
1

Abstract- The characterization of distributed n-tier application
performance is an important and challenging problem due to
their complex structure and the significant variations in their
workload. Theoretical models have difficulties with such
wide range of environmental and workload settings. Experi-
mental approaches using manual scripts are error-prone, time
consuming, and expensive. We use code generation tech-
niques and tools to create and run the scripts for large-scale
experimental observation of n-tier benchmarking application
performance measurements over a wide range of parameter
settings and software/hardware combinations. Our experi-
ments show the feasibility of experimental observations as a
sound basis for performance characterization, by studying in
detail the performance achieved by (up to 3) database servers
and (up to 12) application servers in the RUBiS benchmark
with a workload of up to 2700 concurrent users.

I INTRODUCTION
Rapid evolution and growth of web-based applications (e.g., in
electronic commerce) have established 3-tier applications with
web servers, application servers, and database servers as the
main software architecture for current and future enterprise
applications. However, 3-tier (and more generally, n-tier with
finer-granularity components) applications are notoriously
difficult to manage due wide variations in workload. For ex-
ample, web applications have been reported to have peak
loads many times that of sustained load [1]. Consequently, it
is almost inevitable in a web environment that any specific
hardware configuration will become over-provisioned for the
sustained load, but under-provisioned for the occasional peak
load. These variations inherent in n-tier applications cause
problems for traditional analytical methods such as queuing
theory [5], for example, Mean Value Analysis that focuses on
the steady state and average behavior.

Complementing theoretical modeling, an alternative approach
to performance characterization of complex systems is direct
experimentation and observation of system behavior. Obser-
vation of real experiments avoids the problem of error propa-
gation or reaching the limitations of assumptions made by
analytical models when scaling up or out by a significant
number. In addition, experiments provide validation points
for model-based characterizations. In this paper, we outline an

observation-based approach and show its feasibility as well as
promising results in the performance characterization of n-tier
applications over a wide range of configuration settings.
Measuring and plotting performance of n-tier applications
covering a sufficiently large set of parameters and soft-
ware/hardware combinations can help system analysts make
informed decisions at configuration design time. During op-
eration of the system when workload evolves, our observed
performance can serve as a guide to system operators and ad-
ministrators in reconfigurations to obtain reliably the desired
service levels.

Although observation is a well-known scientific method to
understanding and describing complex system behavior, it has
some practical limitations when applied to n-tier applications.
It is common in large-scale scientific observations (e.g., high
energy physics accelerators and large astronomical telescopes),
to build significant experimental infrastructures at a high cost
and long construction time. This is acceptable and justified
for once-in-a-lifetime discoveries such as Higgs Boson. Un-
fortunately, computer system configurations have relatively
short life span of a few years or months, requiring frequent
repetition of experiments. High experimental costs or long
construction time would render the observational approach
unsuitable for computer systems.

To achieve rapid and low cost experimental performance
evaluation, a software infrastructure to generate and manage
performance evaluation experiments of n-tier applications has
been developed in the Elba project [4][8][10][12]. This infra-
structure builds on the Mulini code generator to automatically
and systematically generate, deploy, and benchmark n-tier
applications. Through automation, Mulini tools lower the
costs and improve the reproducibility of computer system per-
formance measurement experiments.

The main contribution of this paper is a practical demonstra-
tion of the feasibility of an observation-based approach to per-
formance characterization of n-tier applications. This demon-
stration is done through a number of actual experiments. Al-
though each benchmark experiment measures the performance
of a single combination of settings for a sustained period, the
variety and coverage of our experiments give us confidence in
using the experimental results for characterization of these
applications over a wide range of platforms and parameter

An Observation-Based Approach to Performance Characterization of Distributed
n-Tier Applications

Calton Pu, Akhil Sahai†, Jason Parekh, Gueyoung Jung, Ji Bae, You-Kyung Cha, Timothy Garcia,

Danesh Irani, Jae Lee, Qifeng Lin
Georgia Institute of Technology, HP Labs†

akhil.sahai@hp.com, {calton, jparekh, gueyoung.jung}@cc.gatech.edu

2

Cluster Node component
Processor 2 x Xeon 3.06Ghz
Memory 1GB (a few 2GB)
Network 1Gbps Ethernet

Warp

Disk 5400RPM, 8MB cache
Processor 2 x Xeon 64-bit 3.20Ghz
Memory 6 GB
Network 1Gbps Ethernet

Rohan

Disk 10000RPM, 8MB cache
Node type Low-end High-end
Processor P3 600Mhz Xeon 64-bit 3Ghz
Memory 256MB 2GB
Network 5 x 100Mbps 6 x 1Gbps

Emulab

Disk 7200RPM 10000RPM
Table 2. Summary of hardware platforms

Benchmark Tier Components
Database MySQL Max 5.0.27
Application Apache Tomcat 5.5.17

RUBiS

Web Apache 2.0.54
JOnAS 3.3.6
Weblogic 8.1

Database MySQL Max 5.0.27
Application Apache Tomcat 5.5.17

RUBBoS

Web Apache 2.0.54
Table 1. Summary of software configurations

settings. Our experiments show promising results for two
representative benchmarks [3] (RUBiS and RUBBoS) and
potentially rapid inclusion of new benchmarks such as TPC-
App [18] when a mature implementation is released. Our
work shows that Mulini is a very useful tool for creating and
managing experiments at this scale of complexity. The feasi-
bility of using other experiment management tools such as
LoadRunner and an evaluation of their effectiveness is beyond
the scope of this paper.

