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Abstract

In many areas such as e-commerce, mission-critical N-tier
applications have grown increasingly complex. They are
characterized by non-stationary workloads (e.g., peak load
several times the sustained load) and complex dependencies
among the component servers. We have studied N-tier ap-
plications through a large number of experiments using the
RUBIS and RUBBoS benchmarks. We apply statistical meth-
ods such as kernel density estimation, adaptive filtering, and
change detection through multiple-model hypothesis tests to
analyze more than 200GB of recorded data. Beyond the
usual single-bottlenecks, we have observed more intricate
bottleneck phenomena. For instance, in several configura-
tions all system components show average resource uti-
lization significantly below saturation, but overall through-
put is limited despite addition of more resources. More
concretely, our analysis shows experimental evidence of
multi-bottleneck cases with low average resource utilization
where several resources saturate alternatively, indicating a
clear lack of independence in their utilization. Our data
corroborates the increasing awareness of the need for more
sophisticated analytical performance models to describe N-
tier applications that do not rely on independent resource
utilization assumptions. We also present a preliminary tax-
onomy of multi-bottlenecks found in our experimentally
observed data.

1. Introduction

In modern data centers, enterprise-class N-tier systems with
web servers, application servers, and database servers are
growing in economic importance, infrastructure footprint,
and application complexity. Traditional performance anal-
ysis methods are challenged by this growth due to bot-
tleneck phenomena that so far have been considered rare
and unusual. In this paper, we show experimentally such
“unusual” phenomena and how to detect and analyze them.
Our data from system configurations reveal bottleneck cases

with different kinds of partially saturated resources, which
can be grouped according to their resource usage depen-
dence and saturation frequency into oscillatory bottlenecks,
concurrent bottlenecks, and simultaneous bottlenecks. In
order to distinguish these cases from single-bottlenecks,
which have traditionally been recognized as predominant
saturation phenomenon, we use the umbrella-term of multi-
bottlenecks.

Multi-bottlenecks have been previously studied in system
theory [1]-[3] and system analysis [4], [5]. However, clas-
sical computer performance analysis [6], [7], which started
with stable workloads on mainframes, is traditionally re-
stricted to detecting single-bottlenecks. Typical assumptions
of analytical models (e.g., mean value analysis in queuing
theory) are the independence of arriving tasks and service
times. Partially motivated by the growth of N-tier systems,
some recent performance models have moved beyond these
assumptions. Consequently, the importance of bursty work-
load conditions [8], [9] and non-stationary workload in
general [10] have been recognized. Nevertheless, average
utilization values remain the method of choice in top-down
N-tier system analysis [11]-[14]. When mentioned [9], [11],
phenomena such as multi-bottlenecks in N-tier applications
have been described as ‘““challenging case”.

In this paper we analyze experimental results with multi-
bottlenecks. We show that these bottlenecks may happen
while system components show average resource utilization
significantly below saturation. Figure 1 exemplifies this
case by contrasting the throughput and response time of
a saturated RUBBoS experiment with the corresponding
candidate-bottleneck resources. While there is an obvious
correlation between system throughput and database CPU
utilization, the question why this correlated resource does
not seem to saturate remains unanswered. Because none of
the resources show full resource utilization levels, standard
approaches to bottleneck detection in N-tier systems (e.g.,
[15]) are not able to diagnose them. However, instead
of attributing the obvious performance limitation to some
hidden (i.e., unmonitored) resource, we show—using our



methodology—that the observed throughput limitation is due
to an oscillatory bottleneck in the database where CPU and
disk saturate alternatively (see Section 6).

The main contribution of this paper is threefold. First, our
experimental evaluation of N-tier application benchmarks
(i.e., RUBiS and RUBBo0S) documents the presence of
presumed unusual multi-bottlenecks. Second, we introduce
a simple classification of multi-bottlenecks that enables the
detection of the observed phenomena. Third, using statistical
methods such as kernel density estimation, adaptive filtering,
and change detection through multiple-model hypothesis
tests, we show how to detect multi-bottlenecks with an effi-
cient top-down approach, even if average resource utilization
is significantly below saturation.

