
 1

Abstract— Control theory has been utilized in recent years to

manage the resources in virtualized environment for applications

with time-varying resource demand. The systems under control,

including the servers and the applications, are taken as

black-boxes, and the controllers are generally expected to be

adaptive to the underline systems. However, little attention has

been paid to the behaviors of the applications themselves, and most

of time, single performance target such as the mean response time

threshold has been tracked. In this paper, we experimentally show

that more than one performance metrics have to be considered to

characterize the quality of service that the end users receive when

the performance is managed through dynamic resource allocation.

Moreover, the behavior of the applications, especially that of the

workload generators has significant effect on the quality of the

service. Our study provides insights and guidance for feedback

control design in virtualized environment.

I. INTRODUCTION

IRTUALIZATION enables sharing of physical information

technology (IT) resources in cloud computing

environments, allowing multiple services to run in different

virtual machines (VMs) in a single physical server. Workloads

for the services and the enterprise applications can fluctuate

considerably, and thus statically-configured virtual resources

are often either over-provisioned or over-loaded [1]. To deal

with the time-varying demand of the workloads, at least three

resource management strategies have been actively studied

recently for virtualized environments: capacity planning, virtual

machine migration, and dynamic resource allocation. These

techniques are complementary to one another because they

typically operate at different time scales and different scopes of

a data center. Multiple techniques were applied for sharing of

the resources, e.g., statistical multiplexing, optimization, and in

recent years control theory [1-6].

Control theoretic approaches are natural choices to tackle the

time-varying workloads through especially dynamic allocation

of virtualized resources. A few representative works follow.

Zhu et al. [1] and Padala [2-3] use an adaptive controller to

control the CPU shares to each virtual machine where the

application is held in order to meet the performance requirement.

Wang et al. [4] compares the CPU utilization and also

P. Xiong, G. Jung and C. Pu are with College of Computing, Georgia

Institute of Technology, Atlanta, GA 30332 USA. e-mail: xiong@gatech.edu,

gueyoung.jung@cc.gatech.edu, calton@cc.gatech.edu)

Z. Wang is with Hewlett Packard Laboratories, Palo Alto, CA 94304 USA.

e-mail: zhikui.wang@hp.com

.

application performance when using feed-back and

feed-forward based controller. Hellerstein et al. [5] and Diao et

al. [6] propose a MIMO controller to control the CPU

utilization and memory by tuning Apache’s KeepAlive and

MaxClient parameters. Although much progress has been made

in this area, there are at least two aspects in previous work that

can raise issues. First, a single metric like mean response time is

usually considered for individual applications, and the

performance management problem is formulated as a tracking

problem in which the performance of the application is

maintained at the target level by pushing the resource allocation

to its limit. Second, the systems under control including the

workloads and the servers are usually taken as “black-boxes”

for controller design and configuration, evaluation of the

controllers is done on single benchmark application.

In this paper, we study the performance management problem

in virtualized environment through experiments on a test bed

with multi-tier applications hosted on multiple virtual machines.

We first show that, the end-to-end performance of the

applications that can be perceived by the users has to be

characterized by multiple metrics, for instance, resource

utilization, mean response time (MRT), percentile response

time (PRT) and throughput. The performance management

problem may not be formulated as “tracking” problem. Second,

the behavior of the applications, including that of the workload

generators has to be considered for controller design and

configuration. Evaluation of the controllers has to be done on

multiple applications that can represent different practical

scenarios.

II. EXPERIMENTAL SETUP AND APPLICATION MODELS

To evaluate the quality of service provided by applications

hosted in virtualized environment, we set up test bed based on

Xen technology, and implemented feedback utilization

controllers and response time controllers that allocate the CPU

resources dynamically to the multi-tier applications.

A. Test bed, utilization control and performance control

architecture for a multi-tier application

Figure 1 shows a 3-tier web application. We used RUBiS as

the benchmark application [7]. It is an on-line auction

benchmark comprised of a front-end Apache Web server, a

Tomcat application server, and back-end MySQL database

server. Each tier of the application is hosted in one Xen virtual

machine. Our test bed consists of three machines as shown in

Study on performance management and

application behavior in virtualized environment

Pengcheng Xiong, Zhikui Wang, Gueyoung Jung and Calton Pu

V

 2

Fig. 1, one for hosting the three VMs, one for client emulator

and the last one for performance controller.

