
An Infrastructure for Automating Large-scale
Performance Studies and Data Processing

Deepal Jayasinghe, Josh Kimball, Tao Zhu, Siddharth Choudhary, and Calton Pu.

Center for Experimental Research in Computer Systems, Georgia Institute of Technology

266 Ferst Drive, Atlanta, GA 30332-0765, USA.

{deepal, jmkimball, tao.zhu, siddharthchoudhary, calton}@cc.gatech.edu

Abstract—The Cloud has enabled the computing model to
shift from traditional data centers to publicly shared computing
infrastructure; yet, applications leveraging this new computing
model can experience performance and scalability issues, which
arise from the hidden complexities of the cloud. The most reliable
path for better understanding these complexities is an empirically
based approach that relies on collecting data from a large number
of performance studies. Armed with this performance data, we
can understand what has happened, why it happened, and more
importantly, predict what will happen in the future. However,
this approach presents challenges itself, namely in the form of
data management. We attempt to mitigate these data challenges
by fully automating the performance measurement process.
Concretely, we have developed an automated infrastructure,
which reduces the complexity of the large-scale performance
measurement process by generating all the necessary resources
to conduct experiments, to collect and process data and to store
and analyze data. In this paper, we focus on the performance
data management aspect of our infrastructure.

Keywords-Automation, Benchmarking, Cloud, Code Genera-
tion, Data Warehouse, ETL, Performance, Visualization.

I. INTRODUCTION

An application that performs one way in the data center

may not perform identically in computing clouds [16]. Hence,

companies need to ensure that their applications can move

safely and smoothly to the cloud, because failing to do so

could result in significant impacts to the business. Neglecting

the possible performance impacts could ultimately lead to

lower user satisfaction, missed Service Level Agreements

(SLAs), and worse, reduced profit. To prevent such outcomes,

a rigorous experimentation and holistic data analysis effort

must accompany any cloud migration effort. This approach

can help us to understand what has happened, explain why it

happened, and more importantly, anticipate what will happen

in the future. However, this empirical approach is not without

its own set of challenges.
These challenges arise from the nature of large-scale perfor-

mance experimentation. The introduction of the cloud signif-

icantly increases the number of possible system configuration

permutations, which increases both the amount of testing and

the degree of experimental data heterogeneity–diversity and

volume. These data management challenges alone make large-

scale experimentation impractical to manage using manually

intensive techniques. Finally, the nature of the cloud increases

the complexity of other, more pedestrian testing activities such

as application deployment, configuration, workload execution

and monitoring.

We address these challenges through a flexible automation

framework that we have developed to create, store and analyze

large-scale experimental measurement data–called Expertus.

Automation removes the error prone and cumbersome involve-

ment of human testers, reduces the burden of configuring and

testing distributed applications and accelerates the process of

reliable applications testing. The main contribution of this

paper is the tools and approaches we have developed to

automate the data (structure, size, patterns, and noise)-related

aspects of the large-scale experiment measurement process.

Our approach addresses the three fundamental data man-

agement issues–generation, extraction/collection and storage/-

analysis. First, Expertus generates all of the resources that

are necessary to automate the execution of an experiment.

Using a provided domain-specific language (or provided web

portal), a user merely provides a description of the experiment

to execute. To address the extraction and data processing

challenges, we extend ETL (extract, transform, and load) tools

and approaches [17], [18] to build a generic parser to process

the collected data. The current parser can handle a significant

fraction (over 80%) of the most commonly used file formats in

our experimental domain. To address the storage and analysis

challenges, we have designed a special, fully dynamic data

warehouse (Experstore) to store performance measurement

data. Finally, we have built a web portal to address the related

challenges of navigating and analyzing an enormous amount

of performance measurement data. This tool in addition to

embedded data analysis provided by the the R framework

helps the user to navigate, visualize and analyze the data in

the warehouse. The details related to data analysis facilitated

by the web portal appear do not appear here but instead in a

longer form of this research.

