
A. Clemm, L.Z. Granville, and R. Stadler (Eds.): DSOM 2007, LNCS 4785, pp. 11–23, 2007.
© IFIP International Federation for Information Processing 2007

Bottleneck Detection Using
Statistical Intervention Analysis

Simon Malkowski1, Markus Hedwig1, Jason Parekh1, Calton Pu1, and Akhil Sahai2

1 CERCS, Georgia Institute of Technology,
266 Ferst Drive, Atlanta, GA 30332

{simon.malkowski,markus.hedwig,jason.parekh,
calton}@cc.gatech.edu

2 HP Laboratories, Palo-Alto, CA
akhil.sahai@hp.com

Abstract. The complexity of today’s large-scale enterprise applications de-
mands system administrators to monitor enormous amounts of metrics, and re-
configure their hardware as well as software at run-time without thorough un-
derstanding of monitoring results. The Elba project is designed to achieve an
automated iterative staging to mitigate the risk of violating Service Level Ob-
jectives (SLOs). As part of Elba we undertake performance characterization of
system to detect bottlenecks in their configurations. In this paper, we introduce
our concrete bottleneck detection approach used in Elba, and then show its ro-
bustness and accuracy in various configurations scenarios. We utilize a well-
known benchmark application, RUBiS (Rice University Bidding System), to
evaluate the classifier with respect to successful identification of different bot-
tlenecks.

Keywords: Bottleneck detection, statistical analysis, enterprise systems, per-
forance analysis

1 Introduction

Pre-production configuration testing of complex n-tier enterprise application deploy-
ment, or staging, can be as demanding and complex as the production system itself.
System analysts and administrators monitor and analyze a large number of applica-
tion-specific metrics such as the number of active threads and the number of EJB en-
tity bean instances, along with system-level metrics like CPU usage and disk I/O rate.
Any of these resources may cause the system to violate performance service level
objectives (SLO), usually specified as service level agreements (SLA). Significantly
lower cost and results at higher confidence levels may be produced by automated
staging. The latter is an iterative process in the Elba project [11] whereby an applica-
tion configuration is gradually refined.

The main contribution of this paper is an automated bottleneck detection scheme
based on a statistical intervention model. This approach is distinct from our previous
work that used machine learning [4]. We introduce a deterministic algorithm, which
has proven to be very effective in the Elba environment. The process automatically
examines and analyzes the entire metric data derived from the staging experiment

12 S. Malkowski et al.

trials. A limited set of interesting metrics is identified very fast without the need of an
extensive training or configuration phase. This set is then ordered according to the
degree of correlation with the high-level system performance. We also show that we
are able to accurately determine potential bottlenecks in different scenarios. More-
over, the resulting output is easily interpretable due to the intuitive model structure.

The remainder of this paper is organized as follows. Section 2 describes our ap-
proach to bottleneck detection using intervention analysis. Section 3 presents the
evaluation environment and our results utilizing RUBiS. Section 4 discusses related
work, followed by the conclusion.

2 Intervention Analysis

An effective staging phase assures system administrators that a hardware/software
configuration is capable of handling workloads to be seen during production. Starting
at an initial configuration, this phase augments resources allowing the configuration
to better satisfy the SLOs. So far our bottleneck detection approaches consisted of a
multi-step analysis. If a SLA was not met (SLO-satisfaction drops significantly) in a
certain scenario, a three-step detection process began: staging the system with varying
workloads and collecting performance data from system-level and application-
specific metrics, training a machine learning classifier with the data, and finally que-
rying the trained machine learning classifier to identify potential bottlenecks. Please
refer to [4] for more details. While our three-step methodology proved to be success-
ful, it mainly relies on machine learning algorithms to execute the final performance
modeling and classification. This implies two typical shortcomings that lie in the na-
ture of the modeling scheme. Firstly, the machine learning classifiers require a train-
ing phase. This can be cost-intensive since certain accuracy and robustness levels
might be defined a priori. Secondly machine learning classifiers produce a model that
is not necessarily interpretable in a trivial manner. We discussed suitable interpreta-
tions in [4]. Nevertheless, this led to a residual degree of uncertainty in the interpreta-
tion of the analysis results.

