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ABSTRACT
Configuration planning for modern information systems is a highly
challenging task due to the implications of various factors such as
the cloud paradigm, multi-bottleneck workloads, and Green IT ef-
forts. Nonetheless, there is currently little or no support to help
decision makers find sustainable configurations that are systemati-
cally designed according to economic principles (e.g., profit max-
imization). This paper explicitly addresses this shortcoming and
presents a novel approach to configuration planning in clouds based
on empirical data. The main contribution of this paper is our unique
approach to configuration planning based on an iterative and inter-
active data refinement process. More concretely, our methodology
correlates economic goals with sound technical data to derive intu-
itive domain insights. We have implemented our methodology as
the CloudXplor Tool to provide a proof of concept and exemplify a
concrete use case. CloudXplor, which can be modularly embedded
in generic resource management frameworks, illustrates the bene-
fits of empirical configuration planning. In general, this paper is a
working example on how to navigate large quantities of technical
data to provide a solid foundation for economical decisions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications

General Terms
Measurement, Performance, Experimentation.
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1. INTRODUCTION
Although modern businesses are under constant market pressure to
reduce the cost of their computing infrastructures, making sustain-
able configuration planning decisions is becoming an increasingly
challenging task. Under the premise of lean and cost efficient in-
formation systems, new Information Technology (IT) trends and
paradigms have led to a rapid growth of management complexity.
In fact, recent research shows that there are several developments
that are of particular relevance to the area of configuration planning.

Despite massive amounts of empirical data, generated through
systematic experimentation, have become readily available, tradi-
tional approaches to configuration planning still largely rely on
analysis through analytical modeling. There is a gap between the
technical potential for large-scale data generation and methodolo-
gies that are suitable for efficient data evaluation and interpreta-
tion. In parallel, enterprise-class N-tier systems with web servers,
application servers, and database servers are ever-growing in eco-
nomic importance, infrastructure footprint, and application com-
plexity. Classic performance analysis methods are challenged by
this growth due to bottlenecks that so far have been considered rare
and unusual. Moreover, non-stationary workloads and dependen-
cies among tasks, which are commonly encountered in modern en-
terprise systems, may violate popular modeling assumptions such
as single bottleneck queuing networks [16]. Unlike analytical ap-
proaches, methods based on actual empirical data do not rely on
such rigid assumptions and are not susceptible to the aforemen-
tioned oversimplifications.

While classic design approaches to datacenters dictate invest-
ment in hardware capable of sustaining peak workloads, service
oriented approaches suggest purchasing a base infrastructure and
renting the rest. This trend not only calls for decision systems with
flexible cost model support but also places particular emphasis on
the optimization of operational expenditures [9]. Similarly, a key
concern in green datacenter management are the rising costs of op-
eration. New approaches are required to tame the energy costs



of enterprise information systems through adaptive provisioning.
However, this is particularly difficult for large distributed systems
with highly volatile workload processes [8]. New tools are neces-
sary to provide decision makers with comprehensive understanding
of the relationship between their computing performance landscape
and their financial infrastructure constrains.

This paper addresses these developments and presents a novel
approach to reliable configuration planning for clouds based on em-
pirical data. Our approach is founded on an interactive and itera-
tive data refinement process that enables configuration planners to
follow intuitive data aggregation steps, leading from raw data to
high-level configuration planning decisions. We further introduce
the CloudXplor Tool, which prototypically implements our config-
uration planning approach within a web framework accessible from
any generic web browser. Through this implementation, we were
able to evaluate our configuration planning functionality on a large
experimental dataset that has been previously collected.

The main contribution of this paper is our unique approach to
configuration planning based on data refinement. More concretely,
our methodology correlates economic goals with sound technical
data to interactively derive intuitive domain insights at different ag-
gregation levels. We have implemented our methodology as the
CloudXplor Tool to provide a proof of concept and exemplify a
concrete use case. CloudXplor, which can be modularly embedded
in generic resource management frameworks, illustrates the bene-
fits of empirical configuration planning. In general, this paper is a
working example on how to navigate large quantities of technical
data to form a solid foundation of economical decisions.