The remainder of this paper is structured as follows. In Sec-

tion II we provide the big picture of the experiment automation

framework. We discuss the code generator framework to aid

the automation in Section III, and Section IV provides our

approach to performance data generation. Section V presents

our data warehouse solution, and in Section VI, we discuss

our approach to extracting the performance data. We evaluate

the effectiveness of our approach in Section VII. Finally, we

provide a discussion of the related state of the art approaches

2013 IEEE International Conference on Big Data

978-1-4799-1293-3/13/$31.00 ©2013 IEEE 187

in Section VIII, and we conclude the paper with Section IX.

II. AUTOMATED PERFORMANCE MEASUREMENT

INFRASTRUCTURE

We address the above challenges by leveraging automated

techniques for performance measurement. More concretely,

we have developed Expertus — an automated infrastructure

to fully automate the performance measurement process. In

our approach, a user provides the configuration file for the

experiment, and the infrastructure generates all of the required

resources (shell scripts and other configuration files), runs the

experiments (i.e., deploy and configure applications, run the

workloads), and collects and uploads the data to the data

warehouse. Finally, the user can analyze the data using either

command line tools (R or other means) or a web portal.

The complete process for experiment measurement using our

approach is illustrated in Figure 1. A brief description for each

item in the figure is provided below:

• Code generator: is the core, which generates all the nec-

essary resources to automate the experiment management

process. In a nutshell, code generator takes experiment

configuration files as the input and generates resources

to automate the process.

• Experiment Driver: is designed to use the generated

resources and controls the experimentation flow, which

involves application deployment, configuration, initial-

ization, workload execution, and data collection. Code

generator generates all the scripts, and a special script

called run.sh, which maintains the sequence for script

execution. Experiment driver uses run.sh to find the

order of execution. It connects to all the nodes through

SSH/SCP and executes the scripts on the corresponding

nodes.

• Data Extraction: Each experiment produces gigabytes

of heterogeneous data for resource monitors (e.g., CPU,

Memory, thread pool usage, and etc. . .), response time,

throughput and application logs. The structure and

amount of collected data vary based on sundry factors,

including: system architecture (64-bits vs 32-bit,

2-core vs. 4-core), monitoring strategy and moni-

toring tools (e.g., sar, iostat, dstat, oprofile),

logging strategy (e.g., Apache access logs), and the

number of deployed nodes and workloads. Data extractor

is written to help users easily import experiment data into

the data warehouse. It supports the most commonly used

data formats and has built-in flexibility to extend to new

data formats.

• Data Warehouse: Due to the nature of large-scale per-

formance experiments, creating a priori, fixed schema to

store measurement data is difficult. Even if one could be

defined, data processing becomes extremely inefficient

due to the magnitude of the data. To overcome these

challenges, we have created a flexible data warehouse

tailored to handle performance measurement data.

• Data Analysis: The reason for conducting large-scale

experiments is to find and resolve performance issues.

Code
Generator

Experiment
Driver

Data
Extractor

Data
Warehouse

Data
Analyzer

Fig. 1. A Typical Performance Measurement Process with Our Approach.

To this end, data analysis plays an integral role; yet, due

to the magnitude of the data and structure of the data

warehouse, data analysis becomes a non-trivial task. To

address these challenges, we have provided two types

of tools: a web portal for graphical users and R scripts

for command line users. Both of these tools understand

the internal data structure, and they help to make data

analysis efficient.

III. AUTOMATION THROUGH CODE GENERATION

In our approach, we enable automated experiment measure-

ment through code generation, which generates all the neces-

sary resources to automate the measurement process. From an

architectural viewpoint, our code generator adopts a compiler-

based approach of multiple, serial transformation stages – a

code generation pipeline. The intuition behind this approach

is to deliver more extensibility and flexibility by dividing

the larger problem into smaller pieces and processing them

one at a time. The hallmarks of our approach are two-

fold: the stages typically operate on an XML document that

is an intermediate representation, and XSLT performs the

code generation. We address challenges that originate from

differences among clouds, applications, users and other cross

cutting requirements (e.g., monitoring) through aspect oriented

programming (AOP) techniques.

