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Abstract
We describe our research on integrating deep learn-
ing with artificial intelligence techniques in the
context of an imagery surveillance prototype de-
signed to automatically identify imagery of inter-
est to a user. In particular, we briefly overview
the Image Surveillance Assistant (ISA) architec-
ture, present a study focusing on ISA1, ISA’s pre-
liminary implementation, and discuss our plans for
future extensions. Our plans include two foci: the
more expressive semantic and perceptual represen-
tations and processing we will use, and user inter-
action processes.

1 Introduction
Watchstanders are tasked with monitoring their environment
for potential threats. However, watchstanders are constrained
by information overload and fatigue - humans are capable
of monitoring only a fixed-width input, and only for a cer-
tain amount of time before fatigue degrades performance. As
such, watchstanders benefit from tools that can reduce infor-
mation overload and fatigue by partially automating the task
of surveillance.

We previously introduced the Image Surveillance Assis-
tant (ISA) architecture [Maynord et al., 2016], an architecture
which culls from an input stream input which is of no interest
to the operator, and thus eases the constraints of information
overload and fatigue. It does this by matching input against
context specifications - operator provided descriptions of the
situations (or contexts) for which the operator wishes to re-
ceive notification.

ISA is composed of a hierarchy of modules, which corre-
spond to a hierarchy of representations of increasing levels of
abstraction. Towards the bottom, raw input is fed through de-
tectors and through a caption generation module. Towards the
top, the operator configures the system through a GUI using
high level concepts. ISA stands in contrast to architectures
engineered for a specific task in that it is highly adaptable
and quickly deployable.

Additionally, we previously introduced ISA1 [Maynord et
al., 2016], a proof of concept implementation of the ISA ar-
chitecture. Towards the bottom of ISA1, objects are detected
using simple SVM detectors, and captions are produced us-
ing a Long-term Recurrent Convolutional Network (LRCN)
[Donahue et al., 2014]. Towards the top, contexts are defined
using a decision boundary over object detections, and a set of
exemplar captions.

ISA1 effectively demonstrated the feasibility and utility of
the ISA architecture. However, ISA1 is a preliminary im-
plementation. We present in this paper future extensions to
ISA1. These extensions are centered around two foci: in-
ternal representations and processing; and user interaction.
The representations which we here introduce greatly expand
the capabilities of ISA1 to detect context specifications with
greater accuracy and nuance. The alterations to user interac-
tion which we present improve the fluidity of user interaction,
which is needed particularly as the internal representations
and processes of ISA1 become more sophisticated.

This paper extends our work in [Maynord et al., 2016] -
the overview presented on the ISA architecture in Section 3,
and on the first implementation, ISA1, in Section 4, as well as
the illustration of use given in Section 5, is a summarization
of the descriptions provided in that paper. In Section 2 we



cover related work. In section 6 we cover future extensions,
with 6.1 detailing extentions to internal representations and
processes, and 6.2 detailing extensions and modifications to
user interaction. Finally, we conclude in Section 7.

2 Related Work
Work on ISA is contextualized within a desire to improve de-
tection of threats to maritime assets - this is of great inter-
est to the Department of Defense [DoD, 2012]. A variety
of maritime surveillance systems exist; they vary in multiple
ways [Auslander et al., 2011], e.g., type of coverage (aerial
vs. ground based sensors), and model category (modeling
of movements across the globe vs. within a single harbor).
Two common types of systems are those that trigger warn-
ings when a perimeter is breached [Lipton et al., 2002], and
those that monitor chokepoints [McArthur, 2015], or limited
areas such as harbors [DoD, 2012]. However, unlike ISA,
these systems do not allow the operator to dynamically con-
figure the system to be sensitive to contexts of interest.