The rest of this paper is organized as follows. Section II out-
lines the Mulini code generator that made the experiments
feasible and affordable. Section III describes the experimental
setup and discusses the management scale of performance
experiments. Section IV summarizes the baseline experiments,
where we show the benchmark results with known configura-
tions. Section V describes the scalability of these benchmarks
with an increasing number of servers for scale-out experi-
ments. Section VI summarizes related work and Section VII
concludes the paper.

II GENERATING CODE FOR
DEPLOYMENT AND MONITORING

To create the n-tier application deployment code, the input to
the Mulini generator [8][10][12] is a CIM/MOF (Common
Information Model, Managed Object Format) standard speci-
fication format to model and describe resource configurations
[14][16]. Mulini translates CIM/MOF into one of several de-
ployment languages, including SmartFrog [11] and typical
shell-style scripting languages such as bash shell script for
Unix systems. In addition to application deployment code,
Mulini also generates the workload parameter settings and the
specifications for application performance and system re-
source consumption monitoring.

Using a domain-specific Testbed Language (TBL) as an input
specification, Mulini generates a workload driver (e.g., client
web browser emulator), and then parameterizes it with various
settings (e.g., the number of concurrent users accessing the

application) that stress the application. Typically, the experi-
ments start with a light load that is increased heuristically for
scale up and out experiments. When a bottleneck is found
(e.g., by the observation of response times longer than the
specified by service level objectives – SLOs), we use Mulini
to generate new experiments with larger configurations (e.g.,
increasing the number of bottleneck servers to balance the
load). The best heuristics for experimental design is a topic of
ongoing research and beyond the scope of this paper. We ob-
serve that in order to reconfigure and redeploy application for
the next iteration, simply updating input TBL specification is
enough, compared to manually changing each benchmark
script and configurations of n-tier applications.

For application-level performance monitoring, Mulini param-
eterizes the workload driver to collect specified metrics, such
as response time for each user request and overall throughput,
in TBL. It also generates parameterized monitors as separate
tools to gather system-level metrics including CPU, memory
usages, network I/O, and disk I/O. Mulini accounts for varia-
tions across hosts by creating system-level monitoring tools
customized to each host. This automation alleviates the clutter
of managing data files for each host and avoids any errors
from manually launching monitors with different parameters.
After each set of experiments, performance data collected
from the participating hosts is put into a database for analysis.

III DESCRIPTION OF EXPERIMENTAL
CONFIGURATIONS

Our experiments consist of application benchmarks that run on
a combination of software and hardware platforms. Many
components (e.g., application benchmark, software platform,
and hardware platform) can be configured separately. In this
section, we outline the main configuration choices explored in
this paper.

III.A Experimental Platforms
Table 2 summarizes the three hardware platforms used for our
experiments. The first cluster (named Warp) is comprised of
Intel Blade Servers with 56 nodes. The second cluster (named
Rohan) consists of homogeneous Intel Blade Servers (with a
faster CPU) with 53 nodes. The third platform is the Emu-
lab/Netlab distributed testbed [26].

3

Experiment set Figure Line count of
configuration
files changes
and number
of files

Line count of
generated
scripts

Ma-
chine
count

Experimental configura-
tion

Collected
perf. data size

Baseline RUBiS on
JOnAS

Figure 1 1.1 KLOC, 16 99 KLOC 300 50 (1-1-1 with varied
write ratio and workload)

696MB

Baseline RUBiS on
Weblogic

Figure 3 1 KLOC, 17 189 KLOC 594 99 (1-1-1 with varied
write ratio and workload)

1,921MB

Scale-out RUBiS on
JOnAS

Figure 5 9 KLOC, 27 815 KLOC 2,935 204 (1-2-1 to 1-12-3 with
varied workload)

15,007 MB

Scale-out RUBiS on
Weblogic

Figure
omitted

0.9 KLOC, 20 152 KLOC 632 72 (1-2-1 to 1-5-1 with
varied workload)

2,153 MB

Table 3. Scale of experiments run

Table 1 summarizes the software configurations of the servers
used in our experiments. All Warp and Rohan experiments
were run on Red Hat Enterprise Linux 4, with Linux kernel
version 2.6.9-34-i386 on Warp and kernel 2.6.9-42-x86_64 on
Rohan. Emulab experiments were run on Fedora Core 4 with
Linux kernel version 2.6.12-1-i386. We used sysstat 7.0.2 to
track system resource utilization.

