several important social situatios.
Several situations, such as the Competitive situath and the Prisoner’s dilemma, indicate that these
situations warrant deception. Others, such as the @perative situation and the Trust situation, do
not warrant deception. Finally, the Chicken situatbn stands as a border case which depends on the

particular values in the matrix and constants assaated with the algorithm.

Social Situations

Name Verbal Description Example Interdependence | Situational
(based on [19] Outcome Space Location | Deception?
Matrix
Cooperative Each individual receives 12 6 0.5,1.0,-0.5, 0.0 No
Situation maximal outcome by 12 6
cooperating with the other 6 0
individual. 6 0
Competitive | Each individual gains from the 6 12 0.5,-1.0,-0.5,0.0 Yes
Situation other individual’s loss. 6 0
Maximal outcome is gained 0 6
through non-cooperation. || 12 6
Trust Situation| In this situation, cooperation is] 12 8 1.0,0.2,-0.3,0.0 No
in the best interests of each | 12 0
individual. If, however, one 0 4
individual suspects that the| | g 4

other will not cooperate, non
cooperation is preferred.

Prisoner’s Both individuals are best off if 8 12 0.8,-0.8,-0.6,0.0 Yes
Dilemma they act non-cooperatively arj
Situation their partner acts 0 4
cooperatively. Cooperation| | 12 4
and non-cooperation, results
intermediate outcomes.

o
oo
o

Chicken Each individual chooses 8 12 1.0,0.2,-0.3,0.0 Yes/No
Situation between safe actions with | | 8 4
middling outcomes and risky 4 0

actions with extreme 12 0
outcomes. O 2009 IEEE

To give an example of how the results were prodwedider the first situation in the
table, the Cooperative Situation. A representativieome matrix for the situation is used

as the matrixO' from the first step of the algorithm. Next, in teecond step of the
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algorithm the values for the fourth column of thable are calculated: the

interdependence space dimension values. For thpeCatove Situation these values are
{ 0.5,1.0,—0.5,0}. Becauser < 066 and S > - 033the algorithm returns false, indicating

the situation does not warrant deception. The ¥ahg situations were analyzed:

» The Cooperative situation describes a social sttnan which both individuals
interact cooperatively in order to receive maxinoalfcomes. Although often
encountered in normative interpersonal interactidrecause the outcomes for
both individuals correspond, these situations suldavolve deception. For
example, deception among teammates is rarely emglag it is counter to the
dyad’s mutual goals.

* In contrast to the Cooperative Situation, the Caitipe situation does warrant
the use of deception. This situation is again angx{e of &k-sum game in which
gains by one individual are losses for the otheividual. Hence, deception in
interpersonal Competitive situations is common. ép#ion among competitors,
for example, is extremely common and some gamed) as poker, are even
founded on this principle.

* The Trust Situation describes a situation in whiehtual cooperation is in the
best interests of both individuals. Yet, if oneiudual does not cooperate then
mutual non-cooperation is in both individuals beasterest. Interpersonal
examples of Trust Situations include lending anfdienoney or a valuable asset.
This situation does not demand deception because agth individuals’ mutual

interests are aligned.
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The Prisoner's Dilemma is perhaps the most extehsistudied of all social
situations [17]. In this situation, both individsalepend upon one another and are
also in conflict. These conditions make the Pris@neilemma a strong candidate
for deception. It is in both individuals best imst to influence that action
selection of the other individual. As detailed bye¥od, Prisoner's Dilemma
situations include military and police enforcemesituations involving actual
interpersonal interaction that often do entail giom [17].

The Chicken situation is a prototypical social aiton encountered by people. In
this situation each interacting individual choodestween safe actions with
intermediate outcomes or more risky actions withrenmiddling outcomes. An
example might be the negotiation of a contract dohome or some other
purchase. Whether or not this situation warrantepigon depends on the relative
outcome value of the safe actions compared toishg actions. If the value of the
risky action is significantly greater then the \alof the safe actions then

deception will be warranted.

Table 1 and the analysis that followed examined sevetabsons and employed our
situational conditions for deception algorithm &tetmine if the conditions for deception
were met. In several situations our algorithm iated that the conditions for deception
were met. In others, it indicated that these camast were not met. We related these
situations back to interpersonal situations commaricountered by people, trying to
highlight the qualitative reasons that our condisianatch situations involving people.
Overall, this analysis provides preliminary evideribat our algorithm does select many

of the same situations for deception that are tedeby people. While much more
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psychologically valid evidence will be required gwongly confirm this hypothesis, the

evidence in this section provides some supporoimrypothesis.

4.2.2 Quantitative Examination of Situational Conditions Warranting Deception

In this section we examine the hypothesis thatdmpgnizing situations which warrant
deception, a robot is afforded advantages in tesfnsutcome obtained. Specifically, a
robot that can recognize that a situation warraeiseption can then choose to deceive
and thereby receive more outcome overall, tharbatravhich does not recognize that a
situation warrants deception. Although this expemtdoes not serve as evidence
indicating that our situational conditions for dptien relate to normative human
conditions for deception, it does show that rolvatsch recognize the need for deception
have advantages in terms of outcome received wberpared to robots which do not
recognize the need for deception.

At first glance this experiment may appear trivgalen the definition of deception.
There are, however, several reasons that the sudportant. First, we do not know the
magnitude of the benefit resulting from deceptiDoes the capacity to deceive result in
significantly greater benefit over an individualathdoes not deceive? Similarly, how
often must one deceive in order to realize thisehighSecond, we do not know how this
benefit is affected by unsuccessful deceptionhéslienefit realized by 80% successful
deception the same as 100% successful deceptioafyi-ithis definition was developed
for biological systems. Hence, we need to veript trtificial systems such as agents and
robots will likely realize the same benefit as albdgical system. In other words, we need

to verify that the benefit is not something uniqgiee biological systems. While the
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answers to these questions may seem straightforiveay are an important starting place
given that this paper lays the foundation for gédy unexplored area of robotics.