The remainder of this paper is structured as follows. In
Section 2 we introduce the simple classification of multi-
bottlenecks that is used in our analysis. In Section 3 we
outline the necessary methods for statistical interpretation of
the measurement data. Section 4 presents the experimental
setup and infrastructure. Section 5 shows a scenario with
seven concurrent bottlenecks. In Section 6 we present two
different oscillatory bottleneck cases. Related work is sum-
marized in Section 7, and Section 8 concludes the paper.

2. Simple Classification of Multi-bottlenecks

The common understanding of a system bottleneck (or
bottleneck for short) can intuitively be derived from its
literal meaning as the key limiting factor for achieving
higher system throughput. Hence, an improvement to the
throughput of the bottleneck resource results in the highest
possible system throughput improvement [6], [16]. Classical
queuing theory defines the set of bottlenecks in a queuing
system as follows. B is the set of all resources ¢ that reach
full utilization U; when N, the number of jobs in the system,
tends to infinity under stable class-mix conditions [1].

B= {z Jim Ti(N) = 1} (1)

Due to their simplicity and intuitiveness, definitions sim-
ilar to Equation (1) have usually provided the foundation
for reasoning about bottleneck behavior in computer system
performance analysis. But despite their popularity, such for-
mulations are based on assumptions that do not necessarily
hold in practice. In other words, we show experimentally that
Equation (1) does not allow correct identification of bottle-
necks in the case of empirical N-tier application monitoring
data. Our data suggest that resources in N-tier applications
cannot generally be assumed to exhibit independent utiliza-
tion. In fact, bottlenecks may be comprised of more than
one physical resource. Similarly, the dimension of time has
to be taken into account in N-tier systems, which may be
subject to very strong workload fluctuations. Therefore, the
assumption of stable class-mix conditions has to be relaxed
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Figure 2. Simple multi-bottleneck classification.

as well. Finally, an infinite number of users is not technically
feasible, hence, the assumption of full resource utilization
has to be adapted to actual monitoring conditions.

Since our data show that the aforementioned assumptions
may be too rigid, the need arises to classify the observed
phenomena in an alternate way. But before doing so through
a formal set of definitions in the later part of this section,
we first establish the key differences between our taxonomy
and common approaches to N-tier bottleneck detection.
Because of queuing theory, the term bottleneck is often used
synonymously for single-bottleneck. In a single-bottleneck
cases, the saturated resource typically exhibits a near-linearly
load-dependent average resource utilization that saturates
at a value of one past a certain workload. Consequently,
such bottlenecks are straight-forward to detect. However,
the characteristics of bottlenecks may change significantly
if more than one bottleneck resource is present in the
system, which is the case for many real N-tier applications
with heterogeneous workloads. Therefore, we distinguish the
phenomena discussed in this paper from single-bottlenecks
by using the umbrella-term multi-bottlenecks.

Because system resources may be causally dependent in
their individual usage patterns, multi-bottlenecks introduce
the classification dimension of resource usage dependence.
Additionally, greater care has to be taken in classifying
bottleneck resources according to their resource saturation
frequency. We distinguish between resources that saturate
for the entire observation period (i.e., fully saturated) and
resources that saturate for only certain parts of the period
(i.e., partially saturated). Note that previous efforts in this
area have typically omitted the notions of dependence and
saturation frequency in their analysis (e.g., [15]).

Figure 2 summarizes the classification that forms the basis
of our multi-bottleneck detection. The x-axis and y-axis
represent resource saturation frequency and resource usage
dependence, respectively. During our extensive empirical
evaluation, we have only observed three of the four possible
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Figure 1. 1/2/1/1L RUBBo0S experiment with read/write workload.