Use of XML provides the code generator with a high degree

of extensibility. This stems from XML’s simple, well-defined

syntax requirement and its ability to accept arbitrary new tags,

thereby bypassing the overhead encountered when managing

both XSLT templates and AOP. For example, a template can

add an arbitrary element to the intermediate XML; however,

unless the processing code is written to process this new tag,

the newly added tag remains untouched. XSLT transformation

is the process of converting an XML document into another

document through the use of XSL. Typically, XSLT converts

an XML document into another XML document (e.g., HTML)

or any other type of document. Expertus consists of two types

of templates, namely Resource templates and Aspect
templates. The former is used to generate application/-

platform independent part of a resource, and the latter is

used to modify (weave) the generated resource for the target

application/platform (e.g., Emulab vs. EC2).

Expertus takes an XML document and produces another

XML document through XSLT transformation. Expertus treats

the first and last stage differently as compared to the rest

188

of the pipeline. In the first stage, it takes the experiment

specification as the input, and in the final stage, it generates

the automation resources for the target file system (in lieu

of an intermediate XML). At each stage, Expertus uses the

intermediate XML document created from the previous stage

as the input to the current stage. It uses the intermediate XML

file to retrieve the names of the templates that are needed

for the current stage, and it transforms the intermediate XML

document, which produces yet another XML document. If

needed, AOP pointcuts are added to the intermediate XML

during the transformation phase. Consequently, Aspect Weaver

is used to weave such pointcuts into the intermediate

XML. Aspect Weaver processes the pointcuts through

Aspect templates and creates the woven XML. The

woven file is then written to the file system using the file

writer. During the final stage of the pipeline, the automation

scripts are written to the file system; while at each of the other

intermediate stages of the pipeline, an intermediate XML is

generated, and the next stage in the pipeline is called.

IV. APPROACH TO PERFORMANCE DATA GENERATION

In our approach to performance measurement, we execute

workloads by deploying actual or representative applications

(e.g., benchmarks like RUBBoS [10], RUBiS [11], Cloud-

stone c [7]) on actual or representative deployment platforms

(e.g., Amazon EC2). These large-scale experiments produce a

huge amount of heterogeneous performance data. The hetero-

geneity of the data arises from the assemblage of applications,

clouds, monitoring tools, and monitoring strategies used. We

conduct large-scale experiments and collect data by fully

automating the process, and our code generator generates all

the necessary resources to automate this process.

Experiment driver takes care of the experimental deploy-

ment and configuration, and once deployed, the driver executes

the workload against the specific, deployed configuration. In

this step, we run the planned experiments according to the

availability of hardware resources. For example, we usually

run the experiments by increasing the workload. For each

workload, we run the easily scalable (browse only) scenario

first, followed by read/write scenarios. After each batch of

experiments, we collect data, ramp-down the system, stop all

servers, and start the next batch of experiments. This sequence

allows for sufficient ramp-up time, which minimizes cache

inter-dependencies across experiments. The iterations continue

until all of the experiments have been completed.

During experiment execution, the experiment driver collects

information about system resources (e.g., CPU, memory),

application specific data (e.g., thread pool usage), application

logs (e.g., apache logs), high level data like throughput and

response time, and any other data that the user wants to collect.

This process continues for each and every workload. In fact,

experiments in our domain consist of 50 to 60 workloads,

and each workload runs for approximately 30 minutes. The

framework is capable of collecting, managing and storing data

without any help from the user. The data extractor, as the name

implies, extracts this data and stores it in the data warehouse

after the experiment has completed.