We conducted a numerical simulation to estimateotteome advantage that would
be afforded to a robot that used the algorithmigufe 5 versus a robot which did not.
Our numerical simulation of interaction focuses the quantitative results of the
algorithms and processes under examination and mutegttempt to simulate aspects of
the robot, the human, or the environment. As sthib,technique offers advantages and
disadvantages as a means for discovery. One adparth a numerical simulation
experiment is that a proposed algorithm can bedesh thousands of outcome matrices
represent thousands of social situations. One digddge is that, because it is not tied to
a particular robot, robot’s actions, human, humacsgons, or environment, the results,
while extremely general, have not been shown trleefor any existent social situation,
robot, or human. The experiment involved two sirtedarobots. Each selected nominal
actions from their outcome matrices and receives rigsulting values, but no actual
actions were performed by either individual.

These simulations involved the creation of 100@come matrices populated with
random values. Artificial agents abstractly repndieg robots selected actions based on
the outcome values within the matrices. These onécmatrices were also abstract in the
sense that the rewards and costs are associateselégting one of two non-specific

actions. Symbolic placeholders suchaasand a, are used in place of actual actions. The

actions are grounded in the rewards and coststlieatobot expects them to produce.
This may be the only practical way to examine tlamais of situations at a time and to

draw general conclusions about the nature of deweptself outside of one or two
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specific situations. Both the deceiver and the nsallkected the action which maximized

their respective outcomes. Figure 6 depicts theexyental procedure with an example.

Experimental Procedure
Control condition procedure

Example Matrices
Deceivel
Create outcome A
matrix populated
with random values xA
| =
B
\ 4 v
Deceiver Mark selects
selects action which
action which maximizes
maximizes outcome xA
outcome 5
=
—»B
Test condition procedure Dgceivells
Create outcome A 2
matrix populated X 1 3
N with random values S
If situation does not o = 16 \ 1
warrant deception ] If situation B4 \|1®
warrants Induced
deception ;
v v v p Matrix DeAcelveI|3
Deceiver selects Mark selects Deceiver
action which action which creates A 2 1
maximizes maximizes induced < |1 1
outcome from outcome from matrix g
true matrix true matrix
[
\ 4 \ 4
Deceiver selects Mark selects
action which action which
maximizes maximizes
outcome from outcome from
true matrix induced matrix
Figure 6

0O 2009 IEEE

The experimental procedure is depictedvabtn the control condition, random outcome
matrices are created and actions are selected thhese matrices. In the test condition, if the sitim

warrants deception then deceiver creates an inducaix which the mark selects an action from.
Example matrices are depicted on the right harel gidhe figure.
Three experimental conditions were examined. Titet tondition was a control

condition devoid of deception. In this conditionttbdhe deceiver and the mark simply
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selected the action which maximized their individoatcomes. This condition represents
the null hypothesis in that if performance in thenttol is as great or greater then
performance using our algorithm then the recognitid the situational conditions for
deception via our algorithm offers no benefit te #ygent.

In the two experimental conditions, the deceiveedithe algorithm from Figure 5 to
determine if the outcome matrix warranted deceptibnit did, then the deceiver
produced an induced matrix which was used by the&kaselect an action while the
deceiver selected an action based on the truexnéirthe perfect deception condition
the mark always selected an action based on the@matrix. In the 80% deception
condition, the mark selected an action from theigedi matrix 80% of the time and from
the true matrix 20% of the time. The importanceh&f 80% percent deception condition
is that it indicates how quickly the benefit of dption decreases with an imperfect
deception strategy.

The independent variable was the condition: neepten, perfect deception, or 80%
successful deception. The dependent variable wasatmount of outcome received by
each simulated agent.

Relating back to our running example, in both ¢batrol and the test conditions, the
deceiver interacts in thousands of situations amtiiitary base. Most of these situations
do not warrant deception and hence the controltastirobots act the same. Only the
robots in the experimental condition which are gsur algorithm, however, recognize
the situations that do warrant deception. In trasecthese experimental robots use a

deceptive strategy, such as creating a falsettrdiide, to create an induced matrix that
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influences the behavior of the mark. The deceivinbot then hides in a different

location.

Quantitative Examination of Situational Conditions
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Figure 7 Experimental results from our investigatof the situational conditions warranting decspti

The perfect deception and 80% successful deceptoditions result in significantly § < 001) greater

outcome than the no deception condition. This teadicates that an agent or robot that can reaegand
act upon the situational conditions for deceptidlhlve better able to choose the best action.

Figure 7 presents the results. The recognition asd of deception results in

significantly more outcome < 0Ofwo-tailed no deception versus perfect deception

and no deception versus 80% successful decepti@r) hot recognizing and using

deception. Of the 1000 random situations the sitaedlagents faced, 19.1% met the
conditions for deception. Hence, all of the diffeze in outcome among the various
conditions resulted from better action selectiontlo& part of the deceiver in only 191
situations. This experiment serves as evidencedhartificial agent or robot that can
recognize and react to situations which warrantuthes of deception will be significantly

better suited to maximize their outcomes and hémeie task performance.

These results are important in that they demotesthet:

27



1) That a robot or agent that recognizes when to decwill obtain significantly
more outcome than a robot that does not;

2) most of the difference results from a relativelyadm(19.1) percentage of
situations;

3) imperfect deception does impact the amount of sn&cobtained; and

4) Bond and Robinson’s biological definition for detiep can be used in
conjunction with an interdependence theory framéwor develop methods for
robots to recognize when deception is warranted.

Still, the experiments presented in this sectiamehassumed that the robot is capable

of deception. Clearly this assumption is not as justified. In the next section we

investigate the method that the deceiver usedeatefely deceive the mark.

