Performance Aware Regeneration in Virtualized
Multitier Applications

Kaustubh Joshi and Matti Hiltunen
AT&T Labs Research
180 Park Ave
Florham Park, NJ 07932

Email: {kaustubh, hiltunen}@research.att.com

Abstract—Virtual machine technology enables highly agile
system deployments in which components can be cheaply moved,
cloned, and allocated controlled hardware resources. In this
paper, we examine in the context of multitier Enterprise appli-
cations, how these facilities can be used to provide enhanced
solutions to the classic problem of ensuring high availability
without a loss in performance on a fixed amount of resources.
By using virtual machine clones to restore the redundancy of a
system whenever component failures occur, we achieve improved
availability compared to a system with a fixed redundancy
level. By smartly controlling component placement and co-
location using information about the multitier system’s flows and
predictions made by queuing models, we ensure that the resulting
performance degradation is minimized. Simulation results show
that our proposed approach provides better availability and sig-
nificantly lower degradation of system response times compared
to traditional approaches.

I. INTRODUCTION

Current trends in system and data center design cast an
interesting perspective on the role of redundancy and repair
in dependably operating the multitier applications that power
most of the world wide web. On one hand, multitier systems
are increasingly running on large numbers of cheap, less
reliable commodity components, thus leading to a decrease
in the system’s mean time between failures (MTBF) numbers.
For example, in [1], Google reported an average of 1000 node
failures/yr in their typical 1800 node cluster for a cluster
MTBF of 8.76 hours. On the other hand, skilled manpower
is quickly becoming the most expensive resource in the mix,
thus encouraging data center operators to achieve economies
of scale by batching repairs and replacement, and increasing
mean times to repair/replacement (MTTR) in the process. In
fact, there have been attempts at portable “data-center in a
box” designs (e.g., [2]) that contain tightly packed individual
components that are completely non-serviceable, i.e., with an
infinite MTTR.

These trends imply that multitier systems will increasingly
operate in environments in which parts of the infrastructure
are in a failed state for most of their operation. While current
designs often replicate the software components comprising
each application tier, to truly ensure high availability in the
above conditions, the failed components must eventually be
replaced, and the level of redundancy must be high enough
to tolerate additional failures while replacement takes place.

Gueyoung Jung
College of Computing
Georgia Institute of Technology
Atlanta, GA, USA
Email: gueyoung. jung@cc.gatech.edu

However, maintaining significant redundancy is challenging.
Active replication may be too expensive in cases such as when
dynamic state has to be replicated, or when expensive software
licenses are involved. On the other hand, reducing effective
time-to-repair by maintaining standby spare resources that can
be quickly deployed is inefficient because the spares represent
unutilized resources that could otherwise have been used to
increase the capacity of the target system.

In this paper, we investigate an alternative solution that
effectively utilizes all system resources (i.e., no standby
spares) while providing high availability with limited levels of
replication. Specifically, when a hardware resource fails or is
likely to fail, we regenerate the affected software components
and deploy them on the remaining resources and proactively
avoid a system failure. The basic idea of dynamically creating
new replicas to account for failures is not new. For example,
[3] and [4] use regeneration of new data objects and file
“chunks”, respectively, to account for reduction in redundancy.
Even commercial tools such as VMWare High Availability
(HA) [5] allow a virtual machine on a failed host to be
reinstantiated on a new machine. The approach can make do
with far less redundancy than a static replacement oriented
design. However, because regenerated components share the
remaining computing resources, the approach can have a
significant impact on a system’s performance if not managed
correctly.

In particular, the placement of replicas becomes challenging
when they are components in a multi-tier application. In such
applications, poor placement of a component (e.g., database
server) may cause it to be the bottleneck for the whole
application and as a result, the hosts where the other tiers of
the application are placed may become underutilized. When
multiple applications are being shared (e.g., in a cloud com-
puting environment), the problem becomes even more com-
plex. Recent work on performance optimization of multitier
applications (e.g., [6], [7], [8], [9]) addresses the performance
impact of workload variations and resource allocation on such
multitier applications, but to our knowledge our work is the
first one to combine these two lines of work.