This paper is an extension of our work in [Maynord et
al., 2016], which is in turn an extension of our proposal in
[Smith et al., 2015]. Additionally, our group has studied ar-
tificial intelligence (AI) methods for maritime threat assess-
ment, including probabilistic graphical models [Auslander et
al., 2012a], and plan recognition [Auslander et al., 2012b].
However, [Maynord et al., 2016] was the first point at which
we merged Deep Learning (DL) and AI techniques for com-
puter vision. To our knowledge, we are the only group study-
ing a unified approach spanning both DL and AI for the pur-
poses of maritime surveillance.

On the more general topic of using DL in support of sym-
bolic AI tasks including inference, there has been increasing
interest. [Doshi et al., 2015] makes use of Convolutional
Neural Networks (CNNs) in the construction of episodic
memories of video scenes which are then used in generating
future predictions (such as objects that will appear). Addi-
tionally, there has been substantial work recently on caption
generation for images [Donahue et al., 2014], and to a lesser
extent for video [Donahue et al., 2014], [Venugopalan et al.,
2015]. There has been interest in more tightly integrating pro-
cesses of vision and reasoning [Aditya et al., 2015], [Wang
and Yeung, 2016], [Maslan et al., 2015], with a recent area of
particular interest being visual question answering [Antol et
al., 2015], [Yang et al., 2015], [Zhang et al., 2015].

3 ISA Conceptual Architecture
The full ISA architecture is depicted in Figure 1. Information
in ISA flows in two directions: top-down, and bottom-up. In
the top-down direction, context specifications - definitions of
scenarios of interest provided by the operator - are used in
biasing the ISA’s perceptual pipeline - the series of modules
through which imagery data is processed. In the bottom-up
direction, representations for imagery of successively higher
levels of abstraction are constructed until the level at which
the operator interacts with ISA is reached.

The watchstander starts the top-down process either by se-
lecting from a set of pre-defined context specifications (which
are stored in Context Specifications) through interacting with

the Context Elicitor via the GUI, or by constructing and stor-
ing new context specifications, with the aid of the Context
Elicotor, in accordance with the constraints contained within
the Environment Model.

The Translator is provided those context specifications for
which the operator has indicated an interest. The role of
the Translator is to “translate” context specifications into sys-
tem parameterizations - increasing the sensitivity of the Pat-
tern Interpreter to imagery properties of relevance to the pro-
vided context specifications (for example, if certain objects
are of particular concern in the provided contexts, the pre-
cision/recall balance of detections for these objects can be
altered - increasing recall at the cost of precision).

In the bottom-up process input is abstracted by a Feature
Extractor, such as a CNN, to extract a set of features that are
useful for tasks such as detection of objects, attributes, and
general image properties (e.g., is the provided input of a re-
flection of a night scene, rather than a day scene?).

Input is also fed through a Caption Generator, which pro-
duces English descriptions of the input. English image cap-
tions are powerful in their expressiveness - using captions al-
lows us to represent a large range of image properties (such as
relations between entities) without the need to employ more
formal structured representations. However, the expressivity
of automatically generated image captions comes at the cost
of precision.

The pattern interpreter “interprets” the features produced
by the Feature Extractor and the captions produced by the
Caption Generator in accordance with the parameterizations
specified by the Translator, and passes this interpretation to
the Context Recognizer. The role of the Context Recognizer
is to come to a determination of which, if any, of the con-
texts in which the operator indicated an interest are active,
given the interpretation provided by the Pattern Interpreter,
and the list of context specifications of interest as provided
by the Context Elicitor. The determinations of the Context
Recognizer are then provided to the operator via the GUI.

4 ISA1 Prototype
ISA1 is a proof of concept implementation of the ISA archi-
tecture, which includes most of the components and functions
of the full ISA architecture. ISA1 provides the watchstander
with the ability to select one or more of four pre-defined con-
text specifications, as well as the ability to define and re-
fine novel context specifications. The choice of the four pre-
defined contexts was a practical decision based on the avail-
ability of images in the SUN Image Corpus [Xiao et al., 2010]
that correspond to those contexts, as well as the observation
that the 80 object categories in the Microsoft COCO dataset
[Lin et al., 2014] can be used to distinguish these contexts.