V. FLEXIBLE DATA WAREHOUSE

During large-scale performance measurement, researchers do

not know beforehand which resources need to be monitored

(whether it be high-level data like response time or throughput

or low-level data like resource utilization data and application

logs). Monitoring all the potential resources is infeasible

because of the performance overhead. Researchers may choose

different monitoring regimens, change testing strategies or

software and test on hetergenous platforms. Because of this

type of variability, experimental data cannot be feasibly stored

in a set of static tables. Moreover, failures during experimen-

tation usually lead to incomplete or faulty data that waste

database resources and slow data processing. Even without

failures, these data tables tend to be quite large, so processing

becomes very expensive if these tables cannot be loaded into

primary memory.

To address above challenges, we have designed Experstore

– a special data warehouse designed to store performance

measurement data. Expestore is fully dynamic that is its tables

are created and populated on-the-fly based on the specific

experimental data. At the end of each experiment, we create a

set of tables to store the data, and the resultant schema is solely

based on the structure of this data (e.g., how many columns,

tables, relations, etc.).

The experiment measurements in our domain consist of

multiple workloads running against a deployed system (a

unique configuration of hardware and software); hence, each

experiment produces measurement data for each and every

workload. We have designed the experiment driver to store

measurement data for each experiment in a separate directory.

In most cases, each directory follows the same structure

(names and number of files). During the data loading stage,

the data loader iteratively processes all of the directories i.e., it

recurses over all of the directories and loads the corresponding

data contained in each. The data loading configuration maps

directories to workloads, and the loader uses the information

about the data parser to process data files contained in a given

directory.

As mentioned earlier, large-scale experiments commonly

result in failures, and storing failures is incredibly wasteful.

During the data loading stage, the data loader creates db scripts

to remove all of the failure data for a given experiment. The

data engine uses these same scripts to recover in the event

of a loading failure. To minimize the possibility of such a

failure, we reduce data loading overhead by not loading data

in a transaction.

During data parsing, each file is matched to a profile, and

the parser uses this profile to update the database accordingly.

More concretely, data processors provide an API for the parser

such that the parser only needs to provide values for each row,

and the data engine does the rest of the work. This approach

enables the parser and the data engine to be loosely coupled.

189

Fig. 2. Experstore - Static and Dynamic Tables

The data loading configuration file provides all the neces-

sary data for the data loader and the data engine. For example,

a user can specify how to format a given data field (e.g, date-

time), where to begin and end in a file, and how to relate a data

column (row) to columns in the database table and etc. . . . This

configuration file can be reused across experiments as long as

the directory structures are identical across experiments. For

each resource type, we create a ‘profile’, which maps a file’s

structure to an applicable schema, i.e. relating the columns

in a CSV file to a particular database table. Next, we have a

mapping, which specifies what profiles apply to a given node.

A mapping contains node name, file name and corresponding

profile. A sample profile and a mapping file is shown below:

Listing 1. Code Listening for Profile and Mapping
<p r o f i l e>

<s e p a r a t o r>,</ s e p a r a t o r>
<r e s ou r c e−name>CPU0</ r e s o u r c e−name>
<p r o c e s s o r−c l a s s>d a t a impo r t . f i l t e r . CSVF i l eP roce s so r

</ p r o c e s s o r−c l a s s>
<column index = ‘ ‘0 ’ ’ colname = ‘ ‘ u s e r ’ ’ d a t a t y p e = ‘ ‘ doub l e ’ ’ />
<column index = ‘ ‘1 ’ ’ colname = ‘ ‘ sys tem ’ ’ d a t a t y p e = ‘ ‘ doub l e ’ ’ />
<s t a r t−i ndex>10</ s t a r t−i ndex>
<end−i ndex>0</ end−i ndex>