The data in this paper are part of an extensive experimental dataset,
which was collected using software tools for automated system
management. These data may be used to predict and manage N-
tier system performance and utilization, and the results in this pa-
per suggest the need for more studies on how to effectively take
advantage of such large datasets.

With the goal of identifying non-rare phenomena with poten-
tially wide applicability, our data analysis focused on representa-
tive benchmarking configurations very similar to their default set-
tings. Unlike traditional system tuning work, we did not attempt to
tune specific software products to find “the best a product can do”
settings. Nevertheless, such tuning work is an interesting area for
future work, and of particular importance for applied research in
industry.

The remainder of this paper is structured as follows. In Sec-
tion 2 we provide a brief overview of background on Service Level
Agreements, experimental infrastructure, and multi-bottleneck phe-
nomena. In Section 3 we outline our approach to configuration
planning through empirical data refinement. Section 4 introduces
the actual implementation of the CloudXplor Tool. In Section 5 we
present a configuration planning case study based on actual empiri-
cal data. Related work is summarized in Section 6 before Section 7
concludes the paper.

2. BACKGROUND
This section provides background that is of particular importance
for our approach. We briefly present our view on Service Level
Agreements (SLAs), experimental infrastructure for data genera-
tion, and multi-bottleneck phenomena. Readers familiar with these
aspects of our work may also directly skip to the configuration plan-
ning approach in Section 3.

2.1 Service Level Agreements
CloudXplor is designed to support the process of configuration
planning for IT infrastructures with an explicit focus on economic

!"#$%&'$()'($*+,-&'

.%$"/"0&1*"%2'/*&

1$-3/4*$+5*3*"(*

1$-#/'
!"#

Figure 1: Profit model schema.

aspects. This perspective on the process demands the explicit def-
inition of all relevant economic aspects. In order to provide an
intuitive understanding, we define a infrastructure cost model and
a provider revenue model that together reflect the cost and the value
of the provided service. Modeling these two layers separately en-
ables a cost-benefit analysis. Figure 1 shows the structure of the
model. The profit is defined as the provider revenue of the system
minus the infrastructure cost for providing the service. While it is
usually easy to define a cost model for the operation of the infras-
tructure, the definition of a realistic provider revenue model is more
complex. In the context of cloud computing, SLAs have become
state-of-the-art. They define the level of service a provider guar-
antees to his customers. The SLA document usually contains the
provider’s revenue model, determining the earning of the provider
for SLA compliance as well as the penalties in case of failure. In
the presented scenario the provider’s revenue is the sum of all earn-
ings minus the sum of all penalties. The definition of reasonable
SLAs is a non-trivial task because these agreements need to reflect
economic value as well as customer service requirements. For in-
stance, a mission-critical service should have higher earnings and
penalties to set the right incentives for the provider to comply with
the agreement. Furthermore, SLAs have to describe the common
terms of business such as performance measures, metrics for the
evaluation of the latter, legal and accounting issues, as well as ex-
act contract periods. In the technical context of CloudXplor, the
metrics for evaluating the performance characteristics of the sys-
tem are of particular importance.

rev(rti) =

8
>>>>><

>>>>>:

v if 0 ≤ rti ≤ t1
v − c1 if t1 < rti ≤ t2

...
v − cn if tn < rti ≤ tp

p otherwise

(1)

provider revenue =
X

i

rev(rti) (2)

