Generating Adaptation Policies for Multi-Tier Applications in Consolidated
Server Environments

Gueyoung Jungf

fCollege of Computing
Georgia Institute of Technology
Atlanta, GA, USA

{gueyoung. jung, calton}@cc.gatech.edu

Abstract

Creating good adaptation policies is critical to building
complex autonomic systems since it is such policies that de-
fine the system configuration used in any given situation.
While online approaches based on control theory and rule-
based expert systems are possible solutions, each has its
disadvantages. Here, a hybrid approach is described that
uses modeling and optimization offline to generate suitable
configurations, which are then encoded as policies that are
used at runtime. The approach is demonstrated on the prob-
lem of providing dynamic management in virtualized con-
solidated server environments that host multiple multi-tier
applications. Contributions include layered queuing mod-
els for Xen-based virtual machine environments, a novel
optimization technique that uses a combination of bin pack-
ing and gradient search, and experimental results that show
that automatic offline policy generation is viable and can be
accurate even with modest computational effort.

1 Introduction

The problem of deciding how to adapt systems to chang-
ing environments is the essence of autonomic computing.
Many techniques have been proposed for such decision
making: stochastic models (e.g., [9], [3], [22], [8], [20]),

This research has been partially funded by National Science
Foundation grants ENG/EEC-0335622, CISE/CNS-0646430, CISE/CNS-
0716484, AFOSR grant FA9550-06-1-0201, IBM SUR grants and Fac-
ulty Partnership Award, Hewlett-Packard, and Georgia Tech Foundation
through the John P. Imlay, Jr. Chair endowment. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National
Science Foundation or other funding agencies and companies mentioned
above.

Kaustubh R. Joshi*
Richard D. Schlichting?

Matti A. Hiltunen?
Calton Puf

AT&T Labs Research
180 Park Ave.
Florham Park, NJ, USA

{kaustubh, hiltunen, rick}@research.att.com

reinforcement learning (e.g., [19]), and control theory (e.g.,
[18]). Although the details are different, each follows a
similar pattern: construct a parametric model of the tar-
get system (e.g., queuing model), fix some model param-
eters through measurement or learning, devise a strategy
for optimizing the remaining parameters using the runtime
state as input, implement the strategy in an online controller
that is periodically provided with the measured runtime sys-
tem state, and use the recommendations of the controller to
adapt the system.

The disadvantage of online controllers is that by gener-
ating decisions algorithmically and only on demand, they
may give rise to undesirable emergent properties, impede
the ability of administrators to understand system behav-
iors, and ultimately, reduce the predictability of the target
system. While some techniques—most notably control-
theoretic ones—attempt to remedy concerns of unpre-
dictable and undesired behaviors by proving stability prop-
erties of the control algorithms, by doing so they limit the
system models in significant ways (e.g., through linearity
assumptions) or run the risk that the guarantees are invali-
dated if the assumptions are not met. In contrast, rule-based
expert systems address autonomic management using rules
written by domain experts and executed using engines such
as HP Openview. Unlike online approaches, the use of pre-
determined rule bases provides predictability, but with the
drawback that the rules are often hard to write and cumber-
some to maintain given their tight linkage to the underlying
system.

We propose a novel hybrid approach for enabling auto-
nomic behavior that provides the best of both worlds. It
uses queuing models along with optimization techniques to
predict system behavior and automatically generate optimal
system configurations. Rather than producing these config-
urations on demand at runtime, they are produced offline to

feed a decision-tree learner that produces a compact rule set
(or adaptation policy) that can be directly used in rule en-
gines, audited, combined with other human-produced rules,
or simply used to aid domain experts in writing and main-
taining management policies. This approach of producing
entire decision rule sets offline has another benefit as well—
the modeling solution and optimization is entirely removed
from the critical path of the system during runtime. There-
fore, it is possible to model and optimize ever larger and
more complex systems.

Although the approach is general, we focus on the prob-
lem of efficiently allocating resources in consolidated server
environments. Server consolidation through virtualization
is increasingly seen as a cost-effective way to meet the enor-
mous demands of space, hardware, and energy of modern
multi-tier enterprise systems. By hosting applications on
virtual machines, resources can be shared between appli-
cations at a very fine grain (e.g., CPU cycles). However,
doing so raises significant challenges such as the need to
handle very different responsiveness and performance re-
quirements of different applications, and the ability to deal
with dynamic changes in resources demands as the appli-
cation workloads change. Fundamentally, the management
question is how to provision the applications to maximize
the utility provided, while considering service level agree-
ments (SLAs), resource availability, and workloads.

Resource provisioning in multi-tier systems is difficult
even without fine grain dynamic resource allocation, and
consolidated server environments make the problem even
harder. The models required are more complex than in prior
work on multi-tier enterprise systems (e.g., [21], [7]); not
only must they accurately predict the application response
time, but also its resource utilization. Furthermore, the
model must factor in the impacts of the virtualization en-
vironment. Because of the multiple applications, resources,
and fine-grain provisioning, the optimization space of pos-
sible system configurations is very large. Finally, because
an offline policy is generated using only a subset of the pos-
sible runtime scenarios, it must be shown that any perfor-
mance lost by using such an inexact policy does not invali-
date the overall approach.

Overall, this paper makes two distinct contributions.
First, it develops a novel approach to the construction of
adaptive systems by moving the decision making process
offline out of the critical runtime path, and explicitly repre-
senting automatically generated policies as human-readable
rules. Second, it provides an end-to-end solution for solv-
ing the problem of dynamic resource management in vir-
tualized, consolidated server environments hosting multiple
multi-tier applications through the use of layered queuing
models, a unique combination of optimization techniques,
and offline rule generation.