</ p r o f i l e>

<mapping nodename = ‘ ‘ Apache ’ ’ f i l n ame = ‘ ‘ 1 6 9 . 2 5 4 . 1 0 0 . 3 . csv ’ ’

s t a r t w i t h = ‘ ‘ f a l s e ’ ’ endwi th = ‘ ‘ f a l s e ’ ’

p r o f i l e s = ‘ ‘CPU0 , DISK , CPU1 ,NETWORK,SYSTEM ’ ’ />

The structure of the data warehouse is shown in Figure 2. As

shown in the figure, it consists of four static tables that store

experimental metadata (e.g., experiment name, platforms, node

and workload information), which are typically fixed across

experiments. As shown in the figure, the highlighted tables

are the tables that are created on-the-fly,. ‘Resource Mapping

Table’ stores the names of the dynamically created tables along

with the resource names. For example, it has a record for

CPU utilization for experiment ID (EXP ID), and the value is

EXP ID CPU. Likewise, all the monitoring data for a given

experiment is stored. In fact, it has a record for each unique

node, workload, and resource.

VI. AUTOMATED DATA EXTRACTION

In general, the problem of extracting data from various log file

formats reduces to a problem of attempting to disambiguate

presentation concerns from those related to data. While this

reduction narrows the thinking around this problem, it does

not account for the numerous points of variability that occur,

particularly related to any given log file’s layout and structure,

e.g. the presentation of the embedded data. At the highest

level, files can be described as containing unstructured, semi-

structured or structured data. Most of the log files presented

in our domain fall into the semi-structured category (the

remaining portion are structured). Hence, an approach that ac-

commodates semi-structured files could be used for structured,

so we focused on solving semi-structured files.

Laender et al. [22] suggests wrapper inductive approaches

might be particularly relevant for this problem because of their

reliance on format and presentation. This observation serves

as the foundation for the intuition for our design. In short,

wrapper inductive approaches rely on format and structure to

impart order when order is not explicit. The extractor begins by

creating a replica of the log file in memory. Next, it performs a

“first pass” to probabilistically encode rows of the file such that

they are coded as containing: the header (“header rows”), data

(“data rows”) or some other type of information (“misc rows”)

such as generic batch job information. Next, it attempts to

match the data rows to headers (many of the files contain more

than one header in the file.) To accomplish this matching, the

extractor uses order and presentation information (particularly

invisible ASCII characters) to compute the probability that a

given row of data corresponds to a given header in the log file

of interest. Once we have a match, we use the presentation

information of the header row - layout and structure - to

extract data from the matched data rows. Once the data has

been extracted, it is loaded into a data warehouse loading file.

During this entire process, the operator is asked to evaluate or

validate rows that do not have significant statistical power, e.g.

the rows received low encoding or matching probabilities. In

this case, the operator provides input to the extractor to either

encode or match the row (depending on the specific algorithm)

based on his judgment.

This design primarily relies on two algorithms: the

Row-Encoding Algorithm and the Matching
Algorithm. Row-Encoding Algorithm works by prompting

a user only when the system “thinks” the row is a header

row. Headers have two distinct characteristics. They contain

more alphabetic and more special characters relative to the

total length of a given string. “Misc” rows, i.e rows that

should be ignored for later processing, have one of these

two properties but not both, which differentiates them from

header rows. The core of this algorithm works by calculating

string length-weighted character frequencies. The second, the

Header-to-Data Row Matching Algorithm, operates similarly

to Row-Encoding. First, it computes character frequencies

and scales the “weights” corresponding to these frequencies

by the type of character identified, e.g. visible ASCII vs.

invisible ASCII. The algorithm makes a match by calculating

two metrics: the bytewise difference of “invisibles” between a

header row and a given data row in addition to the (vertical)

distance between a header row and a given data row. The

lowest sum of these two metrics yields a match.

190

VII. EFFECTIVENESS OF THE INFRASTRUCTURE

We have used Expertus extensively to perform a large num-

ber of experiments on different computing clouds; through

experimentation, we have collected a huge amount of data

with various data formats, stored these in the data warehouse,

and observed interesting performance phenomena. In this

section, we evaluate the success of our approach managing

performance measurement data.