The context specifications of ISA1 includes a set of exem-
plar captions per context, and logistic regression (LR) models
trained over object detection vectors produced by 80 SVMs
corresponding to the 80 object categories of MSCOCO. The
Pattern Interpreter takes as input the features computed by a
PCA module, and an image caption produced by an LRCN. It
then applies the 80 SVM object detectors, and compares se-
mantic distances between the generated caption and exemplar



Figure 1: Conceptual Architecture for the Image Surveillance
Assistant (ISA)

captions of each context specification using Word Movers
Distance (WMD) [Kusner et al., 2015] as a distance metric.
The WMD is good choice since it captures semantic distance
between two sentences. The Pattern Interpreter then passes
the resulting detection vectors and caption distances to the
Context Recognizer.

The Context Recognizer applies the LR models to the ob-
ject detection vectors, and applies a nearest neighbor (NN)
classifier to the caption distances, to predict which contexts
are active in the input. ISA1 uses a weighted sum that com-
bines and balances the predictions of the LR models and NN
applied to captions to compute an activation level for each
context. This activation level is then compared to a fixed
threshold, which if exceeded indicates that the context is ac-
tive.

See [Maynord et al., 2016] for an evaluation of perfor-
mance.

5 Example
The GUI of ISA1 is shown in Figure 3 and has three columns.
The first column shows the image, which is being processed,
the middle takes user input and provides output, and the third
allows the user to define contexts. A watchstander defines a
new context specification by interacting with widgets to pro-
vide a context name, selecting which objects are present and
absent in the context, and by entering exemplar sentences for
the new context. A new image is loaded and evaluated by in-
teracting with the middle column. Under results, the detected
objects and detected contexts are presented.

Figure 2: ISA1, an Initial Implementation of the ISA archi-
tecture

Figure 3: A Screenshot of ISA1’s GUI

6 Future Extensions
ISA1 is a simple initial implemention of our vision for a com-
prehensive surveillance support system. We plan several ex-
tensions, and discuss two types here: (1) more comprehensive
representations, and associated processes, for expressing user
contexts and (2) more expansive user interaction processes.

6.1 Perceptual and Semantic Representations and
Processes

Our definition of “context” is complex. The representations
and processes we use in ISA1 are a first step towards captur-
ing a context, but are limited. Extending ISA1 with a wider
variety of representations and processes will enable process-
ing contexts with finer granularity.



Consider that many contexts may be differentiated from
similar situations by differences that the object detections of
ISA1 are not able to capture and which ISA1’s caption based
comparisons could miss. For examples, a “danger of fire”
context could be defined by the operator to be any situation
where flammable material is in close proximity to a flame.
To competently handle this context the representations inter-
nal to ISA1 would need to be expanded to include a repre-
sentation for flame, a representations for common flammable
objects, and a representation for proximity relations.

With this objective in mind, we will extend ISA1 as fol-
lows:

Objects We will extend beyond the initial 80 MS COCO ob-
jects we have used, as well as introduce simple attributes
for describing them.

Scenes We will use probabilistic graphical models to repre-
sent scenes as a set of objects, their attributes, and (tem-
poral and spatial) relations among them.

Context evaluation over detections We will test whether
methods for learning probabilistic classifiers over vec-
tors of detections, other than via logistic regression (e.g.,
SVMs), are preferable for distinguishing contexts.

Caption matching We will replace our nearest neighbor al-
gorithm for caption matching with a Gaussian Mixture
Model (GMM) approach.

We discuss the latter three in more detail in the following
subsections.

Scenes: Spatial Relations
We represent objects and their attributes as atoms. Symbols
can be attached to these atoms and manipulated by symbolic
methods, and as discrete entities we can learn statistical rela-
tions among them. These relations could be used in the lower
to mid-levels of ISA to help interpret and match imagery with
contexts. (Currently, relations among entities are not explic-
itly represented in ISA1.)