4.3 Deciding how to Deceive

Bond and Robinson’s definition of deception impleesemporal order [5]. The deceiver
must provide a false communication before the nieak acted. A false communication
provided after the mark has acted cannot be exgpdotdenefit the deceiver. Several
authors have recognized the need for a particidarporal order during deceptive
interactions [7, 10]. Gerwehr and Glenn detailanping process necessary for deception
with respect to the military domain [7]. EttingerdaJehiel provide a theoretical basis for
a prototypical pattern of interactions relatingdeception [10]. Floreano et al., on the
other hand, demonstrate that deception can ocdtr littie or no actual planning while
still confirming that the temporal order describglgove must be preserved [13]. With

respect to our running example, the robot canraxdenuddy tracks up to the first hiding
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place after the enemy soldier has already seleutemtea to search. The deceptive action
must be completed beforehand.

Our algorithm for acting deceptively is structusedh this temporal order in mind. It
consists of four stages. First the deceiver detemif the situation does indeed warrant
the use of deception. Next, the deceiver createsnitiuced matrix. Recall from section
4.1, the induced matrix is the matrix that the desrewishes the mark to believe. Next,
the deceiver selects the best false communicatiarotvince the mark that the induced
matrix is the true matrix. Finally, the deceivedahe mark perform their actions in the

environment.
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Acting Deceptively

Input: Partner Modeim™ ; true matrixO'; constantk;, K,
Output: None

1. Check if the situation warrants deception, iftsen continue
/ICalculate the induced matrix

2. seta™ OA™ such thatO'(ai ,amn ) =min(0')  /ffind the mark’s action which will
//minimize the deceiver's outcome
3. O(amin ) = O'(arnin )— k, //Subtractk, from the mark’s outcome for acticd™"

4. 6(a_i¢mi” ) = O'(a_#min )+ K, /IAdd K, from the mark’s outcome for all other

/lactions producing the induced matrix
/ISelect the best false communication

5. for eachy; ar [[for each potential false communication

_I*

/Icalculate the change the comm. will have on tuéngr model

6. g(m_i,yj)zm

/[calculate the resulting matrix from the new pamtmodel

if O = 6 /lif the matrix resulting from the false comm. peox. equal to
/lthe matrix we wish to induce, then

9. Sety* =V /Iset the best communication to the current comoatioin
/lInteract

10. Deceiver produces false communicat)o*nD [", the signal resulting in maximum outcome.
11. Deceiver uses matr’ to select actiora® [ AP which maximizes deceiver’'s outcome.
12. Mark produces induced matré.

13. Mark selects action from induced matﬁA)c

Figure 8 An algorithm for acting deceptively. Talgorithm takes as input the deceiver’'s model ef th
mark, the true matrix and two constants relatethéadeceiver’s strategy for fooling the mark.

The algorithm begins by checking if the situatiwarrants deception. If so, then the
deceiver attempts to determine what the charatiterisf the induced matrix will be.
Recall from section 4.1 that the deceiver can eitityeto increase the probability that the
mark will select an action favorable to the deceivdecrease the probability that the
mark will select an action unfavorable to the deegior both. In our algorithm, control

of the constantk, =0 and k, =0 allows the deceiver to both decrease the outcdme o

an unfavorable action being selectdgl)(and increase the outcome of a favorable action
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being selectedk,). The upper bounds for the values & and k, are limited by the

deceiver’s set of false communications. Greatemasfor the constants will result in an
induced matrix which is not achievable given theeailer’'s set of false communications.
The actual values for the constants can potenti@lyerived from previous experience

with similar situations, the robot’s motivations,foom the true matrix itself.

Creating the Induced matrix in a 2x2 Hide-and-seelexample

True matrix: deceiver
has decided to hide in
the left corrido

L is the mark’s action that
would minimize the deceiver’s

outcome. Thusa™" =L

The induced matrix: a new matrix created
by subtractingk, =10 from L and adding

k, =10 to R.

Figure 9 An example of the creation of the induceatrix by the acting deceptively algorithm on a
2x2 hide-and-seek example.

Steps 2-4 create the induced matrix by reduciegotitcome from the action deemed

not favorable to the deceiver and adding outconmthdcactions deemed favorable to the
deceiver. The second step locates the mark’s acti@ations that will result in a reduced
amount of outcome being obtained by the deceivektNn step 3, the deceiver subtracts
a constant valuek() from the mark’s outcomes for the action or adidound in step 2.
The value for this constant should be chosen swahtlhe increase in outcome makes the

alternative action or actions appear to be faverabth respect to the mark’s other action
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choices. The forth step adds a constant vallyé¢ to each of the mark’s actions which are
favorable to the deceiver. The result is the prtidancof an induced matrix which will
persuade the mark to select the action which ist faa®rable to the deceiver. In our
running example, the deceiver’'s most favored actwonld be for the mark to search in
the location that the deceiver is not hiding. Henlbe induced matrix, in this case, makes
searching in the location that the deceiver isfgdieem incorrect to the mark. Figure 9
presents an example of the creation of the inducailix in 2x2 version of our hide-and-
seek situation.

The next five steps of the algorithm attempt ttedmine which false communication
would be the best communication to create the iedumatrix within the mark.
Intuitively, steps 5-9 iterate through the deceéweset of possible false communications
searching for the false communication that willguoe an induced matrix which most
closely resembles the induced matrix from step @.d® this, in step 5 the algorithm
iterates over all false communications. In stepesfunction g([)] calculates the impact of
the false communication on the partner model. Timstion will be discussed in greater

detail in the next section. Step 6 uses both tdadad partner model and the deceiver’s
self model to create the matriQ”, that would be generated by this particular false
communication. If the matrix induced by a particufalse communicationO’, is
approximately equal to the desired induced maftdx, then the false communication to

be usedy; , is saved.