2 Problem Statement

We begin by defining the class of applications consid-
ered, and their computing environment. Consider a pool
of computing resources R and a set of multi-tier applica-
tions A. For each application a € A, let N, be the set
of its constituent node types (e.g., web server, database),
and for each node type n € N,, let reps(n) be a set of al-
lowed replication levels. Choosing a replication level for
each type results in a set N¥ of actual nodes in the sys-
tem. For example, a web application consisting of a Tom-
cat application server with up to 3 replicas and an unrepli-
cated MySQL database has reps(tomcat) = {1,2,3} and
reps(mysql) = {1}. If the Tomcat server is replicated
twice in a particular configuration, then the set of nodes
NP = {tomcaty, tomcaty, mysql, }.

Each application a may also support multiple transaction
types T, = {tl, ... JLT"‘}. For example, the RUBIS [4]
auction site benchmark used in our testbed has transactions
that correspond to login, profile, browsing, searching, buy-
ing, and selling. The workload for the application can then
be characterized by the set of request rates for each of its
transactions, or w, = {w!|t € T,}, and the workload for
the entire system by W = {wg|a € A}

Finally, for each application we define a utility function.
Often based on SLAs, such functions can be very com-
plex depending on the metrics they use (e.g., response time,
bandwidth, throughput) and the statistics defined on the
metrics (e.g., mean, 90% percentile). However, these com-
plexities do not fundamentally alter our approach, therefore
we restrict the utility to be a function of a single metric (re-
sponse time) and a single statistic (mean) only. In Section 5,
we outline how the approach can be extended to handle mul-
tiple metrics and statistics. Concretely, we assume that for
each application a and transaction ¢, the SLA specifies a
target response time TRTZ, a reward R! for meeting the
target, and a penalty P! for missing it. Then, if RT?, is the
actual measured response time, we define the utility for ap-
plication a and transaction ¢ as U = w’, R:, (TRT’, — RT")
if TRT! > RT, and U} = w!P!(TRT — RT) oth-
erwise. Other functions can also be used as long as they
are monotonically non-increasing with increasing response
time. Overall utility is the sum across all transactions and
applications and will be denoted as U.

Given this, the goal of an adaptation policy is to config-
ure the system such that for a given workload W, the utility
U of the entire system is maximized. This maximization is
carried out over the space of all possible system configu-
rations C', where each ¢ € C specifies: (a) the replication
level c.rep(n) of each node n of each application ¢ from the
set reps(n), (b) the assignment of each replica ny € NF
to a physical resource c.r(ny), and (c) the maximum cap
c.cap(ng) € [0, 1] of the resource each replica is allowed

Rule |
constructor. (2) (W,Copt}
\

(1) workload W v

optimized
Weka

configuration Copt

Optimizer +—_
I ‘\
W, candidate response time, Rule
set

Models configuration ¢ utilization
' /
Parameters ,. Model solver _
_ (LQNS)

Figure 1. Approach overview

to use with the constraint that the sum of the fractional al-
locations across all nodes of all applications is at most 1
for each resource. Because our testbed application (RU-
BiS) is CPU-intensive as shown in [7], [21], and [22], the
only resource type we currently consider is CPU capacity
and we assume that all resources are identical. Each node
replica n executes in its own Xen virtual machine [2] whose
credit-based scheduling mechanism is used to enforce that
the replica’s CPU utilization p(ny) is less than the fraction
cap(ny) allocated to it. In Section 5, we outline how the
approach can be extended to multiple resource types (e.g.,
CPU, disk) with varying capacities.

3 Technical Approach

Our overall approach is outlined in Figure 1. The rule
set generation process is driven by the rule set construc-
tor. It generates a set of candidate workloads and invokes
the configuration optimizer to determine the best configu-
ration ¢, for each candidate workload W. It then passes
these workloads and associated configurations through the
decision-tree learner from the Weka toolkit [1] to generate
the rule sets. For each workload W passed to it, the op-
timizer searches through the entire configuration space for
the utility maximizing configuration. To compute utility,
it invokes the model solver, which for each candidate con-
figuration ¢ and workload W, provides an estimate of the
system response time and the resource utilization of each
system component. The utilization information helps the
optimizer determine if the configuration is viable on the
available resources or not. The model solver uses layered
queuing models to predict mean response times and utiliza-
tion. The response times are used to compute overall utility.
The queuing models parameters are computed in an offline
training phase. This section describes each component in
detail, starting with the queuing models.

3.1 Application Modeling

Unlike previous work on modeling multi-tier web appli-
cation that uses regular queuing networks (e.g.,[21], [20]),
we chose layered queuing models [24] as the basis of our

work. The reason is that in consolidated server environ-
ments with fine-grained CPU control and multiple appli-
cations, models need to be accurate over a wide range of
workloads, high utilizations, and even in configurations that
might be very unbalanced in terms of resource allocation
amongst tiers. Thus, blocking phenomenon that are not
significant in well-provisioned environments, e.g., a bot-
tleneck due to the blocking of front-end software threads
by a highly overloaded back-end server, must be explicitly
modeled. Unlike standard queuing models, layered queu-
ing networks enable such modeling by allowing multiple
resources to be consumed by a request at the same time.
They can be solved through a number of algorithms based
on mean-value analysis (e.g., [12]). We use the LQNS mod-
eling tool [10] as a black-box model solver.