Several methods exist for the performance evaluation of system
monitoring data. A common method is the definition of Service
Level Objectives (SLOs) that set a maximum response time for
each request. The SLO applied in the our case study (Section 5)
is more complex and is formally defined in Equation (1). The
response time rti of each request i is evaluated according to the
following formulation. For each successfully processed request
rti < tn, the provider receives a certain earning v. With increas-
ing response time a late charge is applied in discrete steps. If the
response time exceeds tj , then a late charge of cj is deducted from
the earning. Solely if the response time drops below a predefined
threshold tp, the SLO is violated, leading to a penalty of p. The
corresponding SLA in Equation (2), abstractly defines the provider
revenue as the sum of all earnings and penalties for all request. The
resulting profit is defined as the revenue minus the infrastructure
cost. This type of SLA supports a reliable operation of systems
because the provider is motivated to provide the service at a high
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Figure 2: Simple multi-bottleneck classification [16].

quality. Whenever the provider is not able to meet highest per-
formance standards, he is incentivized to continue to provide the
service as his cash flow continues to be positive. Agreements with
hard thresholds might lead to a situation in which the provider re-
duces the priority of services that he cannot satisfy because he has
to pay a penalty anyways.

2.2 Experimental Infrastructure
The empirical dataset that is used in this work is part of an on-
going effort for generation and analysis of performance data from
cloud information systems. We have already run a very high num-
ber of experiments over a wide range of configurations and work-
loads in various environments, ranging from large public clouds to
small private systems. A typical experimentation cycle (i.e., code
generation, system deployment, benchmarking, data analysis, and
reconfiguration) requires thousands of lines of code that need to
be managed for each experiment. The experimental data output
are system metric data points (i.e., network, disk, and CPU utiliza-
tion) in addition to higher-level metrics (e.g., response times and
throughput). Although the management and execution scripts con-
tain a high degree of similarity, the differences among them are
subtle and important due to the dependencies among the varying
parameters. Maintaining these scripts by hand is a notoriously ex-
pensive and error-prone process.

2.3 Single-bottlenecks vs. Multi-bottlenecks
This subsection provides a brief overview of bottleneck phenomena
and their particular implications for configuration planning. Inter-
ested readers should refer to dedicated sources [15,16] for a more
comprehensive overview.

The abstract definition of a system bottleneck (or bottleneck for
short) corresponds to its literal meaning as the key limiting factor
for achieving higher system throughput. Consequently, this intu-
itive understanding has usually been consulted for analysis of bot-
tleneck behavior in computer system performance analysis. De-
spite the convenience of this approach, these formulations are based
on assumptions that do not necessarily hold in practice. For in-
stance, the term bottleneck is often used synonymously with the
term single-bottleneck. In a single-bottleneck case, the saturated
resource typically exhibits linearly load-dependent average resource
utilization that reaches 100 percent for large system loads. How-
ever, if there is more than one bottleneck resource in the system,
bottleneck behavior typically changes significantly. This is the case
for many real N-tier applications with heterogeneous workloads.
Therefore, we explicitly distinguish between single-bottlenecks and
the umbrella-term multi-bottlenecks.

Because system resources may be causally dependent in their
usage patterns, multi-bottlenecks necessitate classification accord-
ing to resource usage dependence. Additionally, multi-bottlenecks
necessitate classification according to their resource saturation fre-
quency. Resources may saturate for the entire observation period
(i.e., fully saturated) or less frequently (i.e., partially saturated).
Note that previous efforts in this area have typically omitted the
notions of dependence and saturation frequency in their analysis
(e.g., [14]). Figure 2 summarizes the classification that forms the
basis of the multi-bottleneck definition as described above. It dis-
tinguishes between simultaneous, concurrent, and oscillatory bot-
tlenecks. In comparison to other bottlenecks, resolving oscillatory
bottlenecks is a very challenging task. Multiple resources form
a combined bottleneck, which may only be addressed by consid-
ering the saturated resources in union. As a result, the addition
of resources in saturated complex N-tier systems does not nec-
essarily improve performance . In fact, determining regions of
multi-bottlenecks through modeling may be an intractable prob-
lem. Consequently, multi-bottlenecks require measurement-based
experimental approaches that do not oversimplify system perfor-
mance in their assumptions.