For our experimental evaluation purpose, we implemented

the nested controllers as shown in Fig. 1. In the inner loop, there

is one utilization controller for each VM. In the outer loop, a

performance controller is used for end-to-end performance

guarantee of the whole application. We use “entitlement” (u)

and “consumption/usage” (v) to refer to the CPU shares (in

percentage of total CPU capacity) allocated to a virtual machine

and the CPU share actually used by the virtual machine

respectively. We use “utilization” (r) to refer to the ratio

between consumption and entitlement, i.e, r=v/u.

A simple utilization controller is used to keep utilization

towards its target rref: u(k)= v(k-1)/rref . In our experiments, the

CPU consumption is collected using “xentop” command. The

CPU shares are entitled using “xm sched-credit-c” command.

The new CPU shares were changed every 10 seconds.

In the experiments, we use an end-to-end mean response time

controller for performance control. It sets the utilization targets

for the inner loop every 30 seconds through an integral

controller r(j)= r(j-1)+ G(MRTref –mrt(j-1))/ MRTref , to track

the MRT target MRTref. The parameter G is the integrator gain,

set to 0.1 in our experiments.

Many controllers have been developed for dynamic resource

allocation in virtualized servers The simplicity of this

architecture makes it easier to analyze and understand the effect

of factors such as application behavior on the performance of

the closed-loop system. In our experiments, the total CPU

requests from the utilization controllers are always less than the

CPU capacity to avoid resource contention, for which

arbitration is needed [5].

B. System models for the application: open or closed

Although many factors can affect the close-loop

performance, we focus on workload generators in this paper

which little attention has been paid to in previous work but

actually has significant effect on the close-loop system.

As denoted in [8], a workload generator is called closed if

new user requests are triggered only after previous requests

have been completed or timeout. The default RUBiS client

emulator, called ORC in this paper, is closed. Each session

represents a virtual user. Each virtual user connects to the

front-end Apache server using a persistent HTTP connection.

Within each session, the client generates new request after

previous request is replied, and waits for an exponentially

distributed “think time”. We denote the total number of sessions

as multiprogramming level (MPL), a parameter that represents

the intensity of the workload. There are 26 transaction types in

RUBiS. The types of the new request generated by the virtual

users are defined by a transition table. In our experiments, we

used “Browsing mix” that has 10 transaction types, e.g., Home,

Browse, ViewItem.

There are also many open workload generators, which

generates new requests independently of completion of previous

requests. We modified the original RUBiS client emulator so

that it can work as an open system, and generate new requests

with exponentially distributed thinking time. We call it MRC.

III. PERFORMANCE THROUGH UTILIZATION CONTROL

The relationship between resource utilization and end-to-end

performance has been studied and modeled extensively.

However, no much work has been done from the view point of

dynamic resource allocation. We evaluate this relationship for

the 3-tier application when the CPU shares of the VMs are

dynamically tuned through the utilization controllers.

A. Performance of the application under control

In our experiments, the applications were driven by three

types of workloads: open, closed with MPL=10, and closed with

MPL=100. We set the mean “think times” in the three cases to

35ms, 350ms, 3500ms respectively so that their average sending

rates are all approximately 28 req/sec when the response times

of the requests are much less than the think times. Utilization

targets of the VMs varied among experiments, but in each

experiment, they were kept unchanged and maintained by the

utilization controllers.

Figure 2 shows the mean response times and the utilization

levels when the utilization targets varied from 0.4 to 0.85, and

the application was driven by the three workloads. Note that the

utilization varies in our experiments due to changes of CPU

allocation, instead of workload intensity as in tradition work.

However, the mean response time in general still increases

along with the utilization, due to reduced CPU capacity

available and larger service times. Further study can be found in

[4]. Between closed and open cases, the gains from utilization to

MRT are much lower in closed cases. This difference is mainly

due to the “self-tuning” capability of the closed workload

generator, which tunes the sending rates of the requests

Figure 1 Nested controller for a multi-tier web application

0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

1200

Utilization

M
e
a
n
 r
e
s
p
o
n
s
e
 t
im
e

closed MPL=10

closed MPL=100

open

Figure 2: Relationship between utilization and MRT

 3

corresponding to the congestion conditions in the servers along

the path. It slows down when the end-to-end response times

increase and vice versa. Between the two closed cases, the case

with MPL=100 is closer to the open case. It is because when

MPL goes to infinity, the workload generator tends to behave as

an open system.

Figure 3 provides more insights on the distribution of the

end-to-end response times. It shows not only the MRT,

MRT+std, but also the 90-percentile and 95-percentile response

times as functions of the utilization levels for the closed

(MPL=10) and open systems. As we can see, for both systems,

there exists significant difference between the MRT and

percentile response times. Further study on the per-request and

per-session response times shows that, the difference can be

partially due to that of the resource demands among the requests,

a general property of Internet applications.

