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ABSTRACT
Elastic n-tier applications have non-stationary workloads
that require adaptive control of resources allocated to them.
This presents not only an opportunity in pay-as-you-use
clouds, but also a challenge to dynamically allocate virtual
machines appropriately. Previous approaches based on con-
trol theory, queuing networks, and machine learning work
well for some situations, but each model has its own lim-
itations due to inaccuracies in performance prediction. In
this paper we propose a multi-model controller, which in-
tegrates adaptation decisions from several models, choos-
ing the best. The focus of our work is an empirical model,
based on detailed measurement data from previous applica-
tion runs. The main advantage of the empirical model is
that it returns high quality performance predictions based
on measured data. For new application scenarios, we use
other models or heuristics as a starting point, and all perfor-
mance data are continuously incorporated into the empirical
model’s knowledge base. Using a prototype implementation
of the multi-model controller, a cloud testbed, and an n-
tier benchmark (RUBBoS), we evaluated and validated the
advantages of the empirical model. For example, measured
data show that it is more effective to add two nodes as a
group, one for each tier, when two tiers approach saturation
simultaneously.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
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buted Systems—Distributed applications; C.4 [Performance
of Systems]: Modeling techniques; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search—
Control theory

General Terms
Experimentation, Management, Measurement, Performance.

Keywords
Adaptation engine, Automated control, Cloud, Empirical
modeling, Elastic system, n-Tier application, Workload.

1. INTRODUCTION
Efficiency is a non-trivial challenge when managing the per-
formance of web-facing applications, such as e-commerce
websites and social networks, because their workloads are
characterized by sudden and periodic variations. In fact,
these non-stationary workloads have peak loads several times
the sustained load and are particularly difficult to forecast
accurately [1, 2, 6]. If these elastic applications are deployed
in a dedicated data center, the service provider will face a
challenging trade-off. On the one hand, satisfying QoS ob-
jectives such as short response time at peak loads will keep
a large number of nodes at low utilization levels most of the
time. On the other hand, provisioning mainly for the sus-
tained load by keeping a relatively high utilization of a small
number of nodes will lead to saturation and loss of business
during peak loads.

Cloud environments have been touted as good solution for
elastic applications because independent peak loads allow
sharing of the same nodes using techniques such as consoli-
dation; however, the relative immaturity of cloud technology
renders many important technical challenges not (yet) ad-
dressed. For instance, while achieving an economical sharing
of cloud resources at sustained loads and satisfying QoS ob-
jectives at peak loads is clearly of great interest for both
cloud providers and cloud users, the necessary management
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Figure 3: Integrative Adaptation Engine architec-
ture.

to the development of an empirical configuration planning
tool [13].
The rest of this paper is organized as follows. Section 2

introduces our Integrative Adaptation Engine architecture.
In Section 3, we describe the elastic application testbed,
provide IAE implementation details, and discuss our exper-
imental results. Section 4 further contextualizes our work
and provides an overview of related approaches. We con-
clude the paper in Section 5 with a brief summary and dis-
cussion of our findings.

2. ADAPTATION ARCHITECTURE
The three main components of the IAE architecture are the
elastic application system, the multi-model controller, and
the Operational Data Store (ODS). In this context, the elas-
tic application system comprises both the compute cloud
(hardware-side) and the elastic n-tier application (software-
side). Figure 3 provides a high-level overview of the topology
and communication between these components.
The elastic n-tier application is hosted on VM instances

that are obtained from the cloud infrastructure provider.
VM instances are available on a commodity pricing basis
(i.e., pay-as-you-use) with fine-grained rental periods. The
guest application can be assumed to be a web-facing ap-
plication with multiple tiers, which serve a web-interaction
workload generated by an elastic number of independent
clients. During operation, an n-tier application system ex-
poses various hooks that allow the recording of rich monitor-
ing data. Typically, the quality of the provided service (i.e.,
the user experience) is characterized in the form of Service
Level Objectives (SLOs), which are combined into Service
Level Agreements (SLAs). In our architecture the percent-
age of satisfied SLOs is directly reported to the adaptation
controller’s sensor as a live data stream.