3. EMPIRICAL CONFIGURATION PLAN-
NING

Data refinement of experimentally derived data is a non-trivial and
error prone task when done manually and without proper tooling
support. In this section we introduce the interactive and iterative
data refinement process that forms the basis of the configuration
planning capability of the CloudXplor Tool.

In general, the data refinement process for configuration plan-
ning, as depicted in Figure 3, can be divided into four distinct data
analysis modules1. Each of these modules can be characterized by
a different degree of information density. The data transformation
process itself is a direct result of the sequential application of var-
ious aggregation and filtering functions that are necessary to navi-
gate, understand, and interpret the complex data space. In order to
deal with the complexity and richness of the underlying data space,
the transition process is multi-directional by design. Choices are
made iteratively and interactively.

The response time analysis module (top left in Figure 3) allows
analyzing the response time in the system. However, since the anal-
ysis of averaged values may easily lead to oversimplification, the
data is aggregated in histograms that offer more detailed insights
in the response time distributions. By fixing specific configurations
and workloads, the user may zoom into the data and inspect re-
sponse time distributions according to an a priori specified interval
function. The latter is typically chosen according to an SLA func-
tion of interest. In the example graph (see Figure 8 for details),
the interval function is specified as a mapping of six response time
intervals, which are later mapped to specific revenue and penalty
amounts as described in Section 2.1.

The throughput analysis module (top right in Figure 3) can be
used to perform a throughput analysis of the system. In this stage,
the data may be analyzed separately from other performance met-
rics, such as response time. In order to maximize the amount of dis-
played data, a three-dimensional graphical representation is used to
allow the choice of two variable dimensions (e.g., number of SQL
nodes, number of application servers, or workload). In cases where
solely configuration parameters are chosen as axes, the throughput
has to be aggregated in the z-dimension (e.g., maximal throughput).

1All included graphs reappear in the latter part of this paper.
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Figure 3: Schematic data refinement process in the CloudXplor Tool.

The revenue and cost analysis module (bottom left in Figure 3)
combines the datasets from the response time and throughput anal-
ysis models and aggregates the data into a three-dimensional rev-
enue function. This process requires the inclusion of two addi-
tional models. The response time data has to be correlated with the
SLA function. This yields the revenue as illustrated on the z-axis
(compare Figure 9). Additionally, the sizing information from the
throughput analysis is correlated with a cost model, which yields
the configuration cost as illustrated on the y-axis (compare Fig-
ure 9). In the simplest case, the cost model is a linear mapping
between the hardware cost and the number of nodes in the system.
In general, the revenue and cost are subject to the changing work-
load conditions (x-axis).

The profit analysis module (bottom right in Figure 3) can be
used to assess the optimal workload size for the system in terms of
profit. In the transition between the revenue and cost module and
the profit module, the three-dimensional relationship between sys-
tem load, system cost, and revenue are aggregated to investigate the
dataset from an economical perspective. Economic reasoning dic-
tates that the actual size of the chosen infrastructure is directly (and
solely) implied by a profit maximization scheme. More concretely,
as long as the profit is being maximized, the decision maker does
not care whether he is running a large or small infrastructure. Given
a certain workload, the maximal profit can be found by calculating
the cost of each infrastructure and subtracting this value from the
corresponding revenues. Once the infrastructure cost dimension is
collapsed, the two-dimensional output can be directly used to deter-
mine the workload that yields the optimal profit for the application
and system under test. The final output are revenue, cost, and profit
functions. Each point on the workload span (x-axis) corresponds
to an optimal configuration that is unambiguously mapped through
the data aggregation in the last transition (i.e., profit maximization).