Finally, in steps 10-13, the robot produces tHsef&aommunication and selects an

action from the true matriX®’'. The mark reacts to the communication by genagatm
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own internal matrixO which may or may not equal the induced matrix ted by the

deceiver. Finally, the mark selects an action ftbenmatrixO.
As presented, this algorithm makes a number afimpsons. We assume that the

deceiver has a finite set 8 false communications; ={y,,...,y, }, over which it is

deliberating. This set of communications could madequately be described as a set of
deceitful actions with the purpose of providings@information to the mark. This set of
deceitful actions could, potentially, be learned,atiernatively simply be given to the
robot. The question of how the deceiver learntalaceitfully remains open.

The seventh step assumes that a measure of siynikists between outcome
matrices. We empirically explored two different tdisce measures. Euclidean vector

N

distance, d = Z()(L -x2 ), was initially used as a measure of similarity.isTh
i=1

measure, however, tends to emphasize the distédneachb action pair equally without
respect to how the distance impacts the mark’®adelection. The underlying purpose
of the comparison is to determine if the resultmgtrix and the induced matrix will
produce the same action selection by the mark.ef@adetter measure of similarity and
dissimilarity with respect to the mark’s actionesglon, we averaged each of the mark’s

actions across potential deceiver locations (avegape rows of the matrix) to produce a

iOM (alﬁ” ,ajD)

=1

vector, formally,v, = where v, is the average outcome value for the

mark’skth action. We then used the Euclidean vector digtaguation above to compare
the matrix resulting from a potential false comnuation leading to the induced matrix.

Other distance measures may also be possible.
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4.3.1 Representing knowledge about the mark

The fifth step of the algorithm assumes the existeof a functiong([)] that allows the

deceiver to reason about and predict the impaet faise communication on the mark.
The general question of how a piece of informatiolh impact the state and beliefs of
one’s interactive partner is a challenging and ogeestion. Arguably, this is also the
most difficult step in normal interpersonal deceptias it often requires detailed
knowledge of the mark and can lead to infinite lad common knowledge (i.e. the
deceiver knows mud trails are fake, the mark kntves the deceiver knows that mud
trails are fake, the deceiver knows that the marbwk that the deceiver knows that mud
trails are fake, and so on) [11]. Humans typicaltiize knowledge about the other
individual to determine how a false communicatioiil &ffect the other individual's
decision [24].

We use a Bayesian network to represent the datebsestem of beliefs related to the
mark. As mentioned in section 3, in game theoryekelare used to probabilistically

represent knowledge about oneself and one’s pafiiigr A belief is formally [24]
represented as the conditional probability(AB), where p, (I is the likelihood function

held by individual that the random variabke takes a particular value given evidence in

the form of a value for the random variaBle
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Bayesian Network representing the Deceiver’s beliefystem

AR

Figure 10 A Bayesian network representing the iglahip of the random variables for the deceiver's
belief system. The variableX ={l,r,c} denotes the corridor the mark will choose to deairg

H ={l,r,c} denotes a heat signatur8,={l,r,c} denotes the location of a sound, aha={l,r,c}
denotes the location of tracks.

Four random variables captured the deceiver'segysif beliefs related to the mark.
For our example, the hidden variabte={l,r,c} denotes the location of the deceiver, the
left (1), right (r), or center ¢) corridor. The remaining variables are observalblee
evidence variabled ={I,r,c} denotes a heat signature located in the leftright (r ),
or center €) corridor. The evidence variablS={I,r,c} denotes a sound signature with
the same possible values as the random variable foeat signature. The evidence
variable T :{I,r,c} denotes visible track signature again with the esaimtential values
as the preceding variables. We assume that bottietbeiver and the mark recognize the
causal relationship between the random variableat iE, both individuals know that the
deceiver’'s position causes the position of its tsgghature, sound signature, and visible
tracks and not vice versa. As shown by related wogkisal relationships among the
physical characteristics of objects can be leadmgd robot [25]. Figure 10 depicts a

directed graphical model representing the relalignsamong the different random

variables. Given the model, the deceiver uses tblegbility p, (X|H ,S,T) to predict the

impact of possible false communications on the rsarkodel of the situation. For
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example, if the deceiver intends to use a heatsige placed in the left corridor and no

other false communicatio{H =1), then the term pD(X :I|H =I) represents the

deceiver’s belief that the mark will select thet lebrridor given a heat signature in the

left corridor.

Predicting the impact of a false communication

Function g(m‘i Vi ) =m
Input:
ATl ={I,r,c
_ (1)10).(,r.-10),(1,c,~10),
Partner modelm ~ = s
u~" =4(r.1,-10).(r,r 20).(r,c,-10)

(c.1,-10),(c.r,-10),(c,c10)
Evidence vecton/j = <H =r,S=r,T= r>

Junction tree algorithm: p(X = I|H =r,S=r,T= r) = 0.0345
p(X =r|H =r,5=1,T =r)=09310
p(x =dH =r,s=r,T =r)= 00345
Update utility values:
u(1,1) = 0.0345x10, u(l,r) = 09310x -10, u(l,c) = 0.0345x -10,
u(r.1) = 0.0345x -10, ufr,r) = 0.9310x10, u(r,c) = 0.0345x -10,
u(c,1) = 0.0345x10, u(c,r) = 09310x 10, u(c,c) = 0.0345x10

L0 () ,Q;)I, (i ;{l—rggg (1,c,-03),
T T o = d(1-03), (o r 93), (1 c-03),

(c.1,-03),(c.r.-93).(c.c,03)

Figure 11  An example of the computations undertakepredict the impact of a false communication.
The figure details the calculations conducted asqfahe functiong([)] for the hide-and-seek example.

