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Abstract- The characterization of distributed n-tier application 
performance is an important and challenging problem due to 
their complex structure and the significant variations in their 
workload.  Theoretical models have difficulties with such 
wide range of environmental and workload settings.  Experi-
mental approaches using manual scripts are error-prone, time 
consuming, and expensive.  We use code generation tech-
niques and tools to create and run the scripts for large-scale 
experimental observation of n-tier benchmarking application 
performance measurements over a wide range of parameter 
settings and software/hardware combinations.  Our experi-
ments show the feasibility of experimental observations as a 
sound basis for performance characterization, by studying in 
detail the performance achieved by (up to 3) database servers 
and (up to 12) application servers in the RUBiS benchmark 
with a workload of up to 2700 concurrent users.   

 

I INTRODUCTION 
Rapid evolution and growth of web-based applications (e.g., in 
electronic commerce) have established 3-tier applications with 
web servers, application servers, and database servers as the 
main software architecture for current and future enterprise 
applications.  However, 3-tier (and more generally, n-tier with 
finer-granularity components) applications are notoriously 
difficult to manage due wide variations in workload.  For ex-
ample, web applications have been reported to have peak 
loads many times that of sustained load [1].  Consequently, it 
is almost inevitable in a web environment that any specific 
hardware configuration will become over-provisioned for the 
sustained load, but under-provisioned for the occasional peak 
load.  These variations inherent in n-tier applications cause 
problems for traditional analytical methods such as queuing 
theory [5], for example, Mean Value Analysis that focuses on 
the steady state and average behavior.   

Complementing theoretical modeling, an alternative approach 
to performance characterization of complex systems is direct 
experimentation and observation of system behavior.  Obser-
vation of real experiments avoids the problem of error propa-
gation or reaching the limitations of assumptions made by 
analytical models when scaling up or out by a significant 
number.  In addition, experiments provide validation points 
for model-based characterizations.  In this paper, we outline an 

observation-based approach and show its feasibility as well as 
promising results in the performance characterization of n-tier 
applications over a wide range of configuration settings.  
Measuring and plotting performance of n-tier applications 
covering a sufficiently large set of parameters and soft-
ware/hardware combinations can help system analysts make 
informed decisions at configuration design time.  During op-
eration of the system when workload evolves, our observed 
performance can serve as a guide to system operators and ad-
ministrators in reconfigurations to obtain reliably the desired 
service levels.   

Although observation is a well-known scientific method to 
understanding and describing complex system behavior, it has 
some practical limitations when applied to n-tier applications.  
It is common in large-scale scientific observations (e.g., high 
energy physics accelerators and large astronomical telescopes), 
to build significant experimental infrastructures at a high cost 
and long construction time.  This is acceptable and justified 
for once-in-a-lifetime discoveries such as Higgs Boson.  Un-
fortunately, computer system configurations have relatively 
short life span of a few years or months, requiring frequent 
repetition of experiments.  High experimental costs or long 
construction time would render the observational approach 
unsuitable for computer systems. 

To achieve rapid and low cost experimental performance 
evaluation, a software infrastructure to generate and manage 
performance evaluation experiments of n-tier applications has 
been developed in the Elba project [4][8][10][12].  This infra-
structure builds on the Mulini code generator to automatically 
and systematically generate, deploy, and benchmark n-tier 
applications.  Through automation, Mulini tools lower the 
costs and improve the reproducibility of computer system per-
formance measurement experiments.  

The main contribution of this paper is a practical demonstra-
tion of the feasibility of an observation-based approach to per-
formance characterization of n-tier applications.  This demon-
stration is done through a number of actual experiments.  Al-
though each benchmark experiment measures the performance 
of a single combination of settings for a sustained period, the 
variety and coverage of our experiments give us confidence in 
using the experimental results for characterization of these 
applications over a wide range of platforms and parameter 
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Cluster Node component 
Processor 2 x Xeon 3.06Ghz 
Memory 1GB (a few 2GB) 
Network 1Gbps Ethernet 