The persistent storage module for all available operational
data such as resource utilizations, number of VM instances
per tier, and interaction-specific throughput is the Oper-
ational Data Store (ODS). The ODS enables the IAE to
make adaptation decisions based on previously observed ap-
plication system behavior, and is the second of the three
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Figure 4: Extensible meta-model that implements
the EM, the WFM, and the HSM with ODS access.

main IAE components. The third is the multi-model con-
troller, which interacts with the outside world through three
interfaces: the sensor, the meta-model, and the actuator. In
particular, the sensor interface is responsible for triggering
the adaptation decision workflow in response to a live SLO
input. During the decision-making process the adaptation
controller uses the meta-model interface to determine the
“state of the outside world”. The meta-model provides ac-
cess to all previously recorded operational data in the ODS
(see the following sections). If the controller determines that
the elastic application system can be optimized, an appro-
priate adaptation action is triggered through the actuator
interface. Typically, adaptation actions have to be com-
municated to both the cloud provider’s API as well as the
elastic n-tier application’s API.
From a more general perspective, the main data-flow in

Figure 3 constitutes an infinite cycle. This design facilitates
the continuous extension of the state-space that is known to
the empirical model. Conceptually, this design provides the
potential for high modeling accuracy resulting from dynamic
data evolution over time, which corresponds to continuous
model evolution.

2.1 Meta-model
The meta-model is the the multi-model’s interface that en-
ables the adaptation controller to access previously observed
operational data in the ODS. As shown in Figure 4, the
meta-model is extensible and can implement a number of
sub-models. For this paper, we have restricted the meta-
model to three sub-models: the Empirical Model (EM), the
Workload Forecast Model (WFM), and the Horizontal Scale
Model (HSM). The analysis of more complex hybrid-model
solutions are beyond the scope of this paper and are left as
future work.

2.1.1 Horizontal Scale Model
The purpose of the HSM is to query resource utilization
values in order to determine which tier is over-utilized (or
under-utilized). As previously mentioned, this type of scale
decision analysis was employed by Lim et al. in their Hor-
izontal Scale Controller (HSC) [12]. Following Lim et al.,
the HSM classifies the tier with the highest (or lowest) CPU-
utilization average in the past measurement interval as over-
utilized (or under-utilized). In our approach, the HSM serves
as an alternative decision method to the EM. As detailed in
Section 2.2, this alternative decision method is necessary in
case the queried state-space is not (sufficiently) known to



the EM. In other words, the HSM compensates the main
drawback of the EM, which is the dependence on previ-
ously recorded data. In combination the two models fa-
cilitate both efficient adaptation to previously encountered
scenarios and adaptation to previously unseen scenarios.

2.1.2 Empirical Model
The EM queries the ODS for performance achieved by dis-
tinct configurations based on throughput vectors. Corre-
spondingly, the performance data in the ODS are organized
in a throughput vector space, which is multidimensional,
application-specific, and cloud-specific. Each vector �x in the
ODS summarizes a set of interaction-type throughput rates
for a short time interval. Each interaction corresponds to
a distinct dimension; e.g., �x = (x1, x2, . . . , xn)

′ where xi is
the throughput of interaction-type i during one specific mea-
surement interval. This data organization enables the EM to
query the recorded data based on an anticipated throughput
rate vector �y that can be derived from the currently experi-
enced workload level and a short-term workload prediction
(see Section 2.1.3). The goal of a query to the ODS is to
retrieve “suitable” configurations, which are capable of sus-
taining the anticipated throughput �y. In this context, the
suitability of a configuration can be defined as an insignifi-
cant (i.e., short) vector space distance between the predicted
throughput �y and the previously recorded throughput �x.
The vector space distance for our ODS is formulated on

the basis of the well-known Euclidean norm. We transform
the classic Euclidean distance in order to include additional
domain-specific constraints. Correspondingly, we define our
own distance function (1) as a summation of function f .

dist(�x, �y) = ||�x− �y|| =
√√√√ n∑

i=1

f(xi, yi) (1)

Function f is defined in Equation (2) and uses the Euclidean
metric if the recorded throughput is less than or equal to the
query throughput. The Euclidean metric value is multiplied
by a weighting parameter α ∈ [0, 1] in all other cases.

f(xi, yi) =

{
(xi − yi)

2 if xi ≤ yi

α ∗ (xi − yi)
2 otherwise

(2)

The intuition behind this definition is to retrieve configu-
rations that are capable of sustaining a throughput that is
greater than or equal to the query throughput. Therefore,
the distance should mainly increase through throughput de-
viations that are negative, which violates the desired perfor-
mance. In the most intuitive case, weighting parameter α is
equal to zero. However, it may also be desirable to extend
the state-space exploration phase of the IAE. In these cases,
a higher weight results in a more frequent use of alternative
sub-models, which leads to a higher state-space coverage.