combinatoric cases, which suggests that if resources exhibit
full saturation, their resource utilization is not dependent
on any other saturated resource. Under this assumption,
multiple fully saturated resources, imply resource usage
independence, which is classified as simultaneous bottleneck
case. A well-known example of systems with resources that
are resource usage independent are embarrassingly parallel
applications. Concurrent bottlenecks happen if multiple re-
sources saturate independently of each other, but only for
a fraction of the observation period. As the load increases,
a concurrent saturation pattern may transform into simul-
taneous saturation. The most notable characteristic of usage
independent resources is that each resource’s saturation may
be evaluated separately. On the contrary, the detection of
oscillatory bottlenecks is more challenging because multiple
resources form a combined bottleneck, which can only
be analyzed and resolved in union. Oscillatory bottlenecks
consist of partially saturated resources and are caused by
resource usage dependencies (e.g., load-balancing policies)
that are an inherent characteristic of complex N-tier systems.
Such dependencies result in a usage alternation between the
saturated resources (i.e., there is no overlapped saturation),
which is observable as interleaved saturation patterns. The
latter may cause particularly low average saturation for every
singel resource, and observable saturation frequency can be-
come difficult to interpret. Therefore, it is inevitable to take
resource usage dependence into account in multi-bottleneck
detection. We find that once resources are grouped according
to their usage dependence, it is possible to compute their
combined frequency and derive a representative measure for
the bottleneck magnitude.

Given these findings, the following definitions are
sufficient for a simple multi-bottleneck classification.
The resulting generic schema may be parameterized in a
concrete setting, such as presented in this paper, and utilized
to detect bottlenecks in N-tier application monitoring data.
In the following, we augment the definitions with our
concrete parameter choices, leaving sensitivity analysis and
parameterization comparisons as an interesting topic for

future research.

Critical saturation. System resource © € I, where I is
a set of system resources, is critically saturated for an
observation interval t of length A > 0 iff its utilization
exceeded a saturation threshold o € [0, 1] for this interval,
whereby « is referred to as the critical saturation threshold.

We found that parameterizing tuple (A, ) with 1 second
and 95%, respectively, leverages workload fluctuation,
technical feasibility, and standard statistical significance
well in our data. Set I consists of all monitored resources,
which are all CPUs, disks, and network links in our testbed.

Resource saturation frequency. The resource saturation
frequency f}é (or frequency for short) of resource i € I is
the number of intervals with critical saturation divided by
the total number of intervals in observation period A.

We adopted the system observation period A equal to the
experiment runtime of 8 minutes. Therefore, the resource
saturation frequency fJ, indicates how often resource
demand exceeded the capacity of resource ¢ during runtime.

Fully saturated resource. A fully saturated resource i € I
has maximal saturation frequency; i.e., fr ~ 1.

We found that f}é > 0.95 constitutes a convenient detection
rule for full saturation of resource <.

Partially saturated resource. A partially saturated
resource © € I is not fully saturated, but has a non-
negligible saturation frequency; i.e., fi € (0,1).

We found that 0.01 < f4 < 0.95 constitutes a convenient
detection rule for partial saturation of resource %.

Bottleneck resource. A bottleneck resource b € I is either
a fully saturated resource or a partially saturated resource.

Resource usage dependence. A bottleneck resource by € I
is resource usage dependent (or dependent for short), if
there exists another bottleneck resource by, € I such that
their binary critical saturation states B € {0,1} and



B}, € {0,1} have a mutually exclusive relationship for any
given interval t; i.e., Prob(B§ =1AB, =1) < e with
0<e<x1foralltinA.

We found that this definition implies an intuitive rule in
a top-down approach to bottleneck detection. Because
of the mutual exclusion property, dependent bottleneck
resources do not exhibit overlap of critical saturation
intervals among each other. Even at very high workloads,
such overlap has a statistically insignificant probability;
e.g., Prob(overlap) < 5%.

Resource usage independence. A bottleneck resource
bj € I is resource usage independent (or independent for
short), if there exists no other bottleneck resource by € I
such that their binary critical saturation states B} € {0, 1}
and B}, € {0,1} have a mutually exclusive relationship for
any given interval t; i.e., Prob(B} = 1A By = 1) > ¢ with
O0<e<1lforalltinA.

In contrast to dependent bottleneck resources, independent
bottleneck resources show a clearly increasing overlap of
critical saturation intervals with growing workload; e.g.,
Prob(overlap) > 5%.

Single-bottleneck. A single-bottleneck € I is either a
fully saturated bottleneck resource or partially saturated
bottleneck resource iff there exists only one bottleneck
resource in the system.