A. Usability of the Tool

Here, we present how quickly a user can change an existing

specification to run the same experiment with different settings

(e.g., MySQL Cluster vs. C-JDBC), on different clouds (e.g.,

Emulab vs. EC2), with different numbers of nodes (e.g.,

two vs. four app servers), or entirely different applications

(e.g., RUBBoS vs. Cloudstone). In our analysis, we created

a specification (say a.xml) to run the RUBBoS application

on Emulab with a total of 16 nodes and generated auto-

mated resources using Expertus. We then changed a.xml
to generate automated scripts for EC2, which required only

a single line change (i.e., <param name=‘‘platform’’
value=‘‘EC2’’/>) in a.xml and an IP address modifica-

tion. Even though only a few lines changed in the configuration

file, the changes to the generated code were material and

non-trivial. We followed the same procedure and modified

a.xml to change the database middleware from C-JDBC to

MySQL Cluster. This change required modifying only 36 lines

(mostly MySQL Cluster-specific settings), but the differences

in generated code were huge. Similarly, by changing only 4

lines in a.xml, we were able to move from 2 to 8 Application

servers. Furthermore, with only 52 template line changes, we

were able to extend the support from RUBBoS to Cloudstone.

B. Generated Script Types and Magnitude

The biggest advantage of our approach becomes apparent

when automating experiments for complex applications. The

number of resources generated by Expertus depends on the

application (e.g., RUBBoS, RuBiS), software packages (e.g.,

Tomcat, JBOSS), deployment platform (e.g., Emulab, EC2),

the number of experiments, the number of servers, and the

number of configuration parameters. To show the difference in

the generated code, six different hardware configurations (on

Emulab) were selected, and the number of generated lines for

each configuration was counted. When the number of nodes

increases, the size of the generated code grows significantly,

as do the differences among the generated code bases. The

magnitude of the generated code implies two conclusions:

the effectiveness of our approach and the enormous hurdles

confronting manual approaches. For example, an experiment

with 43 nodes would require approximately 15K lines of shell

scripts–a non-trivial undertaking for manual-based approaches.

C. Richness of the Tool

Richness is considered as the breadth and depth of supported

software packages, clouds, and applications the infrastructure

supports. Expertus has been used over three years to conduct

a large number of experiments spanning five clouds (Emulab,

EC2, Open Cirrus, Wipro, and Elba), three applications (RUB-

BoS, RUBiS, and Cloudstone), five database management

systems (C-JDBC, MySQL Cluster, MySQL, PostgreSQL,

Oracle), various resource monitoring tools (dstat, sar, vmstat),

and varying numbers and types of nodes.

D. Success of Data Generation
Table I provides a high level summary of the many differ-

ent experiments performed using the RUBBoS, RUBiS, and

Cloudstone benchmarks. In the table, experiment refers to a

trial of a particular experiment i.e., execution of a particular

workload against a combination of hardware and software

configurations. Typically, a trial of an experiment takes one

hour which is the aggregated value of: reset time, start time,

sleeping time, ramp-up time, running time, ramp-down time,

stop time, and data copy time. As such, in Emulab, we

have spent approximately 8,000 hours running experiments.

In the table, nodes refer to the total number of machines we

have used during our experiments. We calculated the number

of nodes by multiplying the number of experiments by the

number of nodes for each experiment. Configuration means

the number of different software and hardware configurations

that have been used in our experiments. Finally, the number

of data points collected describes the amount of data we have

collected from executing these experiments.

