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Abstract

The last decade has witnessed the success of tradi-
tional feature-based methods for exploiting the dis-
crete structures such as words or lexical patterns
to extract relations from text. Recently, convo-
Iutional and recurrent neural networks have been
shown to capture effective hidden structures within
sentences via continuous representations, thereby
significantly advancing the performance of relation
extraction. The advantage of convolutional neural
networks is their capacity to generalize the con-
secutive k-grams in the sentences while recurrent
neural networks are effective to encode long range
sentence context. This paper proposes to combine
the traditional feature-based method, the convolu-
tional and recurrent neural networks to simultane-
ously benefit from their advantages. Our system-
atic evaluation of different network architectures
and combination methods demonstrates the effec-
tiveness of this approach and results in the state-of-
the-art performance on the ACE 2005 and SemEval
datasets.

1 Introduction

We study the relation extraction (RE) problem, one of the
important problem of information extraction and natural lan-
guage processing (NLP). Given two entity mentions in a sen-
tence (relation mentions), we need to identify the semantic
relationship (if any) between the two entity mentions. One
example is the recognition of the Located relation between
“He” and “Texas” in the sentence “He lives in Texas”.

The two methods dominating RE research in the last
decade are the feature-based method [Boschee et al., 2005;
Zhou et al., 2005; Jiang and Zhai, 2007; Chan and Roth,
2010; Sun et al., 2011] and the kernel-based method [Ze-
lenko et al., 2003; Culotta and Sorensen, 2004; Bunescu and
Mooney, 2005; Plank and Moschitti, 2013]. This research
extensively studied the leverage of linguistic analysis and
knowledge resources to construct the feature representations,
involving the combination of discrete properties such as lex-
icon, syntax, and gazetteers. Although these approaches are
able to exploit the symbolic (discrete) structures within rela-
tion mentions, they also suffer from the difficulty to general-
ize over the unseen words [Gormley e al., 2015], motivating
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some very recent work on employing the continuous repre-
sentations of words (word embeddings) to do RE. The most
popular method involves neural networks (NNs) that effec-
tively learn hidden and continuous structures of relation men-
tions from such word embeddings, thus achieving the top per-
formance for RE [Zeng et al., 2014; dos Santos ef al., 2015;
Xu et al., 2015].

The NN research for relation extraction and classification
has centered around two main network architectures: con-
volutional neural networks (CNNs) [dos Santos et al., 2015;
Zeng et al., 2015] and recursive/recurrent neural networks
[Socher et al., 2012; Xu et al., 2015]. The distinction between
convolutional neural networks and recurrent neural networks
(RNNSs) for RE is that the former aim to generalize the short
and consecutive context (i.e, the k-grams) of the relation men-
tions [Nguyen and Grishman, 2015a; Lei et al., 2015] while
the latter adaptively accumulate the context information in the
whole sentence via the memory units, thereby encoding the
long and possibly non-consecutive patterns for RE [Hochre-
iter and Schmidhuber, 1997]. Consequently, the traditional
feature-based method (i.e, the log-linear or MaxEnt model
with hand-crafted and discrete features), the CNNs and the
RNNs tend to focus on different angles for RE. Guided by
this intuition, in this work, we propose to combine the three
models to further improve the performance of RE.

While the architecture design of CNNs for RE is quite es-
tablished due to the extensive studies in the last couple of
years, the application of RNNs to RE is only very recent and
the optimal designs of RNNs for RE are still a subject of on-
going research. In this work, we first perform a systematic
exploration of various network architectures to seek the best
RNN model for RE. In the next step, we extensively study dif-
ferent methods to assemble the log-linear model, CNNs and
RNNs for RE, leading to the combined models that yield the
state-of-the-art performance on the ACE 2005 and SemEval
datasets. To the best of our knowledge, this is the first work
to systematically examine the RNN architectures as well as
combine them with CNNs and the traditional feature-based
approach for RE.

2 Models

Relation mentions consist of sentences marked with two en-
tity mentions of interest. In this paper, we examine two dif-
ferent representations for the sentences in RE: (i) the standard
representation, called SEQ that takes all the words in the sen-



tences into account and (ii) the dependency representation,
called DEP that only considers the words along the depen-
dency paths between the two entity mention heads of the sen-
tences. In the following, unless indicated specifically, all the
statements about the sentences hold for both representations
SEQ and DEP.