The EM queries to the ODS can be designed according to
the following pseudo-SQL based on the scalar stored func-
tion DIST(@x_vector, @y_vector), which implements the
aforementioned distance metric.

SELECT
MAX(time_stamp) AS last_used, AVG(sla) AS sla,
config AS configuration_setting, cost,
COUNT(id) AS support

FROM Operational_Data
WHERE

DIST(@x_vector, @y_vector) < @threshold
GROUP BY

configuration_setting
ORDER BY

cost, last_used DESC;

The scalar @threshold is substituted by an appropriate dis-
tance threshold. The choice of this threshold determines the
domain-specific selectivity of the EM with regard to judg-
ing deviations from previously recorded throughput values.
Higher selectivity increases the chances of relying on alterna-
tive sub-models (e.g., the HSM) in the meta-model. Further
selectivity constraints can be formulated on SLA-satisfaction
and support in the result set. While the latter ensures that
there is sufficient evidence of the suitability for a given con-
figuration, the sla column ensures that the desired QoS
was actually met. The retrieved tuples from the ODS are
grouped by distinct configurations (e.g., cardinality per tier)
and are ordered by the configuration cost. In horizontal
scaling scenarios with uniform VM types, the cost is propor-
tional to the total number of VM instances. The secondary
ordering attribute last_used corresponds to the most re-
cently observed configuration. This facilitates the continu-
ous evolution of the performance model if changes occur to
the underlying performance determinants. In other words,
the model gives preference to the most recently recorded
data, which can be regarded as an intuitive form of data
aging in a learning module.

2.1.3 Workload Forecast Model
Although workload is one of the critical QoS determinants
(Figure 2), current automated adaptation systems (e.g., [12])
are often purely reactive. This may cause inefficient adap-
tation if the workload level is highly volatile [25] or even os-
cillating system size due to periodic workload fluctuations.
This risk is compounded by adaptation lead-times between
the request of additional resources and their availability.
Therefore, it is necessary, under the aforementioned condi-
tions, to provide the multi-model controller with a predictive
understanding of the application’s workload process. We ap-
proach this challenge by designing a WFM, which allows the
controller to pro-actively adapt the system before actually
facing a specific workload scenario.
Typical elastic applications are characterized by a large

number of users that send independent requests, and by a
workload that may seasonally vary by more than one order
of magnitude in a single day [6]. Therefore, we have previ-
ously designed a forecast mechanism based on Fourier Trans-
formation (FT) for this specific class of workloads [8]. More
concretely, the WFM queries the ODS for historic work-
load data whereby the query directly aggregates the high-
resolution data into a second-level time series. The main
seasonal effects are determined based on FT. As FT decom-
poses the process into a set of trigonometric functions, each
of the main factors of influence can be extrapolated. The
near future behavior of the process is predicted by overlay-
ing all significant extrapolations and determining the rela-
tive change. The predicted workload-level change is then
multiplied with the current interaction-specific throughput
to estimate the short-term workload development. Please
refer to the cited reference for a comprehensive description
of this previously published result.
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Figure 5: Decision-making workflow inside the
multi-model controller.

2.2 Adaptation Workflow
The decision-making process inside the multi-model con-
troller can be represented as a workflow graph with mul-
tiple sequential and parallel decision blocks. The more sub-
models that are included in the meta-model, the more rule-
based decision logic has to be added to the workflow. In the
case of our initial prototype, the decision logic has to man-
age the dataflow from the EM, the WFM, and the HSM. The
corresponding workflow graph in Figure 5 has two main exe-
cution paths. While the path on the left leads to a potential
scale-down adaptation, the right path leads to a potential
scale-up adaptation. The triggering of these adaptations is
based on sensitive SLA, which sets higher QoS requirements
than normal SLA. The definition of a sensitive metric allows
initiating a scale-up adaptation before the normal SLA (i.e.,
the actual QoS metric) is violated, and it similarly allows ini-
tiating a scale-down adaptation only if the sensitive SLA is
fully satisfied. In contrast to our approach, previous control
approaches (e.g., [12]) typically only monitor QoS indirectly
by assuming strong correlation between QoS and a represen-
tative resource utilization metric such as CPU utilization.
The two main execution paths in Figure 5 are analogous