Oscillatory bottleneck. An oscillatory bottleneck § C 1
is a set of partially saturated, resource usage dependent
bottleneck resources iff there exist more than one bottleneck
resource in the system.

In this paper, we focus on the maximal set of resources
that form an oscillatory bottleneck. The study of subsets of
resources in such oscillations is a subject of future research.

Concurrent bottleneck. A concurrent bottleneck 5 € I is a
partially saturated, resource usage independent bottleneck
resource iff there exist more than one bottleneck resource
in the system.

Simultaneous bottleneck. A simultaneous bottleneck 3 € I
is a fully saturated, resource usage independent bottleneck
resource iff there exist more than one bottleneck resource
in the system.

Multi-bottleneck. A multi-bottleneck is either an oscillatory
bottleneck, a concurrent bottleneck, or a simultaneous
bottleneck.

Bottleneck. A bortleneck is either a single-bottleneck or a
multi-bottleneck.

Bottleneck saturation frequency. The bottleneck saturation
[frequency fg (or frequency for short) of bottleneck 3 is the
number of intervals where at least one of the bottleneck

resources in (3 is critically saturated divided by the total
number of intervals in observation period A.

The bottleneck saturation frequency indicates how often
resource demand exceeded the capacity of any of the
resources that are analyzed in union due to their strong
usage dependence. Hence, this measure allows the
assessment of how often a system under examination
suffered of a particular performance limiting phenomenon.

Primary bottleneck. The primary system bottleneck is the
bottleneck with the highest bottleneck saturation frequency.

Note that there can be more than one primary bottleneck
and that any single-bottleneck or simultaneous bottleneck is
also a primary bottleneck by defintion.

3. Statistical Data Interpretation

In the following we provide a brief overview of the most
important statistical concepts that formed the basis of our
data analysis. Since real systems are typically subject to
variable request characteristics, it is necessary to analyze
the distributions of resource utilization values to infer actual
saturation characteristics. However, histograms are often
poor estimates of unknown density functions [17], therefore,
we chose estimation through kernel densities [18], instead.
Given a finite sample X,..., Xo from a univariate distri-
bution, the unknown density function g can be estimated
from the observed data using kernel regression. Although
literature offers various kernel functions, the symmetric
Gaussian density is a popular choice in density estimation.
Given a value z, the kernel function ¢, and a smoothness
parameter h (i.e., “bandwidth”) the density estimator g,
takes the following form.

jom LN (22X
gc—nzh< - ) @

There are different approaches to calculating bandwidth h.
We choose a common strategy (i.e., AMISE estimation [18]),
which simplifies to estimation with the sample standard
deviation estimate &.
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An example of a resulting three-dimensional density graph
is shown in Figure 4(a).

In the analysis of multi-bottlenecks, it is further necessary
to asses the dependence relationship of resources in excess of
their relative probabilities. In order to reduce the complexity
of this analysis in an efficient top-down approach, it is
possible to segment the monitoring data into piecewise con-
stant functions. This method provides intuitive aggregation
and reduces the data size significantly compared to bottom-
up analysis. Such a segmenting problem is also known




(a) Software setup

(b) Hardware node setup

(c) Sample topology (1/2/1/2L)

[ Classification | Software | [ Type ] Components | Web Cluster

Web server Apache 2.0.54 Normal Processor Xeon 3GHz 64-bit s e(:vc;r middle-

Application s Ap. Tomcat 5.5.17 Memory  2GB ware L
pplication server JOnAS 4.6.6 @ Network 6 x 1Gbps —

Cluster middleware C-JDBC 2.0.2 Disk 2 x 146GB 10,000rpm

Database server gszjShQLF%gﬂa Low-cost | Processor PIIl 600Mhz _ 32-bit L

i edhat M 256MB

Operating system emory
P £ y Kernel 2.6.12 @ Network 5 x 100Mbps ————

System monitor Systat 7.0.2 Disk 13GB 7,200rpm App- DB-

servers

servers

Table 1. Details of the experimental setup on the Emulab cluster.