Throughout this paper, for convenience, we assume that the
input sentences of the relation mentions have the same fixed
length n. This can be achieved by setting n to the length
of the longest input sentences and padding the shorter sen-
tences with a special token. Let W = wjws ... w, be the
input sentence of some relation mention, where w; is the ¢-th
word in the sentence. Also, let w;, and w;, be the two heads
of the two entity mentions of interest. In order to prepare
the relation mention for neural networks, we first transform
each word w; into a real-valued vector x; using the concate-
nation of the following seven vectors, motivated by the pre-
vious research on feature analysis for RE [Zhou e al., 2005;
Sun et al., 2011; Zeng et al., 2014; Gormley et al., 2015]:

- The real-valued word embedding vector e; of w;, ob-
tained by looking up the word embedding table E.

- The real-valued distance embedding vectors d;,, d;, to
encode the relative distances ¢ — ¢; and ¢ — i5 of w; to the
two entity heads of interest w;, and w;,: d;; = D[i — 1],
d;, = DJi — i3] where D is the distance embedding table
(initialized randomly). The objective is to inform the net-
works the positions of the two entity mentions for relation
prediction.

- The real-valued embedding vectors for entity types ¢; and
chunks ¢; to embed the entity type and chunking information
for w;. These vectors are generated by looking up the entity
type and chunk embedding tables (also initialized randomly)
(i.e, T and @ respectively) for the entity type ent; and chunk-
ing label chunk; of w;: t; = Tlent;], ¢; = Q[chunk;].

- The binary vector p; with one dimension to indicate
whether the word w; is on the dependency path between w;,
and w;, or not.

- The binary vector g; whose dimensions correspond to
the possible relations between words in the dependency trees.
The value at a dimension of g; is only set to 1 if there exists
one edge of the corresponding relation connected to w; in the
dependency tree.

The transformation from the word w; to the vector
x; = lei,ds,,diy, tiyqi, Diy g;] essentially converts the rela-
tion mention with the input sentence W into a real-valued
matrix X = [x1,Z9,...,%,], to be used by the neural net-
works presented below.

2.1 The Separate Models

We describe two typical NN architectures for RE underlying
the combined models in this work.

The Convolutional Neural Networks

In CNNs [Kalchbrenner et al., 2014; Nguyen and Grishman,
2015al, given a window size of k, we have a set of ¢ fea-
ture maps (filters). Each feature map f is a weight matrix
f = [f1,f;,...,f;] where f; is a vector to be learnt during
training as the model parameters. The core of CNNs is the
application of the convolutional operator on the input matrix
X and the filter matrix f to produce a score sequence (also
called the hidden vector) st = [sf,s5,... st | ], inter-
preted as a more abstract representation of the input matrix

k-1
sf = g(z fj112545 + )
=0

where b is a bias term and g is the tanh function.

In the next step, we further abstract the scores in s by ag-
gregating it via the max function to obtain the max-pooling
score st . We then repeat this process for all the c;, feature
maps with different window sizes k to generate a vector of the
max-pooling scores. In the final step, we pass this vector into
some standard multilayer neural network, followed by a soft-
max layer to produce the probabilistic distribution pc(y|X)
over the possible relation classes y in the prediction task.

The Recurrent Neural Networks

In RNNSs, we consider the input matrix X = [z1, 22, ..., Ty
as a sequence of column vectors indexed from 1 to n. At each
step ¢, we compute the hidden vector h; from the current input
vector x; and the previous hidden vector h;_; using the non-
linear transformation function ®: h; = ®(z;, h;—1).