4. TOOL IMPLEMENTATION
Our configuration planning methodology has been prototypically
implemented in the CloudXplor Tool. This application has been
developed in Microsoft Visual Studio 2008 as a light weighted web
application. To enable fast and complex data processing, a MySQL
server is integrated into the tool for data storage as well as an inter-
face to remotely call Matlab (i.e., an language for technical com-
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Figure 4: Schema of CloudXplor Tool.

puting) programs. Figure 4 depicts the main program structure and
the tool environment. CloudXplor consists of four main units and
three interfaces.

The first interface imports the empirical data, generated on an ar-
bitrary cloud with an arbitrary benchmark. The second interface al-
lows our tool to utilize the functionality of Matlab programs, which
is our method of choice for complex calculation tasks and graphical
rendering. The third interface exposes the functionality of CloudX-
plor to the end user. Furthermore, the tool functionality and anal-
ysis results can also be directly exported through this interface as
a service. This allows the integration of CloudXplor into generic
resource management frameworks, which enriches the usability of
the tool in more involved settings.

The program logic of CloudXplor is divided into four units. The
foundation of the data refinement process is provided by the Profit
Model Unit and the Database Unit. The latter contains the empiri-
cal data to enable fast access during the analysis. The former (i.e.,
the Profit Model) derives economic key figures based on the perfor-
mance behavior of the system by utilizing the SLA model and the
cost model. The Data Navigation Unit provides the logic for the
data refinement process verifying the validity of user commands.
These input parameters are sent to the Interactive Data Aggrega-
tion Unit that aggregates and correlates empirical and economic
data. The results of this process are sent to the Matlab interface for
further processing as well as for graphical rendering with external
Matlab modules. The final analysis results are transferred to the
user interface. All useful Key Performance Indicators (KPIs), gen-
erated during the refinement process, are stored in the CloudXplor



Figure 5: Screenshot of current implantation of the CloudXplor Tool.

database. These KPIs can be used for the comparison of different
setups or accessed by other tools for further high level processing.

Figure 5 shows a CloudXplor Tool screenshot that was taken dur-
ing the execution of the data refinement process that is subject of
Section 3. The key element of the data refinement process is the
central graph. It provides an intuitive view on system performance
metrics as well as on economic data. The user can interactively
change parameters to evaluate the impact of configuration changes
in real-time. A variety of options is provided in the controls aligned
around the graph, such as hardware and software configuration as
well as economic and workload parameters. While the option fields
require distinct input, the numeric input boxes can either be set to
a certain value or a wild card. In the latter case, CloudXplor ana-
lyzes the scenario for each valid value of this field. The results are
presented in the graph, whereby the user can assign each metric to
each axis. In case multiple input parameters remain flexible, the
user can specify a concrete report type. CloudXplor then uses the
best setting for each flexible parameter for the graph. This allows
an easy comparison of different configurations, which implies more
intuitive assessment of economic impact of this parameter range.

5. CASE STUDY
In this section we present a case study that exemplifies the use of
CloudXplor on an actual empirical data set. We first introduce the
dataset in terms of benchmark application, software, and hardware
setup. In the second part of the section, we detail the output of the
case study performed with our tool.

5.1 Setup
Among N-tier application benchmarks, the Rice University Bid-
ding System (RUBBoS) has been used in numerous research efforts
due to its real production system significance. In our experiments,
each experiment run consist of an 8-minute ramp-up, a 12-minute
run period, and a 30-second ramp-down. Performance measure-
ments (e.g., response time or CPU utilization) are taken during
the run using the benchmark’s client generator module or Linux

Function Software
Web server Apache 2.0.54
Application server Apache Tomcat 5.5.17
Database server MySQL-cluster 6.2.15

Operating system GNU/Linux Redhat FC4
Kernel 2.6.12

System monitor Systat 7.0.2

Table 1: Software setup.

account logging utilities (i.e., Sysstat) with one-second intervals.
Readers familiar with this benchmark can directly refer to Table 1,
which outlines the concrete choices of software components used
in our experiments.