A complication with the model is accounting for the
overhead imposed by virtualization. Specifically, because
Xen places device drivers for physical devices into a sep-
arate guest virtual machine called domain 0, all incom-
ing and outgoing network communication passes through
an extra “node”, and incurs additional latency. Moreover,
since this node potentially shares the CPU with the other
virtual machines, this latency depends on both the utiliza-
tion of the node and the number of messages. This addi-
tional hop is an intrinsic problem with virtualization tech-
niques, and although system level methods to alleviate this
problem have been proposed very recently (e.g., [11]), the
elimination of the problem is still an open research issue.
Therefore, we explicitly model and measure parameters for
this virtual machine monitor delay. Note that if one does
not model virtualization overhead explicitly, CPU utiliza-
tion numbers and response time will be inaccurate; we are
not aware of any previous modeling work that has taken this
into account.

A high-level diagram of the resulting model for a single
application is shown in Figure 2, and a more detailed blow-
up of a portion of the model is shown in Figure 3 for 2 of the
26 transactions that comprise the RUBIS application. In the
figures, the layered queuing models are specified in terms
of queues or “tasks” formed by software components (de-
picted by parallelograms), and queues that are formed by
the hardware resources (depicted by circles) that are used
by the tasks. When tasks use hardware resources (depicted
by dotted arrows with the label specifying the service time),
or when they make synchronous calls to other tasks (de-
picted by solid arrows with the label specifying the average
number of calls made), both the caller and the callee servers
are blocked. Finally, as the detailed model shows, each task
comprises of a number of “entries” (depicted as rectangles),
each of which correspond to a single transaction type in the
system. These entries (not their enclosing tasks) actually
place demands on resources and make calls to other entries.
Therefore, they are associated with parameters for service

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

~——Network Ping Measurement ->—-

Servlet.jar Instrumentation
N \

i .
e \ e

7 \
! Tomeat Q(Trver

Apache Server / 10.5

f Tomcat Ser‘:(erw MySQL Server
! i

Client Al—»/Net i/ VMM -ro >

L A
S'm_-" 1] Niomeal
Legend & ----- Apache
g . Sapache
— Function Call Hd.sk-‘ﬁ
444444 » Resource Use S AN
——————————— > Instrumentation fm‘k‘ / Disk ;

1>/ Net /—/ VMM

Net A VMM

Sint 7] emm ‘ S—

. \ J Nomeat . 1 v
& ~~~~~ Tomcat - Tomcat
@ Stomcat @ S&omca&lj

Dgis '-r ndisk-v-\«t\

/

B — LD_PRELOAD Instrumentation:

Figure 2. Layered Queuing Network model for RUBIS

Apache Server

AboutMe + AboutMeln

Homeln
AboutMeOut
HomeOut

Home

Net

21

AboutMe ff;ca

AboutMe.ngg

VMM

Home.ngis

Figure 3. Detailed partial view of LQN model

time and mean number of calls made to other entries.!

A pre-deployment training phase facilitates collection of
all the parameters required by the model. For Java servlet
based applications, the parameter collection is fully auto-
mated, and does not require any instrumentation in the ap-
plication code. During this phase, each application is mea-
sured in isolation with only a single replica per component,
and is subjected to a workload that consists of a single trans-
action at a time. Multiple repetitions are done to compute
mean values of the parameters. The process is then repeated
for each transaction and in two environments—a virtualized
environment in which each component executes in its own
virtual machine, and in a native environment where each
component is given its own native OS without virtualiza-
tion. The solid black boxes in Figures 2 and 3 represent
the points where measurements are made. A description of
each task and how its parameters are computed using these
measurements is as follows.

Net. Represents the latency introduced by the network.
Since we assume that the network is not a bottleneck, it
uses a pure delay server (i.e., no resource sharing). The ser-
vice time is measured using ICMP ping measurements in
the native environment.

Disk. Represents the delay due to disk I/0O. To measure
the service time transparently, we wrapped each component

IThe figures sometimes show only a single parameter value for all the
entries in a task for brevity.

with an interception library using the LD_PRELOAD envi-
ronment variable. The library intercepted each disk read
and write call made by the application to compute the
mean number of I/O calls ngg and their service time.

Component (Apache, Tomcat, and MySQL). Represents
the processing performed by the software component. The
task is modeled using an M/M/n queue, where n is set to
the number of maximum software threads each component
is configured for (or oo in the case of MySQL, which creates
threads on demand). The threads execute on a CPU queue
with the processor sharing discipline (to approximate time-
slice OS scheduling).

To measure the service time and number of calls for these
servers transparently, we instrumented the Servlet. jar
file that is used by every application based on Java servlets
using binary rewriting. The instrumentation timestamps
each incoming request from and response to the web server,
and each request to and response from the database server.
In addition, the client measures end to end response time
for the entire transaction. Performing the experiment with
only a single user at a time ensures that no queuing delay is
present in the system, and the measurements at each server
can be correlated. Together, their values in the native envi-
ronment along with the disk I/O service times are sufficient
to compute the service times for each component.

VMM. Represents the interaction delay induced by the Xen
environment. We assumed the service time for this task to
be equal across all machines because it is dependent on Xen
and not on the application. To estimate the time, we first
computed the difference between the service times of each
component in the Xen environment (with the VMM task),
and in the native environment (without the VMM task).
Then, using knowledge of the measurement points and how
many times the VMM was included in each measurement,
we were able to compute the VMM service time.

Client. Generates the workload for the queuing model.
Since we measure the instantaneous rates of individual
transaction types at run-time, we model the workload for
each application a; as a set of |T;| independent open Pois-

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

son processes, one for each transaction type. This allows us
to model any mix of transaction types in the workload.