Probabilistic graphical models [Koller and Friedman,
2009] can be used to explicitly represent relations among low
and mid-level entities, such as co-occurrence. For example,
a conditional random field (CRF) can more robustly capture
and represent co-occurence relations (e.g., among a knife, a
fork, and a spoon) than relations learned implicitly using a
neural network. These relations can then be used to regular-
ize the results of detections, and improve detection accuracy -
CRFs are not infrequently used in a regularizing role [Russell
et al., 2009], [Mann and McCallum, 2010].

We will also consider the use of scene graphs [Johnson et
al., 2015], which are designed to represent an image’s ob-
jects, attributes, and their relations. To provide a grounding
for full and partial scene graphs over images, we will use a
CRF formulation that maximizes the likelihood over possible
groundings [Koller and Friedman, 2009]. We could map a
context specification to a scene graph representation, and us-
ing this mechanism to evaluate the match of an image with
a context’s scene graph. This will then constitute one more
interpretation mechanism - in addition to decision boundaries
over detection vectors and semantic comparison of produced

and exemplar captions - which ISA can leverage for input
evaluation.

Introducing probabilistic graphical models into the mid-
level of ISA is, while not necessarily easy, in principle
straightforward, and we will pursue this. Use of scene graphs
is more difficult, and more consideration of how best to inte-
grate them is needed before determining whether to include
them.

Scenes: Temporal Relations
In addition to spatial relations, knowledge of temporal rela-
tions can help detect contexts in input. To illustrate, consider
the following temporal relation of observations: person A is
carrying backpack B; A is sitting on a bench next to B; per-
son C is sitting next to A and B; C is carrying B. In isolation,
each observation is innocuous, but when put in temporal rela-
tion to each other, the significance of these collective observa-
tions becomes apparent. Temporal relations can be captured
using probabilistic graphical models. Hidden Markov Mod-
els (HMMs) [Rabiner and Juang, 1986] are well-suited for
expressing temporal relations among observations. This use
of temporal relations as features for context evaluation will
make transitioning input from individual images to image se-
quences (or videos) more tractable. As ISA1 is expanded to
operate over input that extends through time, we intend to
employ HMMs.

Context Evaluation Over Detections
Currently, ISA1 uses boundaries learned using logistic re-
gression (LR) to match object detection vectors with context
specifications (where each specification is associated with a
distinct LR model). This has the advantage that logistic re-
gressors, unlike many classifiers, are probabilistic classifiers
- they provide an associated confidence with their classifica-
tion prediction. This confidence is important for ISA1, as it
is this confidence, rather than the binary classification, that
ISA1 uses for context matching. However, LR is limited in
that its decision boundary is linear. Classifiers other than
logistic regression can provide information on classification
confidence [Wu et al., 2004] (e.g., SVMs [Platt and others,
1999]). We will test them in ISA1, where we expect they will
provide an advantage over LR models.

Caption Matching
ISA1 compares generated captions against context exemplar
captions using a semantic sentence distance metric. ISA1

then uses a nearest neighbor algorithm (1-NN) to evaluate
which context specification is active in the given input. The
advantage of this approach is that 1-NN is straightforward to
implement and often performs reasonably well in compari-
son to more sophisticated methods. However, it assumes that
each input belongs to (precisely) only one context. Addition-
ally, 1-NN generates a classification, but not an associated
confidence, which would be valuable.

A more nuanced method for caption matching should pro-
duce degrees of activity associated with each context specifi-
cation for a given input. 1-NN could be extended to provide
a measure of confidence [Cheetham, 2000] through a func-
tion of the ratio of distances between the nearest example of



the predicted class and the next-nearest example of a differ-
ent class. However, because of the imprecision of captions
there is significant overlap between the distribution of cap-
tions of different contexts, and so the confidences produced
by such a method may not be reliable (the more the overlap,
the less consistent the ratio of the distances of the examples
of the closest two classes becomes). A more stable caption to
context metric is needed. One complicating factor is the po-
tential need for context-specific similarity functions (consider
that some contexts may be more “tightly” defined than others)
or even asymmetric similarity functions (e.g., a change in one
“semantic direction” may be associated with a larger change
in context similarity than a change in another semantic direc-
tion).