for both scale-up and scale-down. First, the adaptation
workflow proceeds only if either of the two aforementioned
sensitive SLA requirements is met. Second, a short-term
workload prediction is obtained. Third, the ODS is queried
in order to obtain an empirically founded adaptation ac-
tion. Fourth, if the ODS query resulted in a NULL-result,
the HSM is queried to make an adaptation decision exclu-
sively based on CPU utilization. Finally, the previously de-
termined adaptation action is initiated through the actuator
interface.

3. EXPERIMENTAL EVALUATION

3.1 Elastic Application Testbed
RUBBoS [22] is an n-tier e-commerce application modeled
on bulletin board news sites similar to Slashdot. We have
used the benchmark implementation with four tiers (i.e.,
client emulator, web server, application server, and database
server). In general, this application places high load on the
backend. The generated workload consists of 24 different
interactions (involving all tiers) such as register user, view
story, and post comments. We ported the Java implemen-
tation of RUBBoS to the Microsoft .NET environment. We
modified the benchmark to run six native RUBBoS interac-
tions, and we implemented a seventh interaction that we call
the Business Logic Request (BLR). The BLR has the prop-
erties of a typical CPU-bound application-server-intensive
interaction. More concretely, complex (CPU-intensive) op-
erations are performed in the application tier based on sim-
ple database queries with relatively small result sets. In
essence, the resulting benchmark presents itself as a well-
balanced system that distributes the load evenly among all
three tiers1, which is the main target environment of this
paper. The .NET code was deployed in enterprise class
Microsoft environment. The frontend and the application
server tier were deployed on Microsoft Internet Information
Services (IIS) servers. As a backend, Microsoft SQL Server
was used with the schema and large dataset provided by
the RUBBoS benchmark. We modified the RUBBoS bench-
mark workload generator to use an open model with a freely
manageable number of concurrent user interactions (i.e., no
client thread sleep time) [6]. The interactions are chosen
based on an a priori specified probability vector. All bench-
mark application components were deployed on Microsoft
Windows Server 2003 (SP2).

We used a custom local cluster as our cloud infrastruc-
ture. We implemented scripts that allow us to obtain and
release virtual resource similar to a real IaaS cloud environ-
ment. The test cluster was built using hardware virtualized
Xen 3.4.3 VM instances. The underlying operating system
was Red Hat Enterprise Linux 5 (2.6.18-194.11.1.el5xen ker-
nel) on 12 hardware nodes with 8GB of memory and an Intel
Core2 QuadCPU (Q9650) with 3.00GHz each. All VMs were
created with one VCPU and 2GB of memory into a pool
of idle resources and ramped up upon request. In our ex-
periment setup, we have abstracted away data consistency
and rebalancing issues; however, state of the art solutions
such as the previously mentioned Data Rebalance Controller
(RDC) [12] could seamlessly be included into our modular
architecture.

3.2 IAE Implementation Details
In order to provide maximal compatibility to the elastic ap-
plication testbed, the IAE prototype was implemented based
on a similar software stack as the testbed. Most of the pro-
totype code was written in the Microsoft .NET environment
while the mathematical logic of the WFM sub-model uses
Matlab 2010. The multi-model controller code was deployed
as a service on an IIS server, and the ODS was built in a Mi-
crosoft SQL Server backend. The learning module function-
ality in the ODS was designed as an append-only database

1We use a symbolic three-digit notation #Web/#App/#DB
to denote the configuration; e.g., the smallest application
size will be referenced as 1/1/1.
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Figure 6: ODS initialization based on a synthetic workload with a uniform interaction distribution.

relation that captures application performance data in inter-
action-specific one-second throughput vectors. The scalar
@threshold parameter was instantiated with 50 interactions
per second. The EM query result set (see Section 2.1.2) is
further processed by a second query that filters all configu-
rations based on support of at least 30 distinct observations,
sla of at least 90% on average, and by returning the cheap-
est configuration (i.e., addition of “TOP 1” to the query).
Finally, the abstract config specification in the ODS rela-
tion was instantiated as three-integer notation that repre-
sents tier cardinality (i.e., the configuration), and the cost
attribute was mapped as sum of all tier cardinalities.