The resulting models are used by the optimizer to com-
pute utility maximizing configurations as described next.

3.2 Configuration Optimizer

The configuration optimizer performs utility maximizing
replication level selection, component placement, and CPU
allocation. Due to the extremely large parameter space in-
volved and the fact that the queuing models do not have
a closed form solution, the optimization task is challeng-
ing. It is easy to show that the problem is NP-Complete
by a reduction to the bin-packing problem (proof is omit-
ted for space), so an exact solution is unreasonable. How-
ever, even an approximate solution purely by traditional
means, e.g., gradient search, is difficult because some of
the input parameters—in particular, the choice of compo-
nent placements—have very irregular effects on the utility
value.

To tackle the optimization in an efficient manner, we split
it into two sub-problems: selecting application configura-
tion, which has a “regular” parameter space consisting of
component replication level and CPU capacity allocation,
and determining the optimal component placement for a
given application configuration, which is more “irregular.”
For each candidate configuration generated in the configu-
ration optimization, the component placement optimization
acts as an accept-reject mechanism. If the “optimal” place-
ment can fit the required components into the available re-
sources, then the application configuration is accepted. Oth-
erwise, it is rejected. The optimization algorithm is shown
as Algorithm 1, and is explained in detail below.

Application Configuration. The application configura-
tion optimization algorithm uses a discrete gradient-based
search algorithm. Note that: (a) for any application and
transaction, the utility function U is monotonically decreas-
ing with increasing response time, (b) the response time
monotonically (but not necessarily strictly) increases with a
reduction in replicas of a component, (c) the response time
monotonically increases with a reduction in the resource
fraction allocated to the replicas of a component. Hence, if
one starts off with the highest allowed replication level and
a resource fraction of 1.0 for each component, the utility
function would be the highest. Moreover, the algorithm can
terminate as soon as an acceptable configuration is found.

Initially, the algorithm begins its search from a config-
uration where each node in the system is maximally repli-
cated and assigned an entire CPU of its own irrespective of
actual CPU availability. Doing so decouples the application
models, and allows them to be solved independently. The
LQNS solver is invoked for each application to estimate re-

Input: W - the workload at which to optimize
Output: ¢, - the optimized configuration
foralla € A,n € N, do
| crep(n) < max{reps(n)}, Vng, c.cap(ny) «— 1
forall « € A do
| (RTa, {p(ny)|Vni € NF}) < LONS (W, a,c)
Compute U
while forever do
{c.r(nk)|Va,nk} < BinPack (R, {p(nk)})
if success then return c
foreacha € A,n € N, do
¢" « c[rep(n) < Next smallest in reps(n)]
C* — {c[cap(nk) < Reduce by Ar]|Vk}
foreach cpe € {c"} U C* do
(RTa, {p(nk)})new <LONS (W, a, Cnew)
Compute Unew, Vp
if Vp < 0V Vpis max so far then
L (e {p(n)})opt < (e, {p(n)}necw
if Vp < 0 then skip to EndRefit

| E;ldReﬁt: (e, {p(n)}) — (e, {p(n)})opt

Algorithm 1: Optimal configuration generation

sponse time and the actual CPU utilization p(ny) of each
node. The bin packer is then invoked to try to place the
nodes on the available machines using the predicted CPU
utilizations as the “volume” of each node. If the bin pack-
ing is unsuccessful, the algorithm re-evaluates all possible
single-change degradations of the current configuration by
either reducing the replication level of a single node type in
some application to the next lower level, or by reducing the
allowed CPU capacity for a single node in some application
by a step of Ar (set to 5% by default). During reevalua-
tion, only the model for the affected application has to be
solved again, resulting in computational savings. The algo-
rithm then picks that degraded configuration that provides
the maximum reduction in overall CPU utilization for a unit
reduction in utility, or gradient, which is defined as:

Vp— EGGA,nkGNé‘ pnew(nk) _p(nk) (1)
- Unew -U

The whole process is repeated again until the bin packing
succeeds. This technique never gets stuck because the re-
source fraction allocated to replicas can always be reduced
to O to ensure that the bin packing succeeds.

Component Placement. Component placement is a per-
formed using bin packing, which serves two purposes. First,
it determines whether the total CPU consumption of all the
nodes in the system fits into the available CPU capacity,
and second, it also determines to which resource to assign
each node. The problem of bin packing has been stud-
ied extensively in the literature, and efficient algorithms are
known that can approximate the optimal solution to within

GueyoungJung
Highlight

GueyoungJung
Highlight

if (app1-Browse > 0.051189)
if (app1-Browse < 0.175308)
if (app0O-BrowseRegions < 0.05698)
config = ”’h0a0c2hlalc2a0cOh2a0clalclalc0”;
if (app0-BrowseRegions > 0.05698)
if (app1-Browse < 0.119041)
if (app1-Browse < 0.086619)
config = "h0a0c2hlalc2a0cOalcOh2a0clalcl™;

Figure 4. Snapshot of a rule set

any fixed percentage of the optimal solution. In our imple-
mentation, we use the n log n time first-fit decreasing algo-
rithm, which ensures results that are asymptotically within
22.22% of the optimal solution [13].

Using the above techniques, the optimizer is able to gen-
erate optimized configurations for a particular workload.
While the generated configuration may not be provably op-
timal, the experimental results obtained are very good (see
Section 4).