Response time is the main performance that the end users can

experience directly for the services. As the owners of

applications or services, more metrics have to be considered, for

instance, throughput, and resource consumption. Figure 4

compares the three systems in terms of those metrics, again, as

functions of utilization levels. As shown in Fig. 4 (a-c), in the

open case, the throughputs are always around 28req/sec in all

the experiments since the sending rates are the same. In the

closed cases, the throughput decreases along with increase of

utilization. It drops much faster in the case with MPL=10, and

much less CPU is entitled or consumed. This is again due to the

“self-tuning” capability of the workload generators. Actually,

from the principle of the closed systems, the relation between

the throughput and MRT can be approximated as follows,

MPL
Throughput

MRT ThinkTime
=

+

. (1)

Figure 4(d) compares the measurement of throughput with those

predicted based on MRT using the model. As we can see, the

model can predict the relation with trivial errors.

B. Implication for performance control

The observation of the application performance as function

of utilization levels provides us insights for definition of

performance management problems.

First, application performance cannot be guaranteed at all if

only utilization is under control. As we can see from Fig. 2, for

the same utilization settings, e.g., 80%, the mean response times

perceived by the users can be very different, depending on the

models followed by the application/workload generator.

Second, the mean response time may not be controllable for

the open system when the utilization can be pushed too high. As

we can see from Fig. 2 again, the gain from utilization to mean

response time increases exponentially along with the utilization.

For high response time target, the actual response time can be

very sensitive w.r.t. changes of the utilization, or the resource

allocations. On the other hand, the mean response time for the

closed systems can be much more controllable due to the

smooth relationship between the metric and resource allocation.

Third, the same MRT settings can result in very different

response time distribution with different workload generators.

As in Fig. 3, for the open one, the variance of the response times

can be very different with different MRT settings. When the

utilization is pushed too high, the variance can be much larger

than the MRT. Large variance also exists with the closed

systems, although in general it is much smaller than that in the

open case. Between the two types of workload generator, we can

see that, the performance that can be perceived by the end users

can be very different even with the same MRT settings.

Fourth, the same mean response time settings can result in

very different throughputs, depending again on the models the

applications follow, as seen in Fig. 4. In the closed cases, higher

response time settings can result in lower throughputs. For

example, when MPL=10, for an MRT setting of 340ms, the

throughput is around 14 req/sec, compared with 25 req/sec for a

response time setting of 60ms.

IV. CASE STUDY: PERFORMANCE GUARANTEE THROUGH

DYNAMIC RESOURCE ALLOCATION

For validation purpose, we run experiments with the MRT

actually under control of the integral controller as shown in Fig.

1. Results are found to be consistent with what we argued in

0.4 0.5 0.6 0.7 0.8
14

16

18

20

22

24

26

28

30

Utilization

T
h
ro
u
g
h
p
u
t

closed MPL=10

closed MPL=100

open

0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

Utilization

C
P
U
 e
n
ti
tl
e
m
e
n
t
(C
P
U
 s
h
a
re
s
)

closed MPL=10

closed MPL=100

open

(a) Throughput (b) Entitlement

0.4 0.5 0.6 0.7 0.8
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Utilization

C
P
U
 u
s
a
g
e
 (
C
P
U
 s
h
a
re
s
)

closed MPL=10

closed MPL=100

open

0.4 0.5 0.6 0.7 0.8

14

16

18

20

22

24

26

28

Utilization

T
h
ro
u
g
h
p
u
t

Predicted (MPL=10)

Measured (MPL=10)

Predicted(MPL=100)

Measured(MPL=100)

(c) Consumption (d) Predicted vs. Measured

Figure 4: Throughput and Utilization

0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

Utilization

R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
,
C
lo
s
e
d
,
M
P
L
=
1
0
)

MRT

MRT+std

PRT_90

PRT_95

0.4 0.5 0.6 0.7 0.8
0

1000

2000

3000

4000

5000

Utilization

R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
,
O
p
e
n
)

MRT

MRT+std

PRT_90

PRT_95

(a) Closed (MPL=10) (b) Open

Figure 3: MRT and percentile response time (PRT)

 4

previous sections. Due to space limit, Figure 5(a) shows the

trace used in one of our many experiments, which mimics the

demand of the 1998 World Cup workload [9]. The MRT was

controlled through the nested controller, while the application

was driven by the closed (MPL=10) or the open workloads. The

target was set to MRTref=350ms. Each experiment runs 90

minutes, and statistics were collected after the first 30 minutes.