In this article we propose a novel approach based on statistical techniques, which
results in an improvement of our bottleneck detection process in a consistent manner.
We introduce an intuitive statistical model, which eliminated the need of machine
learning on the one hand. And on the other, we observe that our approach achieves the
same high accuracy level at a lower cost (fewer staging trials). Therefore we greatly
increase the efficiency of the detection process and enhance the clarity of the final
results at the same time.

2.1 Assumptions

The following assumptions form the basis of our automated bottleneck methodology.
They emphasize the general issues that need to be addressed by any satisfactory de-
tection method and are reflected in previous Elba efforts.

• A single experiment trial is not sufficient to record a conclusive metric vector and
thus several trials of varying workloads are required.

 Bottleneck Detection Using Statistical Intervention Analysis 13

• Non-obvious interactions between resources make observation based bottleneck
detection a hard problem. Nontrivial correlations have to be examined and the de-
tection method needs to be able to produce a probabilistic result ranking.

• The number of recorded monitoring metrics is very high. It is critical to device an
approach that is able to sort through copious metric data automatically.

• The nature and appearance of metrics can vary significantly and they are typically
categorized as either system-level or application-specific.

• High utilization of a resource implies high demand from an application while it
may not necessarily be indicative of a bottleneck. A detection mechanism has to
be capable of distinguishing bottlenecking behavior in terms of resource
saturation.

• Especially trend changes in metric graphs are of high importance. In fact we found
in our previous work that it was highly effective to examine first derivative ap-
proximations instead of the actually recorded values.

2.2 The Detection Model

These assumptions together with observations from empirical data analysis suggest a
simple performance model. We formulate the latter in terms of statistical intervention
analysis, which allows us to formalize the characteristic bottleneck behavior of the
system accurately.

First we need to define an exogenous crossover point (c ∈ WS). This specific num-
ber of concurrent user sessions can be seen as an intervention point that divides our
workload span (WS) into two disjunctive intervals:

I := {w ∈ WS : w < c} (1)

I ' := {w ∈ WS : w ≥ c} (2)

In this notation I represents the set of workloads that result in high levels of SLO
satisfaction of the system, whereas the satisfaction levels drop significantly when ex-
posed to workloads in I' (intervention effect).

For our purposes we also need to adapt the standard transfer functional model for-
mulation [1]. For any workload w ∈ WS an impact assessment model for the first dif-
ference of any metric value Yw can be formulated in terms of Equation 3. Note that we
use the first difference as approximation of the first derivative consistently with our
findings in [4].

∇Yw := f (Iw) + N w + µ (3)

Iw :=
1 for w ≥ c

0 else

!
"

(4)

In this formulation Nw is the noise component, and µ denotes the constant term.
The effect of the intervention variable Iw on the metric trend is defined as f(Iw). Fol-
lowing the standard notation, Iw is defined as an indicator function (Equation 4). We
can now subtract the noise component from both sides of Equation 1. Since we only
have to deal with abrupt and permanent intervention effects we can assume linearity

14 S. Malkowski et al.

in the metric values. Based on this linearity assumption we introduce ! as the constant
term of the intervention effect, which yields the following formulation:

∇Yw − Nw = δIw + µ (5)

In order to characterize the final model in a convenient manner, we define µ ' in
Equation 6 which leads to the final model formulation in Equation 7.

µ' := µ +δ (6)

∇ ˜ Y w := ∇Yw − N w =
µ for w < c

µ' for w ≥ c

!
"

(7)

This notation emphasizes the importance of the potential change in the trend of the
metric value Yw as the system progresses from I to I' with increasing workload. More-
over, it allows us to establish causality between the model parameters of the low level
metric and the high level system performance in an intuitive manner.

2.3 Determining an Intervention Point

Since the crossover point (c) between I and I' needs to be defined a priori, we define
an iterative algorithm for our automated analysis scheme. The main idea is to asses
the workload when the SLO-satisfaction (SATw) looses its stability and starts to dete-
riorate significantly upon further workload increase (i.e. we assume Property 8 and 9).
Although the model formulation requires an exact transition point, it is sufficient for
our method to approximate c in a qualitative manner (refer to Table 4).

i∈I∀ : SATi ≈ const (8)

i∈I '∀ : SATi << 1
| I |

SAT j
j ∈I
$ (9)

We start at the lowest workload in our dataset and iteratively increase the value by
the smallest possible step. In every iteration we calculate a simple heuristic approxi-
mation of the ninety-five percent confidence interval of the SLO satisfaction values
seen so far. We consider n0 values which resulted from a workload smaller or equal to
w0 ∈ WS (the workload currently examined).

