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ABSTRACT
The performance evaluation of database servers in N-tier
applications is a serious challenge due to requirements such
as non-stationary complex workloads and global consistency
management when replicating database servers. We con-
ducted an experimental evaluation of database server scal-
ability and bottleneck identification in N-tier applications
using the RUBBoS benchmark. Our experiments are com-
prised of a full scale-out mesh with up to nine database
servers and three application servers. Additionally, the four-
tier system was run in a variety of configurations, includ-
ing two database management systems (MySQL and Post-
greSQL), two hardware node types (normal and low-cost),
and two database replication techniques (C-JDBC and
MySQL Cluster). In this paper we present the analysis
of results generated with a read-intensive interaction pat-
tern (browse-only workload) in the client emulator. These
empirical data can be divided into two kinds. First, for a
relatively small number of servers, we find simple hardware
resource bottlenecks. Consequently, system throughput in-
creases with an increasing number of database (and appli-
cation) servers. Second, when sufficient hardware resources
are available, non-obvious database related bottlenecks have
been found that limit system throughput. While the first
kind of bottlenecks shows that there are similarities between
database and application/web server scalability, the second
kind of bottlenecks shows that database servers have sig-
nificantly higher sophistication and complexity that require
in-depth evaluation and analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—distributed databases; C.4 [Performance
of Systems]: Performance attributes; H.2.4 [Database
Management]: Systems—distributed databases

General Terms
Measurement, Performance, Experimentation, Verification.

Keywords
Bottleneck, Database replication, Distributed systems, Mid-
dleware, N-tier applications, RUBBoS.

1. INTRODUCTION
Scalability of N-tier applications in general and database
servers in particular present serious challenges to both aca-
demia and industry. This is largely due to requirements
such as non-stationary workloads and dependencies created
by requests that are passed between web servers, applica-
tion servers, and database servers. Some of these challenges
have been previously referred to as “gaps between theory and
practice” [10] in database replication. We attempt to start
bridging these gaps with a large-scale experimental evalua-
tion of database server scalability using a N-tier application
benchmark (RUBBoS [6]). For our study we have collected
more than 500GB of data in over 6,000 experiments. These
experiments cover scale-out scenarios with up to nine data-
base servers and three application servers. The configura-
tions were varied using two relational database management
systems (MySQL and PostgreSQL), two database replica-
tion techniques (C-JDBC and MySQL Cluster), workloads
ranging from 1,000 to 13,000 concurrent users, and two dif-
ferent hardware node types.

The initial analysis of our extensive data produced several
interesting findings. First, we documented detailed node-
level bottleneck migration patterns among the database, ap-
plication, and clustering middleware tiers when workload



(a) Software setup.

Function Software

Web server Apache 2.0.54

Application server
Apache Tomcat
5.5.17

Cluster middleware C-JDBC 2.0.2

Database server
MySQL 5.0.51a
PostgreSQL 8.3.1
MySQL Cluster 6.2.15

Operating system
GNU/Linux Redhat FC4
Kernel 2.6.12

System monitor Systat 7.0.2

(b) Hardware node setup.

Type Components

Normal Processor Xeon 3GHz 64-bit
Memory 2GB
Network 6 x 1Gbps
Disk 2 x 146GB 10,000rpm

Low-cost Processor PIII 600Mhz 32-bit
Memory 256MB
Network 5 x 100Mbps
Disk 13GB 7,200rpm

(c) Sample C-JDBC
topology (1/2/1/2L).

!"#$%

&"'("'%

)**$%

&"'("'&%

+,-&."'%

/011,"$

23'"%

45$%

&"'("'&%

Table 1: Details of the experimental setup on the Emulab cluster.

and number of servers increased gradually. These bottle-
necks were correlated with the overall system performance
and used to explain the observed characteristics. Second,
the explicit comparison of performance differences between
varying system configurations yielded concrete configuration
planning insights, which have escaped analytical approaches
so far. Third, the identification of non-obvious bottlenecks
showed “migratory bottleneck phenomena” that can arise in
real systems and result in surprising performance effects.

