
An Automated Approach to Create, Store, and
Analyze Large-scale Experimental Data in Clouds

Deepal Jayasinghe, Josh Kimball, Siddharth Choudhary, Tao Zhu, and Calton Pu.

Center for Experimental Research in Computer Systems, Georgia Institute of Technology

266 Ferst Drive, Atlanta, GA 30332-0765, USA.

{deepal, jmkimball, siddharthchoudhary, tao.zhu, calton}@cc.gatech.edu

Abstract—The flexibility and scalability of computing clouds
make them an attractive application migration target; yet, the
cloud remains a black-box for the most part. In particular,
their opacity impedes the efficient but necessary testing and
tuning prior to moving new applications into the cloud. A
natural and presumably unbiased approach to reveal the cloud’s
complexity is to collect significant performance data by conduct-
ing more experimental studies. However, conducting large-scale
system experiments is particularly challenging because of the
practical difficulties that arise during experimental deployment,
configuration, execution and data processing. In this paper we
address some of these challenges through Expertus – a flexible
automation framework we have developed to create, store and
analyze large-scale experimental measurement data. We create
performance data by automating the measurement processes
for large-scale experimentation, including: the application de-
ployment, configuration, workload execution and data collection
processes. We have automated the processing of heterogeneous
data as well as the storage of it in a data warehouse, which we
have specifically designed for housing measurement data. Finally,
we have developed a rich web portal to navigate, statistically
analyze and visualize the collected data. Expertus combines
template-driven code generation techniques with aspect-oriented
programming concepts to generate the necessary resources to
fully automate the experiment measurement process. In Expertus,
a researcher provides only the high-level description about the
experiment, and the framework does everything else. At the end,
the researcher can graphically navigate and process the data in
the web portal.

Keywords-Automation, Benchmarking, Cloud, Code Genera-
tion, Data Warehouse, ETL, Performance, Visualization.

I. INTRODUCTION

As companies migrate their applications from traditional data

centers to private and public cloud infrastructures, they need

to ensure that their applications can move safely and smoothly

to the cloud. An application that performs one way in the data

center may not perform identically in computing clouds [19],

so companies need to consider their applications present and

future scalability and performance. Neglecting the possible

performance impacts due to cloud platform migration could

ultimately lead to lower user satisfaction, missed SLAs (Ser-

vice Level Agreement), and worse, lower operating income.

For instance, a study by Amazon reported that an extra delay

of just 100ms could result in roughly a 1% loss in sales [27].

Similarly, Google found that a 500ms delay in returning search

results could reduce revenues by up to 20% [23].

One of the most reliable approaches to better understand the

cloud is to collect more data through experimental studies. By

using the experimental measurement data, we can understand

what has happened, explain why it happened, and more impor-

tantly predict what will happen in the future. Yet, conducting

large-scale performance measurement studies introduce many

challenges due to the associated complexity of application

deployment, configuration, workload execution, monitoring,

data collection, data processing, and data storage and anal-

ysis. In addition, due to the nature of the experiments, each

experiment produces a huge amount of heterogeneous data,

exacerbating the already formidable data processing challenge.

Heterogeneity comes from the use of various benchmarking

applications, software packages, test platform (cloud), logging

strategies, monitoring tools and strategies. Moreover, large-

scale experiments often result in failures; hence, storing in-

complete or faulty data in the database is a waste of resources

and may impact the performance of data processing.

We address those challenges through Expertus — a flexible

automation framework we have developed to create, store and

analyze large-scale experimental measurement data. In Exper-

tus, we have created tools to fully automate the experiment

measurement process. Automation removes the error prone

and cumbersome involvement of human testers, reduces the

burden of configuring and testing distributed applications, and

accelerates the process of reliable applications testing. In our

approach, a user provides a description of the experiment (i.e.,

application, cloud, configurations, and workload) through a

domain specific language (or through the web portal), and

then Expertus generates all of the resources that are necessary

to automate the measurement process. Next, the experiment

driver uses the generated resources and deploys and configures

the application, executes workloads and monitors and collects

measurement data.

The main contribution of this paper is the tools and ap-

proaches we have developed to automate the data related

aspects. To address data processing and parsing challenges,

we have used ETL (extract, transform, and load) tools and

approaches [21], [22] to build a generic parser (Expertract) to

process the collected data. The proposed parser can process

more than 98% of the most commonly used file formats in

our experimental domain. To address the storage challenge,

we have designed a special data warehouse called Experstore
to store performance measurement data. Our data warehouse

is fully dynamic that is the tables are created and populated

357IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA
978-1-4799-1050-2/13/$31.00 ©2013 IEEE

on-the-fly based on the experimental data. More specifically,

at the end of each experiment, we create a set of tables to store

the data, and the schema is solely based on the structure of the

data (e.g., how many columns and tables). Finally, to address

the challenges associated with navigating and analyzing an

enormous amount of performance measurement data, we have

built a web portal which helps users to: navigate the data

warehouse, visualize the data, statistically analyze the data,

and identify interesting performance phenomena from it.