90% ≤ 1
n0

SATi
0≤ i≤w0

$ − 1.96

n0 −1
(SATi −

0≤ i≤w0

$
1
n0

SAT j
0≤ j≤w0

$)2 (10)

We continue to the next iteration as long as the lower bound of the confidence in-
terval is not below ninety percent (Equation 10). Thus we characterize the satisfaction
level for the first interval in a binary fashion as suggested by our observations. Once
the lower bound of the confidence interval drops below ninety percent we exit the
algorithm. The exit point w* ∈ WS is a heuristic approximation of the crossover point
c. We can assume that the SLO satisfaction has deteriorated significantly from its

 Bottleneck Detection Using Statistical Intervention Analysis 15

stable level for all workloads greater or equal to w*, which yields the following
formulation:

ˆ I := {w ∈ WS : w < w*} (11)

ˆ I ' := {w ∈ WS : w ≥ w*}
(12)

2.4 Metrics Selection Scheme

We can now turn to the process of selecting a set of potential bottleneck metrics and
discarding all metrics that do not indicate a high resource saturation level. Given a
known intervention (SLO begins to deteriorate) we identify all metrics that show evi-
dence of a corresponding plateau (i.e. significant and permanent shift in average
value) and a variability change in their first derivative (further evidence for a satu-
rated resource). To identify the candidate set we perform a basic hypothesis-testing
scheme adapted from [10]. We define a rule-based analysis process for testing the null
hypothesis (13) of constant mean µ and variance " between the two intervals.

H0 : ˆ µ ≈ ˆ µ ' ∧ ˆ σ ≈ ˆ σ ' (13)

Empirical testing revealed that we have to account for the high variability of the
metric data as well as adjust the analysis to specifically detect abrupt plateau shifts.
Thus we deviate from the traditional intervention analysis methodology and devise a
different testing scheme. We calculate representative quantiles for each interval and
metric. The latter characterize the filtered behavior of the data in a more stable man-
ner. We proceed to apply two selection rules in order to limit the group of candidate
bottleneck metrics.

q0.5 > q'0.5 ∧ q0.2 − q0.8 > q'0.1 −q'0.9 (14)

Rule 14 accounts for all limited metrics that will saturate at a level of hundred per-
cent. We choose all metrics where the median has decreased as well as where the dis-
tance between ten- and ninety-quantile in the second interval is smaller than the dis-
tance between twenty- and eighty-quantile in the first interval. If this rule is satisfied
we have significant evidence to reject the null hypothesis and assign the metric to a
set of potential bottlenecks.

q0.9 < q'0.1 ∧ q0.9 < q'0.5 ∧ q0.9 < q'0.9 (15)

Rule 15 accounts for all metrics that are not limited and show an exponential be-
havior when the resource saturates. We select all metrics, where all three quantiles
of the second interval have increased above the ninety quantile of the first one.
Again we reject the H0 if the rule applies. In this manner we have eliminated all
metrics that do not show strong indications of bottlenecking behavior near the in-
tervention point and narrowed our attention to potentially interesting resources.
Note that the complete empirical derivation of the two decision rules is omitted due
to space restrictions. Nevertheless it is based on standard statistical methods and our
analysis experience.

16 S. Malkowski et al.

2.5 Impact Assessment

Once we have identified the set of candidate bottlenecks we can perform a ranking to
describe the magnitude of the change. The magnitude reveals the correlation with the
intervention and specifically accounts for the exact time when the change in the met-
ric occurred. Hence we design a normalizing ranking function R by calculating the
quotient of the absolute mean values of the two intervals:

R :=
ˆ µ
ˆ µ '

 (16)

This mechanism has two implications. Firstly, we assess how well the crossover
point was chosen for each particular metric (temporal ranking). If the split is not ex-
act, the resulting quotient will have a value closer to one. Furthermore, we have to
rank how large the relative shift in plateau levels is for each particular metric. We
expect bottlenecked metrics that were chosen with Rule 14 (limited metric) to display
a very high-ranking value potentially approaching infinity. The slope of the metric
values drops from a linear increase to a stable value near zero. Metrics chosen by
Rule 15 (unlimited metrics) will show a very low ranking value that is close to zero
on the other hand. This means that a moderate positive slope changes to a very strong
(exponential) growth. In the following evaluation we will subdivide the candidate set
into set one and two. This will simplify the analysis for limited and unlimited metrics,
respectively.