III.B Application Benchmarks
The first application benchmark used in our experiments is
RUBiS (Rice University Bidding System), an auction site pro-
totype modeled after eBay, which can be used to evaluate ap-
plication design pattern and application server’s performance
scalability. RUBiS stresses the application server and defines
26 interaction types such as browsing by categories or regions,
bidding, buying, or selling items, registering users, writing or
reading comments. It provides two default transition matrices
emulating different workloads: read-only browsing interac-
tions and bidding interactions that cause 15% writes to the
database. In our experiments, the write ratio is extended to
vary between 0% and 90%.

The second application benchmark used in our experiments is
RUBBoS (Rice University Bulletin Board System), modeled
after a bulletin board news site similar to Slashdot. RUBBoS
is a 2-tier application which places a high load on the database
tier. It uses 24 different interaction states in which a user may
perform actions such as register, view story, and post com-
ment. The client driver defines two transition matrices as
well: read-only user interactions and submission user interac-
tions (with a tunable write ratio). We use the smaller of the
two standard RUBBoS data sets.

These benchmarks and the software they depended on had a
wide range of complex configurable settings. It is this flexi-
bility, which makes predicting system bottlenecks a non-trivial
task and the observations we make more essential. To keep
our results as reliable, fair and reproducible as possible, we
kept all the configuration settings as close to default as possi-
ble. Deviations from a typical hardware or software configu-
ration are mentioned in the following sections.

In the experiments, each trial consists of a warm-up period, a

run period, and a cool-down period. The warm-up period
brings system resource utilization to a stable state. Then
measurements are taken during the run period. This is fol-
lowed by the cool-down period when measurement halts and
no additional requests are made by the clients. For RUBiS,
the trials consist of one-minute warm-up and cool-down peri-
ods, and a five minutes run period. For RUBBoS, the trials
consist of two-and-a-half minutes warm-up and cool-down
periods, and a 15 minutes run period.

III.C Scale of Experiments
Table 3 shows the management scale of the experiments run to
obtain the data described in this paper. As we can see, the
number of script lines required for relatively “simple” figures
such as Figure 1, Figure 3, and Figure 5 reach hundreds of
thousands of lines. It is impractical to write and maintain
scripts manually at such scale. The number of experiments
included in this paper has been limited by the number of nodes
available in our clusters and Emulab. The experiments con-
tinue, since the generation of scripts is largely automated in
our environment. In Table 3 we also include the amount of
performance data collected, which is typically on the order of
gigabytes for each set of experiments run. The format of our
collected performance data is the output of the monitoring
tools from the sysstat suite.

Both Table 4 and Table 5 list a subset of the files that are gen-
erated and modified by Mulini to run RUBiS experiment when
two machines are allocated for the application server tier and
another 2 machines for the database tier. The experimental
configurations shown in Table 3 are indicated by a triple (w-a-
d in column 5, where w is the number of web servers, a is the
number of application servers, and d is the number of database
servers). We can see that the number of machines involved
(from hundreds to thousands) and number of lines of scripts
for the experiments (on the order of hundreds of thousands of
lines) show the management complexity of these experiments.
Typical experiments such as those reported here require many
such graphs, with ten to twenty-fold increases in experiment
management complexity.

4

Figure 1. RUBiS on JOnAS response time

Generated script Line
count

Comment

run.sh 898 Calls all the other
subscripts to in-
stall, configure
and execute a
RUBiS experi-
ment

TOMCAT1_install.sh 54 Installs Tomcat
server #1

TOMCAT1_configure.sh 48 Configures Tom-
cat server #1

TOMCAT1_ignition.sh 16 Starts Tomcat
server #1

TOMCAT1_stop.sh 12 Stops Tomcat
server #1

SYS_MON_EJB1_install.sh 11 Installs system
monitoring tools
on JOnAS server
#1

SYS_MON_EJB1_ignition.sh 17 Starts system
monitoring tools
on JOnAS server
#1

Table 4. Examples of generated scripts

Configuration
file

Line
count

Comment

Work-
ers2.properties

22 Configures Apache to con-
nect to application server tier

Mysqldb-raidb1-
elba.xml

16 Configures C-JDBC control-
ler to connect to databases

monitorLo-
cal.properties

6 Configures JimysProbe
monitor

Table 5. Examples of configuration files modified

As an indication of module-level complexity of deployment
code, 6 or more files in the RUBiS script are modified by
Mulini for each experiment. As an illustration, 3 of the files
are listed in Table 5. Without an automated code generator
such as Mulini, these files need to be modified and
maintained by hand. Each of these files is a vendor-specific
configuration file associated with a software package such as
Apache, Tomcat, and MySQL. Consequently, these files are
scattered over different directory locations. In a manual
approach, it will be tedious and error prone to visit all these
different directory locations to make those changes. In
contrast, we modify Mulini’s input specification once and the
necessary modifications are propagated automatically.