as adaptive filtering problem that detects abrupt changes
in streams of noisy data and has been previously studied
in signal processing. Therefore, we perform an automated
multiple-model hypothesis test on a set of signal estimation
models, which are based on different assumptions each, to
divide the measured time series into segments according to
piecewise constant mean and variance models [19]. Given
the time index ¢, the noise measure e, the parameter vector
6, and the noise variance -y, each signal y can be expressed
as follows.

y(t) =0(t) +e(t) 4)
Ee(t)” = ~(t) 5)

In our case y(t) in (4) is identical to X; in (2). The set of
final change times is determined algorithmically [19]. This
approach is directly interpretable as characterization of each
stable interval of the piecewise constant resource utilization
functions. We characterize each utilization interval with
respect to being statistically distinguishable from critical
saturation (see Section 2). Such a classification is performed
for each bottleneck resource metric, and the results can be
summarized in a simple graph for the entire system (e.g.,
Figure 4(d)).

4. Experimental Setup

Among N-tier application benchmarks, RUBBoS and
RUBIS have been used in numerous research efforts due to
their real production system significance. In our experiments,
the run consist of an 8-minute ramp-up, a 12-minute run
period, and a 30-second ramp-down. Performance measure-
ments (e.g., CPU or network utilization) are taken during
the run using Linux account logging utilities (i.e., Sysstat)
with one-second intervals.

RUBBoS [20] is an N-tier e-commerce system modeled
on bulletin board news sites similar to Slashdot. The bench-
mark can be implemented as 3-tier (web server, application
server, and database server) or 4-tier (with the addition of
cluster middleware such as C-JDBC) systems. The bench-
mark places high load on the database tier. The workload

consists of 24 different interactions (involving all tiers)
such as register user, view story, and post comments. The
benchmark includes two kinds of workloads: browse-only
and read/write interaction mixes.

RUBIiS [21] is an N-tier system benchmark modeled
on online auction sites such as eBay. The benchmark can
be implemented as a 3-tier, 4-tier, or 5-tier system. We
have chosen a configuration consisting of web server, web
container, EJB container, cluster middleware, and database
server. Web and EJB containers are deployed together on
the same physical nodes. The benchmark usually places a
high load on application servers. The workload consists of
26 interactions such as register user, sell item, and place bid.
RUBIS includes two kinds of workloads: browse-only and
read/write interaction mixes.

The experiments used in this paper were run in the
Emulab testbed [22] with various types of servers. Table 1(b)
contains a summary of the hardware used in our exper-
iments. Normal and low-cost nodes were connected over
1,000 Mbps and 100 Mbps links, respectively. The exper-
iments were carried out by allocating a dedicated physical
node to each server. In the initial setting all components
were normal nodes. As an alternative, database servers
were also hosted on low-cost machines. We use a four-
digit notation #W/#A/#C/#D to denote the number of web
servers, application servers, cluster middleware nodes, and
database servers. The server node type is either normal
or low-cost (“L”). If a specification is omitted, it can be
assumed that the default node type (i.e., normal) has been
used. A sample topology of an experiment with one web
server, two application servers, one cluster middleware node,
and two low-cost database servers (i.e., 1/2/1/2L) is shown
in Table 1(c).

The presented dataset is part of an ongoing effort, for
which we have run a very high number of experiments
over a wide range of configurations and workloads. A
typical RUBIiS or RUBBoS experimentation cycle requires
thousands of lines of code that need to be managed for
each experiment. The experimental data output are system
metric data points (i.e., network, disk, and CPU utilization)
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Figure 3. Average throughput and response time of a
1/6/1/1L RUBIS experiment with browse-only workload
an throttled database network bandwidth (2 Mbps).

in addition to higher-level monitoring data (e.g., response
times and throughput). Although the scripts contain a high
degree of similarity, the differences among them are subtle
and important due to the dependencies among the varying
parameters. Maintaining these scripts by hand is a notori-
ously expensive and error-prone process.

To enable experimentation at this scale, we employed
an experimental infrastructure created for the Elba project
[23] to automate system configuration management, partic-
ularly in the context of N-tier system staging. The Elba
approach [12] divides each automated staging iteration into
steps such as converting policies into resource assign-
ments [24], automated code generation [25], benchmark
execution, and analysis of results.