The remainder of this paper is structured as follows. In Sec-

tion II we provide a high level overview about the experiment

automated framework. We discuss our approach to generate

heterogeneous measurements data in Section III and in Sec-

tion IV we discuss about the automated data extractor and

the data warehouse we have developed to store measurement

data. Section V presents our data analysis tool and we evaluate

the effectiveness of our approach in Section VI. Finally, we

provide a discussion of related state of the art approaches in

Section VII, and we conclude the paper with Section VIII.

II. AUTOMATED EXPERIMENT MANAGEMENT

INFRASTRUCTURE

Experiment measurement is a tedious process that consists

of multiple activities, and a typical experiment measurement

process consists of the following three activities:

• Create: preparing the experiment testbed (i.e., cloud) and

deploying and configuring the application.

• Mange: starting the application components in the correct

order, executing workloads, collecting resource monitor-

ing and other performance data, and parsing and upload-

ing the results into the data warehouse.

• Analyze: activities associated with analyzing the collected

measurement data using various statistical and visualiza-

tion techniques to understand and explain performance

phenomena.

In our approach, we have automated all three activities to

provide an efficient way to conduct performance measurement

studies. The high level view of our approach, which details

these activities and some of the tools used in the process,

appears in Figure 1. As shown in the figure, the process

consists of eight activities, a brief description of these follows:

• Experiment Design is the process of creating a set of

experiments that are necessary to evaluate a given appli-

cation in given target clouds.

• Expertus is a code generator which transforms experiment

design specifications into deployment, configuration, exe-

cution, data collection, and parsing scripts that are essen-

tial ingredients to automate the experiment preparation

and execution processes.

• Automation is the process of using generated scripts to

automate platform preparation, application deployment

and configuration, experimental execution, data collec-

tion, and data processing.

• Experiments is the actual execution of workloads and data

collection, in fact, most of the Elba publications belong

to this category.

Fig. 1. Our Approach to Large-scale Experiment Measurements

Fig. 2. Key Components of Automated Infrastructure

• Experstore is a flexible data warehouse that stores and

analyzes resource monitoring and performance data col-

lected through experiment measurements. These data are

in fact heterogeneous and vary significantly depending on

the experiments and monitoring strategy.

• Performance Map is a logical view of experiment results,

for example, an application’s performance across differ-

ent clouds.

• Online/Offline Configuration is the process of using per-

formance data to make configuration decisions at runtime

as well as finding appropriate software settings for new

configurations.

• Telescoping is the process of using collected data to

drive more experiments to deeply understand observed

phenomena.

• Experiment Redesign is the process of creating new

experiments or modifying existing experiments either

to validate online/offline configurations or to prove (or

disprove) performance hypotheses.

We designed the automation infrastructure by combining

multiple modules and built-in flexibility to accommodate new

modules. We employed modular architecture because of its

distinct advantage of enabling us to change one component

without affecting other components. The different modules in

the system are illustrated in Figure 2, and a brief description

of each is given below:

1) Code generator: is the core of the automation which

generates all the necessary resources to automate the

experiment management process. In a nutshell, code

generator takes experiment configuration files as the input

and generates all the required files (e.g., scripts).

2) Expertus Service: the components of automation frame-

work are connected using SOAP and REST APIs. We

358

created an Axis2 [?] based Web service that supports

APIs for code generation, data extraction, status update,

and information listing. We used the code generation API

to create a command line tool (CMI) for code generation.

3) Experiment Driver: We use a centralized approach for

experiment execution, and the component called, the

experiment driver, is responsible for this task. Code

generator generates all the scripts, and a special script

called run.sh, which maintains the sequence for script

execution. Experiment driver uses run.sh to find the

order of execution. It connects to all the nodes through

SSH/SCP and executes the scripts on the corresponding

nodes. In addition, experiment driver is configured to col-

lect and report information about the user, time, workload

start time and end time and the platform to the Expertus

service through the REST API.