Specifically, we propose to reconfigure a set of multitier
applications, hosted on shared resources, in reaction to failures
or impending failures in order to maintain a user-defined level

of redundancy for as long as possible, and to do so in a way
that minimizes degradation in the applications’ responsiveness.
Note that in a bid to preserve performance, we increase
the mandate of our solution from simply regenerating failed
components to complete proactive redeployment of the entire
system including those parts that are not impacted by the
failure. Traditionally, performing extensive system reconfig-
uration has had costs, and previous dependability literature
such as [10] and [11] has addressed the issue by proposing
control policies to intelligently schedule reconfiguration for
least negative impact. In this work however, we circumvent
the issue altogether by using virtual machine technology to
enable cheap and fast application reconfiguration and migra-
tion without incurring significant downtime or overhead [12].

Our solution is deployed through an online controller that
uses queuing models we have previously developed in [9] to
predict the performance and resource utilization of the multi-
tier applications, and uses a bin-packing-based optimization
technique to produce target configurations that exhibit the
least amount of performance degradation. By using utility
functions to prioritize applications, it can also manage a set
of applications that have varying importance and SLAs.

II. ARCHITECTURE

We begin by defining the class of applications considered,
and their computing environment. We consider a consolidated
data-center type environment with a pool of physical resources
H and a set of multi-tier applications A. Although typical data-
center environments have multiple pools of resources (e.g.,
servers, disks, I/O channels), we focus only on CPUs in this
paper. Furthermore, we assume a cluster of identical physical
hosts. Nevertheless, the techniques we propose are general and
can be applied to manage other resource pools as well.

Each application a consists of a set N, of component types
(e.g., web server, database), and for each component type n, a
desired replication level is provided by reps(n). To avoid sin-
gle points of failure, the replication level for each component
must be at least 2. Each replica ny executes in its own Xen
virtual machine [13] on some physical host, and is allocated a
fractional share of the host’s CPU denoted by cap(ny) that is
enforced by Xen’s credit-based scheduler. Additionally, each
application a is assumed to support multiple transaction types
T, = {t},..., ¢TI}, For example, the RUBIS [14] auction site
benchmark used in our testbed has 26 different transactions
that correspond to login, profile, browsing, searching, buying,
and selling. The workload w, for the application can then
be characterized by the set of request rates for each of its
transactions, i.e., {w!|t € T,}, and the workload for the entire
system as W = {w,|a € A}.

Finally, as is common in data center environments, we
assume a shared storage network (e.g., a SAN), so that any
VM residing on a server that has failed can be reinstantiated on
another host by using its disk image. Although our approach
could also be applied to disk failures, in this paper we assume
they are handled within the storage array using RAID technol-
ogy. If protection against loss of volatile data is needed, it is

Runtime Controller

f o~
Application 1 Optimizer
Modgling

Model solver

Actjons

Fig. 1. Approach overview

assumed to be provided by the application. For example, most
components designed for multitier systems such as Tomcat
or MySQL servers provide clustered modes to ensure volatile
state availability through data replication as long as at-least
one replica is operational. Protection for applications that do
not support state replication can be provided using VM-level
replication techniques such as [15].

The overall architecture of our approach is outlined in
Figure 1. It consists of a Runtime Controller that executes in
an operations center that manages the target cluster, and is tied
to the output of a monitoring and alarm system. Centralized
monitor aggregation and alarming is facilitated by many off-
the-shelf products such as IBM’s Tivoli, and is commonly used
in commercial data centers. The algorithms we propose are
deterministic, and we assume that controller availability can
be ensured using traditional state replication. When an alarm
regarding impending or actual machine failure or recovery (re-
pair/replacement) is received from the monitoring system, the
controller reconfigures the application to maintain the desired
replication levels using standard virtual machine control knobs
provided by most VM engines. Specifically, for each VM that
contains an application component, the controller can either
migrate the VM to another host, or change the CPU share
allocated to the VM on its current host.

The controller chooses these actions in such a way as to
minimize the overall performance degradation in the case of
a failure while still maintaining the desired level of repli-
cation, and maximizes the overall performance in case of a
repair/replacement event. To avoid common mode failures,
the controller also ensures that redundant components of an
application are not located on the same physical machine.
To achieve these objectives, the Runtime Controller relies on
a model solver and application models developed offline to
compare different deployment alternatives as described next.