5. Concurrent Bottlenecks

In this section we show a RUBiS benchmark experiment that
exhibits concurrent saturation of application server CPUs
and the database network link. More concretely, these data
are obtained with a 1/6/1/1L RUBIS configuration using the
browse-only interaction mix. Traffic shaping (implemented
by the packet scheduler modules in the Linux NET3 kernel)
has been used to throttle the network bandwidth between
the application servers and the database server. Packets are
added to a scheduler queue tree and shaped corresponding
to a 2Mbps bandwidth limit using the drop-tail queuing
discipline. The system workload ranges between 500 and
1,400 users in steps of 100.

Figure 3 summarizes the overall system performance,
which is observable in the clients. The throughput increases
near-linearly up to the performance knee at around 800
concurrent users where the rate saturates at around 140
interactions per second. Similarly, the average response time
exceeds six seconds past a workload of 800 users. Evidently,
there is at least one bottleneck in the system that needs to
be identified through a detailed analysis.

Figure 4 shows the summary of the bottleneck analysis
for this scenario. The bottlenecks in the system are best

illustrated by studying their resource utilization as a function
of workload. The three density graphs in Figures 4(a), 4(b),
and 4(c) show the increasing demand peak (z-axis) on the
resource utilization (x-axis) as the workload grew from 500
to 1,400 users (y-axis). More specifically, the three density
graphs contrast the changes in the resource consumption
profiles of bottleneck resources (i.e., application server
CPUs and database network) and non-saturated resources
(i.e., database CPU). Note that the application server CPU
graph is representative of all application servers. While the
first graph (Figure 4(a)) shows the continuous saturation of
the network bandwidth at 250 KBps (consistent with the
link shaping parameter of 2 Mbps), the application server
CPU utilization (Figure 4(b)) transitions from a normal
to a multimodal saturated curve shape with a dominating
mode at the upper capacity limit. This multimodality, which
causes average utilization values to be misleadingly low, is
the result of an unstable resource consumption profile due
to non-stationary request sequences. For higher workloads
the application server CPUs vary between being critically
utilized and being underutilized. Overall, the seven saturated
system resources limit the number of tasks going into the
database server. Therefore, its CPU remains unsaturated,
and its utilization density retains its normal shape despite
growing intensity throughout for the entire workload span
(Figure 4(c)).

In order to precisely characterize whether the uncovered
bottleneck resources are concurrent or oscillatory bottle-
necks, we estimated the saturation frequencies of each
resource and visualized them in Figure 4(d). Although
there are fourteen different combinations, the concurrent
character of the seven bottlenecks is apparent. There is
a clear linear decrease in probability of non-overlapping
bottleneck states, and a corresponding linear increase in
overlapping bottleneck states as the workload grew to 1,400
users. For workloads higher than 1,000, the probability of
states without critical saturation of at least one resource is
statistically insignificant. Both, the frequency of the net-
work bottleneck and the CPU bottlenecks are solely load-
dependent, which implies saturation-independence among
the resources. Because non of the resources is fully sat-
urated, we can conclude that the system suffers of seven
concurrent bottlenecks in the six application sever CPUs and
the database network link.

6. Oscillatory Bottlenecks

A common assumption in computer system performance
analysis is that low average resource utilization implies
absence of saturation. However, in the following we show
that a standard RUBBoS read/write mix workload may
causes request sequences in the database that result in
alternating partial resource saturation with particularly low
average resource utilization. While Section 6.1 details a
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Figure 4. Detailed bottleneck analysis of a 1/6/1/1L RUBIS experiment with browse-only workload an throttled

database network bandwidth (2 Mbps).

scenario with an oscillatory bottleneck within a single node,
Section 6.2 shows an example of an oscillatory bottleneck
with eight resources distributed in the database tier.