Figure 5(b) and Table 1 compare the distribution of the response

times of individual requests, their mean and percentiles,

throughput in sess/sec, and also mean CPU resource utilization,

entitlement and consumption between the closed and open

systems. Even though the MRT was maintained at the same

target level in both cases, the percentile distributions were

significantly different. Less amount of CPU resource was

utilized in the closed case. However, the throughput was 30%

less than that in the open case.

Table 1. Statistics of the experiments
 Response Times (ms) CPU Resource

 mean 50-p 90p 95-p

Thr

Util Ent Con

open 349 167 714 1337 25 0.66 0.33 0.21

closed 343 244 750 1000 17 0.78 0.17 0.13

V. DISCUSSIONS AND CONCLUSION

Based on the observation from the modeling and controlled

experiments, we may claim a couple of principles on feedback

controllers design and evaluation for dynamic resource

allocation and performance guarantee.

First, the end-to-end performance management problem

may not be always formulated as a tracking problem, even for

time-varying workloads. In the closed case, there is a tradeoff

between throughput and response time as approximated by the

model (1). Pushing the MRT to a (high) threshold can

compromise the throughput significantly. One possibility is to

define the problem as a utility maximization problem to address

the tradeoff between the

cost and profit, where the

utility may be represented

as a function of both

response time and

throughput. However, as

shown in Fig. 6, the model

from MRT to throughput

can be dependent on many

factors such as MPL, and

also the systems themselves.

It would be interesting to solve the optimization problem

through online identification of the models or their parameters

behind.

Second, the metrics and the target of the metrics for

performance management have to be carefully chosen. Mean

response time may not be good enough. More metrics, for

instance, throughput, and percentile response time may be used

that can better characterize the performance the user will

experience.

Third, the systems under control may not be totally taken as

“black-boxes”. The behavior of the system under control can be

very different along with factors like the workload generators

and the operation region. Careful consideration has to be taken

to configure the controller parameters such as the gains.

When to evaluate the performance of controllers (not the

application under control), different benchmarks, e.g., open,

closed, or semi-open ones, have to be applied before conclusion

can be made on the performance of the controllers.

In summary, the experimental evaluation and analysis

provide us insights and guidance on problem formulation

controller design, configuration and evaluation for end-to-end

performance management through dynamic resource allocation.

As on-going work, we are studying systems with larger scale,

and pursuing alternative solutions to address the issues

proposed in this paper.

REFERENCES

[1] X. Zhu, Z. Wang and S. Singhal, “Utility-driven workload

management using nested control design”. Proc. of American

Control Conference (ACC), June 2006.

[2] P. Padala, K. Hou, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.

Merchant, K. Shin, “Automated Control of Multiple Virtualized

Resources”, Proc. of the Euro. Conf. on Comp. Sys., Mar 2009.

[3] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.

Merchant and K. Salem, “Adaptive control of virtualized

resources in utility computing environments”, Proc. of the Euro.

Conf. on Comp. Sys., 2007, Lisbon, Portugal, pp. 289-302.

[4] Z. Wang, Y. Chen, D. Gmach, S. Singhal, B. Watson, W. Rivera,

X. Zhu, and C. Hyser, “AppRAISE: Application-level

Performance Management in Virtualized Server Environment”,

IEEE Trans. on Networking and Service Management(to appear)

[5] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback

Control of Computing Systems, Wiley-IEEE Press, 2004.

[6] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M.

Tilbury, “Using MIMO feedback control to enforce policies for

interrelated metrics with application to the Apache Web server,”

Proc. of Net. Oper. and Mgmt. Symp., Florence, Italy, April 2002.

[7] http://rubis.ow2.org/

[8] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus

closed: a cautionary tale”, Proc. of 3rd Conf. on Networked

Systems Design & Implementation, San Jose, CA, 2006.

[9] M. Arlitt and T. Jin, “Workload Characterization of the 1998

World Cup. Web Site”, HP Tech. Rep., HPL-99-35. (1999)

0 20 40 60 80 100
0

5

10

15

20

25

Time (min)

R
e
q
u
e
s
t
ra
te
 (
s
e
s
s
/s
e
c
)

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Response Time (ms)

C
D
F

Open

Closed (MPL=10)

 (a) Traces (b) CDF of the response times

Figure 5 Dynamic performance control.

0 200 400 600 800 1000
14

16

18

20

22

24

26

28

MRT (ms)

T
h
ro
u
g
h
p
u
t
(s
e
s
s
/s
e
c
)

Predicted (MPL=10)

Measured (MPL=10)

Predicted(MPL=100)

Measured(MPL=100)

Figure 6: Throughput and

MRT for closed system