The paper makes two main contributions. First, using
an automated experiment creation and management sys-
tem, we collected a significant amount of data on database
server performance in N-tier applications. We present an
experimental evaluation of database server scalability in a
read-intensive scenario (i.e., setup, description, GBs of trace
data, and runtime statistics). Second, our analysis of this
data set shows interesting bottlenecks and their characteris-
tics as mentioned above, which are potentially widely appli-
cable. The detailed bottleneck migration patterns and ex-
plicit performance comparisons, for example, can be useful
for datacenter administrators that manage N-tier systems by
providing measured results on concrete N-tier system per-
formance and resource utilization.

The remainder of this paper is structured as follows. Sec-
tion 2 outlines experimental setup and methods. Section 3
presents the analysis of our data on database scale-out through
database replication. In Section 4 we detail an interesting
scenario that shows how our methodology can be used to un-
cover unexpected bottlenecks with surprising performance
effects. Related work is summarized in Section 5, and Sec-
tion 6 concludes the paper.

2. EXPERIMENTAL SETTING

2.1 Benchmark Applications
Among N-tier application benchmarks, RUBBoS has been
used in numerous research efforts due to its real production
system significance. Readers familiar with this benchmark
can skip to Table 1(a), which outlines the concrete choices
of software components used in our experiments.

RUBBoS [6] is an N-tier e-commerce system modeled on
bulletin board news sites similar to Slashdot. The bench-
mark can be implemented as three-tier (web server, appli-
cation server, and database server) or four-tier (addition of
clustering middleware such as C-JDBC) system. The bench-
mark places high load on the database tier. The workload

consists of 24 different interactions (involving all tiers) such
as register user, view story, and post comments. The bench-
mark includes two kinds of workload modes: browse-only
and read/write interaction mixes. In this paper we solely
use the browse-only workload for our experiments.

Each of our experiment trial consists of three periods:
ramp-up, run, and ramp-down. In our experiments, the tri-
als consist of an 8-minute ramp-up, a 12-minute run period,
and a 30-second ramp-down. Performance measurements
(e.g., CPU or network bandwidth utilization) are taken dur-
ing the run period using Linux accounting log utilities (i.e.,
Sysstat) with a granularity of one second.

2.2 Database Replication Techniques
In this subsection we briefly introduce the two different data-
base replication techniques that we have used in our experi-
ments. Please refer to the cited sources for a comprehensive
introduction.

C-JDBC [11], is an open source database cluster middle-
ware, which provides a Java application access to a cluster of
databases transparently through JDBC. The database can
be distributed and replicated among several nodes. C-JDBC
balances the queries among these nodes. C-JDBC also han-
dles node failures and provides support for check-pointing
and hot recovery.

MySQL Cluster [4] is a real-time open source transac-
tional database designed for fast, always-on access to data
under high throughput conditions. MySQL Cluster utilizes
a “shared nothing” architecture, which does not require any
additional infrastructure and is designed to provide 99.999%
data availability. In our experiment we used “in-memory”
version of MySQL Cluster, but that can be configured to
use disk-based data as well. MySQL Cluster uses the ND-
BCLUSTER storage engine to enable running several nodes
with MySQL servers in parallel.

2.3 Hardware Setup
The experiments used in this paper were run in the Emulab
testbed [1] with two types of servers. Table 1(b) contains
a summary of the hardware used in our experiments. Nor-
mal and low-cost nodes were connected over 1,000 Mbps and
100 Mbps links, respectively. The experiments were carried
out by allocating each server to a dedicated physical node.
In the initial setting all components were “normal” hard-
ware nodes. As an alternative, database servers were also
hosted on low-cost machines. Such hardware typically en-
tails a compromise between cost advantage and performance



Data metrics
Normal Low-cost Normal MySQL

All All in paper
MySQL MySQL PostgreSQL Cluster

# experiments 871 1,352 1,053 416 6,318 1,638 (26%)
# nodes 15,769 18,382 17,693 6656 91,598 31,590 (34%)
# data pts. 459.7M 713.4M 555.7M 223.7M 3,334.1M 864.35M (26%)

Data size 82.8 GB 129.3 GB 70.6 GB 40.2 GB 525.6 GB 139.1 GB (26%)

Table 2: Data set size and complexity for RUBBoS experiments.

loss, which may be hard to resolve without actual empirical
data.