RUBBoS [2] is an N-tier e-commerce system modeled on bul-
letin board news sites similar to Slashdot. The benchmark can be
implemented as 3-tier (web server, application server, and database
server) or 4-tier (with the addition of cluster middleware such as C-
JDBC) systems. The benchmark places high load on the database
tier. The workload consists of 24 different interactions (involv-
ing all tiers) such as register user, view story, and post comments.
The benchmark includes two kinds of workloads: browse-only and
read/write interaction mixes. Typically, the performance of bench-
mark application systems depends on a number of configurable
settings (including software and hardware). To facilitate the in-
terpretation of experimental results, we chose configurations close
to default values. Deviations from standard hardware or software
settings are spelled out when used.

The data in this section are generated from a set of experiment
that were run in the Emulab testbed [1], which provides various
types of servers. Table 2 contains a summary of the hardware used
in this paper. Normal nodes were connected by a 1Gbps network.
The experiments were carried out by allocating a dedicated physi-
cal node to each server.

5.2 Results
Due to the space constraints of this article, we can solely include a



Type Components
Normal Processor Xeon 3GHz 64-bit

Memory 2GB
Network 6 x 1Gbps
Disk 2 x 146GB 10,000rpm

Table 2: Hardware setup.

few sample graphs, which comprise a tiny subset of the actual nav-
igable space of our data. More concretely, the data that is shown in
this section is limited to read/write workload with ten percent write
interaction frequency. Furthermore, the workload spans 1,000 to
11,000 users in steps of 1,000. The user numbers reflect generated
client threads, that interact with the system based on a Markov tran-
sition probability matrix, where each state has a exponential think
time with seven second mean.

Figure 6 shows the throughput of the system with one web server,
two application servers, and four data node servers under read/write
workload. As the workload (x-axis) increases, the system bottle-
necks at a workload of 2,000 users for the configuration with a sin-
gle SQL node (y-axis). This bottleneck can be resolved by adding
more SQL nodes. However, once there are three SQL nodes in
the system and a workload of 7,000 users is reached, the system
throughput can no longer be increased through the addition of SQL
nodes. This analysis yields the assumption that the system bot-
tleneck has shifted elsewhere or has potentially become a multi-
bottleneck between multiple server types.

A different type of analysis seems to offer a potential explana-
tion for the observed system behavior. Figure 7 shows the maximal
system throughput that is achievable with one web server and two
application servers. In contrast to the previous graph, there are two
different kinds of bottlenecks that are successfully resolved in this
dataset. First, there is a SQL node bottleneck between one and two
SQL nodes. Second, there is a data node bottleneck that is resolved
between the configuration with two SQL nodes and two data nodes
and the configuration with two SQL nodes and four data nodes.
After that, the addition of another SQL nodes again increases per-
formance to a maximal system throughput around 900 interactions
per second. This analysis suggests, that the addition of further data
nodes might increase the overall system throughput even further.
Note that it is due to the implementation specifics of the MySQL
clustering mechanism, that the number of data nodes may only be
increased in powers of two.

In parallel to the analysis of the throughput, an analysis of the
response time may be performed. Figure 8 shows three sample re-
sponse time distributions. The underlying configurations for these

Figure 6: Throughput of a RUBBoS system with 1 web, 2 ap-
plication, and 4 data nodes servers under read/write workload.

Figure 7: Maximal throughput of a RUBBoS system with 1 web
and 2 application servers under read/write workload.

Response Time Interval Revenue/Penalty
[0s, 1s] 0.0033 cent
(1s, 2s] 0.0027 cent
(2s, 3s] 0.0020 cent
(3s, 4s] 0.0013 cent
(4s, 5s] 0.0007 cent

> 5s -0.0033 cent

Table 3: SLA Model

graphs are one web server, one application server, one MySQL
server, and two data node servers. The depicted workloads are
between 3,000 and 9,000 users in steps of 3,000. The histogram
intervals have been chosen according to the SLA model, which is
assumed in this case study. This model is designed according to
the formulation in Section 2.1 and summarized in Table 3. In this
way the graph can be easily interpreted in its economical context.
At a workload of 3,000 users, the system is largely able to meet
SLA demands. Consequently, over 50 percent of all user interac-
tions result in a full revenue payoff. However, as the workload in-
creases, the (relatively small) system gets overloaded very quickly.
The response time distributions become highly right-skewed with
high percentages of penalized interactions. In the case of a work-
load of 9,000 users, over half of all interactions are penalized as
unsuccessful (i.e., response time is greater than five seconds).