Our function g([)] uses the junction tree algorithm to perform stiads$ inference on
the graphical model depicted in Figure 10 ( se€ @8 an overview). The vector

Y =<H ,S,T> serves as input to the junction tree algorithme Trference results in the
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posterior probabilityp, (X|H ,S,T). The value of the posterior is then multiplied thg

deceiver’s belief of the mark’s outcome values itodpice revised outcome values given
the evidence. These revised outcome values aredsiora revised partner model. Figure

11 details the computational process underlyingimptementation ofg([)].

4.3.2 Simulating deception in hide-and-seek

The study of deception and deception avoidanceeptesunique methodological

challenges. Because the success or lack of suotessleception algorithm hinges not
just on the deception algorithm itself, but alsotbe means of controlling the mark,

deception results may not be indicative of succeésiéception per se, but rather of a
weak mark. The challenge then becomes how to gthegsuccess of one’s deception
algorithm relative to a mark.

We utilize several techniques to deal with the$mllenges. First, all of the
interactions between the deceiver and the marlomgeshot interactions. In other words,
neither the deceiver nor the mark refine theiriahitnodels of the other based on prior
experience. This prevents the experiment from degémg into a competition of
machine learning algorithms. Second, different $ypé marks were created each with
different action selection strategies. This preseatsingle strategy from acting as a
dominant strategy for the deceiver. Finally, wendd compare the algorithm’s results to
a control algorithm. Because this is a new are@séarch without established metrics or
ground truth, even a statistically significant i&se in ability to deceive with respect to a
control could simply be a reflection of a weak coht

Rather than attempting to empirically demonstiie ability of our algorithm to

deceive, our primary goal will be to use the altjon as a tool to investigate the nature of
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deception itself. Specifically, we explore the tigaship between a deceiver's
knowledge of the mark and its ability to deceivee Wypothesize that additional
knowledge about the mark aids the deceiver by atigw to more accurately reason and
predict the effect of a false communication will’ean the mark.

This hypothesis may seem intuitive. To restatthé, more a priori knowledge that the
deceiver has about the mark the better its abthtydeceive should be. There are,
however, numerous instances of deception which dvasgem to contradict this
statement. Take, for example, the use of camoutiage method of deception (Figure 2).
Typically the deceiver has little, if any, expliihowledge pertaining to the mark yet the
use of camouflage works flawlessly. We argue thahese cases the deceiver has tacit
and/or implicit knowledge related to the perceptahilities of the deceiver [27]. Also
consider the debate within the primatology commuag to whether or not the use of
deception is indicative of theory of mind [2]. Thiesults of these experiments are
valuable in that they demonstrate possible comjmualt underpinnings by which theory
of mind could influence one’s ability to deceive.

We conducted both simulation and robot experimewotstest this hypothesis.
MissionLabwas used to conduct our simulation experimeMissionLabis a robot
mission specification software suite which allowsers to simulate multi-agent and
multi-robot scenarios, design robot behaviors amstantiate missions using situated

embodied robotic hardware [28].
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MissionLab Simulation Environment

Start Place
GoTo AreaR GoTo AreaC GoTo Areal
Deceiver Deceiver Deceiver
Hiding AreaR Hiding AreaC Hiding Areal
Exit 1 Exit 2 Exit3

Figure 12  The multi-robot hide-and-seek simulagorironment used for our experiments.

Our experiment involves multi-robot hide-and-segl®]. Hide-and-seek is an
agreeable paradigm for deception research becauseai transformation of the well-
studied robot foraging problem [27]. In traditionalbot foraging a robot searches an
environment for attractors. The dependent variagblgypically the number of attractors
located or the mean time to locate a fixed numbettoactors. Hide-and-seek varies the
foraging problem by making the task multi-agent @iating the agents in conflict; the
success of the seeker in inversely related to tlceess of the hider. In our variation of
hide-and-seek, the hider/deceiver hides in onéi@et areas pictured in Figure 12. The
seeker/mark must select only one location whergetoch. As a paradigm for the study
of deception, one could potentially use hide-anekséo explore both sides of the

deception problem. Namely one could develop algor# and theories for improving
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deception by focusing on the role of the hider/desxe Alternatively, one can explore
deception recognition or reduction techniques ®attng methods for the seeker/mark.
The hide-and-seek environment utilized for thisesrch was designed to relate to this
paper’'s running example and is meant to force dekex to select a single search path
(Figure 12). As discussed in section 3.2, knowdedfjan individual’'s action space is a
necessary prerequisite for the construction of atcane matrix. In this case, the
seeker’s action space consists of going down orteeothree corridors in search of the
hiding robot. Formally, for this experiment the lsexes action space can be represented
as A" ={GoToArealLeft, GoToAreaCenter, GoToAreaRight}. These actions were
constructed iMissionLabfrom a series of waypoints allowing the robot towa through

and search the different corridors. Likewise thdehimust decide which corridor to hide

in. Formally, the hider’'s action space can be regméed asA® ={Hi del nArealeft,

Hi del nAreaCenter, Hidel nAreaRi ght}. The hider's actions were also constructed in
MissionLabfrom a series of waypoints that allow the decegviabot to move to one of
the three hiding locations within a corridor.

Prior to the interaction the hider must selealad communication and location to aid
in its deception. In this experiment, the deceiwsed three types of diversions as false
communications: heat signatures, sounds, and gisibtks. Notionally, heat signatures
acted as false communications to seekers with redraensors, sounds acted as false
communications to seekers with auditory sensingl asible tracks were capable of
fooling seekers with vision. The use of these paldir types of diversions simply serves
to ground the experiments in a setting and a sibingy do not limit the applicability of

the results as evidence for or against our hypah&srmally, for this experiment, the
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hider's false communication set can be represeased ={tracks, heat _si gnature,

sound}. Each false communication also has a location, right, or center.