This recurrent computation can be done via three dif-
ferent directional mechanisms: (i) the forward mechanism
that recurs from 1 to n and generate the forward hid-
den vector sequence: R(x1,xo,...,x,) = hi,hay ..., iy,
(i) the backward mechanism that runs RNNs from n to
1 and results in the backward hidden vector sequence
R(xy,p_1,...,21) = hl,hl,_1,...,h}!, and (iii) the bidi-
rectional mechanism that performs RNNs in both directions
to produce the forward and backward hidden vector se-
quences, and then concatenate them at each position to gen-
erate the new hidden vector sequence h8,hS, ... hY: b =
[hi, i)

Given the hidden vector sequence h1, ho, . .., h, obtained
from one of the three mechanisms above, we study the fol-
lowing two strategies to generate the representation vector v*
for the initial relation mention. Note that this representation
vector can be again fed into some standard multilayer neu-
ral network with a softmax layer in the end, resulting in the
distribution pg (y|X) for the RNN models:

- The HEAD strategy: In this strategy, v’ is the concate-
nation of the hidden vectors at the positions of the two entity
mention heads of interest: v® = [h;,, h;,]. This is motivated
by the importance of the two mention heads in RE [Sun et al.,
2011; Nguyen and Grishman, 2014].

- The MAX strategy: This strategy is similar to our max-
pooling mechanism in CNNSs. In particular, vy is obtained by
taking the maximum along each dimension of the hidden vec-
tors hy, ho, ..., h,. The idea is to further abstract the hidden
vectors by retaining only the most important feature in each
dimension.

Regarding the non-linear function, the simplest form of ®
in the literature considers it as a one-layer feed-forward neu-
ral network, called FF: h; = FF(x;,hi—1) = ¢o(Ux; +
Vh;_1) where ¢ is the sigmoid function, U and V' are weight
matrices. Unfortunately, the application of F'F' is prone to the
“vanishing gradient” problem [Bengio et al., 1994], making
it challenging to train RNNs properly. This problem can be
alleviated by long-short term memory units (LSTM) [Hochre-
iter and Schmidhuber, 1997]. In this work, we use a variant

I'The initial hidden vectors are set to the zero vector.



of the LSTM, called the Gated Recurrent Units by Cho et al.
[2014], (GRU). GRU is shown to be simpler than LSTM
in terms of computation but still achieves comparable perfor-
mance [J6zefowicz et al., 2015].

2.2 The Combined Models

We first present three different methods to assemble CNNs
and RNNs: ensembling, stacking and voting, to be investi-
gated in this work. The combination of the neural networks
with the log-linear model would be discussed in the next sec-
tion.

Ensembling

In this method, we first run some CNN and RNN in Section
2.1 over the input matrix X to gather the corresponding distri-
butions po(y|X) and pr(y|X). We then combine the CNN
and RNN by multiPlying their distributions (element-wise):
Pensemble (Y| X) = Zpc(y|X)pr(y|X) (Z is a normalization
constant).

Stacking
The overall architecture of the stacking method is to use one
of the two network architectures (i.e, CNNs and RNNs) to
generalize the hidden vectors of the other architecture. The
expectation is that we can learn more effective features for RE
via such a deeper architecture by alternating between the local
and global representations provided by CNNs and RNNs.
We examine two variants for this method. The first vari-
ant, called RNN-CNN, applies the CNN model in Section 2.1
on the hidden vector sequence generated by some RNN in
Section 2.1 to perform RE. The second variant, called CNN-
RNN, on the other hand, utilize the CNN model to acquire the
hidden vector sequence, that is, in turn, fed as the input into
some RNN for RE. For the second variant, as the length of the
hidden vector st = [sf, s§, ... st | ] in the CNN model
depends on the specified window size k for the feature map
f, we need to pad the input matrix X with | 4] zero column

vectors on both sides to ensure the same fixed length n for all

the hidden vectors: sf = [sf s ... sf]. Besides, we need

r n
to re-arrange the scores in the hidden vectors from different
feature maps of the CNN so they are grouped according to
the positions in the sentence, thus being compatible with the

input requirement of RNNs.

Voting

Instead of integrating CNNs and RNNs at the model level
as the two previous methods, the voting method makes deci-
sions for a relation mention X by voting the individual deci-
sions of the different models. While there are several voting
schemes in the literature, for this work, we employ the sim-
plest scheme of majority voting. If there is more than one re-
lation class receiving the highest number of votes, the relation
class returned by a model and having the highest probability
would be chosen.