Thus, the semantic clusters associated with each context
specification may not be of similar sizes or symmetric. One
potential solution to this challenge is to match a Gaussian
Mixture Model (GMM) [Bilmes and others, 1998] over all
context labeled captions, where each Gaussian distribution
within that model is associated with a single context speci-
fication. This will permit calculating the degree to which an
automatically-generated caption is associated with each con-
text specification, which then counts as evidence towards the
activity of each context in the input.

However, GMMs operate in Euclidean space. The present
1-NN implementation in ISA1 compares generated and ex-
emplar captions directly, and relies on an imprecise distance
metric. As such, ISA1 does not contain a Euclidean space
in which captions are represented as single points, nor are
the distances between captions likely to be precisely repre-
sentable in a Euclidean space. However, there exist semantic
embeddings for sentences, such as [Socher et al., 2014] (con-
structed, in particular, for sentences with “visually grounded
meaning”). This represents entire sentences (as opposed to
individual words, for which many semantic spaces are con-
structed) as a single point in a high dimensional Euclidean
space, where the location of the point in that space carries a
semantic meaning that approximately matches the semantic
meaning of the sentence. The GMM may be constructed on
captions represented in this semantic space, which will allow
comparision with automatically-generated captions with the
Gaussian distributions of the context specifications.

Given the advantages which GMMs in a Euclidean seman-
tic space may provide, we intend to pursue them.

6.2 User Interaction
In Section 6.1 we detailed how more expressive and more pre-
cise representations are important for extending ISA1. How-
ever, finer granularity is not the only desired property for an
extended ISA1 implementation. Our objective is for ISA to
reduce operator burden by partially automating some surveil-
lance tasks, given an operator-provided context specification.
In order for ISA to meet this objective it must be capable
of interpreting operator provided specifications in terms of
its internal representations - this puts constraints on the form
which context specifications can take. As ISA1’s internal rep-
resentations become more sophisticated, the more sophisti-
cated the context specifications become, and the more impor-
tant is the process through which ISA1 guides the operator in

selecting, defining, or refining context specifications.
In this section we detail extensions to ISA1 which aid the

operator in more effectively interacting with ISA1, particu-
larly as the sophistication of the system increases. We cover
the following:

GUI extensions More information will be displayed to the
operator, and the operator will have the option of pro-
viding more precise constraints. This requires a modifi-
cation to the nature of the GUI to maintain ease of use.

Interpretation feedback As the nuance of the interpreta-
tions of ISA expands, so does the utility of human over-
sight. We allow the operator to aid ISA in its interpreta-
tions, while maintaining ease of use.

Defining novel context specifications With more sophisti-
cated context specifications, comes the need for an alter-
native method of novel context specification definition -
we outline such a method.

Active refinement of context specifications We introduce
an iterative approach to defining context specifications,
allowing gradual refinement.

Online refinement of context specifications We allow con-
text specifications to be updated on the fly, outside of the
more formal active refinement process.

GUI Extensions
The current interface is depicted in Figure 3. Object detec-
tions are presented to the user via a series of check-boxes. We
will change this such that object detections are shown on the
image itself, using labeled bounding boxes, where the color of
the bounding box corresponds to the confidence of the object
detection. The GUI will also display boxes for more objects,
as well as attributes and relations.

A desirable property for an automated surveillance tool
such as ISA to possess is transparency; if ISA determines that
a given context is active in the input, it should be made clear
to the operator what factors underly that determination. Of-
ten, at least some principal factors concerning a context spec-
ification’s match can be displayed using annotations overlaid
on the input, in a manner similar to bounding-box annotations
for detections (of objects, attributes, and relations). However,
not every relevant factor may be easy displayed as an overlay
on an image. For example, the relations based on reasoning
over generated captions are not straight-forward to elucidate
through input annotations, and will require a different presen-
tation format for the operator.