III. METRICS AND MODELS

a) Metrics: As indicated earlier, our system has dual
goals: high availability and good performance. We consider
the system to be available when at least one replica of each
component of each application is running on an operational
machine, and define availability as the fraction of time the
system is available over a specified time window. For per-
formance, we use the initial system configuration before any
failures or control actions occur as a goal that should be
achieved after a failure event has occurred. Specifically, let
RTf’t denote this goal response time for a transaction ¢
belonging to application a and let RT,", be the measured
mean response time for this application and transaction. The

~——Network Ping Measurement —»----

Servlet.jar Instrumentation
; \

/ .
[— e

T
!

v
Tamcat Qé;rver

Apache Server / 10.9

Legend
— Function Call
------- » Resource Use
,,,,,,,,,,, > Instrumentation

vMM A

Niomeat

Tomcat Ser‘}'eq
j

MySQL Server

/v o

tomcal
Dgis M

(Disi<"*

Layered Queuing Network model for RUBIiS

Fig. 2.

performance degradation D due to host failures can then be
defined as the weighted sum of per transaction degradations,
ie.,
D= > 7RI, — RT{,) 0]

a€AteET,
where weights -y, ; are used to weigh the transaction according
to varying importance and frequency of occurrence of the
transaction. Choosing the weight as the fraction of transactions
of type t in the application’s workload makes D equal to
a’s mean response time degradation. Given these two metrics,
alternative control strategies can be conveniently compared.

b) Application Modeling: Application models that ac-
curately predict the performance of a configuration given a
workload (to calculate degradation D) and the corresponding
resource utilization demands are an important building block
for our approach. However, consolidated server environments
under resource constraints can be difficult to model because
CPU utilizations can become high and CPU allocations to
the different tiers of an application can be very different.
Thus, blocking phenomena that are not significant in well-
provisioned environments, e.g., a bottleneck due to the block-
ing of front-end software threads by a highly overloaded back-
end server, must be explicitly modeled. Because of their ability
to do so, we chose layered queuing models [16] as the basis
of our work and use the LQNS tool [17] as a black-box model
solver.

Figure 2 shows a high-level overview of the model for
RUBIS, our example application. The model includes tasks
(depicted by parallelograms) that represent software compo-
nents, and queues that represent hardware resources (depicted
by circles). Tasks use hardware resources (depicted by dotted
arrows with the label specifying the service time) and make
synchronous calls to other tasks (depicted by solid arrows with
the label specifying the average number of calls made). An
additional complication is that the effects of the virtualization
environment need to be modeled. That is done by a VMM task
that represents the hypervisor, and generates CPU demand for
any I/O requests that flow through it.

The models are parameterized based on measurements done
in a pre-deployment training phase. For Java servlet based
applications, the parameter collection is fully automated, and
does not require any instrumentation in the application code.
During this phase, each application is measured in isolation
with only a single replica per component, and is subjected
to a workload that consists of a single transaction at a time.

Multiple repetitions are done to compute mean values of the
parameters. The solid black boxes in Figure 2 represent the
points where measurements are made. Additional details about
the model and its validation against experimental measure-
ments can be found in [9].

IV. RUNTIME OPTIMIZER

Upon impending or actual failure or recovery events, the
runtime controller chooses system configurations that maintain
the applications’ replication levels and minimize any perfor-
mance degradation by minimizing the degradation function in
Equation 1. The minimization is carried out over the space
of all possible system configurations ¢ € C, each of which
specifies: (a) the assignment of each replica ny to a physical
host c.host(ny) in a way that ensures that no two replicas of
the same component share a physical host, and (b) the CPU
share cap c.cap(ny). Due to the large parameter space with
mixed discrete and continuous parameters, the optimization
task is challenging. Even the problem of replica assignment is
NP-Complete (via a reduction to the bin-packing problem), so
we have to settle only for approximate solutions. However,
an approximate solution purely by traditional means, e.g.,
gradient search, is difficult because of the mixed parameter
types.