2.3 The Hybrid Models

In order to further improve the RE performance of models
above, we investigate the integration of these neural network
models with the traditional log-linear model that relies on var-
ious linguistic features from the past research on RE [Zhou et
al., 2005; Sun et al., 2011; Gormley et al., 2015]. Specifi-
cally, in such integration models (called the hybrid models),

the relation class distribution is obtained from the element-
wise multiplication between the distributions of the neural
network models and the log-linear model. Let us take the
ensembling model in Section 2.2 as an example. The corre-
sponding hybrid model in this case would be: phypria (Y| X) =
72c(YIX)PR (Y| X)Progin (y] X)), assuming piogin(y|X) is the
distribution of the log-linear model and Z is the normaliza-
tion constant. The parameters of the log-linear model are
learnt jointly with the parameters of the neural networks.

Hypothesis: Let S be the set of relation mentions correctly
predicted by some neural network model in some dataset (the
coverage set). The introduction of the log-linear model into
this neural network model essentially changes the coverage
set of the network, resulting in the new coverage set S’ that
might or might not subsume the original set .S. In this work,
we hypothesize that although S and S overlap, there are still
some relation mentions that only belong to either set. Con-
sequently, we propose to implement a majority voting sys-
tem (called the hybrid-voting system) on the outputs of the
network and its corresponding hybrid model to enhance both
models.

Note that the voting models in Section 2.2 involve the vot-
ing on two models (i.e, CNN and RNN). In order to integrate
the log-linear model into such voting models, we first aug-
ment the separate CNN and RNN models with the log-linear
model before we perform the voting procedure on the result-
ing models. Finally, the corresponding hybrid-voting systems
would involve the voting on four models (CNN, hybrid CNN,
RNN and hybrid RNN).

2.4 Training

We train the models by minimizing the negative log-
likelihood function using the stochastic gradient descent al-
gorithm with shuffled mini-batches and the AdaDelta update
rule [Zeiler, 2012]. The gradients are computed via back-
propagation while regularization is executed by a dropout on
the hidden vectors before the the multilayer neural networks
[Hinton et al., 2012]. During training, besides the weight
matrices, we also optimize the embedding tables £, D, T, Q)
to achieve the optimal state. Finally, we rescale the weights
whose l5-norms exceed a hyperparameter [Nguyen and Gr-
ishman, 2015al.

3 Experiments

3.1 Resources and Parameters

For all the experiments below, we utilize the pre-trained word
embeddings word2vec with 300 dimensions from Mikolov
et al. [2013] to initialize the word embedding table E. The
parameters for CNNs and training the networks are inherited
from the previous studies, i.e, the window size set for feature
maps = {2,3,4,5}, 150 feature maps for each window size,
50 dimensions for all the embedding tables (except the word
embedding table E), the dropout rate = 0.5, the mini-batch
size = 50, the hyperparameter for the I norms = 3 [Nguyen
and Grishman, 2015a]. Regarding RNNs, we employ 300
units in the hidden layers.

3.2 Dataset

We evaluate our models on two datasets: the ACE 2005
dataset for relation extraction and the SemEval-2010 Task 8



dataset [Hendrickx et al., 2010] for relation classification.

The ACE 2005 corpus comes with 6 different domains:
broadcast conversation (bc), broadcast news (bn), telephone
conversation (cts), newswire (nw), usenet (un) and we-
blogs (w1). Following the common practice of domain adap-
tation research on this dataset [Plank and Moschitti, 2013;
Nguyen and Grishman, 2014; Nguyen et al., 2015c; Gormley
et al., 2015], we use news (the union of bn and nw) as the
training data, half of bc as the development set and the re-
mainder (cts, wl and the other half of bc) as the test data.
Note that we are using the data prepared by Gormley et. al
[2015], thus utilizing the same data split on bc as well as the
same data processing and NLP toolkits. The total number of
relations in the training set is 43,4972, We employ the BIO
annotation scheme to capture the chunking information for
words in the sentences and only mark the entity types of the
two entity mention heads (obtained from human annotation)
for this dataset.