Our experience shows that the automated approach based on
Mulini shows much promise in the execution of large-scale
experiments. As experiments become increasingly complex
with more test variables and variety of configurations, manual
maintenance of such scripts become less feasible. Some of
these complexities are due to the low abstract level of script-
ing languages, which may be partially alleviated with a higher
level deployment language such as SmartFrog [10]. More
concrete experience with increasingly complex experiments
will be needed to settle this question. For instance, database
table partitioned among multiple database back-end nodes
may require different steps to install and configure each data-
base node. One of the advantages of the Mulini code genera-
tion approach is its ability to generate deployment code for a
variety of platforms, including the higher abstraction deploy-
ment languages such as SmartFrog. A detailed evaluation of
other tools for generating and management experiments and a
detailed evaluation of the experiments themselves are interest-
ing topics of future research.

IV BASELINE EXPERIMENTS & RESULTS

As a starting point to validate our scripts and setup, we ran a
set of experiments for both RUBiS and RUBBoS by allocating
one machine for each one of: database server, application
server, and web server. This section summarizes the results of

these baseline experiments (configuration 1-1-1, meaning 1
web server, 1 application server, and 1 database server). Scale
out experiments (allocating more than one machine for the
bottleneck server) are described in Section V.

IV.A RUBiS Experiments with JOnAS
Although we have conducted the RUBiS experiments on sev-
eral platforms, we only report in this section the 1-1-1 experi-
ments conducted on the Emulab cluster. Due to the different
resources requirements by each server, we allocated different
hardware configurations for these servers: database server
host’s CPU frequency is 600MHz, and the web server and

5

Figure 2. RUBiS on JOnAS application server CPU utilization

RUBBoS Base Line

0

100

200

300

400

500

600

700

800

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Workload (# of users)

R
es

po
ns

e
Ti

m
e

(m
s)

100% Read

85%
Read/15%
Write

Figure 4. RUBBoS response time

application server CPU frequency is 3GHz. The adoption of a
slower database server allows for a quicker saturation of the
database server, making the experimental results more inter-
esting.

The default configuration of the RUBiS benchmark uses
MySQL as its database server, JOnAS [19] as application
server, and Apache as web server. Figure 1 shows the base-
line measurement results with a graph of three dimensions:
workload on X-axis, response time on Y-axis, and database
write ratio of each interaction on Z-axis. The write ratio does
not introduce a database bottleneck in the workload, but it
reflects the (inverse of) amount of work done by the interac-
tions and the load on the application server, which is the bot-
tleneck. When the write ratio is high, most operations involve
writes to the database which does not stress the application tier
much, so the response time is relatively short. On the other
hand, when the write ratio is low, most of the operations in-
volve the transforma-
tion

of data in the application tier, which make the response time
long. This kind of interactions among different servers is
typical of n-tier applications. We maintain the term “write
ratio” for compatibility with the RUBBoS reference to work-
load.

The RUBiS (JOnAS, 1-1-1) experiments were conducted on
the Emulab cluster with each component of the 3-tier applica-
tion deployed on a separate node. During our experiments, we
collected the system’s response time to each emulated client’s
request. Each experiment’s workload varies from 50 to 250
users, increment of 50. Figure 1 shows the increase in re-
sponse time when the write ratio is low (more work for appli-
cation server) and number of users increases. A bottleneck is
apparent for the region of more than 250 users and write ratio
below 30%. Figure 2 shows the application server CPU con-
sumption corroborates the hypothesis of application server
being the bottleneck. The two figure show correlated peaks in
response time and application server CPU consumption.
These baseline graphs also show an expected monotonic
growth of response time when a bottleneck is encountered (the
application server). At the top of the graph, the high response
times reflect the CPU bottleneck, when the measured results
show the uncertainties that arise at saturation. Concretely, the
response times of 250 users between write ratio of 0% to 40%
contain significant random fluctuations due to CPU saturation.

IV.B RUBiS Experiments with Weblogic

As a variation, we ran the RUBiS benchmark with the We-
blogic application server replacing the default JOnAS applica-
tion server. These experiments have similar settings as in Sec-
tion IV.A and results are shown in Figure 3.