After exploring throughput and response time separately, the data
can be combined in a unified analysis under economical aspects.
Following the data refinement process depicted in Figure 4, the
response time data need to be transformed with the SLA model

Figure 8: Response time distributions of a RUBBoS system
with 1 web, 1 application, 1 MySQL, and 2 data node servers
under read/write workload.



Figure 9: Revenue and cost analysis of a RUBBoS system under
read/write workload.

Figure 10: Profit and cost analysis of a RUBBoS system under
read/write workload.

(Table 3), and the throughput data need to be transformed with a
cost model. For simplicity, we assume that the usage cost for each
server node are uniform at a price of four dollars per computing
hour. Note that CloudXplor is also able to implement any arbi-
trary cost model through a direct mapping of each configuration to
a fixed and variable cost component.

The transformation results are shown in Figure 9. Another trans-
formation that was applied to the data is a direct result of economi-
cal reasoning. Although technically possible due to the real-system
character of this investigation, decreasing revenue under constant
workload and increasing resource costs has been removed through
maximization. In other words, the graph has been transformed to be
monotonically increasing along the y-axis (i.e., configuration cost).
The analysis of the three-dimensional graph reveals two highly sig-
nificant insights. First, the revenue grows evenly across all config-
urations for low workloads (i.e., constant slope plane for workload
between 1,000 and 5,000 users). Second, the ridge of the graph runs
diagonally between 2,000 users in the cheapest configuration and
7,000 users in the high-end version. Past a workload of 7,000 users,
all configuration variations result in decreasing revenue due to fre-
quent SLA violations and corresponding penalties. This means that
the system under test is not able to further increase profitability by
sustaining more than 7,000 concurrent users.

From an economic perspective, it is not significant how a par-
ticular revenue is generated as long as the profit of the enterprise
is maximized. Therefore, it is beneficial to reduce the complexity
of the three-dimensional data into a single two-dimensional repre-
sentation. This can be done by optimizing the profit along the cost
axis. The result is shown in Figure 10. This figure immediately
reveals the economic impact of any arbitrary workload situation

Workload [# Users] Opt. Configuration
1,000 1/1/1/2
2,000 1/1/1/2
3,000 1/1/2/2
4,000 1/2/2/2
5,000 1/2/2/4
6,000 1/2/3/4
7,000 1/2/3/4
8,000 1/2/3/4
9,000 1/2/3/4
10,000 1/2/3/4
11,000 1/2/4/4

Table 4: Profit optimal configurations.

within the examined workload span. Concretely, decision makers
are able to asses the profitability of their system directly from usage
statistics. On the other hand, this aggregation can also be automat-
ically resolved to correlate each workload situation with its profit
maximizing cloud configuration.

The profit optimal configurations of the examined system are
shown in Table 4. We use a four-digit notation #W/#A/#C/#D to
denote the number of web servers, application servers, SQL nodes,
and data nodes. The table shows that the data analysis process re-
vealed a unique configuration plan that can be used to provision the
system under the premise of optimal profitability.