Table 2 The table below lists the different typesfaseekers. The seeker’s perception as limited by
the presence or absence of vision, auditory, andfiared sensors.
Seeker Types
Number Sensors Deception signal sensitivity

1 None insensitive

2 Infrared mildly sensitive

3 Auditory mildly sensitive

4 Vision mildly sensitive

5 Infrared, auditory largely sensitive

6 Infrared, vision largely sensitive

7 Auditory, vision largely sensitive

8 Vision, auditory, infrared completely sensitive

Seekers come in several types (Table 2). The seekkility to detect the hider’s
false communication depends on the seeker’s stisersors. Seekers with all possible
combinations of sensors were created. Seekers svastdered insensitive to the hider’s
deception signal if they had no ability to sense signal, mildly sensitive if they had
only a single type of sensor, largely sensitivéhiéy had two sensors, and completely
sensitive if they had all three sensors.

The dependent variable in these experiments watheh or not the seeker located
the hider. Random selection of a search path bysé¢e&er would be expected to locate
the hider in ~33% of the runs. The independentaidei was the amount of a priori
knowledge the hider was given related to the séeberceptual capabilities. The hider’s
a priori knowledge of the seeker was quantizedadimmal questions the hider could ask
the seeker. The hider could only ask one of theetlquestions listed in Table 3. The
independent variable ranged from zero questionk(mmwvledge of the seeker’s type) to

three questions (full knowledge of the seeker'ssjy@he question asked by the hider
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was selected at random and the deceiver did notheskame question multiple times.
Responses to all questions were yes or no. Theesedkays responded honestly. The
communication of this information was accomplished the passage of byte strings
among the robots. Speech synthesis and recognitese not used. The ability of the
hider to ask questions of the seeker served ascaansm for knowledge transfer from
the seeker to the hider. In more realistic appbecet of this work the hider would,
perhaps, infer visually that the seeker had a amdonera, microphone, or infrared sensor.
The actual development of visual capabilities, hesvewas far beyond the scope of this
work. Thirty runs of the preceding experimental ggdure were conducted for each of

the values of the independent variable.

Table 3 List of the each of the questions the hiderould ask the seeker in order to gain
knowledge of the seeker’s type.

Hider Questions
Number Question Response
1 Do you have an infrared sensor? Yes/No
2 Do you have an auditory sensor? Yes/No
3 Do you have a vision sensor? Yes/Np
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Outcome Matrix Representing Hide-and-Seek

Hider
D_ D _ D _
a = = a; =
Goleft GaCente GoRight
M _ -10 10 10
a:l. =
= Golefi|| 10 -10 -10
X
] M _ 10 -10 10
§ %=
GaCentg| -10 10 -10
aV = 10 10 -10
GOnghl -10 -10 10

Figure 13  An outcome matrix representing the hidé-seek game. The matrix arbitrarily values the
seeker finding the hider with an outcome value d® -and not finding the seeker with an outcome value
10. The reverse is true for the hider.

The following procedure was used:

1)
2)

3)

4)

5)

6)

7

8)

9)

10)

Experimental Procedure

The seeker’s type is randomly selected.

Both the hider and the seeker begin at theilmtddbeled “Start Place” in
Figure 12.

The hider sends the seeker questions pertatoirthe seeker’s type i
accordance with the independent variable.

=

The seeker responds.

The hider creates an initial partner model repnéing the seeker with
action set A ={GoToArealeft, GoToAreaCenter, GoToAreaRi ght}
and the utilities values depicted in Figure 13.

The hider randomly selects an action from thet|se
AP ={Hi del nAreaLeft, HidelnAreaCenter, HidelnAreaRight}

The hider creates the true matrix with respedts action selection from
step 6). Figure 3 depicts the result for the actiate! nAr eaLeft .

X

The hider uses the partner model created in Stegnd the true matri
from 6) with constantsk, =20k, =20 as input to the algorithm from

Figure 8.

The algorithm results in the selection of a datommunication from
r ={y0,...,yM } The hider produces the false signal.

The hider performs the action AP ={Hidel nArealeft,
Hi del nAreaCent er, Hi del nAreaRi ght }.
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11) The seeker, in accordance with its type, perceweaioes not perceive the
hider’s false communication signal.

12) The seeker selects a corridor and searches thdaorr

13) If the seeker selects the correct corridor, thefsddeception is recorded
as a failure. Otherwise, the hider’s deceptioreorded as a success.

14) Steps 1) through 13) are repeated.

Recall that we hypothesized that the more a pknawledge that the deceiver has
about the mark the better its ability to deceiveuwti be. Hence we expected that
additional questions on the part of the deceiveuldaesult in better deception and
reduced detection on the part of the seeker. Fifydrdepicts the results. We see that the
rate at which the deception succeeds increases Ti®mercent to 95 percent as the
number of questions asked by the deceiver incrdem®s0 to 3. Confidence intervals for
the independent variable wet8, £5, +4, and+3 percent, respectively. Hence, we can
conclude that the additional information gainedtbg deceiver aids in deception. The
importance of this result will be discussed in ¢baclusions.

We can also breakdown the results with respectht seeker’'s sensitivity to
deception. We claimed in Table 2 that seekers wetgito deception varied from
insensitive to extremely sensitive. Figure 15 greglly depicts the deception success for
each type of seeker. As expected deception sucatsor the seeker without sensors is
approximately 66 percent. The deception success faat mildly sensitive seekers is

significantly greater than the success rate foensgive seekersg{< 0Ofor all two-

tailed). No significance difference resulted whemearing mildly sensitive seekers to
largely sensitive seekers. The trend line deplatsgeneral increase in deception success

with seeker sensitivity.
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Deception success with respect to partner information
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I
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Number of questions
Figure 14  The graph above depicts the percent afessful deception for different numbers of asked

guestions. The confidence intervals indicate theigaificant difference results when comparing zasked
questions to three asked questions. Asking thresstopns resulted in significantly greater deception

success P < 001 for all).