4) Data Extraction: Each experiment produces gigabytes

of heterogeneous data for resource monitors (e.g., CPU,

Memory, thread pool usage, and etc. . .), response time

and throughput, and application logs. The structure and

amount of collected data vary based on system archi-

tecture (64-bits vs 32-bit, 2-core vs. 4-core),

monitoring strategy and monitoring tools (e.g., sar,

iostat, dstat, oprofile), logging strategy (e.g.,

Apache access logs), and number of nodes and work-

loads. Data extractor is written to help users easily export

experiment data to the data warehouse.

5) Filestore: At the end of each experiment, experiment

driver uploads experiment data to a file server to store

the data in raw format. Some data analysis tools need to

have access to the original data files, so these raw data

files need to be retained. In addition, there are temporal

files and error logs files, which we do not want to put

into the database. Data extractor runs on the file store to

export data from the file store into the data warehouse.

6) Experstore: Is the flexible, extensible and dynamic data

warehouse we have created specifically to store heteroge-

neous experiment data collected through our experiments.

III. AUTOMATED GENERATION OF HETEROGENEOUS

EXPERIMENTAL DATA

In our approach to large scale experimental measurements, we

deploy actual or representative applications (e.g., benchmarks

like RUBBoS [10], RUBiS [11], Cloudstone c [7]) on actual

or representative deployment platforms (e.g., Amazon EC2)

and execute workloads. Through the large scale experiments,

we produce a huge amount of heterogeneous performance

data. The heterogeneous nature of the data is arising from

the nature of the applications, clouds, monitoring tools, and

monitoring strategies. We conduct large-scale experiments and

collect data by fully automating the process, and our code

generator generates all the necessary resources to automate

the process.

The generated resources includes shell scripts as well as

other configuration files (e.g., property files, header files,

action ordering and etc. . .). In fact, Expertus is designed to

support four key entities in the experiment deployment, con-

figuration and execution. More concretely, it supports artifacts,

constraints, dependencies, and deployment and start order.

These scripts take into account the dependencies among the

various system components, including hardware and hyper-

visor (usually invariant through the experiments), operating

system configuration, and server configurations such as the

database load on the database server.

Once the system is deployed, we execute the workload

against the deployed system. In this step, we run the planned

experiments according to the availability of hardware re-

sources. For example, we usually run the experiments by

increasing the workload. For each workload, we run the easily

scalable (browse only) scenario first, followed by read/write

scenarios. To minimize cache inter-dependencies across ex-

periments, after each batch of experiments, we finish the data

collection, ramp-down the system, stop all servers, and start

the next batch with sufficient ramp-up time. The iterations

continue until all the experiments are finished.

During the experiment execution, the automated infras-

tructure collects information about system resources (e.g.,

CPU, memory), application specific data (e.g., thread pool

usage), application logs (e.g., apache logs), high level data like

throughput and response time, and any other data that the user

wants to collect. This process continues for each and every

workload. In fact, experiments in our domain consist of 50 to

60 workloads, and each workloads runs for approximately 30

minutes. The framework is capable of collecting, managing

and storing data without any help from the user. The data

extractor can use this data to extract and store in the data

warehouse after the experiment is completed.

IV. AUTOMATED EXPERIMENTAL DATA INTEGRATION

AND MANAGEMENT

Here we present the data extractor that we have developed

to process measurement data and the data warehouse solution

that we have developed to flexibly store measurement data.

A. Expertract - Automated Data Extractor

The large-scale experiment measurements with Expertus gen-

erate an enormous amount of metadata in the form of log files,

i.e. structured and semi-structured text files. This data needs to

be extracted and stored in the environmental data warehouse

for later analysis. The primary challenge with this activity is

the fact that different tools and software packages produce the

data of interest, differently. Thus, the goal of an automated

data extractor is to build a generalized parsing approach for

experimental data to support both the known and unknown

data formats. To begin developing an approach, we explored

the more recent and foundational research in the Extract,

Transform and Load (ETL) domain. Next, we built a system

bound by the existing data files known in the environment,

and more specifically, we focused on parsing ‘fixed width’

flat files.

359

Generally speaking, the log files that comprise our ETL

domain have significant variability. The following categories

are just a few of points of difference:

• Structure - semi-structured: [flat files, delimited files,

HTML] and structured [XML].

• Data Record Structure - what arrangement or construction

within the file represents one data record and how do

the data fields relate - either explicitly or implicitly -

ontologically.

• Data Type - numeric, string and other ASCII characters.

• Data Variability - how consistent the data is within a

specific - either explicit or implicit - data field and across

the fields within a file.

• Data Validity - similar to Data Variability but specifically

related to identifying error conditions within a specific -

either explicit or implicit - data field.