6. RELATED WORK
Traditionally, performance analysis in IT systems postulates mod-
els based on expert knowledge and uses standard statistics to pa-
rameterize them based on some experimental dataset [11,13]. Queu-
ing models have been widely applied in many successful perfor-
mance prediction methodologies [20, 21]. Nonetheless, these ap-
proaches often suffer from generality limitations due to their rigid
assumptions when handling all evolution of large applications. For
example, assuming the availability of extensive instrumentation data
profiles [20] or constant mean inter-arrival times of request [21]
do not hold in general because many real parameters may be sub-
jected to high variability. Moreover, non-stationarity of workload
is very common in N-tier systems. This characteristic has been ex-
ploited for performance prediction by Stewart et al. [19]. The au-
thors also explain in their work how their anomaly detection can be
used to invoke a bottleneck detection process. More recently, statis-
tically induced models have been suggested to automate the model
generation process and remove the dependence on expert knowl-
edge [3, 6, 10]. In fact, extensive experiments have been conducted
to compare different bottleneck detection methodologies [15].

In parallel to the technical complexity, economic considerations
have recently become a key issue in IT system operation. This
new awareness on sustainable operation modes can be seen in the
emerging trend of Green IT [18]. Although this term is primar-
ily ecologically motivated, it is also closely related to efficiency
in the domain of datacenter operation. For IT operation, environ-
mental goals are largely congruent with economic objectives be-
cause the major Green IT scope is to increasing efficiency in this
case [17]. One option is the enhancement of isolated units such as
power supplies [23]. Another more holistic approach is utilization
optimization. For instance, virtualization and consolidation efforts
are well-established concepts from this area [17]. However, these
concepts may not always be applicable. Large information systems
with volatile workload processes, for example, might have too com-
plex performance patterns, which requires a thorough an in-depth
understanding of the system behavior in order to satisfy QoS [8].

The development of advanced Service Level Management (SLM)
concepts, defining the terms of businesses between providers, has



recently become a very active research topic [22]. Defining feasible
SLAs is non-trivial for the providers because they need to supply
the guaranteed QoS while operating efficiently. With the emerging
trend of cloud computing, the importance of SLM has even grown
further. The benefits of cloud computing in enterprises have been
previously assed in theory. Dias de Assuncao et al. investigated the
potential of combining cloud and owned infrastructure resources to
achieve higher performance [7]. Hedwig et al. developed a model
to determine the optimal size of an enterprise system that satisfies
peak demands with remote resources [9]. Both works suggest the
inclusion of cloud resource into efficient production systems. Ra-
gusa et al. developed a prototype of such a system able to automat-
ically scale by including remote resources. Despite these efforts,
Buyya et al. examined the current state-of-the-art in cloud markets
concluding that today’s implementations do not fulfill the require-
ments of modern enterprise systems [5]. Moreover, Risch and Alt-
mann empirically verified this argument empirically verified this
argument by showing that cloud computing is seldom used by en-
terprises [4]. One significant reason is that cloud providers usually
solely guarantee best effort. More concretely, agreeing to specific
SLAs bears significant economic risks due to the complexity of the
underlying infrastructures.

Resource Management Systems (RMSs) are a popular concept
to control decentralized environments. Nonetheless, Krauter et al.
developed a taxonomy for today’s RMSs showing that economic
aspects are rarely sufficiently integrated [12]. CloudXplor closes
this gap by correlating SLAs to technical properties and deriving
their economic implications.

7. CONCLUSION
Recent research has established configuration planning of modern
IT systems as particularly difficult for a number of reasons. Among
others, the popularity of cloud computing and trends such as green
resource management challenge current practices. In this paper we
have presented a support tool to help decision makers find sustain-
able configurations that are systematically designed according to
economic principles. Our data based approach is novel because it
is founded on a unique methodology to combine economic goals
with technical data. We have provided a proof of concept by im-
plementing our methodology as the web application. The latter is
modular and can be regarded as a working example on derivation
of economical insights from technical data through a systematic re-
finement process.

Our current and future work include augmenting the CloudXplor
Tool (i.e., our configuration planning methodology) with a work-
load analysis module that is able to provide support for loading
traces and time series analysis. Furthermore, we intend to extend
the tool’s comparison functionality to generate intuitive results with
joint comparison of various hardware infrastructures.
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