To solve this problem, we split it into two sub-problems:
a) selecting an application “configuration” by choosing the
replica CPU caps, a problem with a continuous parameter
space, and b) determining the optimal component placement
for a given application configuration, which involves discrete
optimization. To integrate the two solutions efficiently, we
leverage two observations: a) the degradation function (re-
sponse time) of an application does not decrease if additional
CPU capacity is provided to one of its replicas (this is an
assumption that is true for most systems), and b) reallocating a
replica to another host without changing its CPU capacity does
not change its response time or that of the application. Due
to observation (b), the component placement optimization can
simply act as an accept-reject constraint for each candidate
configuration generated in the configuration optimization. If
the “optimal” placement can fit the required components into
the available resources, then the application configuration is
accepted. Otherwise, it is rejected. The optimization algorithm
is shown as Algorithm 1, and is explained in detail below.

Application Configuration. Due to observation (a), if one
starts off with CPU cap of 1.0 (i.e., the entire CPU) for each

Input: W: the workload
Input: corig: the original config., { RT}: the initial resp. times
Input: H: available hosts after the failure/recovery event
Output: sequence of reconfiguration actions
forall a € A,n € N, do Vnyg,c.cap(ng) «— 1
forall a € A do

| (BT}, {p(ni)vni € NE}) —LNS (W, a,0)

Compute D

while forever do

{c.host(nk)|Va,nk} < ConstraintBinPack (H,c)
if success then return Actions (corig — c) forall
a€ A,née N, do

Cnew — C
forall n; € reps(n) do Reduce cpew.cap(nk) by Ar
{RT7%} {p(ni)) new < LONS (W, a, Cnew)
Compute Dyew, Vp
if Vp > 0V Vp is max so far then

L (e, {p(m)}opt < (e {p(n) Pnew
if Vp > 0 then skip to EndRefit

L EndRefit: (¢, {p(n)}) — (¢, {p(1)})opt

Algorithm 1: Optimal configuration generation

Input: H: set of available hosts, c.cap: CPU capacities
Output: c.host - replica placements
forall h € H do h.cpu + 0
R «—sort (c.cap(ni)|Va € A,n € No,k € [1...reps(n)])
forall » € R in decreasing order do
forall h € H in order do
if c.cap(r) < h.cpu A (reps(type(r)) > |H|V —3r’ €
R, s.t. chost(r) = h Ar.type = r'.type) then
| chost(r) « h; h.cpu «— h.cpu — c.cap(r)

Algorithm 2: Constrained Bin Packing

replica irrespective of actual CPU availability, the degradation
function would be the lowest, and monotonically increase with
decreasing CPU caps. Therefore, no local maximums exist for
this function, and the application configuration optimization
algorithm uses a text-book gradient search algorithm to select
CPU caps, terminating as soon as an acceptable configuration
that fits in the actually available hosts is found. The LQNS
solver is invoked for each application to estimate response
time and the actual CPU utilization p(ny) of each node. The
bin packer is then invoked to try to place the nodes on the
available machines using the predicted CPU utilizations as the
“volume” of each node. If the bin packing is unsuccessful, the
algorithm re-evaluates all possible single-change degradations
of the current configuration by reducing the allowed CPU cap
for the replicas of a single component in a single application
by a step of Ar (set to 5% by default). The algorithm then
picks that degraded configuration that provides the maximum
reduction in overall CPU utilization for a unit increase in
degradation, or gradient, which is defined as:
ZaeA,nkeNé‘ Puew (k) — p(n)

vp - Dnew - D (2)

The whole process is repeated again until the bin packing
succeeds. Upon success, the optimizer calculates the difference
between the original configuration and new configuration for
each replica, and returns the set of actions (migrate, capacity
adjust, reinstantiate) needed to affect the change. The dis-

cretionary actions, i.e., capacity adjustment and migration,
are relatively cheap compared to typical MTBF values, and
range from a few milliseconds to a few minutes at most.
Furthermore, they can be performed without causing VM
downtime [12]. Therefore, the controller does not factor in
any reconfiguration costs while making its decisions.
Constrained Bin Packing. Component placement is per-
formed using bin packing, which serves two purposes. First, it
determines whether the allocated CPU caps of all the replicas
from all applications fit into the available CPU capacity, and
second, it also determines to which physical host to assign
each replica such that replica independence, i.e., no replicas
of the same component on the same host, is maintained as
far as possible. Unconstrained bin packing has been studied
extensively in the literature, with several known efficient
approximation algorithms.We use a constrained variant of
the nlogn time first-fit decreasing algorithm as shown by
Algorithm 2 in which the replicas are considered in decreasing
order of their CPU cap, and are assigned to the first host
which has enough remaining CPU capacity to fit them, and
on which no other replica of same component exists. In the
rare case that no such host can be found because the number
of available hosts is smaller than the replication level of the
component, the constraint is relaxed for that replica, and it is
placed on the first host on which it fits regardless of whether
there is another replica of the same component on that host.
The results of the unconstrained algorithm are guaranteed to be
within 22.22% of the optimal solution [18]. While we cannot
make such guarantees for our constrained version, the results
from Section V show excellent performance in practice.