3.3 Rule-Set Construction

Finally, the highest-level component of our approach is
the rule set constructor. Using the highest allowed request
rate allowed for each transaction of each application (as-
sumed to be specified in the SLA), this component first
randomly generates a set of candidate workloads WS For
each workload W € WS, it invokes the optimizer to find
the best configuration ¢, (W'). Each configuration is en-
coded as a linear list of physical hosts, where each host is
followed by the list of nodes that are hosted on it. Each
node entry indicates the name of the application to which
it belongs, followed by the name of node, and finally, the
CPU capacity allocated to it. For example, the configuration
hostl appl nodel 60.0 appl node2 40.0 in-
dicates that the host host1 hosts two nodes from appli-
cation appl - nodel, which is allocated 60% of the CPU,
and node?2, which is allocated 40% of the CPU.

These (workload, configuration) points form a partial
“raw rule set” because they are rules for each of the can-
didate workloads. However, a complete rule set must also
contain rules that apply to workloads that are not evalu-
ated as part of the candidate set; hence, some form of in-
terpolation is needed. To generate a final rule set, we use
the J48 decision tree learner of the Weka machine learning
toolkit. The generated decision tree has conditions of the
form w!, < threshold or w! > threshold at each of its
branches, where wfl is the request rate for transaction ¢ of
application a. Each leaf of the tree encodes the configura-
tion that should be used if all the conditions along the path
that leads from the root of the tree to that leaf are satisfied.

The decision tree construction serves multiple functions.

RT Reward/Penalty

Transaction Type | (s) | A1 | A2 | As | A4
Browse*, Home 1 5 2 10 | 20
Search* 2 10 5 20 | 40
View* 4 10 5 20 | 40

Table 1. Application SLAs

First, it provides the interpolation that is needed for rule
sets to be applicable not just to the points evaluated by the
optimizer, but to any workload in the range allowed by the
SLAs. Second, the decision tree can be trivially linearized
into a nested “if-then-else” rule set that requires less exper-
tise to understand than the models. An example of such a
rule set produced by our implementation is shown in Fig-
ure 4. Third, due to the finite number of leaves in the de-
cision tree, all the configurations the system might include
are known before deployment. This knowledge provides a
degree of predictability and verifiability that is desired for
business-critical systems. Finally, the tree provides com-
paction of the raw rule set table since the learning algo-
rithms aggregate portions that share similar configurations
and prune outliers. As a consequence of compaction and
the limited number of training points, some loss of utility
is expected. The next section evaluates the severity of the
loss and shows that even with a modest number of training
points, accurate rule sets can be constructed.

4 Evaluation

The goal of the evaluation is to demonstrate the feasibil-
ity and accuracy of the three steps in our approach: mod-
eling, optimization, and rule set construction. Specifically,
we show that (a) the constructed models accurately predict
both response time and CPU utilization, (b) the optimizer
produces configurations that are close to optimal, and (c)
the resulting rule sets prescribe close to optimal configura-
tions for any given workload.

Experimental Setup The target application used in our
experiments is RUBiS [4], a Java-based auction system
commonly used as a benchmark for multi-tier enterprise
applications. To run instances of RUBiS, we used three
physical hosts each with an Intel Pentium 4 1.80GHz pro-
cessor, | GB RAM, and a 100 Mb Ethernet interface. We
used the open-source version of the Xen 3.0.3 to build the
virtualization environment. Linux kernel 2.6.16.29 was in-
stalled as a guest OS in each domain of Xen. Apache
2.0.54, Tomcat 5.0.28, and MySQL 3.23.58 were used as
the web server, servlet container, and database server re-
spectively in 3-tier configurations of RUBIS. Each replica
was installed in its own virtual machine. The concurrency

—& ViewUserInfo 17
P (Experiment)
O~ ViewUserInfo
(Model)
—A— All Tr
(Experiment)

o o
=N)
\

O

(
S =

e
n

—2— DB Server
(Experiment)

—>DB Server
(Model)

—&— App. Server
(Experiment)

—>¢ All Transactions
(Model)

—¥— BrowseCategories
(Experiment)

—©— BrowseCategories

Response Time (s)

Response Time (s)
=3
< k K

e
)

0.01 T

App. Server

(Model)
—*— Web Server

(Experiment)
—@— Web Server

CPU Utilization
=1
%)

0.1

S
L

(Model)
30 40

100 200
Concurrent Users

(a) Effect of Load
Figure 5. Comparison of model vs. experimental results

300 400

parameter maxClient for the Apache servers was set to
335 and maxThreads for the Tomcat servers was set to
655 to avoid unnecessary thread induced blocking. We in-
creased the heap size of the Tomcat server to 512 MB to
avoid slowdowns induced by garbage collection and en-
abled db_connection_pool. Finally, we ran the opti-
mization process on a machine with 4 Intel Xeon 3.00GHz
processors and 4 GB RAM.

For our evaluation scenarios, we use four applications
Ay, Ay, Az, and Ay, each of which is an instance of RU-
BiS. RUBIS implements 26 different transaction types, but
we only used the 9 transaction types included in the “Brows-
ing” mix in our experiments. Table 1 lists the transaction
types used and their SLAs for the different applications.
Each application has its own SLA in terms of rewards and
penalties, but all applications use the same response time
thresholds.

Model Validation Our approach requires that the models
be accurate enough to predict both the end-to-end response
time of the system and the CPU utilizations of the different
system components with different workloads and different
configurations. Figure 5(a) demonstrates the accuracy of
response time prediction for different transaction types and
different workloads without replication and a CPU fraction
of 55% for all components. The figure illustrates that the
response times predicted by the model correspond well with
the measured response times.