We use a four-digit notation #W/#A/#C/#D to denote
the number of web servers, application servers, clustering
middleware servers, and database servers. The database
management system type is either “M” or “P” for MySQL
or PostgreSQL, respectively. If the server node type is low-
cost, the configuration is marked with an additional “L”. The
notation is slightly different for MySQL Cluster. If MySQL
Cluster is used, the third number (i.e., “C”) denotes the
number of MySQL servers and the fourth number (i.e., “D”)
denotes the number of data nodes. A sample topology of an
C-JDBC experiment with two client nodes, one web server,
two application servers, one clustering middleware server,
two low-cost database servers, and non-specified database
management system (i.e., 1/2/1/2L) is shown in Table 1(c).
It should be noted that we solely use one web servers in all
our experiments because almost all RUBBoS content consist
of dynamic web pages, which do not stress the web tier.

2.4 Experimental Infrastructure
We have run a very high number of experiments over a wide
range of configurations and workloads. Table 2 shows the
magnitude and complexity of a typical RUBBoS experimen-
tation cycle. Solely for the analysis shown in this paper, we
have run 1,638 experiments, which produced around 139GB
of data. For each of the three hardware types and data-
base management system configurations, the total exper-
imental data output averaged at around 277,841,000 one
second granularity system metric data points (e.g., network
bandwidth and memory utilization) in addition to higher-
level monitoring data (e.g., response times and through-
put). In the course of conducting our experiments, we have
used (both concurrently and consecutively) 91,598 testbed
hardware nodes. Our data warehouse is filled with around
3,334,100,000 system metric data points. In order to in-
vestigate system behavior as low as SQL query level, we
have modified (if necessary) the original source code of all
software components to record detailed accounting logs. Be-
cause an empirical analysis of the experimental results showed
that detailed logging can affect overall performance up to 8.5
percent, we additionally implemented effective sampling al-
gorithms to minimize the logging performance impact. We
should mention that all system performance measurements
in this paper (i.e., throughput and response time) were col-
lected without such detailed logging turned on. The latter
was solely used for specific scenario analysis.

Although the deployment, configuration, execution, and
analysis scripts contain a high degree of similarity, the dif-
ferences among them are subtle and important due to the
dependencies among the varying parameters. Maintaining
these scripts by hand is a notoriously expensive and error-
prone process. To enable experimentation at this scale,
we employed an experimental infrastructure created for the

Elba project [3] to automate system configuration manage-
ment, particularly in the context of N-tier system staging.
The Elba approach divides each automated staging iteration
into steps such as converting policies into resource assign-
ments, automated code generation, benchmark execution,
and analysis of results. The automated analysis of results
for bottleneck detection is outlined briefly below.

3. SCALE-OUT EXPERIMENTS
In the following we present RUBBoS scale-out experiments
that increase the number of database (and application) servers
gradually to find all primary bottlenecks for each configu-
ration. In Subsections 3.1 and 3.2 we show C-JDBC ex-
periments with MySQL and PostgreSQL on normal server
nodes, respectively. Subsection 3.3 evaluates system char-
acteristics when using low-cost nodes for the deployment of
C-JDBC MySQL servers. An important property of such
low-cost nodes (see Table 1(b)) is that they impose resource
constraints, which especially highlight the scalability char-
acteristics of the database server. In Section 3.4 we first
evaluate the general characteristics of MySQL Cluster and
additionally discuss system behavior with and without data-
base partitioning. In Subsection 3.5 we explicitly compare
the choices of database management system and hardware
type for the C-JDBC experiments to show both commonali-
ties and differences between the four investigated scenarios.