The SemEval dataset concerns the relation classification
task that aims to determine the relation type (or no rela-
tion) between two entities in sentences. In order to make it
compatible with the previous research [Socher et al., 2012;
Gormley et al., 2015], for this dataset, besides the word em-
beddings and the distance embeddings, we apply the name
tagging, part of speech tagging and WordNet features (in-
herited from Socher et al. [2012] and encoded by the
real-valued vectors for each word). The other settings are
also adopted from the past studies [Socher er al., 2012;
Xu et al., 2015].

3.3 RNN Architectures

This section evaluates the performance of various RNN ar-
chitectures for RE on the ACE 2005 development set. In par-
ticular, we compare different design combinations of the fol-
lowing four factors: (i) sentence representations (i.e, SEQ or
DEP), (ii) transformation functions ® (i.e, FF or GRU), (iii)
the strategies to employ the hidden vector sequence for RE
(i.e, HEAD or MAX), and (iv) the directions to run RNNs
(i.e, forward (—), backward (<) or bidirectional (=)). Table
1 presents the results.

Systems DEP | SEQ

= | 60.78 | 63.22

HEAD | — [ 55.55 | 60.05

FF — | 57.69 | 58.54
= | 50.00 | 51.22

MAX — | 52.08 | 53.96

«— | 45.07 | 33.50

= | 63.32 [ 63.23

HEAD | — | 63.69 | 62.77

GRU — | 61.57 | 62.55
= | 60.96 | 64.24

MAX — | 61.97 | 64.59

— | 61.56 | 64.30

Table 1: Performance (F1 scores) of RNNs on the dev set
The main conclusions include:
21t was an error in Gormley et al. [2015] that reported 43,518

total relations in the training set. The authors acknowledged this
error.

(i) Assuming the same choices for the other three corre-
sponding factors, GRU is more effective than FF, SEQ is bet-
ter than DEP most of the time, and HEAD outperforms MAX
(except in the case where SEQ and GRU are applied) for RE
with RNNs. Note that the outperformance of SEQ over DEP
can be partly explained by the domination of the relation men-
tions with short distances between the two entity mentions in
the ACE 2005 dataset.

(i1) Regarding the direction mechanisms, the bidirectional
mechanism achieves the best performance for the HEAD
strategy while the forward direction is the best mechanism for
the MAX strategy. This can be partly explained by the lack of
past or future context information in the HEAD strategy when
we follow the backward or forward direction respectively.

The best performance corresponds to the application of the
SEQ representation, the GRU function and the MAX strat-
egy that would be used in all the RNN models below. We
call such RNN models with the forward, backward and bidi-
rectional mechanism FORWARD, BACKWARD and BIDI-
RECT respectively. We also apply the SEQ representation
for the CNN model (called CNN) in the following experi-
ments for consistency.

3.4 Evaluating the Combined Models

Model p R Fl1
BIDIRECT 69.16 | 59.97 | 64.24
FORWARD 69.33 | 60.45 | 64.59
BACKWARD 65.60 | 63.05 | 64.30
CNN 68.35 | 59.16 | 63.42
Ensembling
CNN-BIDIRECT 7122 | 54.13 | 61.51
CNN-FORWARD 66.19 | 59.64 | 62.75
CNN-BACKWARD | 65.09 | 60.13 | 62.51
Stacking
CNN-BIDIRECT 66.55 | 59.97 | 63.09
CNN-FORWARD 69.46 | 63.05 | 66.10
CNN-BACKWARD | 72.58 | 58.35 | 64.69
BIDIRECT-CNN 65.63 | 61.59 | 63.55
FORWARD-CNN 73.13 | 58.67 | 65.11
BACKWARD-CNN | 67.60 | 58.51 | 62.73
Voting
CNN-BIDIRECT 71.08 | 60.94 | 65.62
CNN-FORWARD 70.38 | 59.32 | 64.38
CNN-BACKWARD | 69.78 | 61.75 | 65.52

Table 2: Performance of the Combination Methods

We evaluate the combination methods for CNNs and RNNs
presented in Section 2.2. In particular, for each method, we
examine three models that are combined from one of the
three RNN models FORWARD, BACKWARD, BIDIRECT
and the CNN model. For instance, in the stacking method,
the three combined models corresponding to the RNN-
CNN variant are FORWARD-CNN, BACKWARD-CNN,
BIDIRECT-CNN while the three combined models corre-
sponding to the CNN-RNN variant are CNN-FORWARD,
CNN-BACKWARD, CNN-BIDIRECT. The notations for the
other methods are self-explained. The model performance on
the development set is given in Table 2 that also includes the
performance of the separate models (i.e, CNN, FORWARD,
BACKWARD, BIDIRECT) for convenient comparison.