The RUBiS (Weblogic, 1-1-1) experiments were conducted on
the Warp cluster with each component of the 3-tier application
deployed on a separate node. Each experiment’s workload
varies from 100 to 600 users, increment of 50. During our
experiments, we collected the system’s response time to each

Figure 3. RUBiS on Weblogic response time

6

RUBiS Response Time

0

500

1000

1500

2000

2500

300 500 700 900 1100 1300 1500 1700 1900

Workload

R
es

po
ns

e
Ti

m
e

(m
s)

1--2--1
1--3--1
1--4--1
1--5--1
1--6--1
1--7--1
1--8--1
1--2--2
1--3--2
1--4--2
1--5--2
1--6--2
1--7--2
1--8--2
1--2--3
1--3--3
1--4--3
1--5--3
1--6--3
1--7--3
1--8--3

Figure 5. RUBiS on JOnAS scale-out response time for 2 to 8 application servers

emulated client’s request. Figure 3 shows the increase in re-
sponse time when the write ratio is low (more work for appli-
cation server) and number of users increases. The system bot-
tleneck is similar to that of Figure 1 for the region of more
than 400 users and write ratio below 50%. Weblogic applica-
tion server also has the same bottleneck (CPU consumption).
At the top of the graph, the high response times reflect the
CPU bottleneck, when the measured results also show the un-
certainties that arise at saturation. Concretely, the response
times of 600 users between write ratio of 0% to 50% also con-
tain random fluctuations, but the Weblogic configuration is
shown to support a higher number of users than JOnAS (about
twice as many users at saturation point).

IV.C RUBBoS Experiments
Similar to RUBiS, the RUBBoS benchmark was run as an
application on the Emulab cluster, using the Mulini code gen-
eration tools to create the scripts. Figure 4 shows the experi-
mental results for the baseline experiments (1-1-1 configura-
tion). Figure 4 has the workload on X-axis (500 to 5000 con-
current users, increments of 500) and response time on Y-axis
(in milliseconds). Each of the 2-tier application components is
deployed on a separate node.

Figure 4 compares two read/write ratios provided by the
RUBBoS benchmark: 85%(read)/15%(write) shown in the
lighter color, and 100% read shown in the darker shade. One
can see from the graph that the read-only setting reaches a

bottleneck at a much lower workload than the read/write mix.
These results are compatible with previous experiments run on
the Rohan cluster, which indicate the database server to be the
bottleneck.

The baseline experiments described in this section verified the
main setup parameters and previous published results on the
RUBiS and RUBBoS benchmarks. Concretely, the RUBiS
benchmark has its bottleneck in the application server and the
database server as the bottleneck of RUBBoS. In the next
section, we describe the main new results of this paper, the
scale-out experiments that systematically add more resources
to alleviate these bottlenecks.

V SCALE-OUT EXPERIMENTS
V.A Design of Scale-Out Experiments

Starting from the baseline experiments in the previous section,
we ran scale-out experiments by following a simple strategy.
As the workload (number of users) increases for a given con-
figuration (1-1-1 in the baseline experiments), the system re-
sponse time also increases. If we are able to see a system
component bottleneck (e.g., application server in RUBiS), we
increase the number of the bottleneck resource to alleviate the
bottleneck. This is a simple strategy chosen for the experi-
ments described here. In order to reconfigure and redeploy

7

Performance
improvement

by adding
servers

+1 +2 +3 +4 +5 +6

App server
 (%) 84.3 92.4 93.6 94.1 94.1 94.1

DB server
(%) 13 14.9

Table 6. Comparison of performance improvement (percent-
age of response time decrease) from 1-2-1 to 1-8-3 with 500

users in the RUBiS (JOnAS) experiments

 Configuration (w-a-d)
Load 1-2-1 1-3-1 1-4-1 1-5-1 1-6-1 1-7-1 1-8-1

300 42.0 42.3 42.5 42.2 42.3 42.3 42.3
500 56.4 69.1 70.5 70.6 70.8 70.8 70.9
700 57.4 83.7 96.4 98.1 98.3 98.6 98.5
900 12.7 62.8 111 123 125 126 126.0

1,100 39.3 97.3 137 148 152 149.8
1,300 132 162 173 178.0
1,500 69.7 166 185 199.2
1,700 138 191 206.5
1,900 196 215.8
2,100 77.1 215.4
2,300 156.6
2,500 90.4
Table 7. RUBiS measured average throughput for configu-

application for the next iteration, simply updating input TBL
specification is enough. The best heuristics for experimental
design is a topic of ongoing research and beyond the scope of
this paper.

This scale-out of the initial bottleneck in RUBiS continues by
the gradual increase of workload, leading to system saturation.
The experiments continue with the addition of another appli-
cation server to alleviate the bottleneck. This loop continues
until the system response time is not improved by the addition
of another application server. This is an indication of a differ-
ent bottleneck in the system. Then we add other system re-
sources, in this case more database servers to identify the sys-
tem bottleneck and to improve system performance.

In addition to this simple strategy, we also have run experi-
ments that increase the number of servers that may be bottle-
necks, to improve our understanding of the interactions among
the components. The different strategies to explore the system
configuration space is a challenging research topic in itself and
beyond the scope of this paper. In the following sections, we
show the concrete experiments and the insights they provide in
the performance evaluation of different system configurations.