We should point out that due to smart memory manage-
ment components (e.g., buffer manager) in typical database
management systems (including MySQL and PostgreSQL),
the database server uses adaptive approaches to fully utilize
all available physical memory, so “raw” memory bottlenecks
such as high paging activity are avoided. In this study, we
analyze bottlenecks directly observable at the operating sys-
tem level such as high CPU or disk utilization. The evalua-
tion of impact of memory constraints on database servers is
a topic for future research.

3.1 C-JDBC MySQL on Normal Servers
For this subsection we collected data from C-JDBC RUBBoS
scale-out experiments with MySQL database servers and
normal hardware. The experiments start from 1/1/1/1M
and go to 1/3/1/9M. For each configuration, we increase
the workload (i.e., number of concurrent users) from 1,000
up to 13,000 in steps of 1,000. The collected experimental
data include overall response, throughput and other system
statistics.

Classic bottleneck analysis employs average values to in-
vestigate resource saturation states. Such results are then
used to support claims concerning service-level performance,
throughput characteristics, and hardware demands. How-
ever, average numbers can mask the variations introduced by
non-stationarity in workloads, which are an inherent charac-
teristic of N-tier systems. We address this statistical threat
through kernel density estimation to display the actual dis-
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(a) Density graph of 1/1/1/1M (CPU saturated).
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(b) Density graph of 1/1/1/2M (CPU not saturated).

Figure 1: MySQL database server CPU utilization
for two C-JDBC configurations on normal nodes.

tribution of resource utilization values. Densities intuitively
indicate the percentage of time each resource spent at a given
utilization level. Dominant peaks at high percentiles of re-
source utilization (e.g., above 95 percent utilization) imply
that the resource spent a significant fraction of time in a
fully saturated state.

Figures 1(a) and 1(b) show the density (z-axis) of the
database server CPU utilization (x-axis) as the workload
grew from 1,000 to 13,000 users (y-axis). The two graphs
illustrate the CPU utilization at the first database server for
the 1/1/1/1M and 1/1/1/2M configurations, respectively.
Both utilization density graphs start from a near-normal
shape at low load (1,000 users), and the locations of their
inflection points corresponds to the inflection points of the
respective system throughput graphs. While the graph in
Figure 1(b) does not reach critical utilization values, the
CPU utilization in the 1/1/1/1M configuration (Figure 1(a))
saturates at a workload of 4,000 users. Past that workload
the majority of values lay in the top five percent utilization
interval. This analysis of experimental data supports the
hypothesis that the database CPU is the system bottleneck
only in the first of the two examined cases.

Due to the amount of collected data, we use two kinds of
simplified graphs (e.g., Figures 2(a) and 3(a)) to highlight
performance changes and bottleneck shifting. Figure 3(a)
shows the highest achievable throughput (Z-axis) for exper-
iments with varying configurations. We can again recognize
the three groups in Figure 3(a). The first group consists of
configurations 1/1/1/1M, 1/2/1/1M, and 1/3/1/1M, which
show similar maximum throughput for one database server
(X-axis). The second group consists of all remaining config-
urations with one application server (Y-axis). These config-
urations have a similar maximum throughput level, which
is significantly higher than the throughput level of the first
group. The third group has the highest maximum through-
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Figure 2: Bottleneckmaps: (a) MySQL, C-JDBC,
normal nodes; (b) PostgreSQL, C-JDBC, normal
nodes; (c) MySQL, C-JDBC, low-cost nodes; (d)
MySQL Cluster, normal nodes.

put level and consists of the other 16 configurations (i.e, at
least two application servers and two database servers).

Figure 3(a) can also be used to illustrates some of the typ-
ical bottlenecks observed in the RUBBoS benchmark under
browse-only workload. The increase in throughput when
adding a database server (from the first group to the second
group) indicates that the database server was the bottleneck
for the first group. Similarly, the throughput increase when
adding an application server (from the second group to the
third group) indicates the application server was the bottle-
neck for the second group. The lack of throughput increase
within the third group indicates a bottleneck elsewhere (not
in the database or application tiers) or a more complex bot-
tleneck scenario. These observations and our analysis of all
density graphs are summarized in Figure 2(a), which shows
three regions corresponding to the three groups. The bottle-
neck in the third group is attributed to the C-JDBC (clus-
tering middleware) server CPU.