Due to the space constraints of this paper, we set the
distance function weighting parameter α = 0 and left the
analysis of convergence properties of the EM as future work.
The response time thresholds for the sensitive SLA and the
normal SLA were instantiated to 0.5 and 1 second, respec-
tively, based on the characteristics of the RUBBoS bench-
mark. SLA-satisfaction was calculated as percentage of re-
quests that were processed within the response time thresh-
old during a time interval of 30 seconds (intercepted from
frontend logs). Similarly, the HSM averaging interval was
set to 30 seconds.
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Figure 7: ODS initialization based on a synthetic workload with increased application server load.

3.3 Experimental Results
The following experimental results are divided into three
parts. First, we introduce results that were generated with a
synthetic (i.e., monotonically increasing step-function) work-
load in order to initialize the ODS in the IAE architecture.
Second, we exemplify the characteristics of the EM scaling
process based on the previously collected operational data.
Third, we conclude the experimental evaluation by zoom-
ing out and exposing the IAE prototype to a one-week pro-
duction system workload trace that illustrates the macro-
characteristics of our approach.

3.3.1 Synthetic Workload Results
Here, we analyze results that were obtained with a mono-
tonically increasing synthetic workload and an empty ODS.
Consequently, the adaptation decisions are based on the in-
put of the HSM. This approach serves two important pur-
poses. First, we illustrate a state of the art control-based
approach (i.e., HSC [12]) in our test environment. Second,
we explore a practical strategy to fill the ODS with data
and “initialize” our EM for the analysis that is shown in the
following sections.

Both Figure 6 and Figure 7 are organized identically, and
they depict the scale-up characteristic of the elastic n-tier



application when exposed to an increasing interaction load.
The difference between these two figures is that while the
seven interactions are distributed uniformly in the former,
the probability for Business Logic Requests (BLRs) was dou-
bled in the latter. As discussed in the following, this change
leads to a significantly higher load on the application tier,
which ultimately causes different scaling characteristics. The
workload traces are illustrated through the shaded area in
Figures 6(a), 6(b), 7(a), and 7(b). The workload is gener-
ated according to a heuristic loop: Increment the number
of concurrent interactions every 30 seconds by ten until the
normal SLA-satisfaction in the last 30 seconds drops be-
low 90 percent on average; then scale-up, drop the current
workload level by 150 concurrent interactions, and restart
the loop. Sensitive and normal SLA-satisfaction illustrate
the sensor metric and the control-target, respectively. While
Figures 6(c) and 7(c) show the number of VMs in each tier
of the application during the scale up process, Figures 6(d)–
6(f) and 7(d)–7(f) show the corresponding average CPU uti-
lizations for each tier. These CPU utilizations are the sole
decision metric for the HSM.
The analysis of Figure 6 confirms that the application

load is balanced if all seven requests are distributed equally.
Figure 6(c) shows a balanced scale-up pattern with nearly
equal numbers of VMs per tier. As the workload scales from
10 to about 700 concurrent interactions, the elastic appli-
cation scales from 1/1/1 to 3/3/2. However, the scale-up
performance (i.e., maximal throughput per scaling step) is
not monotonically increasing, which may seem surprising at
first. In fact, the fourth configuration step (i.e., the addi-
tion of the third application server) results in a maximal
achievable throughput level (380 ops/sec with 2/3/1) that
is lower than the maximal throughput level in the previous
scaling step (410 ops/sec with 2/2/1). The explanation for
this phenomenon lays in the balanced performance among
all tiers. Concretely, the increase in capacity of the appli-
cation tier conversely increases the load in the database tier
because the application servers process requests faster. This
increased “pressure” on the database tier results in overall
system saturation at an absolutely lower workload compared
to the previous configuration. In fact, the CPU utilization
analysis (Figures 6(d)–7(f)) reveal that the observed bottle-
neck cannot be explained with full CPU utilization and is
most likely due to an I/O bottleneck between the two tiers.
As illustrated in Figure 6(c), the overall system performance
can be significantly increased (580 ops/sec with 2/3/2) once
both tiers have been scaled up, and the communication is
handled by a more balanced number of servers.