These observations suggest perhaps an alternative view of

the original problem. That is any log file contains data and

an inherent presentation. This presentation is a mixture of

inherent data ontology and human readability factors. Any

successful approach must disambiguate these two concerns.

Specifically, an approach needs to be able to handle three

aspects of any given log file:

• Data - this concerns aspects of data quality and validation.

• Ontology - that is the logical relationship among the data

elements in the file.

• Presentation / Layout - this concerns how the data is

expressed in the file.

During the course of our system design, we focused on four

main monitoring file data patterns, and these cover more than

98% of the monitoring data collected through our experiments.

These patterns are:

1) One header: The most basic case, a given file has one

header. This header can contain a row describing records

and a row describing fields, but it can also just have a

row containing fields.

2) Multiple headers with sequentially corresponding data:

This pattern is basically (1) except that another header

appears later in the file.

3) Multiple headers with non-sequential corresponding data:

This pattern differs from (2) in that data later in the

file matches the first header in the file at some random

position later in the file.

4) Multiple headers appear randomly in the file and data

is entirely non-sequential, i.e., randomly distributed

throughout the file.

We developed the tool to be user interactive, so a domain

expert can help the tool to correctly interpret the data format.

At the end of this process, we build an ontology for the file,

and then we use the created ontology to process the file during

data extraction. We use the previously described approach for

unknown or unseen file formats, but we use existing ontologies

to describe the file format for the known files. Nevertheless,

the matching algorithm that we delivered followed a Greedy

Fig. 3. Experstore - Sequence Diagram for Automated Data Extractor

algorithmic approach–detailed below. We augmented this core

functionality with the following surrounding functionality:

• Simple command line user interface to capture user

instructions for parsing header rows.

• Object-oriented design that supports separating file con-

tents from file format and layout.

• Row-Encoding Algorithm: Only prompt the user when

the system thinks the row is a header row. Headers

have two distinct characteristics: more alphabetic and

special characters relative to the total length of the string.

Noise rows, i.e., rows that should be ignored for later

processing, have one of two properties but not both,

which differentiates them from header rows.

1) Uses length-weighted character frequency to do first

pass encoding.

2) Then check for the prevalence of special characters.

• Header-to-Data Row Matching Algorithm, this algorithm

leverages multiple heuristics to achieve its objective:

– Generate a byte-array representation of the string.

– Compute character frequencies and scale weights
based on character frequency. For example, if a

tab appears once in a string, this character receives

significantly more weight than spaces that occur

in over half of the string. Alphanumeric characters

are marked as 0.

– If more than one header appears in a document, do a

byte-wise comparison of the header row to the row

of data of interest. Whichever header-row of data

comparison results in the lowest absolute difference

is the header selected to process the row.

The sequence diagram shown in Figure 3 represents the

primary instruction flow for the parser. It shows the flow

of events for: initially loading a data structure to hold the

file contents; encoding rows of the data structure to do later

matching; and finally, matching rows, classified as a row of

data, to the corresponding header.

B. Experstore - A Flexible Data Warehouse
The performance and scalability measurement of enterprise

applications is a tedious process, and in most cases, researchers

360

are unaware of what resources need to be monitored (whether

it be high-level data like response time or throughputs or

low-level data like resource utilization data and application

logs). Moreover, monitoring all the possible resources is not

an option, since this might result in enormous performance

overhead. Hence, a researcher (or a performance engineer)

typically starts with a selected set of resources and gradually

changes the monitoring set based on observed results. For

example, if the issue is caused by CPU, then a researcher might

look into additional data like context switches or interrupts. An

experiment can also be deployed on heterogeneous platforms

(e.g., XEN vs. KVM, 2-core vs. 4-core), hence the structure of

monitoring data may differ from one experiment to another.

Frequently, the user changes the monitoring strategy, which

results in new data formats, new monitoring data. The user

may choose to monitor new resources (possibly using new

monitoring tools) based on the observed results. As a result

of these issues, the experiments data cannot be feasibly stored

on a set of static tables.

In addition, large-scale experiments often result in failures;

hence, storing incomplete or faulty data in the database is a

waste of resources and may impact the performance of data

processing. Most OLAP applications such as experiment data

analysis require joining multiple tables or performing self-

joins. When the tables are huge, processing becomes very time

consuming, and the processing time increases significantly

unless the tables can be loaded into the main memory.

We address these problem through Experstore —a special

data warehouse to store performance measurement data. Our

data warehouse is fully dynamic that is the tables are created

and populated on-the-fly based on the experimental data. More

specifically, at the end of each experiment we create a set

of tables to store the data, and the schema is solely based

on the structure of the data (e.g., how many columns, and

tables). Tables names are created dynamically by combining

experiment ID and timestamp, and names of the tables are

stored in a mapping table called ‘Resource Mapping Table’.