In general, the RUBBoS benchmark places high load on
the database server in the browse-only mode. In these scale-
out experiments, we have chosen full replication of database
servers so any one of them can answer every query. Full data
replication provides the best support for read-only workload,
but it requires consistency management with the introduc-
tion of updates in a read/write mixed workload. However,
due to spacing constraints the latter is beyond the scope of
this paper.

3.2 C-JDBC PostgreSQL on Normal Servers
We have performed experiments with similar setup as in
Subsection 3.1 with the PostgreSQL DBMS. The summary
of the results is contained in Figures 2(b) and 3(b). An ex-
plicit comparison of the results of both DBMS studies is sub-
ject of Section 3.5. Figure 3(b) shows that PostgreSQL and
MySQL share some similar throughput characteristics (e.g.,
the three groups from Figure 3(a)) but different scalability
characteristics. The first group contains all configurations
with up to three database servers except the 1/1/1/3P case.
The group is the result of a database server CPU bottle-
neck. The second group results from an application server
CPU bottleneck and contains all configurations with a sin-
gle application server and between three and nine database
servers. The third group is caused by the clustering middle-



(a) C-JDBC MySQL. (b) C-JDBC PostgreSQL. (c) C-JDBC MySQL.

(d) MySQL Cluster with 2 data
nodes.

(e) MySQL Cluster with 4 data
nodes.

Figure 3: Maximum system throughput for RUBBoS systems with: (a)-(b) normal nodes; (c) low-cost nodes;
and (d)-(e) normal nodes in the database tier.

ware CPU bottleneck for more than three database servers
and more than one application server. Interestingly, for four
database servers, the two configurations with more than one
application server can be attributed to both groups because
they simultaneously saturate the CPUs in the two dernier
tiers. The complete bottleneck analysis is summarized in
Figure 2(b).

3.3 C-JDBC MySQL on Low-cost Servers
In the following we analyze data from RUBBoS scale-out
experiments with MySQL on low-cost hardware. The sum-
mary of our experimental results (i.e., maximum throughput
and bottleneck behavior) is shown in Figures 2(c) an 3(c).
The maximum throughput of low replication configurations
can simply be increased by replicating the backend as shown
in Figure 3(c). Consistent with our previous discussion, this
is caused by a database CPU bottleneck in all configurations
with less than four database servers, and the bottlenecks
can be resolved by adding a server node to the database
tier. However, the performance gain of additional database
servers with just one application server diminishes signifi-
cantly in the 1/1/1/4ML configuration because the primary
bottleneck starts to migrate to the application server tier.
For all higher database replication states (i.e., at least five
database servers and only one application server) the maxi-
mum throughput remains stable. For all configurations with
at least two application servers, the system performance is
scalable up to seven database nodes. After that point the
primary bottleneck starts shifting from the backend tier to
the clustering middleware server. Once the CPU of the C-
JDBC server determines the system throughput, the addi-
tion of database and application servers has no significant
performance effect anymore.

3.4 MySQL Cluster on Normal Servers
In order to explicitly investigate the effects of different repli-
cation technology approaches, we have run a similar setup
of experiments as discussed in Subection 3.1 with MySQL
Cluster in lieu of C-JDBC. First, we have run the experi-
ments without partitioning the database, which implies two
data nodes1 and one management node, while increasing
the number of MySQL servers from one to four and varying
between one or two application servers. The summary of
the results is contained in Figures 2(d) and 3(d). As illus-
trated in Figure 3(d), the maximum throughput that can be
achieved is seemingly low compared to the same number of
nodes when using C-JDBC MySQL. An intuitive assump-
tion is that the system is bottlenecked by the number of
data nodes. Therefore, we have partitioned the database
into two parts using the MySQL Cluster default partition-
ing mechanism and repeated the set of experiments. The
performance summary is shown Figure 3(e). However, the
comparison of the data in Figures 3(d) and 3(e) reveals that
increasing the number of data nodes does not significantly
increase the maximum throughput. Consequently, the em-
pirical analysis shows that the system is not bottlenecked
in the data nodes when exposed to browse-only workload.
The explanation for this behavior is that in MySQL Cluster,
MySQL server acts as a light weight server invoking little or
no disk IO. In contrast, the data nodes act as the backend
data store and handle all the disk IO and data synchroniza-
tion. Nonetheless, for browse-only workload the SQL nodes
are significantly more stressed than the data nodes because
there is no writing or synchronization overhead. As a result,
the MySQL servers do not have to wait for the data nodes
even under heavy load. This performance characteristic is