Figure 5(b) presents similar results when the CPU frac-
tions of all components were adjusted from 30% to 80%.
We set the workload (i.e., the number of concurrent users)
to 200. Figure 5(c) presents the predicted CPU utilization
versus the measured CPU utilization at the three tiers as the
workload increases. Each component was running on its
own virtual machine with a 55% CPU fraction and no repli-
cation was used. Overall, these figures demonstrate that the
models are reasonably accurate and can be used as the foun-
dation for generating adaptation rules.

Optimization Process Recall that the optimization pro-
cess starts from a “maximal” configuration and reduces it
by a certain CPU fraction and number of replicas at each

50

CPU Allocation (%)
(b) Effect of CPU Allocation

T T (Model)
200 300 400

Concurrent Users

(c) CPU Utilization

60 70 80 100

step. In our evaluation scenario, we set the maximal config-
uration to one replica for the web server, two replicas for the
application server, and two replicas for the database server,
so that when deploying four applications, the total number
of replicas is 20. For each replica, the initial CPU fraction
is set to 80% which is the maximum allowed by Xen.

We used two methods to evaluate the accuracy of the op-
timization process. First, to evaluate global properties of
the solution, we evaluated how the configuration ¢, cho-
sen by the optimizer compares with randomly generated
configurations. We generated 20000 random configurations
and measured their utility relative to the optimized utility
of ¢, = 2274.94. Figure 6 shows the results with the util-
ity X on the x-axis the probability that the utility of a con-
figuration is greater than X on the y-axis. The expanded
view of the tip of the distribution shows that only very
few configurations—indeed 1 out of 20000—have a utility
greater than ¢,. In addition, note that most configurations
have poor utilities and that the distribution has several sharp
steps indicating the presence of clusters of configurations
with similar utilities.

08 4 Y
&
= 0.6 1-9:0004 4
=
2
S 0.4 +-0:0002
S
-»
02 4 0
2255 2260 2265 2270 2275
0""|""|""|""|
-120000 -90000 -60000 -30000 0
Utility

Figure 6. Global quality of optimizer

Second, we compared the response time and utility of
an optimized configuration with slightly modified configu-
rations to test for a local optimum. Specifically, we com-
puted utility of the optimized configuration ¢, for two ap-
plications with a fixed workload. We then modified the
configurations slightly and used the models to predict both

the response times of the applications and the overall util-
ity of the system. Table 2 shows the results. The notation
“{APi,TCi,DBi}{1, | }5%” indicates that the CPU fraction
of the Apache server, Tomcat server, or MySQL server of
A; is increased or reduced by 5% (e.g., from a CPU fraction
of .35 to .30). The results indicate that in all cases, any con-
figuration change from c, causes a response time increase
in at least one application, and that in all cases except one,
the overall utility is reduced compared to c,. Furthermore,
in the exceptional case, utility only increases by 0.01%.

ART (%) AUtility
Al A2 AVg. (%)
1. BD2|5%, AP215% 0 1.37 0.76 -0.05
2. DB215%, AP2|5% 0 44.53 | 24.65 -0.29
3. TC2|5%, TC175% | -6.16 | 8.30 1.84 0.01
4. TC275%, TC1[5% | 10.30 | -4.90 1.89 -0.06
5. TC2|5%, AP115% | -1.82 | 8.30 3.78 -0.02
6. TC275%, AP1|5% | 3.40 | -490 | -1.20 -0.01

A Configuration

Table 2. Local quality of optimizer

Finally, Table 3 illustrates the impact of varying CPU re-
duction step sizes on the cost of optimization and the utility
of the optimized configuration. The former is represented
by the rows labeled “Running time” and “Configurations
evaluated,” and the latter by “App. response time” and
“Utility.” The numbers in the table are the average costs
for calculating the optimized configuration for two appli-
cations and one workload point (25 requests/sec for each
application). The results demonstrate that the difference in
accuracy is negligible across the three different step sizes
even though the execution time increases significantly.

Rule set Construction The rule set that specifies the
adaptation policy is constructed from randomly chosen
workloads and optimized configurations. The goals of this
phase are (a) to minimize loss of utility compared to the op-
timal, and (b) to minimize the size of the resulting rule set.
These goals may conflict. For example, the size of the rule
set can be reduced by merging configurations that are simi-
lar but not identical, but this adversely affects optimality.

CPU Reduction Step 1% 5% 10%
Running time (sec) 52.5 12.3 7.2
Configurations evaluated 245 53 29
App. response time (sec) | 0.03327 | 0.03342 | 0.03350
- difference (%) - 0.45 0.69
Utility 1038.45 | 1038.44 | 1038.27

0.001 0.018

- difference (%)

Table 3. Execution time and accuracy

Figure 7 presents the accuracy of the rule set as a func-
tion of the number of training data points used in its con-

struction. Specifically, for a set of 100 randomly chosen
workloads in each scenario, the configurations prescribed
by the rule set are compared against the configurations gen-
erated by the optimizer. The differences in total utility are
reported as “Utility Error.” The workload points used to
evaluate the accuracy are not the same as those used to con-
struct the decision tree. As the figure shows, the error de-
creases as the number of data points increases, but is larger
for more complex configurations. This is because with a
larger number of applications, the points evaluated in the
training set are a much smaller fraction of the overall work-
load space. However, the utility error is small in all cases:
less than 1% for the 2 and 3 application configurations and
approaching 4% for the 4 application configurations when
the number of training set points is 3000.