With this approach, if an experiment fails, we can simply drop

all the tables. Since we create tables for each experiment,

data processing becomes highly efficient, because the small

table size (related to each experiment) can be easily joined in

memory.

1) Data to Table Mapping: As mentioned before, the tables

are created dynamically based on the structure of the data. To

achieve this, we create an intermediate representation of the

data, where for each resource monitoring file we describe how

to process the file and which parser to use. One file might

contain data for more than one resource type, for example

CPU, Memory and Network I/O. For each resource type, we

create a ‘profile’, which maps a file’s structure to an applicable

schema. As an example, the profile identifies which columns

from a CSV file correspond to a database table. Next, we have

a mapping, where we specify what profiles are applicable to

a given node. A mapping contains node name, file name and

corresponding profile. A sample profile and a mapping file is

shown below:

Fig. 4. Experstore - Static and Dynamic Tables

Listing 1. Code Listening for Profile and Mapping
<p r o f i l e>

<s e p a r a t o r> ,</ s e p a r a t o r>
<r e s o u r c e−name>CPU0</ r e s o u r c e−name>
<p r o c e s s o r−c l a s s>d a t a i m p o r t . f i l t e r . C S V F i l e P r o c e s s o r
</ p r o c e s s o r−c l a s s>
<column i n d e x = ‘ ‘0 ’ ’ colname = ‘ ‘ u s e r ’ ’ d a t a t y p e = ‘ ‘ d oub l e ’ ’ />
<column i n d e x = ‘ ‘1 ’ ’ colname = ‘ ‘ sys tem ’ ’ d a t a t y p e = ‘ ‘ d ou b l e ’ ’ />
<s t a r t −i n d e x>10</ s t a r t −i n d e x>
<end−i n d e x>0</ end−i n d e x>

</ p r o f i l e>

<mapping nodename = ‘ ‘ Apache ’ ’ f i l n a m e = ‘ ‘ 1 6 9 . 2 5 4 . 1 0 0 . 3 . csv ’ ’
s t a r t w i t h = ‘ ‘ f a l s e ’ ’ endwi th = ‘ ‘ f a l s e ’ ’
p r o f i l e s = ‘ ‘CPU0 , DISK , CPU1 ,NETWORK,SYSTEM ’ ’ />

The structure of the data warehouse is shown in Figure 4.

As shown in the figure, it consists of four static tables to store

experiment metadata (e.g., experiment name, platforms, node

and workload information), which are typically fixed across

experiments. The highlighted tables are the tables, which are

created on-the-fly, as shown in the figure. ‘Resource Mapping

Table’ stores the names of the dynamically created tables along

with the resource names. For example, it has a record for

CPU utilization for experiment ID (EXP ID), and the value is

EXP ID CPU. Likewise, all the monitoring data for a given

experiment is stored. In fact, it has a record for each unique

node, workload, and resource.

During the course of data loading, a user starts with the

results directory and uses the data extraction tools. The tools

internally uses Expertract (Section IV-A) to create the ontolo-

gies for unknown file formats, and then combine it with known

file format to create the mapping file. Finally, the created

mapping file is used to export the raw data to the Experstore

data warehouse.

V. STATISTICAL ANALYSIS OF INTEGRATED

EXPERIMENTAL DATA

Experstore is an attempt on our part to aid in the analysis of a

large amount of data collected from sundry sources. It equips

the user with the capability to identify patterns, trends and rela-

tions, which generally gets obscured by the massive quantities

of data. Also, it equips the user with capabilities to control

the way in which data is represented, which further enhances

his productivity and analytical capabilities. The application

provides a simple interface that facilitates the comparison of

361

Fig. 6. Architecture - Data Analysis Web Portal

data from seemingly unrelated sources, thereby enhancing the

user’s ability to see and detect potentially interesting, latent

relations that were previously unknown. As an illustration, a

examples graph generated is shown in Figure 5.

We believe the application can be really helpful for any sys-

tem where components have dependencies and hence impact

each other. Moreover, the high degree of customization for

both graphs and data makes the application highly unique.

For example, let’s assume we have a process when it is

scheduled that it is mostly followed by processes that have

heavy disk activity. Such trends are very hard to identify, but

our application makes this trivial to pinpoint.