Since the probability of application tier intensive requests
(i.e., BLR) has been significantly increased (from 14% to
25%) in the second scenario (Figure 7), the same synthetic
workload level results in a higher number of VMs in the
application tier (Figure 7(c)). As the workload scales from
10 to approximately 500 concurrent interactions, the elas-
tic application scales from 1/1/1 to 2/5/1. The analysis
of the application tier CPU utilization in Figure 7(e) cor-
responds to the CPU-bound implementation of the BLR.
Consequently, the HSM operates well based on the aver-
age application tier CPU utilization, which results in an
approximately monotonic throughput increase per scale-up
step (Figures 7(b) and 7(a)). Solely in the last scaling step
(from 2/4/1 to 2/5/1), the application performance is lim-
ited by an I/O bottleneck that corresponds to the previously
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Figure 8: EM-based scaling with uniform interaction
distribution (ODS initialized according to Figure 6).
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Figure 9: EM-based scaling with increased app.
server load (ODS initialized according to Figure 7).

explained symmetric scaling phenomenon. Another impor-
tant observation is the consistent relationship between sen-
sitive and normal SLA-satisfaction. Naturally, the sensitive
SLA-violations are a superset of the normal SLA-violations.
This confirms the suitability of the sensitive SLA as a sensor
metric for the pro-active control of the normal SLA, which
is the true measure of QoS in our target environment.

3.3.2 Empirical Scaling Results
The results in this section illustrate the scaling decisions of
the EM in contrast to the scaling decisions of the HSM in
the previous section. Figure 8 shows that the EM is capable
of making more complex scaling decisions than the HSM by
scaling multiple tiers at the same time. For example, the
EM automatically mitigates the aforementioned non-linear
scaling characteristic and determines that it is more efficient
to scale directly from 2/2/1 to 2/3/2 as the workload grows
greater than 420 concurrent interactions. Another impor-
tant difference between the EM and the HSM is shown in
Figure 9. Despite the potentially available eighth VM, the
EM does not scale beyond 2/4/1 because the previously ob-
served 2/5/1 performance was not economical due to the
I/O bottleneck.
The analysis of Figures 8 and 9 illustrates that the EM
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Figure 10: EM-based scaling with uniform workload
and changing ratio of Business Logic Requests.

is not directly dependent on resource utilization metrics be-
cause it is able to directly map workload (x-axis) to eco-
nomical configurations (y-axis). This property of the EM
abstracts away the need to statically define an appropri-
ate global resource utilization threshold such as 20% CPU
utilization in Lim et al.’s paper [12]. Therefore, the EM ap-
proach enables operation at potentially higher resource uti-
lization levels (see Figure 7(e)) as long as the SLA-satisfaction
remains within desired boundaries (see Figure 7(b)).
In Figure 10 we analyze the EM with regard to a shift-

ing workload mix. The x-axis shows the recorded ratio of
BLRs and the y-axis shows the corresponding configuration
at a workload greater or equal to 400. For this analysis the
data in the ODS included all of the experiment runs that
we have conducted to this point. From left to right, this
figure illustrates the changing provisioning requirements as
the bottleneck shifts from the DB tier to the application tier.
Again, the EM is able to seamlessly adjust to these chang-
ing conditions, irrespective of whether the change happens
gradually or periodically.

3.3.3 Real Workload Results
In this section, we analyze our adaptation engine prototype
when exposed to a constant mix workload (balanced inter-
actions), which is derived from absolute user numbers that
were recorded for the Wikipedia.com website in May 2008
(Figure 11). For the purpose of our analysis, the real hourly
trace was transformed to span 0–700 users, spline interpo-
lation was used to generate 30 second granularity [8], and a
Gaussian noise process was injected into the signal [6]. The
analysis of Figure 12 confirms that the prototype is able
to control the elastic application autonomously. It is note-
worthy that low seasonal peaks such as on Sundays do not
result in system scale-up beyond 1/1/1. Furthermore, most
adaptation actions involve the addition of at least two VM
resources in order to generate a balanced system cardinality,
which corresponds to this particular workload mix scenario.