Operator Feedback on Context Predictions
In addition to providing additional feedback to the operator,
the extended GUI will permit the operator to refine or correct
ISA interpretations. This includes feedback on detections,
their bounding boxes, and associated confidences. Inevitably,
the methods on which ISA rellies for detections will produce
errors (i.e., both false positives and false negatives), and this
will decrease context detection accuracy. Allowing the oper-
ator to correct errors will increase accuracy, though a balance
must be identified between operator burden and expectations
of operator input.



Defining Novel Context Specifications
We will provide users a more comprehensive ability to define
context specifications in our extension of ISA1. They will be
able to refer to the additional objects, attributes, and relations
mentioned earlier, although how best to elicit such specifica-
tions from the operator may require additional analysis, and
will depend on the nature of relations that ISA can accurately
perceive.

More radically, we will extend ISA1 such that novel con-
text specifications can be “seeded” with a small set of positive
and negative examples (i.e., imagery). Generating approxi-
mate context specifications from a small set of examples is
in principle straight-forward. Vectors of detections derived
from those examples can be used as training instances for su-
pervised learning to produce a decision boundary for context
evaluation. Exemplar captions can be generated by selecting
prototypical captions from a set of automatically generated
captions.

Active Refinement of Context Specifications
Defining context specifications by providing examples can
ease the operator’s burden, particularly as the form of the ISA
context specification is extended to be more sophisticated.
However, because the size of the set of examples provided
by an operator will by necessity be small, the context specifi-
cations derived from that set will be approximate. This moti-
vates the need for a process that can be used to refine an initial
context specification.

Future ISA prototypes will allow an operator to engage in
iterative refinement of context specifications, which are cur-
rently defined by the operator in such a way that the operator
must infer how ISA will interpret them. Presently, for the op-
erator to evaluate how ISA interprets a context specification
the operator must select input and observe ISA’s behavior.
This requires the operator to infer which input will be infor-
mative for ISA interpretation. This is problematic in that it
places a new burden on an operator and it depends on an op-
erator’s understanding (or more likely intuition) of how ISA
behaves.

To address this, we will enable ISA to automatically se-
lect input that is informative with regards to the validity of
its interpretation of the novel context specification. This can
be achieved by selecting from an input library inputs that are
near the decision boundary for an ”active” determination of
the novel context specification. That is, ISA will present to
the operator scenarios in which it has low certainty of whether
the operator intends the context to be considered active. The
operator will then be invited to provide feedback on whether
ISA’s prediction is correct and, if not, provide feedback as to
why ISA’s prediction is incorrect. This feedback can be used
to refine the context specification.

Online Refinement of Context Specifications
Similar to how input interpretations can be modified online
according to user feedback, context specifications can also be
modified online. This process will be similar to iteratively re-
fining context specifications during definition except that the
input will be taken from the input stream, rather than selected
by ISA. Note that input from a small time window will likely
only be representative of a small portion of the input space

over which the operator desires the context specification to
perform well. To deal with this, the weight that ISA gives
to operator feedback provided online will be lesser than that
given to feedback provided during the process of active re-
finement. Online refinement is useful, but not as powerful as
active refinement.

7 Conclusion
We provided an overview of the Image Surveillance Assis-
tant architecture, an architecture for reducing the constraints
of information overload and fatigue which confront watch-
standers. ISA is highly adaptable and quickly deployable.
We provided an overview of ISA1, a proof of concept imple-
mentation, and discussed at length future extensions to ISA1.
These extensions centered around more sophisticated repre-
sentations and processes, and more fluid operator interaction.
Representation and process extensions will include represen-
tations for more objects, attributes, and their relations, as well
as probabilistic graphical models to constrain the relations be-
tween these, and more sophisticated mid-level interpretation
mechanisms, including interpretation of detection vectors and
image captions. Operator interaction extensions include an
altered and expanded GUI, the enabling of feedback for input
interpretation, an alternate mechanism to define context spec-
ifications based on a “seed” of examples, and iterative and
online refinement of context specifications.
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