We have tried to keep the design of the application very

simple and clean. The core of the application is a Node.js
server that runs as a webserver. The whole application is

written using Node.js libraries. On the interface end, the

application uses the HighCharts framework to plot 2-

dimensional graphs and 3D WebGL-surface-plot for 3-

dimensional graphs. The server and the front-end communicate

using jQuery and JSON calls. From the server, we connect to

the MySQL database using the Node.js module, which acts as

a connector. The high level architecture is shown in Figure 6.

A. Approach and Features

Throughout the development, we focused on delivering as

many customization capabilities in the graphs as possible.

Adhering to this principle greatly helped us enhance the utility

of the application. Factors such as the variety of graph types,

the graphing of different scales, and the ability to vary the

values for graph ranges were some of the major challenges

that we faced. In order to achieve the desired results, we

experimented with different approaches for handling the data.

1) Fixed vs. Customizable Data Values: Initially, we de-

signed the application to directly utilize the data that we

obtained from the database for graph generation. But later,

we realized that this makes comparison between values with

significant range differences extremely difficult. Imagine com-

paring something that varies in thousands to something that

has variations in the range of hundreds. We alleviated this

condition by allowing mathematical transformations on values

before they are plotted on graphs. This allowed us to enhance

capabilities. Using the previous example, we could now mul-

tiply the values on the second series by a value, 10 in this

case, making direct comparison with the first series possible.

Fig. 7. Number of Experiment Generated During April-2013

2) Multiple Graphs vs. Multiple Series: While designing

the application, one of the prime concerns was allowing for

the comparison among multiple datasets (many series in the

same graph?). This needed to be weighed against the amount

of information the user would need (how many graphs?). We

later took the hybrid approach of allowing the user to have

multiple graphs each of which could have multiple series. This

greatly enhanced the utility of the application.

3) Result Migration: Another prime concern while design-

ing the application was facilitating the sharing of analytical

data between users, so collaborative efforts could be fruitful.

In order to deliver this feasibly, we had to choose between

building printing or export capabilities. The application can

currently export graphs as a PNG image, a JPEG image, a

PDF document or an SVG vector image.

4) Advanced Graphs: To enhance the capabilities of the

application, we modularized and integrated advanced features

like frequency distribution graphs, bucketed graphs, dynamic

graphs, correlation and cumulative graphs and 3-dimensional

graphs. This helped us model the application in such a way

that future enhancements could be incorporated easily.

VI. EFFECTIVENESS OF THE INFRASTRUCTURE

We have used Expertus extensively to perform a large number

of experiments on different computing clouds; through exper-

imentation, we have collected a huge amount of data with

various data formats, stored them in the data warehouse, and

observed interesting performance phenomena.

A. Active Use of the Tool

Expertus is actively being used for large experimental studies.

As an illustration, we have collected data from a number of

experiments during April 2013. This is illustrated in Figure 7,

and as shown in the figure, we run on average, over 10

parallel experiments daily. In some instances, we run over 50

concurrent experiments.

B. Amount of Data Collected

Success is considered in the number of different experiments

we have performed and amount of data we have collected

through those studies. Expertus has been used for years, and

it has performed a vast number of experiments: spanning 5

clouds (Emulab [9], EC2 [14], Open Cirrus [12], Wipro [13],

and Elba), 3 benchmarks (RUBBoS [10], RUBiS [11], and

Cloudstone [7]), 4 database management systems (CJDBC,

362

Fig. 5. Data Analysis Web Portal with a Sample Graph

MySQL Cluster, MySQL, PostgreSQL), with various resource

monitoring tools (dstat, sar, vmstat), and with different types

and number of nodes (i.e., 10 to hundred of servers).

Table I provides a high level summary of the many dif-

ferent experiments performed using RUBBoS, RUBiS, and

Cloudstone benchmarks. In the table, experiment refers to a

trial of a particular experiment i.e., execution of a particular

workload against a combination of hardware and software

configurations. Typically, a trial of an experiment takes one

hour which is the aggregated value of: reset time, start time,

sleeping time, ramp-up time, running time, ramp-down time,

stop time, and data copy time. Hence, in Eumlab we have spent

approximately 8,000 hours running experiments. In the table,

nodes refer to the total number of machines we have used

during our experiments. We calculated the number of nodes

by multiplying the number of experiments by the number of

nodes for each experiment. Configuration means the number

of different software and hardware configurations that have

been used by our experiments. Finally, the number of data

points collected describes the amount of data we collected by

running all of our experiments.