TABLE I
NUMBER OF EXPERIMENTS PERFORMED WITH EXPERTUS

Type Emulab EC2 Open Cirrus Elba Wipro

Experiments 8124 1436 430 2873 120

Nodes 95682 25848 4480 8734 430

Configurations 342 86 23 139 8

Data points 3,210.6M 672.2M 2.3M 1328.2M 0.1M

E. Testing for Heterogeneous Data Formats
For the purpose of evaluating the robustness of the extractor (or

parser), the following file patterns were tested: 1) one header,

2) multiple header rows with sequentially corresponding data,

3) multiple header rows with non-sequential corresponding

data, and 4) multiple header rows appearing randomly in

the file with data occurring non-sequentially, (e.g., data does

not correspond to the header it follows). These patterns were

distilled by sampling the known domain of log files. During

testing, we used actual collected performance data that adhered

to these aforementioned patterns, and Table II outlines the

observed results. The file patterns also differed in header

structure. Based on the sample, rows designated as headers

contained either one row or two rows. A header with one

row, Only Field Row Header, only contained data fields.

Alternatively, a header with two rows, Record & Field Row
Header contained a row, which enumerated the data records,

and another row, which listed the corresponding data fields for

each record. For this latter case, the numbers of records and

fields were varied from 1 to 8 (number of records) and 16

(number of fields) respectively. If the headers were correctly

matched to the applicable row of data, the specified test

received a PASS grade; otherwise, it received a FAIL grade.

191

TABLE II
EVALUATION SUMMARY OF SUPPORTED FILE FORMATS

Pattern Only Field Record & Field
Row Header Row Header

One header PASS PASS

Multiple header (sequentially data) PASS PASS

Multiple header (non-sequential data) PASS PASS

Multiple header (randomly headers) N/A FAIL

VIII. RELATED WORK

Benchmarking is an essential approach used in both academia

and industry to gain an understanding of some or all of the

following: system behavior, hypothesis formulation and test-

ing, systems configuration and tuning, solution development,

and performance bottleneck resolution. However, few efforts

have had dual aims of building software tools for large-scale

testing of distributed applications and reducing the complexity

associated with benchmarking [1]–[6]. The ZOO [3] has

been designed to support scientific experiments by providing

experiment management languages and supporting automatic

experiment execution and data exploration. Zenturio [4] on

the other hand, is an experiment management system used for

parameter studies, performance analysis and software testing

of cluster and grid architectures. One of the closest approaches

to ours is Weevil [8], which also focuses on workload gen-

eration and script creation. In their later studies, the Weevil

team observed some of the limitations in their approach and

obstacles for reaching higher levels of confidence [5] with

their results. To our knowledge, these efforts haven’t explored

the issues of extensibility, flexibility, or modularity that is

presented in this paper.

IX. CONCLUSION

Expertus, our automated experiment management framework,

has been developed to minimize human errors and maximize

efficiency when evaluating computing infrastructures experi-

mentally. We have used the framework for a large number

of experimental studies, and through these, we have collected

a huge amount of data, which we have used for identifying

interesting performance phenomena. In this paper, we dis-

cussed the use of the infrastructure for efficiently creating,

storing and analyzing performance measurement data. The

code generator generates the necessary resources to fully

automate the experiment measurement process, and using

these generated scripts, users can run experimental studies

to actually generate performance data. The automated data

processor processes heterogeneous data and stores this data in

a flexible data warehouse, built specifically for measurement

data. We evaluated the proposed automation framework based

on its usage, the amount of data it can accommodate, different

monitoring and logs formats it supports, and finally, the overall

effectiveness of the approach based on the needs of the

scientific community. Our future work includes, extending

the data parser to support additional data formats, extending

the data warehouse to use No-SQL databases, and extending

the visualization tool to support more customizable graphing

capabilities.

ACKNOWLEDGMENT

This research has been partially funded by National Sci-

ence Foundation by IUCRC/FRP (1127904) , CISE/CNS

(1138666), RAPID (1138666), CISE/CRI (0855180), NetSE

(0905493) programs, and gifts, grants, or contracts from

DARPA/I2O, Singapore Government, Fujitsu Labs, Wipro

Applied Research, and Georgia Tech Foundation through the

John P. Imlay, Jr. Chair endowment. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation or other funding

agencies and companies mentioned above.