V.B RUBiS Scale-Out Experiments with JOnAS
In the case of RUBiS, we know the application server was the
bottleneck for the 1-1-1 baseline configuration. Consequently,
we increase the number of application servers from 1 in the
baseline experiments to 12 (from 1-1-1 to 1-12-1). Similarly,
we also increase the number of database servers from 1 in the
baseline experiments to 3 as bottleneck in database server is
detected. In RUBiS, web server performs as the workload
distributor and does very little work. In all experiments we
have a single web server and it has not been shown to be a
bottleneck. To simplify the experiments (see Section III.C)
and their analysis, we focus on the application performance
with different system configurations for a fixed write ratio of
15% which is a typical write ratio in auction websites. The
experiments to evaluate the sensitivity of our results with re-
spect to variations in write ratio is the subject of future re-
search.

Figure 5 and Figure 6 shows all the RUBiS (JOnAS) experi-
ments on Emulab, with response times measured for all com-
binations of 1 web server, 1 to 12 application servers, and 1 to
3 database servers. Although the details of the lines can be
seen better at higher resolution, some trends can be seen in the
graph.

First, the leftmost overlapping lines show that 1-2-1, 1-2-2
and 1-2-3 corroborate the observation that the database server
is not the bottleneck. Adding more database servers makes
very little difference in the system response time. In contrast,
adding an application server (e.g., from 1-2-1 to 1-3-1) im-
proves the system response time significantly. While the satu-
ration of the 1-2-1 configuration occurs at about 500 users, the
1-3-1 configuration saturates at about 750 users. This trend is
repeated for the 1-3-X, 1-4-X, 1-5-X, 1-6-X, and 1-7-X (where
X varies from 1 to 3) configurations. For these configurations,
adding database server helps very little, but adding an applica-

tion server improves the system performance by supporting
(roughly) 250 additional users.

Table 7 shows the average throughput (successful client re-
quests per second) for the configurations of 1-2-1 to 1-8-1. It
shows some interesting trends more clearly than the figures.
First, the throughput at low workloads is the same across the
multiple servers (on the same row), validating the software
scale out capability. This happens for loads of 300 through

700. The 2 application server configuration fails to complete
the experiment for loads higher than 700. More generally, the
missing squares in Table 7 reflect the experiments that could
not complete. We also note that the last number of each col-
umn show an anomalously low number. We speculate this is
caused by the same technical issues that make the experiments
fail at high loads.

8

Response Time Difference

-50

0

50

100

150

200

250

300

350

400

450

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

Workload

R
es

po
ns

e
Ti

m
e

D
iff

er
en

ce

Difference
between
1DB and
2DB
(8APP)
Difference
between
2DB and
3DB
(8APP)
Difference
between
2DB and
3DB
(12APP)

Figure 7. RUBiS on JOnAS scale-out response time difference
between configurations

RUBiS Response Time

0

500

1000

1500

2000

2500

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

Workload

R
es

po
ns

e
Ti

m
e

(m
s)

 1--8--1
1--8--2
1--9--2
1--10--2
1--11--2
1--12--2
1--8--3
1--9--3
1--10--3
1--11--3
1--12--3

Figure 6. RUBiS on JOnAS scale-out response time for 8 to 12 application servers

From the system management point of view, this trend is
shown in Table 6, where the response time improvements are
compared for the 1-2-1 configuration as base, with 500 users
(near the saturation point). Table 6 shows the percentage of
response time improvement gained by adding more servers
into the system. Adding one application server to yield the 1-
3-1 configuration can get 84.3% improvement, compared with
13% improvement by adding one database server to yield the
1-2-2 configuration. Consider the case of capacity planning
for 500 concurrent users. Table 6 shows that 3 or 4 applica-
tion servers would match well with 1 database server in terms
of minimizing response time and avoiding over-provisioning.

The consistent trend between 1 and 7 application servers is
changed when we reach the 1-8-1 and 1-8-2 configurations.
When the number of application servers reaches 8 and the
number of users 1700, the response time difference between 1-
8-1 (around 1.3sec) and 1-8-2 (about 0.9sec) is about 40%.
This difference is much bigger than the numbers in Table 6
(third row). However, the response time of 1-8-2 and 1-8-3
configurations are quite similar. This observation is consistent
with the hypothesis that the single database server has become
the bottleneck at 1-8-1 configuration and 1700 users. Once a
second database server has been added (1-8-2), the bottleneck
shifts away and the database server(s) is no longer the bottle-
neck.

Figure 6 shows a trend similar to Figure 5, after the database
bottleneck detected at 1700 users. The curves of 1-8-Y, 1-9-Y,
and 1-10-Y overlap (where Y varies from 2 to 3).

To study the variation in response time in more detail, Figure
7 shows the response time difference between different num-
bers of database servers, where X-axis contains the number of
users and Y-axis shows the difference of response time in mil-
liseconds. The first curve shows the difference between the 1-
8-1 and 1-8-2 configurations (from 1 to 2 database servers),

9

DB Servers CPU Utilization

0

10

20

30

40

50

60

70

80

90

100

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

Workload

CP
U

 U
til

iz
at

io
n

1--8--1
1--12--2
1--12--3

Figure 8. RUBiS on JOnAS scale-out CPU utilization between
configurations

which is flat on the left side, but has a sudden jump at 1700
users. The second curve shows there is little difference be-
tween 1-8-2 and 1-8-3 configurations (a third additional data-
base server) up to 1700 users.