TABLE I
NUMBER OF EXPERIMENTS PERFORMED WITH EXPERTUS

Type Emulab EC2 Open Cirrus Elba Wipro

Experiments 8124 1436 430 2873 120

Nodes 95682 25848 4480 8734 430

Configurations 342 86 23 139 8

Data points 3,210.6M 672.2M 2.3M 1328.2M 0.1M

C. Testing for Heterogeneous Data Formats

For the purpose of evaluating the robustness of the parser, the

following file patterns were tested: 1) one header, 2) multiple

header rows with sequentially corresponding data, 3) multiple

header rows with non-sequential corresponding data, and 4)

multiple header rows appearing randomly in the file, and the

data is entirely non-sequential. We used the collected data,

which matched these aforementioned patterns, and Table II

outlines the observed results. Not only were the file patterns

varied but also the structure of the header. Based on the

sample, headers contained either one row or two rows. A

header with one row, Only Field Row Header, only contained

data fields. Alternatively, a header with two rows, Record &
Field Row Header contained a row, which enumerated the

data records, and another row, which listed the corresponding

data fields for each record. For this latter case, the numbers of

records and fields were varied from 1 to the original maximum

values: 8 and 16 respectively. If the headers were correctly

matched to the applicable row of data, the specified test

received a PASS grade; otherwise, it received a FAIL grade.

TABLE II
EVALUATION SUMMARY OF SUPPORTED FILE FORMATS

Pattern Only Field Record & Field
Row Header Row Header

One header PASS PASS

Multiple header (sequentially data) PASS PASS

Multiple header (non-sequential data) PASS PASS

Multiple header (randomly headers) N/A FAIL

D. Data Analysis and Performance Phenomena

We have been using the automated infrastructure heavily

for data analysis, and through our analysis process we have

observed a number of interesting and non-trivial performance

phenomena. We have used most of those findings for our

publications [18]–[20], [24], [25], and we continue to use the

collected data for more publications.

VII. RELATED WORK

Benchmarking is an essential approach used in both academia

and industry to gain an understanding of system behavior,

formation and testing of hypotheses, system configuration

and tuning, obtaining solution information, and resolving

performance bottlenecks. However, there have been relatively

few efforts aimed at building software tools for large-scale

testing of distributed applications and to reducing complexity

of benchmarking [1]–[6]. The ZOO [3] has been designed

to support scientific experiments by providing an experiment

management languages and supporting automatic experiment

execution and data exploration. Zenturio [4] on the other hand

363

is an experiment management system for parameter studies,

performance analysis and software testing for cluster and grid

architectures.

Our project parallels several others using XML and XSLT

for code generation. For example, the SoftArch/MTE and

Argo/MTE teams have also had favorable experiences using

XML + XSLT generators to “glue” off-the-shelf applications

together [15], [17]. Likewise, XML+XSLT is advocated for

code generation tasks in industry as well [16]. One of the

closest to our approach is Weevil [8], which is also focus

on workload generation and script creation. In fact, later they

observed some of the limitation in their approach and proposed

four enhancements to explore richer scenarios and to obtain

results with greater confidence [5]. To our knowledge, these

efforts have not explored the issues of extensibility, flexibility,

or modularity that is presented here in this paper.

VIII. CONCLUSION

Expertus, our automated experiment management framework,

has been developed to minimize human errors and max-

imize efficiency when evaluating computing infrastructures

experimentally. We have used the framework for a large

number of experimental studies and through them we have

collected a huge amount of data, which we have used for

finding interesting performance phenomena. In this paper, we

discussed the use of the infrastructure for efficiently creating,

storing and analyzing performance measurement data. The

code generator generates the necessary resources to fully

automate the experiment measurement process, and then using

the generated scripts, users can run experimental studies to

actually generate the performance data. The automated data

processor processes heterogeneous data and stores this data in

a flexible data warehouse, built specifically for measurement

data. Finally, the visualization tool helps us to easily navigate

and perform statistical analysis on the data warehouse to find

interesting performance phenomena. We evaluated the pro-

posed automation framework based on its usage, the amount

of data it can accommodate, different monitoring and logs

formats it supports, and finally, the overall effectiveness of

the approach for the scientific community.

Our future work includes, extending the data parser to

support additional data formats, extending the data warehouse

to use No-SQL databases, and extending the visualization tool

to support more customizable graphing capabilities. Google

Fusion Tables [26] provides useful APIs and framework for

processing big data, our future work also includes utilizing

them for processing performance data.

ACKNOWLEDGMENT

This research has been partially funded by National Science

Foundation by IUCRC/FRP (1127904), CISE/CNS (1138666),

RAPID (1138666), CISE/CRI (0855180), NetSE (0905493)

programs,and gifts, grants, or contracts from DARPA/I2O, Sin-

gapore Government, Fujitsu Labs, Wipro Applied Research,

and Georgia Tech Foundation through the John P. Imlay, Jr.