V. RESULTS

We have implemented the configuration optimizer and in-
tegrated it with a previously developed runtime framework
for performing adaptive VM reconfiguration in response to
dynamically changing workloads [9]. However, to compare
the impact of the technique on long term availability, we
present simulation results across several hundred failures using
a simulator written in the Java based SSJ framework [19].

c) Strawman Approaches: We compare the approach
with two reference strategies: a) a do-nothing “static” strategy
that does not adaptively reconfigure the system, but relies on
the design redundancy to tolerate failures, and b) a strawman
“least loaded” strategy (LL) that reinstantiates the “failed”
VMs running on the failed host. To choose the target hosts,
LL considers each failed VM in decreasing order of measured
CPU utilization, and reinstantiates it on the least loaded host.
The utilization of the target host is then updated to take into ac-
count the reinstantiated VM before choosing a host for the next
failed VM. When a host is recovered/replaced, LL migrates
the original VMs running on the host before it failed from
their current locations back to the host. Once the VMs have
been reassigned, the controller reallocates the CPU capacities
to the VMs on each host proportional to their measured CPU
utilization with a lower bound of 10% CPU. When deploying
an LL controller, runtime measurements of the per-host and

= Opt. Util.
9
Z
£ o1 - £
=2 Light Opt E
2 Light Static & 1900
E Light LL £
= 001 ~#=Heavy Opt. ?
~*“Heavy Static ﬁ
~*Heavy LL ﬁ
o0
0 = #f .o § 100
0.01 0.1 1 10 0
Relative MTTR
(a) Unavailability
Fig. 3.

VM utilizations are needed. During simulation, we use the
LQNS models to produce these measurements for the deployed
configurations.

d) Target System Setup: The target application for the
experiments is the widely used RUBiS online auction bench-
mark [14] from Rice University. The J2EE application runs on
standard off-the-shelf components - an Apache Web server,
Tomcat App server, and MySql database, and provides 26
distinct user transactions. We created the LQNS model using
offline measurements from [9] and execute it using transaction
workload rates representing real user behavior according to the
“browsing mix” defined by the RUBIS test client generator.
Our simulation setup consisted of 2 instances of the RUBIiS
application, each with a different workload and priority, with
a “gold” instance with a weight of 5 times as much as the
“silver” instance. For both instances, each of the three tiers was
replicated twice. We considered two different scenarios. The
“light” scenario simulates a classical, underutilized setup with
an initial configuration that has each of the 12 VMs running on
a separate physical host and with a workload of 60 and 120
requests/sec for the gold and silver instances. The “heavy”
scenario simulates a more heavily utilized consolidated server
environment with each Apache replica (with 25% CPU capac-
ity) sharing a physical host with a Tomcat replica (with 75%).
The MySQL replicas run on dedicated hosts constituting a total
of 8 physical machines. The workloads in this setup are higher
at 120 and 180 requests/sec for the gold and silver instances.

e) Simulation Setup: For each scenario and strategy,
we ran fault injection experiments where host failures were
simulated with an Poisson arrival process followed by random
selection of the target host to fail. To make the results
applicable for systems with different MTBFs, we report all
times normalized to the MTBF, which was set to 1.0. For
repair, we varied the per host mean time to repair (MTTR)
over a wide range from 0.01 to 5.0, indicating that repair took
from 10% to 500% of the actual MTBF. It is our belief that
all ratios in this range are realistic depending on system size.
Each simulation ran for a normalized time period of 10 (i.e.,
10 failures per run on the average), and we repeated each
experiment 10 times.

For each experiment, we calculated both the availability
of the system and the mean response time across both ap-
plications, i.e., the per-transaction response time weighted
by the fractional rate of the transaction. The response time

NEEEEER

(b) Light Workload Performance
Experimental Results

L] i : T
LL Util. ™ Static Util. Opt. Util. " LL Util. " Static Util.