3 Experimental Evaluation

Rice University Bidding System, is a multi-tiered e-commerce application with 26
interaction types, such as browsing, bidding, buying, or selling items; registering us-
ers; and writing or reading comments. RUBiS provides two workload transition ma-
trices describing two different user behaviors: a browsing transition consisting of
read-only interactions and a bidding transition, including 15% write interactions. In
our experiments the write ratio is extended adding additional variability as explained
in [6]. We utilize the bidding transition as well as neighboring write ratios of 10% and
20% in our evaluation since these transitions are better representatives of an auction
site workload [2] and provide a more accurate picture [6]. Our system reuses and ex-
tends a recent version of RUBiS from ObjectWeb [13]. Generally, experiments show
that RUBiS is application-server tier intensive. In other words, it is characteristically
constrained by performance in the EJB container tier as introduced in [2].

To execute the staging phase with RUBiS, we employ Apache 2.0.54 as an HTTP
server, MySQL max-3.23.58 as a database server with type 4 Connector/J 3.0.11 as a
JDBC driver, and JOnAS4.4.6-Tomcat5.5.12 package as an EJB-Web container.
Apache HTTP server is equipped with mod_jk so that it can be used as a front-end
server to one or several Tomcat engines, and it can forward servlet requests to multi-
ple Tomcat instances simultaneously via AJP 1.2 protocols. We increase the number
of the maximum processes of Apache to avoid connection refusals from the server
when numerous clients simultaneously request services. We also set the automated
increment option on every primary key of the RUBiS databases to prevent duplication

 Bottleneck Detection Using Statistical Intervention Analysis 17

errors when clients simultaneously attempt to insert data into a table with the same
key. Finally, we adjust JOnAS to have an adequate heap memory size for preventing
out-of-memory exceptions during staging.

For gathering system-level metrics, we wrote a shell script to execute Linux/UNIX
utilities, sar and ps, with monitoring parameters such as staging duration, frequency,
and the location of monitored hosts. We also use JimysProbing 0.1.0 for metrics gen-
erated from JOnAS-Tomcat server, apachetop 0.12.5 for Apache HTTP server, and
mysqladmin for MySQL database server. We slightly modified apachetop to generate
XML encoded monitoring results. The client workload generator is designed to simu-
late remote Web browsers that continuously send HTTP requests, receiving corre-
sponding HTML files, and recording response time as a performance metric during
staging. Sysstat 7.0.2 was used for system resource utilization tracking.

The experimental setup was deployed on two different clusters. Our initial data set
(used in Section 3.1) was collected on the Georgia Tech Warp Cluster. This cluster is
comprised of 56 Intel Blade Servers with Red Hat Enterprise Linux 4, with Linux
kernel version 2.6.9-34-i386 as operating system. Each server is equipped with two
Xeon 64-bit 3.06 GHz CPUs, 1 or 2 GB main memory, 1 Gbps network adapter, and a
5400 RPM disk with 8 MB cache. The second cluster used for the data generation was
the Emulab [12], which provides more than 200 servers of different types. Emulab
also allows the physical separation of experiments by simulating a local network to-
pology for each experiment. The results detailed in Section 3.3 incorporate two types
of servers. Primarily we employed a high end system with one Xeon 3.0Ghz 64 bit
CPU, 2 GB main memory , six 1 Gbps network adapters, and a 10000 RPM disk. In
order to change the bottleneck pattern we also used low end machines with a Pentium
P3 600 MHz processor, 256 MB main memory, five 100 Mbps network adapters, and
7200 RPM disk. Both server types ran with Red Hat Enterprise Linux 4, with Linux
kernel version 2.6.9-34-i386.

3.1 Bottleneck Detection in the 1/1/1 configuration

In this section we present a walk-through of our bottleneck detection process for a
1/1/1 configuration (no server replication in the tiers). The RUBiS benchmark was set
to use the bidding transition matrices and the workload was incremented in steps
of two.