The first observation is that the ensembling method is not
an effective way to combine CNNs and RNNs as its perfor-



Model Neural Networks Hybrid Models Hybrid-Voting Models
P R F1 P R F1 P R F1

CNN 68.35 | 59.16 | 63.42 | 66.44 | 64.51 | 65.46 | 69.07 | 63.70 | 66.27
BIDIRECT 69.16 | 59.97 | 64.24 | 68.04 | 59.00 | 63.19 | 71.13 | 60.29 | 65.26
FORWARD 69.33 | 60.45 | 64.59 | 66.11 | 63.86 | 64.96 | 72.69 | 61.26 | 66.49
BACKWARD 65.60 | 63.05 | 64.30 | 66.03 | 62.07 | 63.99 | 71.56 | 63.21 | 67.13
Combined Models
VOTE-BIDIRECT 71.08 | 60.94 | 65.62 | 69.24 | 62.40 | 65.64 | 71.30 | 62.40 | 66.55
STACK-FORWARD | 69.46 | 63.05 | 66.10 | 6593 | 68.07 | 66.99 | 69.32 | 66.29 | 67.77
VOTE-BACKWARD | 69.78 | 61.75 | 65.52 | 67.30 | 63.05 | 65.10 | 70.79 | 64.02 | 67.23

Table 3: Performance of the Hybrid Models on the ACE 2005 Development Set

System bc cts wl

| P T R] FIL [P TR ] Fl [P T R ] FI Ave
The State-of-the-art Systems
FCM 66.56 | 57.86 | 61.90 | 65.62 | 4435 | 5293 | 57.80 | 44.62 | 50.36 | 55.06
Hybrid FCM 74.39 | 5535 | 6348 | 74.53 | 45.01 | 56.12 | 65.63 | 47.59 | 55.17 | 58.26
Separate Systems
Log-Linear 68.44 | 50.07 | 57.83 | 73.62 | 41.57 | 53.14 | 60.40 | 47.31 | 53.06 | 54.68
CNN 65.62 | 61.06 | 6326 | 6592 | 48.12 | 55.63 | 54.14 | 53.68 | 5391 | 57.60
BIDIRECT 65.23 | 61.06 | 63.07 | 66.15 | 49.26 | 56.47 | 5591 | 51.56 | 53.65 | 57.73
FORWARD 63.64 | 59.39 | 61.44 | 60.12 | 50.57 | 5493 | 55.54 | 54.67 | 55.10 | 57.16
BACKWARD 60.44 | 61.2 | 60.82 | 58.20 | 54.01 | 56.03 | 51.03 | 52.55 | 51.78 | 56.21
Hybrid-Voting Systems
VOTE-BIDIRECT 70.40 | 63.84 | 66.967 | 66.74 | 49.92 | 57.121 | 59.24 | 54.96 | 57.021 | 60.37
STACK-FORWARD | 65.75 | 66.48 | 66.111 | 63.58 | 51.72 | 57.041 | 56.35 | 57.22 | 56.78} | 59.98
VOTE-BACKWARD | 69.57 | 63.28 | 66.281 | 65.91 | 52.21 | 58.261 | 58.81 | 55.81 | 57.271 | 60.60

Table 4: Comparison to the State of the art on the ACE 2005 Dataset. The cells marked with {designates the models that are
significantly better than the other neural network models (p < 0.05) on the corresponding domains.

mance is worse than the separate models. Second, regard-
ing the stacking method, the best way to combine CNNs and
RNNss in this framework is to assemble the CNN model and
the FORWARD model. In fact, the combination of the CNN
and FORWARD models helps to improve the performance of
the separate models in both variants of this method (refer-
ring to the models CNN-FORWARD and FORWARD-CNN).
Finally, the voting method is also helpful as it outperforms
the separate models with the CNN-BIDIRECT and CNN-
BACKWARD combinations.