REFERENCES

[1] Y. Ioannidis, M. Shivani and G. Ponnekanti. ZOO: A Desktop Exper-
iment Management Environment. In Proceedings of the 22nd VLDB
Conference, Mumbai(Bombay), India, 1996.

[2] K.L. Karavanic and B.P. Miller. Experiment management support for
performance tuning. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, Mumbai(Bombay), India, 1996.

[3] R. Prodan and T. Fahringer. ZEN: A Directive-based Language for Au-
tomatic Experiment Management of Distributed and Parallel Programs.
In ICPP 2002, Vancouver, Canada.

[4] R. Prodan and T. Fahringer. ZENTURIO: An Experiment Management
System for Cluster and Grid Computing. In Cluster 2002.

[5] Y. Wang, A. Carzaniga and A.L. Wolf. Four Enhancements to Automated
Distributed System Experimentation Methods. In ICSE 2008.

[6] S. Babu, N. Borisov, S. Duan, H. Herodotou and V. Thummala.
Automated Experiment-Driven Management of (Database) Systems. In
HotOS 2009, Monte Verita, Switzeland.

[7] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A.
Klepchukov, S. Patil, A. Fox and D. Patterson. Cloudstone: Multi-
Platform, Multi-Language Benchmark and Measurement tools for Web
2.0. In CCA 2008.

[8] Y. Wang, M.J. Rutherford, A. Carzaniga and A. L. Wolf. Automating
Experimentation on Distributed Testbeds. In ASE 2005.

[9] Emulab - Network Emulation Testbed. http://www.emulab.net.
[10] RUBBoS: Bulletin board benchmark. http://jmob.objectweb.org/rubbos.

html.
[11] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
[12] Open Cirrus: Open Cloud Computing Research Testbed. https://

opencirrus.org/.
[13] WIPRO Technologies. www.wipro.com/.
[14] Amazon Elastic Compute Cloud. http://aws.amazon.com.
[15] S. Malkowski, M. Hedwig and C. Pu. Experimental evaluation of N-tier

systems: Observation and analysis of multi-bottlenecks. In IISWC 2009.
[16] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong and C. Pu. Vari-

ations in performance and scalability when migrating n-tier applications
to different clouds. CLOUD 2011.

[17] P. Vassiliadis. A Survey of Extract-Transform-Load Technology. Inte-
grations of Data Warehousing, Data Mining and Database Technologies:
Innovative Approaches (2011).

[18] R. Baumgartner, G. Wolfgang and G. Gottlob. Web Data Extraction
System. Encyclopedia of Database Systems (2009): 3465-3471.

[19] R. Kohavi, R.M. Henne and D. Sommerfield. Practical guide to
controlled experiments on the web: Listen to your customers not to
the HiPPO. In ACM KDD 2007.

[20] S. Malkowski, D. Jayasinghe, M. Hedwig, J. Park, Y. Kanemasa and
C. Pu. Empirical analysis of database server scalability using an n-tier
benchmark with read-intensive workload. ACM SAC 2010.

[21] S. Malkowski, Y. Kanemasay, H. Chen, M. Yamamotoz, Q. Wang, D.
Jayasinghe, C. Pu, and M. Kawaba, Challenges and Opportunities in
Consolidation at High Resource Utilization: Non-monotonic Response
Time Variations in n-Tier Applications. IEEE Cloud 2012.

[22] A. Laender, B. Ribeiro-Neto, A.S. da Silva and J.S. Teixeira. A Brief
Survey of Web Data Extraction Tools. ACM Sigmod Record 31.2 (2002).

[23] G. Linden. Make Your Data Useful, Amazon, November 2006. [Online].
http://home.blarg.net/∼glinden/StanfordDataMining.2006-11-29.ppt

192

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