The third curve in Figure 7 shows the difference in response
time between the 1-12-2 and 1-12-3 configurations, between
1700 users and 2900 users. At this point, we observe the jump
in response time difference between 2 database servers and 3
database servers. This is consistent with the hypothesis that
the 2 database servers have become a bottleneck at 2900 users.
From the capacity planning point of view, 2 database servers
appear to suffice for a workload smaller than 2900 users.

We also plotted the CPU utilization of database servers in
Figure 8, showing only 3 “critical” cases (1-8-1, 1-12-2, and
1-12-3). The first two cases show the gradual saturation of
the database servers’ CPU utilization at 1700 users (1 server)
and 2700 users (2 servers), which corroborates our previous
analysis. The third curve shows the non-saturation of 1-12-3
configuration, at least with respect to the database servers.

V.C Discussion
The experiments in the previous section (V.B) show that we
can perform the measurements of large scale benchmarks by
scaling the number of bottleneck servers. This way, we can
verify the actual properties of each benchmark on representa-
tive system configurations. These experimental results can be
used to confirm or disprove analytical models within the sys-
tem parameter ranges covered by the experiments. The design
of an analytical model that fits our measurements is beyond
the scope of this paper.

Another practical use of the experimental results in Section
V.B is in the design of system configurations for n-tier appli-
cations similar to RUBiS. Given a concrete set of service
level objectives and workload levels, one can use the numbers
in Figure 5 through Figure 8 to choose the appropriate system
resource level that will achieve the specified quality of service
for the workload levels of interest.

VI RELATED WORK
Traditional performance analysis [1][5] [6] based on analytical
methods such as queuing theory have limitations when han-
dling the variations and evolution of n-tier applications, often
due to assumptions made in the underlying model. Assump-
tions (such as mean inter-arrival time), can vary widely in
real-world situations due to troughs and peaks in workloads.
For n-tier applications, especially in the case of multiple serv-
ers at any tier, the average errors in prediction in any one tier
get magnified by the average errors in the next. Consequently,
direct application of modeling techniques on n-tier applica-
tions has been limited.

A second area of related research consists of experimental
studies of complex system performance, staging environments
to validate specific configurations. IBM's performance opti-
mization tool, an autonomic computing tool, identifies the root
cause of poor performance observed during a test by round-
trip response time decomposition [20]. The response time is
broken down into the times spent within each component in
the system enabled by the Tivoli ARM data collector. How-
ever, since ARM needs changes to the application code, this
approach is intrusive in nature.

A third area of related work consists of the dynamically adap-
tive systems in the autonomic computing area. Our observa-
tion-based approach complements well the recent efforts in the
autonomic computing area [21][22][23][24]. We can see
autonomic approaches to adjust system configuration in re-
sponse to workload variations [6] as a dynamic discovery
process that searches for an optimized mapping of workload to
system resources. The observation-based performance charac-
terization work reduces the assumptions made and uncertain-
ties inherent in unknown configurations in the search space,
by observing the real system behavior beforehand.

From the infrastructure point of view, the Mulini generator
builds on code generation concepts, techniques, and software
tools developed in the Elba project [10][18][10]. Although the
main application area of Elba tools has been in system man-
agement, specifically in the validation of staging deployment
scripts, the Elba tools have been very useful in the generation
and management of our experiments.

VII CONCLUSION
N-tier applications have grown in economic and social impor-
tance in recent years. While they offer unprecedented flexibil-
ity to grow and evolve, they also introduce significant man-
agement problems due to the changing nature of their work-
load and evolution of their functionality. However, traditional
methods of performance evaluation, based on models such as
queuing theory, have difficulties with systems that may or
may not have a steady state. Unfortunately, experimental
methods that measure directly system performance also have
difficulties, this time with the cost and errors in manually writ-
ten scripts for many configuration settings.

We have developed the Mulini code generator to support auto-

10

mated deployment and evaluation of n-tier applications in a
distributed environment. By generating the deployment
code/script automatically, we are able to lower the develop-
ment costs and reduce errors at the same time. The first major
contribution of this paper is the application of code generation
tools to support large-scale experimental measurements of n-
tier application benchmarks such as RUBiS and RUBBoS.
Using our tools, we generated several hundred thousands of
lines of scripting code and ran hundreds of experiments to
observe the actual performance of the benchmark applications
on a variety of software and hardware combinations.