For the following experiments, we would only focus on
the three best combined models in this section, i.e, the
CNN-FORWARD model in the stacking method (called
STACK-FORWARD) and the CNN-BIDIRECT and CNN-
BACKWARD models in the voting methods (called VOTE-
BIDIRECT and VOTE-BACKWARD respectively).

3.5 Evaluating the Hybrid Models

This section investigates the hybrid and hybrid-voting mod-
els (Section 2.3) to see if they can further improve the
performance of the neural network models. In particular,
we evaluate the separate models: CNN, BIDIRECT, FOR-
WARD, BACKWARD, and the combined models: STACK-
FORWARD, VOTE-BIDIRECT and VOTE-BACKWARD
when they are augmented with the traditional log-linear
model (the hybrid models). Besides, in order to verify the hy-
pothesis in Section 2.3, we also test the corresponding hybrid-
voting models. The experimental results are shown in Table
3. There are three main conclusions:

(i) For all the models in columns “Neural Networks”,
“Hybrid Models” and “Hybrid-Voting Models”, we see that

the combined models outperform their corresponding sep-
arate models (only except the hybrid model of VOTE-
BACKWARD), thereby further confirming the benefits of the
combined models.

(i) Comparing columns “Neural Networks” and “Hybrid
Models”, we find that the traditional log-linear model signifi-
cantly helps the CNN model. The effects on the other models
are not clear.

(iii) More interestingly, for all the neural networks being
examined (either separate or combined), the corresponding
hybrid-voting systems substantially improve both the neural
network models as well as the corresponding hybrid mod-
els, testifying to the hypothesis about the hybrid-voting ap-
proach in Section 2.3. Note that the simpler voting systems on
three models: the log-linear model, the CNN model and some
RNN model (i.e, either BIDIRECT, FORWARD or BACK-
WARD) produce worse performance than the hybrid-voting
methods (the respective performance is 66.13%, 65.27%, and
65.96%).

3.6 Comparing to the State of the art

The state-of-the-art system on the ACE 2005 for the un-
seen domains has been the feature-rich compositional embed-
ding model (FCM) and the hybrid FCM model from Gorm-
ley et al. [2015]. In this section, we compare the proposed
hybrid-voting systems with these state-of-the-art systems on
the test domains bc, cts, wl. Table 4 reports the results.
For completeness, we also include the performance of the
log-linear model and the separate models CNN, BIDIRECT,
FORWARD, BACKWARD, serving as the other baselines for
this work.



Classifier F

SVM [Hendrickx et al., 2010] 822
RNN [Socher et al., 2012] 77.6
MVRNN [Socher et al., 2012] 82.4
CNN [Zeng et al., 2014] 82.7
CR-CNN [dos Santos et al., 2015] 84.11
FCM [Gormley et al., 2015] 83.0
Hybrid FCM [Gormley et al., 2015] 83.4
DepNN [Liu et al., 2015] 83.6
SDP-LSTM [Xu et al., 2015] 83.7
Systems in this work

CNN 83.5
BIDIRECT 81.8
FORWARD 81.9
BACKWARD 82.4
VOTE-BIDIRECT 84.1
STACK-FORWARD 83.4
VOTE-BACKWARD 84.1

Table 5: Performance of Relation Classification Systems.
The “1” refers to special treatment of the Other class.

From the table, we see that although the separate neural
networks outperform the FCM model across domains, they
are still worse than the hybrid FCM model due to the intro-
duction of the log-linear model into FCM. However, when
the networks are combined and integrated with the log-linear
model, they (the hybrid-voting systems) become significantly
better than the FCM models across all domains (up to 2%
improvement on the average absolute F score), yielding the
state-of-the-art performance for the unseen domains in this
dataset.

3.7 Relation Classification Experiments

We further evaluate the proposed systems for the relation
classification task on the SemEval dataset. Table 5 presents
the performance of the seprate models, the proposed sys-
tems as well as the other representative systems on this task.
The most important observation is that the hybrid-voting sys-
tems VOTE-BIDIRECT and VOTE-BACKWARD achieve
the state-of-the-art performance for this dataset, further high-
lighting their benefit for relation classification. The hybrid-
voting STACK-FORWARD system performs less effectively
in this case, possibly due to the small size of the SemEval
dataset that is not sufficient to training such a deep model.