Seeker sensitivity to deception
1.10
0 2
N R®=0.9205
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Seeker Type
Figure 15 The graph above indicates the percentiofessful deception for each different seeker.type

When the seeker has no sensors the percent suscgsgsroximately 0.66, indicative of the unsuccelssf
deception. As sensors are added to the seekacdinies more susceptible to the deception. Thelinend
is a power function.

4.3.2 Robot Experiment
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We also conducted a robot experiment to explorentpact of sensor and actuation noise
on the learning and use of deception signals. imdkperiment, the deceiver learns a set
of three deception signals. The robot then attertptsse the learned signals to deceive

the seeker.

i
&y

Experiment Sefup Robot moving to left location

Robot moving to middle location Robot moving to right location

Figure 16  The images above depict the experimeetalp for the robot experiment. The top left image
shows the hider, the left, center, and right hidmgation. The top right photo depicts the hidewing to
the left hiding location. The hider knocks over thlee marker enroute to the location. The bottofh le
photo depicts the hider going to the center hidimgation. In this case the hider knocks over theé re
marker. Finally, the bottom right photo depicts tiider moving to the right hiding location. In trdase,
the hider does not knock over any markers.

For this experiment, communications related to thieler's position were
accomplished by knocking over markers en routénéohiding location. As depicted in
Figure 16 colored markers were positioned alongpd#hway to each hiding location.

The robot, autonomously traveling to one of theatams, typically knocked over one or
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more of the markers. The presence or absence dista markers thus indicated the

hider’s location to a potential seeker.

Table 4 The table below lists the conditional probhilities learned by the hider and the seeker.

Hider and Seeker’'s Learned Marker Conditional Probailities

X b=true | b= false | r =true r = false | g =true g = false
Py (x: |) 0.8 0.2 0.5 0.5 0.0 1.0
p, (x=c) 0.0 1.0 1.0 0.0 0.0 1.0
Py (x=r 0.1 0.9 0.1 0.9 0.2 0.8
ps(x=1) 0.7 0.3 0.1 0.9 0.0 1.0
ps(x = c) 0.0 1.0 0.5 0.5 0.1 0.9
Ps(X = r) 0.0 1.0 0.0 1.0 0.2 0.8

During a learning phase, the hider first went aglelocation 10 times and recorded
whether or not each of the three markers remaiteedisng. The results are presented as
conditional probabilities in Table 4. The condi@bprobabilities from Table 4 were used
in conjunction with the graphical model in Figuré. The junction tree algorithm was

again used to perform inference on the model. F@mple, witnessing the pattern

(B = false R=true,G = false indicates that the red marker was knocked dowrthmit

blue and green are standing and occurs when tlex triglveled to the center location.

Next, the junction tree algorithm is used to detagd the marginalized probabilities of
X p(X=IB=f,R=t,G=f) =006, p(X=c¢B=f,R=t,G=1f)=094, and
p(X = r|B =f,R=t,G=1f)=0. Finally, given the conditional probabilities, theler
expects that a signal G(B = falsg R=true,G = false> indicates the hider’s location to

be center (the marginal probability of maximum likeod). Hence, the signal

<B = falsg R=true,G = false> is a good false communication when the hider sion

is either left or right.
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Bayesian Network representing the Deceiver’s beliefystem

AR

Figure 17 A Bayesian network representing the igahip of the random variables for the deceiver's
belief system in the laboratory robot experimeifte Tariable X ={l,r,c} again denotes the corridor the

mark will choose to search irB ={true, falsg denotes the blue markeR ={true, falsg denotes
the red marker, ans ={true, falsg¢ denotes green marker.

Producing the false communications is similarisaigihtforward. The hider simply
moves as if they are going to a location and tbeoe it reaches a point past the markers,
changes course to some other location. Contintnegekample from the prior paragraph,
the hider moves as if hiding in the center locatigpically knocking only the red marker
down, then moving to either the left or the rigidihg position ideally traveling along a
path that avoids any markers. The hider's set [sefaommunications was defined by
selecting a pattern of knocked over markers thditated a false hiding position for each
possible hiding position.

The following procedure was used:

Hide and seek experimental procedure

1) The hider moves to each location 10 times rengravhich markers ar
standing afterward.

11%

2) The seeker moves to each location 10 times degpmwhich markers arg
standing afterward.

3) The hider generates a false communication foh éacation based on the
results of step 1).

4)  The hider creates an initial parther model repnéing the seeker with
action setA” ={GoToArealLeft, GoToAreaCenter, GoToAreaRi ght}
and the utilities values depicted in Figure 13.
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5)

6)

7

8)

9)

10)

11)
12)

The hider randomly selects an action from the't
AP ={Hi del nAreaLeft, HidelnAreaCenter, HidelnAreaRight}

The hider creates the true matrix with respedtst action selection fron
step 6). Figure 3 depicts the result for the adtiate! nAr ealLeft .
The hider uses the partner model created in Stegnd the true matri

from 6) with constantk, =20k, =20 as input to the algorithm fror
Figure 8.
The algorithm results in the selection of a datsommunication from
r ={y0,...,yM}. The hider produces the false signal by initiagving

to the location and knocking over markers.

The hider performs the action AP ={Hidel nArealLeft,
Hi del nAreaCent er, Hi del nAreaRi ght }.

The seeker perceives which markers have been kdanker (the hider’s
false communication signal).

The seeker selects a corridor and searches thdaorr

If the seeker selects the correct corridor, thetsddeception is recorde
as a failure. Otherwise, the hider’s deceptioreorded as a success.

se

X

N

]

d

During a similar but separate learning phase d¢e&er moved to each of the locations

10 times and recorded whether or not each of treetmarkers remained standing. The

results of the seeker’s learning are presente@bi€l4 (aspg). The results from Table 4

were used in conjunction with the seeker’s versadbthe graphical model depicted in

Figure 17 representing the seeker’s belief systiethechider’s location. The junction tree

algorithm was then used by the seeker to calcubeanarginal probability oK given

evidence in the form of standing markers. The sed#ken searched in the area with

maximal marginal probability. Color blob detectiasas used to produce these evidence

vectors. A procedure for the hider and the seekprasented above.
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’_;J.J._.-_
Figure 18 WowWee’s Rovio robot.