1MySQL Cluster has a restriction that the number of data
nodes can not be increased without spiting the dataset.
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(a) 1/2/1/9ML first database disk utilization density
(mostly not saturated).
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(b) Cluster middleware CPU utilization density (saturated
after 6000 users).

Figure 4: Analysis of C-JDBC 1/2/1/9ML (8000
users) to demonstrate the influence of long SQLs on
MySQL performance.

summarized in Figure 2(d), which is the correct bottleneck
map for both cases with and without data partitioning with
two and four data nodes, respectively.

3.5 C-JDBC Configuration Comparison
The previously discussed C-JDBC performance figures showed
that the overall system reaches a similar maximum through-
put level of around 900 interactions per second for both
MySQL and PostgreSQL. However, bottleneck and perfor-
mance characteristics are very different between the two
DBMSs for lower replication numbers. Figures 3(a) and 3(b)
depict the fraction of MySQL throughput that was achieved
in the PostgreSQL experiments. PostgreSQL is only able to
match around 50 percent of the MySQL throughput when
the backend is not replicated. When more database nodes
are added the throughput ratio grows (i.e., the performance
of PostgrSQL improves relatively). This is caused by the
MySQL system becoming bottlenecked outside the database
tier for all configurations with more than one database node.
Figures 3(a) and 3(b) indicate that after adding the fourth
database, the PostgreSQL system even gains a slight perfor-
mance advantage of around five percent. In general, these
figures clearly illustrate the consequences of the clustering
middleware (i.e., C-JDBC) bottleneck and how its satura-
tion limits the entire system regardless of the two DBMSs.

Next, we investigate a different hardware choice commonly
known from practice. Figures 3(a) and 3(c) allow the per-
formance comparison of normal and low-cost nodes in the
C-JDBC MySQL scenarios. For low replication numbers,
the low-cost nodes are not able to match the performance
of the normal nodes. In case of a single database node,
the performance ratio can be as low as 30 percent. How-
ever, similarly to the previous comparison, a rapid relative

performance improvement is observable when adding more
backend nodes. With more than five database servers in the
one application server case and more than seven databases
in the other cases, the low-cost nodes come within a five
percent range of the normal hardware performance. These
performance characteristics can again be explained with the
underlying bottleneck behavior. More generally, if the same
primary bottleneck determines the system throughput, the
performance implications of different submodules may di-
minish significantly.

In essence, these results explicitly reveal the performance
differential that is necessary to asses the utility of one hard-
ware choice over the other. When combined with cost es-
timates of these configurations, these data can directly be
applied in configuration planning, which is a good use-case
example for our approach. In fact, these results also docu-
ment the threat of assuming a single-class workload in per-
formance models. Under such an assumption some of the
observed characteristics (e.g., maximum throughput delta)
are not explicable. Therefore, the results presented in this
section can typically not be obtained analytically.

4. MIGRATORY BOTTLENECKS FOR
LONG READ-QUERIES

Implementation specific bottlenecks may be temporarily-
limited and are caused by certain design and configuration
choices, which makes database scale-out performance a highly
non-linear function of the number of servers. In our exper-
iments we have analyzed a number of implementation and
configuration specifics that cause a small number of queries
to have five to six orders of magnitude longer execution
times. However, due to the space constraints of this article,
we solely include one of them in the following. This case
demonstrates that these problematic queries have a highly
significant effect on overall system performance despite their
extremely low frequency. Such queries were difficult to iden-
tify since they are similar to normal queries both syntacti-
cally and semantically. Additionally, the described phenom-
ena only crystallize if the primary system bottleneck moves
to a different tier in higher replication states. This further
emphasizes the benefits of our approach and the necessity
of large-scale experimental research.