3.8 Analysis

In order to better understand why the combination of CNNs
and RNNs outperforms the individual networks, we evalu-
ate the performance breakdown per relation for the CNN and
BIDIRECT models. The results on the development set of the
ACE 2005 dataset are provided in Table 6.

One of the main insights is that although CNN and BIDI-
RECT have comparable overall performance, their recalls on
individual relations are very divergent. In particular, BIDI-
RECT has much better recall for the PHYS relation while the
recalls of CNN are significantly better for the ART, ORG-
AFF and GEN-AFF relations. A closer investigation reveals
two facts: (i) the PHYS relation mentions that are only cor-
rectly predicted by BIDIRECT involve long distances be-
tween two entity mentions, such as the PHYS relation be-
tween “Some” (a person entity) and “desert” (a location en-
tity) in the following sentence: “Some of the 40,000 British

Relation Class CNN BIDIRECT
P R FI1 P R F1

PHYS 66.7 | 3477 | 45.7 | 57.4 | 50.9 | 54.0
PART-WHOLE | 68.6 | 67.8 | 68.2 | 744 | 70.1 | 72.2
ART 642 | 51.2 | 570 | 68.6 | 41.7 | 51.9
ORG-AFF 702 | 83.0 | 76.0 | 793 | 76.1 | 77.7
PER-SOC T1.1 | 593 | 64.6 | 69.6 | 59.3 | 64.0
GEN-AFF 659 | 55.1 | 60.0 | 59.0 | 46.9 | 52.3
all 684 592 | 634|692 | 60.0 | 642

Table 6: The Performance Breakdown per Relation for CNN
and BIDIRECT on the development set.

troops are kicking up a lot of dust in the Iraqi desert making
sure that nothing is left behind them that could hurt them.”,
and (ii) the ART, ORG-AFF, GEN-AFF relation mentions
only correctly predicted by CNN contain patterns between
the two entity mentions that are short but meaningful enough
to decide the relation classes, such as “The Iraqi unit in pos-
session of those guns” (the ART relation between “unit” and
“guns”), or “the al Qaeda chief operations officer” (the ORG-
AFF relation between “al Qaeda” and “officer”). The failure
of CNN on the PHYS relation mentions with long distances
originates from its mechanism to model short and consecu-
tive k-grams (up to length 5 in our case), causing difficulty in
capturing long and/or non-consecutive patterns. BIDIRECT,
on the other hand, fails to predict the short (but expressive
enough) patterns for ART, ORG-AFF, GEN-AFF because it
involves the hidden vectors that only model the context words
outside the short patterns, potentially introducing unneces-
sary and noisy information into the max-pooling scores for
prediction. Eventually, the combination of RNNs and CNNs
helps to compensate for the drawbacks of each model.

4 Related Work

For relation extraction/classification, most work on neural
networks has focused on the relation classification task. In
particular, Socher et al. [2012] study the recursive NNs that
recur over the tree structures while Xu et al. [2015] investi-
gate recurrent NNs. Regarding CNNs, Zeng et al. [2014] ex-
amine CNNs via the sequential representation of sentences,
dos Santos et al. [2015] explore a ranking loss function with
data cleaning while Zeng et al. [2015] propose dynamic pool-
ing and multi-instance learning. For RE, Yu et al. [2015] and
Gormley et al. [2015] work on the feature-rich compositional
embedding models. Finally, the only work that combines NN
architectures is due to Liu et al. [2015] but it only focuses
on the stacking of the recursive NNs and CNNs for relation
classification.

5 Conclusion

We investigate different methods to combine CNNs, RNNs
as well as the hybrid models to integrate the log-linear model
into the NNs. The experimental results demonstrate that the
stacking and majority voting between CNNs, RNNs and their
corresponding hybrid models are the best combination meth-
ods. We achieve the state-of-the-art performance for both re-
lation extraction and relation classification. In the future, we
plan to further evaluate the proposed methods on the other
tasks such as event extraction and slot filling in the Knowl-
edge Base Population (KBP) evaluation.
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