WowWee’s Rovio robot was used in these experimfamtboth the role of the hider
and the seeker (Figure 18). This robot is a wheedbdt with mobility over smooth flat
surfaces. The robot’'s camera is a 640 by 480 piedicam mounted on the top of the
robot’'s extendable neck. Communication with theotab accomplished via the robot’s
wireless network card. The Rovio comes with a dogkstation and infrared beacon
easing the robot’s navigation task back to the ohacktation.

We ran twenty trials using the hide and seek ewpmmrtal procedure. The hider
randomly selected a hiding location, produced #igef communication, and then moved
to the hiding location. The seeker recognized igaas, produced the evidence vector,
determined the best location to search, and fimalhyed to that location. We found that
the deception worked in 75 percent of the triaks ¢1 20) and failed in 5 of the 20 trials.
Each of these 5 failures resulted from the hiderability to knock over the correct
markers to produce the desired deceptive commuaicdh two of these cases the hider
attempted to signal that it was in the center iocalby knocking over the red marker, but
missed knocking over any markers. In the remainimge cases, the hider accidentally

knocked over a marker which signaled its locati@verall, the hider produced the
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incorrect signal in 7 of the 20 trials. Two of threcorrect signals, simply because of
chance, did not impact the deception.

Overall, the experiment demonstrated the learaimgj use of deception signals in a
noisy environment on a real robot. Moreover, treilts are a preliminary indication that
the techniques and algorithms described in thispapn be fruitfully used to produce

deceptive behavior in a robot.

6. The Ethical Implications of Deceptive Robots

One might question the intent behind creating daeepobots in the first place. While
obviously there is utility in military situationgs deception has been used to advantage
there throughout recorded history, it is entirebggible that the tools and techniques used
to understand both when a robot should deceivethadnethods to accomplish such
deception could conceivably be used for nefariaupgses.

Our laboratory has spent considerable effort iplaing and understanding many of
the ethical quandaries associated with the efigctebots and society, e.g., (Arkin 2009,
Arkin 2008). We assume that techniques for decaptan and will be further developed
in the future and this research serves as a statkes iground, indicating the possibility of
creating such a potentially unethical capability robotic systems. As a result, we
strongly encourage discussion about the appropeateof this and other related areas of
robot ethics by the appropriate communities (&grpon 2007) and relevant professional
societies, to determine what, if any, regulatiomsgaidelines should constrain the
designers of these systems. It is crucial thatetremsiderations be done proactively
rather than reactively in order to ensure thatdlesations are consistent with the overall

expectations and well-being of society.
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7. Summary and Conclusions

This article arguably represents the first detadgs@dmination of robot deception. Our
exploration of the topic began with a working défon borrowed from biology. We used
this definition and the interdependence theory &aork presented in [6] to reason
about, develop, and test algorithms which we beliesl allow a robot to recognize
when a situation warrants the use of deceptionhamda deceiver can and should select a
false communication. Our results show that:
1) a situation’s location in interdependence spacebeansed to determine if
a robot or agent should act deceptively;
2) a deceiver’s knowledge about the mark can aid taerdening which false
communication the deceiver should use; and
3) learned communications can be used as deceptinalsigy a robot.
We have also discussed some of the ethical impsirelated to the creation of robots
capable of deception.

The algorithms presented herein assume that oetcoratrices representing the
interactions faced by the robot can be createdvibus work serves as evidence that
outcome matrices reflecting these situations cdeed be created [1]. Our algorithm for
acting deceptively also assumes that the dece@erahmodel of the mark. Our results
have shown that the information within the decéssarodel of the mark is an important
factor in determining the deception’s success olua We did not explore the
implication of partner modeling on the part of thark.

Our experiments were developed to examine therighges and their related

underpinnings. As such, they do not representitia Word on robots and deception. It
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is our hope that other researchers will continuexplore this topic. We are currently
working on a software release to promote such Wafikh respect to our algorithm for
determining if a situation warrants deception, welfthat psychologically grounded
experimentation is necessary to determine the letioe between situations our
algorithm selects as warranting deception and a@aman human subject population.
Moreover, while our results linking the successleteption to one’s knowledge of the
mark may appear trivial, these results are criticalthat they conceptually and
empirically link theory mind to the use and sucaafsgeception.

This research highlights and reinforces the rdiat ttheory of mind plays in
deception. The acting deceptively algorithm wasettgyed around the notion that the
deceiver uses a model of the mark to decide hovdeceive. Moreover, we have
intentionally used a broad definition of deceptinrthe hope of applying our results as
generally as possible. While some of the mechan@nusrepresentations, such as the
structure of the Bayesian network, used in the exmts were tied to a particular
problem, for the most part, this work stands asemegally applicable computational
foundation for understanding the phenomena of dexrep

Research exploring the use of deception by rolsgtetentially important for several
different application areas. Military applicatioase an obvious possibility. Less obvious
applications could possibly aid a robot’s managdnaansituations within assistive or
search and rescue. A search and rescue robot nealytoedeceive in order to calm or
receive cooperation from a panicking victim. Sdgiassistive robots are expected to
provide patients in a healthcare setting with peatined care. Generally, one would not

expect the goals of a robot trying to help to beanflict with a patient. But there are
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cases in which this does happen. Again, patierifsrgwg from acute trauma may need to
be deceived in order to receive cooperation. Olydml many social robotics and multi-

robotics application areas the use of deceptionabgbot may be rarely used, but
nonetheless an important tool in the robot’s irdva arsenal, just as it has been with

intelligent systems throughout the animal kingdom.
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