Chair endowment. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation or other funding agencies and

companies mentioned above.

REFERENCES

[1] Y Ioannidis, M Shivani, G Ponnekanti. ZOO: A Desktop Experiment
Management Environment. In Proceedings of the 22nd VLDB Confer-
ence, Mumbai(Bombay), India, 1996.

[2] K L. Karavanic, B P. Miller. Experiment management support for
performance tuning. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, Mumbai(Bombay), India, 1996.

[3] R Prodan, T Fahringer. ZEN: A Directive-based Language for Automatic
Experiment Management of Distributed and Parallel Programs. In ICPP
2002, Vancouver, Canada.

[4] R Prodan, T Fahringer. ZENTURIO: An Experiment Management
System for Cluster and Grid Computing. In Cluster 2002.

[5] Y Wang, A Carzaniga, A L. Wolf. Four Enhancements to Automated
Distributed System Experimentation Methods. In ICSE 2008.

[6] S Babu, N Borisov, S Duan, H Herodotou, V Thummala. Automated
Experiment-Driven Management of (Database) Systems. In HotOS
2009, Monte Verita, Switzeland.

[7] A Fox, W Sobel, H Wong, J Nguyen, S Subramanyam, A Sucharitakul,
S Patil, D Patterson. Cloudstone: Multi-Platform, Multi-Language
Benchmark and Measurement tools for Web 2.0. In CCA 2008.

[8] Y. Wang, M.J. Rutherford, A. Carzaniga, and A. L. Wolf. Automating
Experimentation on Distributed Testbeds. In ASE 2005.

[9] Emulab - Network Emulation Testbed. http://www.emulab.net.
[10] RUBBoS: Bulletin board benchmark. http://jmob.objectweb.org/rubbos.

html.
[11] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
[12] Open Cirrus: Open Cloud Computing Research Testbed. https://

opencirrus.org/.
[13] WIPRO Technologies. www.wipro.com/.
[14] Amazon Elastic Compute Cloud. http://aws.amazon.com.
[15] Cai, Y., Grundy, J., and Hosking, J. Experiences Integrating and Scaling

a Performance Test Bed Generator with an Open Source CASE Tool.
In ASE 2004.

[16] Sarkar, S. Model driven programming using XSLT: an approach to
rapid development of domain-specific program generators In www.XML-
JOURNAL.com. August 2002.

[17] Grundy, J., Cai, Y., and Liu, A. SoftArch/MTE: generating distributed
system test-beds from high-level software architecture descriptions. In
ASE 2001.

[18] Malkowski, S., Hedwig, M., and Pu, C. Experimental evaluation of N-
tier systems: Observation and analysis of multi-bottlenecks. In IISWC
2009.

[19] Jayasinghe, D., Malkowski, S., Wang, Q., Li, J., Xiong, P., and Pu, C.
Variations in performance and scalability when migrating n-tier appli-
cations to different clouds. CLOUD 2011.

[20] Wang, Q., Malkowski, S., Jayasinghe, D., Xiong, P., Pu, C., Kane-
masa, Y., Kawaba, M., and Harada, L. Impact of soft resource allocation
on n-tier application scalability. IPDPS 2011.

[21] Vassiliadis, Panos. A Survey of Extract-Transform-Load Technology.
Integrations of Data Warehousing, Data Mining and Database Technolo-
gies: Innovative Approaches (2011).

[22] Baumgartner, R., Wolfgang, G., and Gottlob, G.,. Web Data Extraction
System. Encyclopedia of Database Systems (2009): 3465-3471.

[23] Kohavi, R., Henne, R.M., Sommerfield, D. Practical guide to controlled
experiments on the web: Listen to your customers not to the HiPPO. In
ACM KDD 2007.

[24] Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J., Kanemasa, Y., and
Pu, C. Empirical analysis of database server scalability using an n-tier
benchmark with read-intensive workload. ACM SAC 2010.

[25] Malkowski, S., Kanemasay, Y., Chen, H., Yamamotoz, M., Wang, Q.,
Jayasinghe,D., Pu,C., and Kawaba, M., Challenges and Opportunities in
Consolidation at High Resource Utilization: Non-monotonic Response
Time Variations in n-Tier Applications. IEEE Cloud 2012.

[26] Google Inc. Fusion Tables. http://www.google.com/drive/apps.html#
fusiontables

[27] G. Linden. Make Your Data Useful, Amazon, November 2006. [Online].
http://home.blarg.net/∼glinden/StanfordDataMining.2006-11-29.ppt

364