Here, we analyze “heavy read queries” in the 1/2/1/9ML
C-JDBC configuration and find overly long read queries on
MySQL low-cost nodes causing a problematic load-balancing
effect in the clustering middleware. Note that such phenom-
ena are impossible to identify when resource utilization is
aggregated in average numbers.

The density graphs in Figures 4(a) and 4(b) show how
the database CPU bottleneck migrates away when hardware
nodes are added to the backend. Figure 4(a) shows the
database CPU utilization density in the 1/1/1/2ML case,
and the resource is clearly saturated for the majority of the
experiment time. Figure 4(b), on the other hand, depicts
the database CPU utilization with additional hardware (i.e.,
1/2/1/9ML), and the dominant utilization level has dropped
to around 80 percent. Additionally, the graph has become
noticeably flattened with a fat lower tail, which implies that
there are significant variations in the CPU utilization during
the experiment runtime. An examination of the disk utiliza-
tion in the 1/2/1/9ML configuration (Figure 5(a)) reveals
that there are noticeable periods of full resource saturation
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Figure 5: Analysis of first database in 1/2/1/9ML C-JDBC (8000 users) to demonstrate the influence of long
SQLs on MySQL performance.

(i.e., graph is ragged at high percentiles). Meanwhile, the
primary system bottleneck is located in the clustering mid-
dleware CPU (Figure 4(b)). The underlying reason for these
observations is that certain RUBBoS queries fail to be op-
timized under specific conditions. These queries are search
queries on the biggest table (“old comments”) in RUBBoS,
and there are two conditions, under which MySQL fails to
optimize them. First, the length of the search keyword for
the column “subject” exceeds ten characters due to a faulty
indexing schema in RUBBoS, which only uses the first ten
characters to create the index. Second, the specified offset
is more than zero. If a search query satisfies either of these
conditions, MySQL fails to optimize it. The following is an
example of a query that satisfies both conditions and causes
the described phenomenon in on our environment.

SELECT
old_comments.id, old_comments.story_id,
old_comments.subject, old_comments.date,
users.nickname

FROM old_comments, users
WHERE

subject LIKE ’independently%’ AND
old_comments.writer = users.id

ORDER BY date DESC
LIMIT 25 OFFSET 25;

If a query cannot be optimized, the entire table is re-
trieved for brute force processing. In the case of low-cost
nodes, this leads to extremely long response time because
the table is retrieved from disk. In Figure 5(a) the effect of
these queries is identifiable in disk I/O intervals at 100 per-
cent bandwidth utilization. However, despite the intuitive
assumption that such disk I/O is the direct cause for the
correlated drop in CPU utilization, we find the actual rea-
son for low overall throughput to lay in the load-balancing
policy of C-JDBC. The latter allocates load to the data-
base servers according to the number of running SQLs on
each node. If a certain server is assumed loaded, the load-
balancer moves to the next higher replica number. (This
strategy usually achieves higher performance than round-
robin.) When “heavy read queries” arrive at the database
management system, the long disk access times cause the av-
erage number of SQLs in the running queue to increase (see
Figure 5(b)). Although this does not imply that the CPU
is overloaded, the load-balancing algorithm in the clustering
middleware distributes the load to other databases. Conse-
quently, the number of executed SQLs drops rapidly (Figure
5(c)), which is strongly correlated with the CPU consump-
tion in Figure 5(a).

One conclusion from these observations is that load-ba-
lancing of multiple databases is a difficult problem when
more than one resource, such as the CPU and the disk,
are saturated. A sophisticated algorithm is necessary for
a load-balancer to handle more than one independent re-
sources efficiently, especially in the case of non-stationary
request streams. Monitoring the number of active SQLs is
not sufficient to resolve such more complex bottleneck sce-
narios.