3000

Weighted Response Time (msec)

o iR
001 0.1 05 1 2
Relative MTTR

01 05 1 2 3 5 0
Relative MTTR

(c) Heavy Workload Performance

degradation of the gold application was multiplied by its
priority of 5. The time spent by the controller in making
a decision also impacts the availability because, during this
time, the impact of an additional failure is the same as that
with the static strategy. However, because it is not possible to
normalize this time without choosing a value for the MTBEF,
we do not factor these times into the availability and report
them separately.

f) Availability: Figure 3(a) shows the unavailability of
the system under all strategies and workloads as a function of
the MTTR. As is seen, both the Opt strategy (our approach)
and the LL strategy achieved 100% availability during the
simulation runs, while the unavailability of the static strat-
egy increases significantly with the relative MTTR. Adding
additional replicas can improve the availability provided by
the static strategy, but the LL and Opt results show that doing
so is not needed for improving system availability even with
large relative MTTR values. Since the LL and Opt. strategies
both regenerate VMs as soon as a failure occurs, this result is
expected. In practice, both strategies may not achieve 100%
availability for two reasons. First, the controllers require time
to make a reconfiguration decision after a failure event and
second, instantiation of new VMs is not instantaneous. During
both intervals, the system may be vulnerable to additional
failures. Fortunately, both windows are short compared to
typical MTBF values - we have measured the VM instantiation
times to be on the order of 80-90 seconds for the RUBiS
MySQL instances, while the controller execution times are
presented in Table I. Practically, the likelihood of additional
non common-mode failures during those intervals is low.

g) Response Time Degradation: Figures 3(b) and (c)
show the degradation of the sum of the mean response times
of both applications computed over the period that they are
available vs. the MTTR. The results with an MTTR of 0
indicate the initial response times of the system. These are
identical for all three strategies, and are also projected by
the dashed line. As is seen in the figures, the static strategy
performs significantly worse than the other two strategies as
expected. The Opt. approach is the best of the three, with
very little performance degradation even at high MTTR values
(less than 12% in the worst case). In fact, in the heavy
workload scenario, there is a small improvement of 3.76 and
1.69 msec in the mean response time for the 0.01 and 0.1
MTTR experiments respectively. This is due to the fact that the

optimizer was able to find a better configuration than the initial
configuration, which was selected manually, for that scenario.

However, it is the LL results that provide the most insight
into the strength of the Opt. controller. Although it always
performs worse than Opt., LL is fairly competitive with the
Opt. controller in the light workload scenario for all except
the largest MTTR value. However, the situation is dramatically
different when the heavy scenario is considered. Here, the LL
controller performs significantly worse than Opt, and almost
as poorly as the static strategy. The reason is that in the light
workload, there is enough spare capacity that reconfiguration
can be performed without significantly reducing replica ca-
pacities below what is needed by the application. That is not
the case under heavy workload, and the LL controller lacks
the necessary tools to make intelligent decisions about which
components are bottlenecks. Instead, it makes decisions on
small differences in host CPU utilizations (since all of them
are high), and can end up co-locating a regenerated VM with a
bottleneck resource, with great negative impact to the response
time.

The Opt. controller correctly navigates around bottleneck
situations using its queuing model predictions. This feature
makes our proposed approach especially suitable for use in
the growing number consolidated server environments which
typically have much higher utilizations than dedicated hosting
setups.

Light Heavy
MTTR | Opt. | Static | Opt. Static
0.1 253 | 038 | 51.33 | 0.81
0.5 350 | 045 | 5532 | 0.82
1.0 431 0.52 | 59.42 | 087
2.0 5.51 0.66 | 58.56 | 0.88
TABLE I

CONTROLLER EXECUTION TIME IN SECONDS

h) Controller Execution Times: Finally, Table I shows
the measured execution time of the Opt. controller in sec-
onds. The execution time also includes an extra call to the
LQNS solver to compute the response time degradation of
the resulting target configuration which is not required in a
real deployment. Therefore, as a baseline, the results for the
static configuration, which has a do-nothing controller and
the additional LQNS execution, are also shown. From the
results, two points are worthy of note. First, the execution
times, while not high enough to cause an availability issue in
practice, are still not insignificant. Second, the execution time,
which mostly comprises the LQNS solver execution time,
depends significantly on the target system configuration. In
particular, under conditions of high utilization where multiple
CPU capacity reductions may be required, the execution time
is higher because of a larger number LQNS solver executions
during the gradient search. As can also be seen by comparing
the light and heavy workload results for the static controller,
another contributing factor is that each LQNS solver execution
also takes longer to converge in high utilization environments.
Improving the scalability of the optimizer remains the biggest
area for improvement in future work.