The graphs in Fig. 1 show two different representative metrics in all tiers. The SLO
satisfaction is graphed against the CPU usage in (a) and against the memory usage in
(b). The depicted satisfaction level needs to be calculated by for each trial. This is
conveniently resolved by the policy specific SLO-evaluator that is generated by Mu-
lini. Individual satisfaction levels are determined for each of the SLO components.
Interested readers can refer to [4] and [11] for more details. For simplicity reasons we
solemnly use the response time of the system from the SLO-evaluator in the presented
analysis. It is clearly visible that the satisfaction level meets our assumptions. It re-
mains very stable up to around one hundred and fifty users, and decreases rapidlyonce
this point is crossed. The CPU usage of the application server increases linearly and
saturates at 100% when the SLO satisfaction drops down to around 85%. Further-
more, it is evident that the variability of CPU usage strongly decreases at the same
time, signifying the maximal saturation level. The trends of other CPU utilizations

18 S. Malkowski et al.

0

20

40

60

80

100

2 22 42 62 82 102 122 142 162 182 202 222 242

Num of Concurrent Users

P
e

rc
e

n
ta

g
e

SLO satisfaction Database tier

HTTP server tier App server tier

0

20

40

60

80

100

2 22 42 62 82 102 122 142 162 182 202 222 242

Num of Concurrent Users

P
e

rc
e

n
ta

g
e

SLO satisfaction Database tier

HTTP server tier App server tier

Fig. 1. SLO satisfaction against (a) CPU usage metric and (b) memory usage metric in all tiers

remain linear and stable on the contrary. In Fig. 1 (b) we can see that the memory of
the application server and database server is underutilized. Both show a fairly stable
linear trend. Although the memory usage of the HTTP server is somewhat high its
trend is almost flat. The variability of all other metrics stays fairly constant through-
out the whole experiment. Following the argument in [4] we can regard the

 Bottleneck Detection Using Statistical Intervention Analysis 19

Table 1. Heuristic approximation of the intervention point

AVG [%] ST-DEV CI-LB WL
98.39 2.37 93.75 148

98.31 2.46 93.49 150

98.17 2.72 92.84 152

98.09 2.81 92.58 154

97.79 3.83 90.28 156

97.63 4.05 89.70 158

97.40 4.53 88.52 160

97.26 4.66 88.12 162

application server CPU a typical representative of a single bottlenecked resource that
will show a strongly non-stationary behavior in its delta values (first difference nor-
malized by the step-width). All other delta series will retain a stable behavior
throughout the entire workload span.

We can now turn to the actual detection process. Table 1 contains the output of the
algorithm used to determine the intervention as described in Section 2.3. We per-
formed the analysis on a dataset consisting of one hundred and seventy-five staging
trials. The number of concurrent users ranged from two to three hundred and fifty.
The lower bound of the confidence interval drops below ninety percent for a workload
of one hundred and fifty-eight. According to Section 2.3 this defines our heuristic
approximation of the crossover point c.

The final outcome of our heuristic testing scheme (2.4) and the impact assessment
(2.5) for a limited dataset (first one-hundred and twenty-five trials) are summarized in
Table 2. The two delta value intervals I and I' are [4-156] and [158-250] respectively.
While Rule 14 returns six hits, Rule 15 results in an empty set of candidate bottle-
necks. All other metrics are discarded automatically. The values in the last column
reveal the application tier CPU as most likely bottleneck. Thus our model has cor-
rectly detected the bottleneck in this scenario. For further understanding of the table it
is important to note that we map all related values to its resource for the final interpre-
tation. Therefore the R-value of the APP_CPU can result from more than one metric
(e.g. the overall usage or the system usage) for instance.

We now proceed to demonstrate the robustness of our method when subjected to
various configuration settings. We show that our approach is highly robust with re-
gard to variations in the width of the intervals (Table 3), the position of the crossover

Table 2. Results of the bottleneck detection process

Metric q0.1 q0.5 q0.9 q'0.2 q'0.5 q'0.8 R
APP_CPU -1.01 0.05 0.74 -0.62 -0.02 0.58 70.05