4. RELATED WORK
To the best of our knowledge, there are few papers on the in-
tegration of multiple automated control models. Urgaonkar
et al.’s work [25] is an example, where they combine re-
active control and queuing-based prediction. Despite the

Fri Sat Sun Mon Tue Wed Thu Fri
0

100

200

300

400

500

600

700

Day of Week

N
um

be
r 

of
 C

on
cu

rr
en

t I
nt

er
ac

tio
ns

 

 

Workload Trace

Figure 11: Assimilated Wikipedia.com workload.
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Figure 12: IAE application scaling based on the
workload in Figure 11 and balanced interactions.

small number of previous papers (some discussed below),
there is little doubt that combining multiple models to over-
come their individual limitations can be beneficial. More
generally, although we have not found automated control
mechanisms for cloud management that use empirical mod-
els directly, our work on multi-model controller and ODS
can be seen as an integration (with extensions) of three com-
ponent technologies: control systems, queuing models, and
automated learning. We briefly outline some relevant work
from each area in this section.

Another paper that includes a multi-model controller uses
an integral control technique called proportional threshold-
ing for automated elastic storage in clouds [12]. Their scaling
of the storage service is managed through a meta-controller
combining a control system-based data rebalance controller
and a horizontal scale controller. Their paper makes some
simplifying assumptions, e.g., storage service QoS depends
only on CPU utilization as the sole control metric. They also
set the target CPU utilization of 20%, which may be rea-
sonable for storage service, but is relatively low for cloud
node utilization. Other control system-based approaches
differ from our work because they assume the availability
of continuously scaling resources in non-distributed environ-
ments [18,19].

A well-established approach to performance prediction of



computer systems is queuing models. Due to typical as-
sumptions made (e.g., stationary arrival rates and workload-
independent utilization ratios among system modules) to fa-
cilitate analytical solutions [9], classic queuing models have
limitations with elastic workloads on n-tier applications [10,
21, 24]. Several research efforts have attempted to address
these limitations (e.g., Mi et al.’s work on modeling bursti-
ness in n-tier applications [16,17], Urgaonkar et al.’s predic-
tive and reactive provisioning, and Thereska et al.’s IRON-
Model [23]. As an example, the IRONModel is a robust
queuing modeling architecture based on principles such as
construction during system design and continuous reeval-
uation of accuracy during operation. Nonetheless, queuing
theory requires a priori modeling of all performance relevant
queuing stations and interaction types. This is not required
by an empirical model such as ours, but our multi-model
controller can integrate queuing models to handle the more
stable workload periods.

Our empirical model includes an automated learning mod-
ule that continuously inserts measured data into the ODS.
This is different from machine learning-based approaches
(e.g., Cohen et al. [4, 5] and Sahai et al. [20]), since we use
the measurement data without necessarily finding a pattern
or analytical representation. More recently, Armbrust et al.
introduced SCADS [3] that uses machine learning for elastic
storage system scaling. Our empirical model avoids the typi-
cal difficulties of machine learning with data noise-sensitivity
and over-fitting since we use the measured data directly.

5. CONCLUSION
We described a multi-model controller for appropriately map-
ping virtual machine nodes to elastic n-tier applications in
clouds. The main advantage of the controller is its support
for an empirical model that provides assured adaptation de-
cisions using measured performance data from previous runs
of the application. An automated learning module contin-
uously augments the empirical model knowledge base with
measured data from new application runs. For configura-
tions not yet covered by measurements, a simple heuristic
model provides approximate solutions.

We implemented a prototype of the multi-model controller
with the empirical model on a database platform (called
ODS). The experimental evaluation of our prototype imple-
mentation suggests that the empirical model is able to adapt
to changing performance determinants and to maintain con-
stantly high SLA-satisfaction with guaranteed performance
predictions based on measured data. As a concrete exam-
ple, the empirical model demonstrated adaptation cost sav-
ings over the heuristic model by suggesting a multi-node
adaptation action when multiple tiers approach saturation
simultaneously. Our positive initial results suggest that an
empirical model can be integrated with other adaptation al-
gorithms (e.g., [10, 11]) using the multi-model controller, to
achieve “the best adaptation of all models”.

Although this paper focuses on horizontal scaling in IaaS
clouds, our work is also applicable to other cloud service of-
ferings. In the case of Software as a Service (SaaS), for exam-
ple, our work can help alleviate the management problems
faced by the cloud provider. In the case of vertical scaling
scenarios, the configuration specification in the data store
can be extended to include the number of VM instances,
their type, and other descriptive information to support finer
granularity adaptation.
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