/-2 Applications
10

3 Applications —6— 4 Applications

<8
£6
5
z 4
52
0 —
200 1000 2000 3000

Training Set Data Points

Figure 7. Accuracy of rule set

We also evaluated the size of the resulting rule set as
a function of the number of applications and training data
points. The results are presented in Figure 8. The dotted
line denotes the line where the size of the rule set would
be the same as the number of training points (x=y). The
results indicate that the size of the rule set depends on the
complexity of the configuration as well as the number of
training points, but that the size of the rule set does not in-
crease at the same rate as the training set.

—-B-2 Applications —0— 3 Applications =%~ 4 Applications

1000
800
600
400
200

Rule Set Size

200 800 1400 2000 2600
Training Set Data Points

Figure 8. Size of rule set

5 Extensions

In this section, we discuss how our approach can be ex-
tended to a) allow complex utility functions incorporating
multiple metrics and statistics, and to b) allow management

of multiple types heterogenous resources. Since the opti-
mizer uses models to evaluate the utility function, the main
consideration in tackling the first problem is the types met-
rics and statistics that can be predicted by the queuing mod-
els. Without modification, the queuing models shown in
Section 3.1 predict response time, throughput, CPU utiliza-
tion, disk utilization, and I/O throughput. They can also
be easily extended to predict network bandwidth. However,
since we do not model failures or attacks, the models cannot
predict dependability oriented metrics such as availability
or security. That is left for future work. If a statistic other
than the mean value of a metric is required (e.g., fraction
of requests for which response time is greater than some
threshold t), then the models have to be solved by simula-
tion to get accurate answers. The LQNS tool suite provides
a simulator 1gsim that can produce higher order statistics.
When simulation is needed, a hybrid solution such as ours
can become the only practical approach since simulation
usually is usually not practical in a purely online setting.

In order to manage multiple heterogenous resource
types, the bin-packing algorithm used by the optimizer must
be extended to generate component placements with addi-
tional constraints. In particular, to allow for resources with
different capacities, one can use one of several approxi-
mation algorithms for the variable sized bin packing prob-
lem (e.g., [14]). In order to incorporate multiple resource
types (e.g., disk or network bandwidth in addition to CPU
capacity), algorithms for the vector bin packing problem
(e.g., [6]) can be used. Bounds for both problems have been
extensively studied, and a primary benefit of our approach
is that these algorithms can be used without modification
in order to generate component placements. Evaluation of
these algorithms remains part of our future work.

6 Related Work

While a number of recent papers address dynamic pro-
visioning of enterprise applications, we are not aware of
any that addresses the complete problem of fine-grain dy-
namic provisioning of such applications in virtualized con-
solidated server environments. For example, [19] proposes
a reinforcement learning approach to resource allocation,
but only for coarse provisioning at the host level (i.e., no re-
source sharing) and for single node applications, while [5]
deals with fine-grain resource allocation, but only for single
server systems that can be described using closed form per-
formance prediction equations. Multi-tier applications are
considered and queuing models are used in [21] and [22],
but both consider only coarse-grain provisioning at the host
level, and do not consider what to do when sufficient re-
sources are not available. The work closest to ours is [3],
which uses queuing models and a beam search to do re-
source allocation in data centers, but the authors do not ad-

dress fine-grain resource sharing and it is not trivial to ex-
tend their optimization approach to do so. Moreover, all the
above approaches are based on online control and do not
consider offline policy generation.

In the area of queuing models for multi-tier systems,
there is too much work to list comprehensively. Closely
related, however, is [16], which uses LQN models of EJB-
based enterprise systems for manual capacity planning.
These models do not consider virtualized environments,
which limits their applicability here since virtualization can
have a performance impact in transaction-based applica-
tions [15] [23]. Approach presented in [7] deals with static
provisioning of multi-tier applications, develops queuing
models and uses a Xen environment, but it makes no special
provisions for the virtualization environment in the model
and relies on extensive experimental measurement (service
times at many different CPU allocations). Black-box linear
models for CPU utilization control in virtualized environ-
ments are used in [17], but these models do not make any
considerations for virtualization, and are even more depen-
dent on extensive experimentation. Although experimental
techniques require less knowledge about the system, they do
not scale as the number of applications and tiers increases.

Also related is work on optimization problems arising
in multi-tier enterprise systems. However, few consider the
problem of dynamic provisioning. For example, [27] uses
optimization to determine per-transaction service times in
a queuing network when they are not directly measurable,
while [25] proposes efficient search algorithms and uses
them to determine what experiments to conduct to choose
appropriate application parameters. Our approach could
also utilize such search-based methods. Finally, [8] ad-
dresses dynamic resource allocation in multi-tier virtualized
service hosting platforms. It uses a capacity manager that
executes periodically and reassigns resources by evaluating
a model consisting of multi-tier M/M/1 queues and solves
an optimization problem. However, as an online technique,
it does not have the other benefits of our approach.

Machine learning and especially decision trees have been
used for learning autonomic behaviors. For instance, [20]
uses these to predict thresholds when a system is likely
to fail its service level agreement obligations. However,
most of the previous work uses decision trees in their tra-
ditional role of learning classifiers based on experimental
data. We are not aware of any other work that uses deci-
sion trees to generate adaptation or management policies.
A two-level control model is presented in [26], where lo-
cal controllers use fuzzy control and continuous learning to
determine new resource requirements given the new work-
load and the global controller allocates requested resources
to maximizes profits.