DB_KBCached -3.80 4.63 12.39 -3.56 3.26 11.46 11.72

APP_KBBuffers 7.40 53.00 170.60 0.00 0.00 39.00 3.33

DB_CPU -0.03 0.00 0.04 -0.03 0.00 0.03 2.81

APP_Memory -0.15 0.08 1.04 -0.14 0.03 0.38 2.26

WWW_CPU -0.07 0.00 0.06 -0.05 0.00 0.06 1.08

20 S. Malkowski et al.

Table 3. Ranking function value against interval width

I I' R* Pred Acc
[4;156] [158;206] 6.94 1

[4;156] [158;256] 68.32 1

[4;156] [158;350] 13.92 1

[58;156] [158;206] 3.83 1

[58;156] [158;256] 7.66 1

[58;156] [158;350] 15.01 1

[108;156] [158;206] 4.33 1

[108;156] [158;256] 8.67 1

[108;156] [158;350] 17.11 1

point (Table 4), and the step-width between the different workloads (Table 5). Table 3
shows the value of the ranking function depending on the length of the two input in-
tervals. Our model predicted the bottleneck correctly each time. We see that the width
of the second interval influences the magnitude of the R-value strongly.

We now examine the impact of different choices of crossover point values, which
are summarized in Table 4. Within certain intuitive limits the model predicts cor-
rectly. This is of special importance since the determination of the intervention point
is the result of the algorithm in Section 2.3. We see that its heuristic character is justi-
fied in the nature of the data.

Finally we turn to Table 5 and the analysis of the robustness of the choice of step-
width. The table contains the ranking function values for different step-widths. At
first it looks surprising that the ranking values increase almost monotonically as the

Table 4. Ranking function value against different crossover points

I I' R* Pred Acc
[16;114] [116;214] - 0

[26;124] [126;224] - 0

[36;134] [136;234] 5.09 1

[46;144] [146;244] 6.86 1

[56;154] [156;254] 7.93 1

[66;164] [166;264] ! 1

[76;174] [176;274] 59.43 1

[86;184] [186;284] 0.93 0

Table 5. Ranking function value against the step width

I I' Step # Trials R* Pred Acc
[4;156] [158;350] 2 174 13.92 1

[4;156] [160;348] 4 87 12.58 1

[4;156] [164;348] 8 44 188.60 1

[4;148] [164;340] 16 22 112.17 1

[4;132] [164;324] 32 11 ! 1

 Bottleneck Detection Using Statistical Intervention Analysis 21

step-width increases. Nevertheless, this is due to the stochastic nature of our data and
the fact that with increased step width the two intervals are separated farther apart. By
increasing the observable change in the bottleneck metric the results become clearer.
This proves the robustness of our method and reveals its effectiveness when exposed
to data of higher step-width.

3.2 Performance Comparison of the Analysis

In this section we present the results of our experiments across a wide range of con-
figurations to show how the method evaluates a changing bottleneck pattern. This
data was collected on Emulab [12] with different write ratios (WR0.1 and WR0.2)
and server configurations (H and L).

Table 6 lists the top candidate bottleneck metrics and their R-value in the last two
columns. We also applied a simple heuristic filtering mechanism to discard uninter-
esting ranking values. The latter eliminates the problematic behavior of some utiliza-
tion values for instance, which was detailed in our previous work. We automatically
discard values if the utilization does not cross a certain threshold (90% in our case)
[4]. The table shows that our methodology is able to detect the shifting bottleneck as
we progress to higher replication levels of the application server tier.

Table 6. Top candidate bottleneck metrics

Config WR WS # Trials c S1/S2-Sz Result Metric R*
H/2H/H 20% 100-600 51 440 11/2 APP_CPU 73.02

H/4H/H 20% 540-1040 51 844 4/1 APP_CPU 16.61

H/6H/H 20% 1040-1448 51 1264 7/0 APP_CPU 13.10

H/8H/L 10% 1300-1820 51 1490 4/0 DB_Memory 10.22

H/8H/2L 10% 1400-1920 51 1640 5/1 APP_CPU 7.82

In order to make the performance limitation appear faster we employed a lower
write ratio and lower end DBs in the last two data sets. At a replication level of eight
application servers the bottleneck has shifted to the database tier. Our algorithm iden-
tifies the DB memory as a potentially saturated resource. Now we examine the effect
of replicating the bottlenecked DB. This again results in a shift of the bottleneck to-
wards the application tier and is successfully detected by our algorithm. It is also evi-
dent that we are able to perform our detection process accurately with a significantly
lower number of trials than other approaches.

4 Related Work

The area of performance modeling in multi-tier enterprise systems has been subjected
to substantial research efforts in the recent time. Many of the well-documented ap-
proaches use machine learning or queuing theory.