6.1. Within-node Dependences

As previously shown in Figure 1(a), the 1/2/1/1L RUBBoS
scenario under read/write workload exhibits a clear overload
pattern past workloads of 3,000 user. Nevertheless, the
average utilization values for candidate bottleneck resources
(Figure 1(b)) remain far from saturation. Although the
comparison of these two figures reveals a strong correlation
between system throughput and database CPU utilization,
the CPU utilization seems to saturate at an average of less
than 80 percent.

In order to diagnose the system bottlenecks, we turn to
Figure 5. The analysis of Figures 5(a) and 5(b) yields the ex-
planation of the previously observed low utilization values.
In fact, the two examined densities (database CPU and disk)
are both bimodal with two distinct concentration sectors for
the entire workload span. Both utilization metrics seem to
vary between low and high values during the experiment
time. A sample examination of the two time series for
a short interval of runtime for 12,000 users (Figure 5(c))
seems to support this impression. However, it is important
to note that such an examination is not scalable and requires
human intuition to derive insights in the actual system
behavior. Therefore, we automatically summarize the metric
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Figure 6. Average throughput and response time of a
1/1/1/8L RUBBO0S experiment with read/write workload.

data in Figure 5(d), which reveals two bottleneck resources
with four saturation states for the entire workload span.
Clearly, overlapping saturation is extremely rare. The ratio
of time fractions for the two non-overlapped bottleneck state
seems to be relatively stable, which further strengthens the
assumption of high dependence between the two bottleneck
resources. Consequently, the reason for the system saturation
lays in an oscillatory bottleneck with interleaved saturation
of database CPU and disk. A thorough log analysis reveals
that if many long queries are bottlenecked at the database
disk, the CPU remains idle since it is waiting for I/O, and
no new request are admitted to the node. This causes the
observed exclusive saturation pattern.
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Figure 5. Detailed bottleneck analysis of a 1/2/1/1L RUBBo0S experiment with read/write workload.

6.2. Between-Node Dependences

The performance metrics of a 1/1/1/8L. RUBBoS deployment
under standard read/write workload for 1,000 to 13,000
concurrent user sessions shown in Figure 6 reveal system
saturation past a workload of 4,000 users. The analysis,
necessary to infer the underlying bottlenecks, is summarized
in Figure 7. Figure 7(a) shows that the CPU utilization in the
database does not reach critical levels during the experiment
time. Consequently, this resource can be disregarded as
bottleneck candidate. The inspection of the density graph
for the disk utilization in the first database (representative
of all eight databases) reveals slightly elevated density values
at the high tail of the right-skewed density (see Figure 7(b)).
Unlike the previous examples, these values do not seem to
explain the overall performance deterioration at first sight.
The elevation levels are constant, and their overall prob-
ability remains significant but small throughout the entire
experiment. In other words, the resource shows a saturation
behavior, which is very infrequent during the runtime. This
could suggest a strongly oscillating bottleneck with a large
number of bottleneck resources. Such an interpretation is
further supported by Figure 7(c), which shows the density
for the maximal disk utilization among all eight databases.
Past a workload of 3,000 users, the maximal value is always
higher than 50 percent, and a dominant peak has appeared
at the high percentiles. This means that the system exhibits

a high utilization in at least one of the database disks at all
times for higher workloads.

Nonetheless, the question remains whether the bottleneck
resources saturate dependently. While a sample manual eval-
uation of the resource utilization time series (see Figure 7(d))
does not yield clear results due to the magnitude of the
variability, the automated partitioning used to generate Fig-
ure 7(e) reveals the oscillatory character of this bottleneck.
The probability plots are strongly dominated by two system
states (i.e., single database disk bottleneck or no bottleneck
at all). There is virtually no overlap between the saturation
of the eight resources. The rarely observed overlap can be
attributed to the noise that is introduced into the data by
each resource and by the stochastic aggregation method.
Therefore, we can conclude the the performance limitation in
this scenario is caused by an oscillatory bottleneck with eight
saturation-dependent, partially saturated database disks. A
detailed log analysis shows that because of the workload dis-
tributing capabilities of C-JDBC and the relative infrequency
of overly long queries, the bottleneck is strongly distributed
among the eight resources. The interleaved saturation is
caused by the default C-JDBC replication policy, which
waits for the completion of all concurrent write-requests
before committing. Writes are always immediately sent to
all databases (i.e., multi-master replication), thus the entire
system is bottlenecked if one database node saturates.
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Figure 7. Detailed bottleneck analysis of a 1/1/1/8L RUBBo0S experiment with read/write workload.