VI. CONCLUSIONS

In this paper, we have examined how virtual machine
technology can be used to provide enhanced solutions to the
classic dependability problem of ensuring high availability
while maximizing performance on a fixed amount of resources.
We use component redundancy to tolerate single machine
failures, virtual machine cloning to restore component redun-
dancy whenever machine failures occur, and smart component
placement based on queuing models to minimize the resulting
performance degradation. Our simulation results showed that
our proposed approach provides better availability and maxi-
mum throughput than classical approaches.

REFERENCES

[1] J. Dean, “Software engineering advice from building large-
scale distributed systems,” 2007, Stanford CS295 class lecture.
http://http://research.google.com/people/jeft/stanford-295-talk.pdf.

[2] J. R. Hamilton, “An architecture for modular data centers,” in Proc. of
the Conf. on Innovative Data Sys. Research, 2007, pp. 306-313.

[3] C. Pu, J. Noe, and A. Proudfoot, “Regeneration of replicated objects:
A technique and its eden implementation,” in Proc. 2% Int. Conf. on
Data Engineering, 1986, pp. 175-187.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. 19th ACM SOSP, 2003.

[5] VMWare, “Vmware high
virtual machine,” Accessed
vmware.com/products/vi/vc/ha.html.

[6] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,” in
Proc. SIGMETRICS, 2005, pp. 291-302.

[71 M. Bennani and D. Manesce, ‘“Resource allocation for autonomic
data centers using analytic performance models,” in Proc. 2% Intl.
Autonomic Computing Conference, 2005, pp. 217-228.

[8] I Cunha, J. Almeida, V. Almeida, and M. Santos, “Self-adaptive capacity
management for multi-tier virtualized environments,” in IM’07: Proc.
10t" IFIP/IEEE Intl. Symp. on Integrated Network Management, 2007,
pp. 129-138.

[9]1 G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Generating

adaptation policies for multi-tier applications in consolidated server

environments,,” in Proc. 5th IEEE Intl. Conf. on Autonomic Computing,

June 2008, pp. 23-32.

H. de Meer and K. S. Trivedi, “Guarded repair of dependable sys.”

Theoretical Comp. Sci., vol. 128, pp. 179-210, 1994.

K. G. Shin, C. M. Krishna, and Y.-H. Lee, “Optimal dynamic control

of resources in a distributed system,” IEEE Trans. on Software Eng.,

vol. 15, no. 10, pp. 1188-1198, Oct 1989.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live migration of virtual machines,” in Proc. USENIX

NSDI, 2005.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Wareld, “Xen and the art of virtualization,” in

Proc. 19th SOSP, 2003, pp. 164-1717.

E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel,

“Performance comparison of middleware architectures for generating

dynamic web content,” in Proc. 4th Intl. Middleware Conf., 2003.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield, “Remus: High availability via asynchronous virtual machine

replication,” in Proc. USENIX NSDI, 2008, pp. 161-174.

C. M. Woodside, E. Neron, E. D. S. Ho, and B. Mondoux, “An “active

server” model for the performance of parallel programs written using

rendezvouz,” J. Systems and Software, pp. 125-131, 1986.

G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and M. Wood-

side, “Performance analysis of distributed server systems,” in Proc. 6th

Intl. Conf. on Software Quality, 1996, pp. 15-26.

E. G. C. Jr, G. Galambos, S. Martello, and D. Vigo, Du, D.Z., Parada-

los, PM., eds.: Handbook of Combinatorial Optimization. Kulwer,

1998, ch. Bin Packing Approx. Algorithms: Combinatorial Analysis.

P. L’Ecuyer, L. Meliani, and J. Vaucher, “SSJ: a framework for stochastic

simulation in Java,” in Proc. Winter Simul. Conf., 2002, pp. 234-242.

availability
May

(HA),
2009.

restart your
http://www.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