Our experiments show both expected and unexpected results.
Section IV describes the baseline experiments (one machine
for each of database server, application server, and web
server) for RUBiS (with two different application servers) and
RUBBoS. Section V describes the scale-out experiments for
RUBiS (for JOnAS and Weblogic) on the system bottleneck –
the application server, and for RUBBoS also on the bottleneck
– the database server. The RUBiS experiments show quantita-
tively how many application and database servers are required
to provide good response time for a given number of users.
For the configuration studied (Emulab), 1 web server and 1
database server can serve up to 1700 users, but 7 application
servers are needed for the 1700-user workload. For higher
workloads, 2 database servers and 12 application servers are
able to serve up to 2700 users.

Our experiments show both the feasibility of the observation-
based performance characterization approach. Further, the
non-trivial interactions among the scaled out severs as well as
interactions among components shows the need for more re-
search (and perhaps experiments) to study and characterize
these phenomena using theoretical or analytical models.

Acknowledgements. This research has been partially funded
by National Science Foundation grants CISE/IIS-0242397,
ENG/EEC-0335622, CISE/CNS-0646430, AFOSR grant
FA9550-06-1-0201, IBM SUR grant, Hewlett-Packard, and
Georgia Tech Foundation through the John P. Imlay, Jr. Chair
endowment.

REFERENCES

[1] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi. Queueing

networks and Markov chains: modeling and perform-ance
evaluation with computer science applications, 2nd Edi-
tion, New York: Wiley, 2006, chapter 7 and 13.

[2] T. Brecht, D. Pariag, and L. Gammo, accept()able Strate-
gies for Improving Web Server Performance, USENIX
2004, pp 227-240.

[3] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W.
Zwaenepoel, “Performance comparison of middleware ar-
chitectures for generating dynamic Web content,” Mid-
dleware 2003.

[4] G. Jung, G. S. Swint, J. Parekh, C. Pu, and A. Sahai. De-
tecting Bottleneck in n-Tier IT Applications through
Analysis, DSOM 2006.

[5] L. Kleinrock. Queuing Systems, Vol. 2: Computer Appli-
cations, NewYork: Wiley, 1976, chapter 4 and 6.

[6] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy.
Capacity planning and performance modeling: from main-
frames to client-server systems. Prentice-Hall, Inc., 1994,
chapter 3.

[7] D. A. Menascé, M. N. Bennani, and H. Ruan. On the Use
of Online Analytic Performance Models in Self-Managing
and Self-Organizing Computer Systems. In the book
Self-Star Properties in Complex Information Systems,
LNCS, Vol. 3460, Springer Verlag, 2005.

[8] Jason Parekh, Gueyoung Jung, Galen Swint, Calton Pu,
Akhil Sahai. Issues in Bottleneck Detection in Multi-Tier
Enterprise Applications. IWQoS 2006.

[9] A. Sahai, S. Singhal, R. Joshi, V. Machiraju. Automated
Policy-Based Resource Construction in Utility Comput-
ing Environments, NOMS 2004, pp 381-393.

[10] A. Sahai, C. Pu, G. Jung, Q. Wu, W. Yan, and G. S. Swint.
Towards Automated Deployment of Built-to-Order Sys-
tems, In Proceeding of DSOM, 2005, pages 109-120.

[11] V. Shepelev, and S. Director. Automatic Workflow Gen-
eration, European Design Automation Conference with
EURO-VHDL, 1996, pages 104-109.

[12] G. S. Swint, G. Jung, C. Pu, and A. Sahai. Automated
Staging for Built-to-Order Application Systems, In Pro-
ceedings of NOMS, 2006, pages 361-372.

[13] V. Talwar, Q. Wu, C. Pu, W. Yan, G. Jung, D. Milojicic.
Approaches to Service Deployment. In IEEE Internet
Computing, 9(2): 70-80 (March 2005).

[14] Common Information Model (CIM) Standards,
http://www.dmtf.org/standards/standard_cim.php.

[15] SNIA CIM Object Manager (CIMOM),
http://www.opengroup.org/snia-cimom/.

[16] DMTF-CIM Policy,
http://www.dmtf.org/standards/documents/CIM/CIM_Sch
ema26/CIM_Policy26.pdf.

[17] SmartFrog, Smart Framework for object groups,
http://www-uk.hpl.hp.com/smartfrog/.

[18] TPC BENCHMARK App. Specification version 1.1.1,
Aug. 2005, http://www.tpc.org/tpc_app/spec/TPC-
App_V1.1.1.pdf.

[19] JOnAS application server. http://jonas.objectweb.org/
[20] IBM Performance Center, Rational Performance Tester,

http://www-
306.ibm.com/software/awdtools/tester/performance/.

[21] IBM Autonomic Computing,
http://www.ibm.com/autonomic.

[22] SUN N1 Software,
http://www.sun.com/software/n1gridsystem/.

[23] Microsoft The Drive to Self-Managing Dynamic Systems,
http://www.microsoft.com/systemcenter/default.mspx.

[24] Platform LSF, http://www.platform.com/products/LSF.
[25] Automated Design Evaluation and Tuning,

http://www.cc.gatech.edu/systems/projects/Elba.
[26] Emulab distributed testbed. http://www.emulab.org.