7. Related Work

Traditional performance analysis in computer systems pre-
sumes models based on expert knowledge, employs standard
statistical methods, and parameterizes them based on a
certain experimentation design [6], [7]. Queuing models
have been common practice in many research efforts dealing
with performance prediction [26], [27]. Although these
approaches have been applied very successfully, they suffer
from their rigid assumptions when handling all evolution of
large applications. The availability of extensive instrumenta-
tion data profiles [26] or constant mean inter-arrival times of
request [27] do not hold in general since actual parameters
vary widely in real applications. The characteristic load
non-stationarity in N-tier systems has been exploited for
performance prediction by Stewart et al. [10], who also
explain how their anomaly detection can be used to invoke
a bottleneck detection process such as the one presented in
this paper.

Statistically induced models have been recently used to
remove human intervention from the loop [28]-[30], and
extensive experiments have been conducted to compare
different bottleneck detection methodologies [31]. Never-
theless, all these algorithmic approaches explicitly correlate
high-level application performance with low-level system
behavior. In this paper, we solely use performance degra-
dation patterns as a trigger for our analysis, similarly to

real system administrators [32]. In practice, many computer
manuals possess a performance tuning section, which typi-
cally relies on specialized “rules of thumb”. Additionally,
commercial tools (e.g., HP Open View or IBM Tivoli)
offer the possibility of inspecting an abundant variety of
metric data graphically without clear aggregation and anal-
ysis frameworks. Some discussion on a two-dimensional
bottleneck characterization in RUBiS and RUBBoS has been
previously provided by Amza et al. [13]. However, this
approach solely relies on manual human diagnosis and only
targets stable bottleneck characterization with small-scale
experimentation.

In contrast to our work, previous bottleneck detection
research in computer systems has built upon an extremely
detailed understanding of the systems (e.g., invasively in-
strumented central system [33]) or an analysis confined
to a small resource subset (e.g., network traffic or soft-
ware configurations [5]). Methods for bottleneck detection
and analysis have also been also discussed in literature
on simulation in areas such as industrial production [4].
The latter work emphasizes a technique for dealing with
shifting bottleneck behavior based on resource utilization.
The notion of ordering bottlenecks by severity with the help
of resource demand distributions has been introduced by
Luthi [3]. He provides proof that approximating distributions
with histograms yields a higher precision than conventional
methods. Unlike our observation-based work, both these



approaches remain very generic without inference of domain
specific phenomena.

8. Conclusion

For mission-critical applications such as e-commerce, N-tier
systems have grown in complexity with non-stationary work-
loads and inter-task dependencies created by requests that
are passed between the various servers. These complicating
factors create multi-bottlenecks such as oscillatory bottle-
necks (where inter-task dependencies cause the bottleneck to
migrate among several resources) and concurrent bottlenecks
(where multiple bottlenecks arise among several resources).
Multi-bottlenecks are non-trivial to analyze, since they may
escape typical assumptions made in classic performance
analysis such as stable workloads and independence among
tasks.

In this paper, we describe an experimental study of
multi-bottlenecks using a large dataset of N-tier application
benchmark data. We used techniques and tools developed
for automated system management (e.g., code generation
for experimental scripts) to collect more than 200GB of
measurement data on the N-tier application benchmarks
RUBIS and RUBBoS. Using statistical techniques such as
kernel density estimation, we show that multi-bottleneck
phenomena arise naturally in sufficiently complex N-tier
systems. For instance, in 72.2% of our RUBBoS experiments
with low-cost database nodes (e.g., Section 6), we were
able to identify oscillatory bottlenecks, and in 83.7% of
our RUBIS experiments, we found either concurrent or
simultaneous bottlenecks (e.g., Section 5). Furthermore, it
is non-trivial to reveal multi-bottlenecks since they often
happen when no single-bottleneck is visible (i.e., average
resource utilization well below saturation for all resources).
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