Cohen et al [3] apply a tree-augmented Naïve Bayesian network to discover corre-
lations between system-level metrics and performance states, such as SLO satisfaction
and SLO failure. Powers et al [5] also use machine learning techniques to analyze

22 S. Malkowski et al.

performance. However, rather than detecting bottlenecks in the current system, they
predict whether the system will be able to withstand load in the following hour. Simi-
larly, we have performed a comparative study of machine learning classifiers to inves-
tigate performance patterns [11]. Our goal was to compare the performance of several
well-known machine learning algorithms as classifiers in terms of bottleneck detec-
tion, and finally to identify the classifier that best detects bottlenecks in multi-tier
applications. Several other studies are based on dynamic queuing models combined
with predictive and reactive provisioning as in [9]. Their contribution allows an enter-
prise system to increase capacity in bottleneck tiers during flash crowds in production.

Elba, in addition to being oriented towards avoiding in-production performance
shortfalls, emphasizes fine-grained reconfiguration. By identifying specific limitations
such as low-level system metrics (CPU, memory, etc.) and higher-level application
parameters (pool size, cache size, etc.) configurations are tuned to the particular per-
formance problem at hand. Another fundamental difference of our work is that in ad-
dition to correlating metrics to performance states, we focus on the detection of actual
performance-limiting bottlenecks. We employ a unique procedure to analyze the
change in trends of metrics. Finally, our set of metrics for bottleneck detection in-
cludes over two hundred application-level metrics as well as system-level metrics.

5 Conclusion

Our detection scheme based on intervention analysis has proven to be very effective
with our experimental data. The method is able to characterize the potential change in
metric graph trends automatically and assess its correlation with SLO violations. Our
statistical modeling approach eliminates the previously necessary data filtering (e.g.
correlation analysis) and model calibrating phases (e.g. classifier training). The results
are clear and intuitive in the interpretation. We showed that our new method yields
these general as well as practical advantages in our evaluation. Potential bottlenecks
are identified accurately in different scenarios. As future work this method could be
extended with a maximization/minimization scheme for the ranking function. This
would allow a more thorough root-cause analysis in the case of multiple bottlenecks.
We also plan to employ our results as input for a regression model that will be able to
predict actual SLO satisfaction levels.

Acknowledgment

This research has been partially funded by National Science Foundation grants
CISE/IIS-0242397, ENG/EEC-0335622, CISE/CNS-0646430, AFOSR grant
FA9550-06-1-0201, IBM SUR grant, Hewlett-Packard, and Georgia Tech Foundation
through the John P. Imlay, Jr. Chair endowment.

References

1. P. Brockwell and A. Davis: Introduction to Time Series and Forecasting. Springer Inc.,
NY, 1996.

2. E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel: Performance com-
parison of middleware architectures for generating dynamic Web content. Middleware 2003.

 Bottleneck Detection Using Statistical Intervention Analysis 23

3. I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase: Correlating instrumentation
data to system states: A building block for automated diagnosis and control. OSDI 2004.

4. G. Jung, G. Swint, J. Parekh, C. Pu, and A. Sahai. Detecting Bottlenecks in n-Tier IT Ap-
plications through Analysis. DSOM 2006 (LNCS vol. 4269).

5. R. Powers, M. Goldszmidt, and I. Cohen: Short Term Performance Forecasting in Enter-
prise Systems. KDD 2005.

6. C. Pu, A. Sahai, J. Parekh, G. Jung, J. Bae, Y. Cha, T. Garcia, D. Irani, J. Lee, and Q. Lin:
Observation-Based Approach to Performance Characterization of Distributed n-Tier Ap-
plications. Submitted for publication.

7. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc.,
CA, 1993.

8. M. Raghavachari, D. Reimer, and R. D. Johnson: The Deployer’s Problems: Configuring
Application Servers for Performance and Reliability. ICSE 2003.

9. B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal: Dynamic Provisioning of Multi-tier
Internet Applications. ICAC 2005.

10. C. Wu, and M. Hamada: Experiments: Planning, Analysis, and Parameter Design Optimi-
zation. Wiley & Sons Inc., NY, 2000.

11. Elba project. http://www-static.cc.gatech.edu/systems/projects/Elba.
12. Emulab/Netlab. http://www.emulab.net/.
13. RUBiS distribution. http://forge.objectweb.org/project/showfiles.php?group_id=44.