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

GueyoungJung
Highlight

7 Conclusions

The design of optimal, or even good, adaptation poli-
cies is one of the biggest challenges in building complex
autonomic systems. This paper presents a novel hybrid ap-
proach for automatic generation of adaptation policies that
uses a combination of offline model evaluation, optimiza-
tion, and decision tree learning. The result is a rule set
that can be inspected by human system administrators and
used directly with current rule-based system management
engines. We demonstrate the approach in a server consoli-
dation scenario, where multiple multi-tier enterprise appli-
cations execute on a shared resource pool. The adaptation
policies dictate replication degrees for the tiers, component
placement, and virtual machine parameters. We demon-
strate that it is possible to model such systems with suf-
ficient accuracy, that our heuristic optimization technique
identifies optimal or close to optimal configurations, and
that the rule sets generated are accurate.

References

[1] Weka. WWW: http://www.cs.waikato.ac.nz/ml/weka.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Wareld. Xen and the
art of virtualization. In Proc. SOSP, pages 164-177, 2003.

[3] M. Bennani and D. Manesce. Resource allocation for auto-
nomic data centers using analytic performance models. In
Proc. 2™ Autonomic Comp. Conf., pages 217-228, 2005.

[4] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. Performance comparison of middleware
architectures for generating dynamic web content. In Proc.
4™ Middleware Conf., 2003.

[5] A.Chandra, W. Gong, and P. Shenoy. Dynamic resource al-
location for shared data centers using online measurements.
In Proc. IWQoS, pages 381-400, 2003.

[6] C. Chekuri and S. Khanna. On multidimensional packing
problems. SIAM J. Comput., 33(4):837-851, 2004.

[7] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai. SLA de-
composition: Translating service level objectives to system
level thresholds. In Proc. ICAC., 2007.

[8] L. Cunha, J. Almeida, V. Almeida, and M. Santos. Self-
adaptive capacity management for multi-tier virtualized en-
vironments. In Proc. 10" Symp. on Integrated Network
Mgmt., pages 129-138, 2007.

[9] L. Franken and B. Haverkort. The performability manager.
IEEE Network, 8(1):24-32, Jan 1994.

[10] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and
M. Woodside. Performance analysis of distributed server
systems. In Proc. 6'™ Conf. on Software Quality (61CSQ),
pages 15-26, 1996.

[11] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Siva-
subramaniam. Xen and co.: Communication-aware CPU
scheduling for consolidated Xen-based hosting platforms. In
Proc. 3" Conf. on Virtual Execution Environments, pages
126-136, 2007.

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

P. A. Jacobson and E. D. Lazowska. The method of surro-
gate delays: Simultaneous resource possession in analytic
models of computer systems. SIGMETRICS Perform. Eval.

Rev., 10(3):165-174, 1981.

E. G. C. Jr,, G. Galambos, S. Martello, and D. Vigo.
Du, D.Z., Paradalos, PM., eds.: Handbook of Combinato-
rial Optimization, chapter Bin Packing Approximation Al-
gorithms: Combinatorial Analysis. Kulwer, 1998.

J. Kang and S. Park. Algorithms for the variable sized bin
packing problem. European Journal of Operational Re-
search, 144(2):365-372, 2003.

Y. Koh, R. Knauerhase, M. Bowman, Z. Wen, and C. Pu. An
analysis of performance interference effects in virtual envi-
ronments. In Proc. IEEE Symp. on Performance Analysis of

Systems & Software, pages 200-209, 2007.

T. Liu, S. Kumaran, and Z. Luo. Layered queuing mod-
els for enterprise javabean applications. In Proc. Enterprise
Distributed Object Comp. Conf., pages 174-178, 2001.

P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized
resources in utility computing environments. In Proc. Eu-
roSys, pages 289-302, 2007.

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus. Using control theory to achieve service level
objectives in performance management. In Proc. Symp. on
Integrated Network Mgmt., May 2001.

G. Tesauro, N. Jong, R. Das, and M. Bennani. A hybrid
reinforcement learning approach to autonomic resource al-
location. In Proc. 3" Autonomic Comp. Conf., pages 6573,
2006.

Y. B. Udupi, A. Sahai, and S. Singhal. A classification-based
approach to policy refinement. In Proc. 10" Symp. on Inte-
grated Network Mgmt., pages 785-788, 2007.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier internet ser-
vices and its applications. In Proc. SIGMETRICS Conf.
on Measurement and Modeling of Computer Systems, pages
291-302, 2005.

B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dy-
namic provisioning of multi-tier internet applications. In
Proc. 2™ Autonomic Comp. Conf., pages 217-228, 2005.
Z. Wang, X. Zhu, P. Padala, and S. Singhal. Capacity and
performance overhead in dynamic resource allocation to vir-
tual containers. In Proc. 10" Symp. on Integrated Mgmt.,
pages 149-158, 2007.

C. M. Woodside, E. Neron, E. D. S. Ho, and B. Mondoux.
An “active server” model for the performance of parallel
programs written using rendezvouz. J. Systems and Soft-
ware, pages 125-131, 1986.

B. Xi, Z. Liu, M. Raghavachari, C. Xia, and L. Zhang. A
smart hill-climbing algorithm for application server config-
uration. In Proc. WWW Conf., pages 287-296, 2004.

J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On
the use of fuzzy modeling in virtualized data center manage-
ment. In Proc. 4" Autonomic Comp. Conf., 2007.

L. Zhang, C. Xia, M. Squillante, and W. N. M. III. Workload
service requirements analysis: A queueing network opti-
mization approach. In Proc. 10" Symp. on Modeling, Anal-
ysis, and Simulation of Computer and Telecomm. Systems,
pages 23-32, 2002.