It is important to realize that this characteristic behav-
ior can be directly attributed to the load-balancing in the
clustering middleware and consequently only occurs if the
database is not the primary system bottleneck. In the pre-
sented scenario, this means that the C-JDBC node’s CPU
is the primary bottleneck (Figure 4(b)), and the database
servers (predominantly) operate under unsaturated condi-
tions at around 80 percent CPU utilization (Figure 4(b)).

5. RELATED WORK
Cloud computing, data center provisioning, server consolida-
tion, and virtualization have become ubiquitous terminology
in the times of ever-growing complexity in large-scale com-
puter systems. However, database replication continues to
fall short of real world user needs, which leads to continu-
ously emerging new solutions and real world database clus-
ters to be small (i.e., less than 5 replicas) [10]. In this paper
we address this shortcoming explicitly. This work extends
our previous approaches to empirical system analysis and
bottleneck detection. Initially, we have analyzed our data
for complex bottleneck phenomena. We have introduced
terminology that explicitly distinguishes single-bottlenecks
and multi-bottlenecks [19]. We have also investigates differ-
ent ways of evaluating the economical implications of large-
scale empirical system analysis. With the help of this in-
vestigation we have developed a configuration planning tool
(i.e., CloudXplor) that is able to facilitate iterative and in-
teractive configuration planning in clouds [18].

The work that is closest to this paper follows a similar ob-
servational approach to system analysis and evaluation [17].
While the context and framing of the two publications are
closely related, the contributions are fundamentally differ-
ent. More concretely, the evaluated datasets are completely
disjunct. Where this paper focuses solely on read-only work-
load, our previous work [17] was exclusively concerned with
workload that exhibits read/write access patterns to the
database. Consequently, the findings, conclusions, and con-
tributions are independent of each other.

There exist many popular solutions to database replica-



tion (i.e., IBM DB2 DataPropagator, replication in Microsoft
SQL Server, Sybase Replication Server, Oracle Streams, repli-
cation in MySQL). Among others there are academic proto-
types that use master-slave replication such as Ganymed [21]
and Slony-I [2]. In this work we focus on multi-master ar-
chitectures, which are used in commercial products such
as MySQL Cluster and DB2 Integrated Cluster. Academic
multi-master prototypes are C-JDBC [11], which is used in
this work or Tashkent [13]. Further efforts focus on adap-
tive middleware to achieve performance adaptation in case
of workload variations [20].

The evaluation of database replication techniques often
falls short of real representability. There are two common
approaches to evaluation with benchmarks. Performance
is either tested through microbenchmarks or through web-
based distributed benchmark applications such as TPC-W,
RUBiS, and RUBBoS [8]. These benchmark applications are
modeled on real applications (e.g., Slashdot or Ebay.com),
offering real production system significance. Therefore this
approach has found a growing group of advocates ( [11–13,
21,22]).

6. CONCLUSION
We used techniques and tools developed for automated ex-
periment management, including automatically generated
scripts for running experiments and collecting measurement
data, to study the RUBBoS N-tier application benchmark
with read-intensive workload. The data collected over a
wide range of settings and system configurations was an-
alyzed using statistical tools such as kernel density estima-
tion, identifying hardware resource bottlenecks, and produc-
ing detailed bottleneck migration patterns as the number of
servers and workload increase gradually. When there are suf-
ficient hardware nodes, non-obvious bottlenecks were found
through careful hypothesis generation, followed by confir-
mation through data analysis. An example is the finding
of temporary bottlenecks caused by PostgreSQL’s differen-
tiated processing of SQL queries with more than nine times
self-joins, which seems to take several orders of magnitude
more CPU.

Our results suggest that further study (e.g., through re-
fined analysis of our data or new experimental data) may
bring new understanding of database server scale-out in N-
tier applications. In addition, techniques used in the “tun-
ing” of database management systems to improve perfor-
mance may be useful in the identification of internal bottle-
necks that can take a critical role in achieving service level
objectives in mission critical applications.

Our current work involves a similar analysis as presented
in this paper on data generated with read/write workload.
Our midterm goal is to compare the presented middleware-
based replication strategy to DBMS-internal clustering.
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