Warp 

Disk 5400RPM, 8MB cache 
Processor 2 x Xeon 64-bit 3.20Ghz 
Memory 6 GB 
Network 1Gbps Ethernet 

Rohan 

Disk 10000RPM, 8MB cache 
Node type Low-end High-end 
Processor P3 600Mhz Xeon 64-bit 3Ghz 
Memory 256MB 2GB 
Network 5 x 100Mbps 6 x 1Gbps 

Emulab 

Disk 7200RPM 10000RPM 
Table 2. Summary of hardware platforms 

 

Benchmark Tier Components 
Database MySQL Max 5.0.27 
Application Apache Tomcat 5.5.17

RUBiS 

Web Apache 2.0.54 
JOnAS 3.3.6 
Weblogic 8.1 

Database MySQL Max 5.0.27 
Application Apache Tomcat 5.5.17 

RUBBoS 

Web Apache 2.0.54 
Table 1. Summary of software configurations 

settings.  Our experiments show promising results for two 
representative benchmarks [3] (RUBiS and RUBBoS) and 
potentially rapid inclusion of new benchmarks such as TPC-
App [18] when a mature implementation is released.  Our 
work shows that Mulini is a very useful tool for creating and 
managing experiments at this scale of complexity.  The feasi-
bility of using other experiment management tools such as 
LoadRunner and an evaluation of their effectiveness is beyond 
the scope of this paper. 

The rest of this paper is organized as follows.  Section II out-
lines the Mulini code generator that made the experiments 
feasible and affordable.  Section III describes the experimental 
setup and discusses the management scale of performance 
experiments.  Section IV summarizes the baseline experiments, 
where we show the benchmark results with known configura-
tions.  Section V describes the scalability of these benchmarks 
with an increasing number of servers for scale-out experi-
ments.  Section VI summarizes related work and Section VII 
concludes the paper. 

 

II GENERATING CODE FOR 
DEPLOYMENT AND MONITORING 

To create the n-tier application deployment code, the input to 
the Mulini generator [8][10][12] is a CIM/MOF (Common 
Information Model, Managed Object Format) standard speci-
fication format to model and describe resource configurations 
[14][16].  Mulini translates CIM/MOF into one of several de-
ployment languages, including SmartFrog [11] and typical 
shell-style scripting languages such as bash shell script for 
Unix systems.  In addition to application deployment code, 
Mulini also generates the workload parameter settings and the 
specifications for application performance and system re-
source consumption monitoring.   

Using a domain-specific Testbed Language (TBL) as an input 
specification, Mulini generates a workload driver (e.g., client 
web browser emulator), and then parameterizes it with various 
settings (e.g., the number of concurrent users accessing the 

application) that stress the application.  Typically, the experi-
ments start with a light load that is increased heuristically for 
scale up and out experiments.  When a bottleneck is found 
(e.g., by the observation of response times longer than the 
specified by service level objectives – SLOs), we use Mulini 
to generate new experiments with larger configurations (e.g., 
increasing the number of bottleneck servers to balance the 
load).  The best heuristics for experimental design is a topic of 
ongoing research and beyond the scope of this paper.  We ob-
serve that in order to reconfigure and redeploy application for 
the next iteration, simply updating input TBL specification is 
enough, compared to manually changing each benchmark 
script and configurations of n-tier applications.   

For application-level performance monitoring, Mulini param-
eterizes the workload driver to collect specified metrics, such 
as response time for each user request and overall throughput, 
in TBL.  It also generates parameterized monitors as separate 
tools to gather system-level metrics including CPU, memory 
usages, network I/O, and disk I/O.  Mulini accounts for varia-
tions across hosts by creating system-level monitoring tools 
customized to each host.  This automation alleviates the clutter 
of managing data files for each host and avoids any errors 
from manually launching monitors with different parameters.  
After each set of experiments, performance data collected 
from the participating hosts is put into a database for analysis. 

 

III DESCRIPTION OF EXPERIMENTAL  
CONFIGURATIONS 

Our experiments consist of application benchmarks that run on 
a combination of software and hardware platforms.  Many 
components (e.g., application benchmark, software platform, 
and hardware platform) can be configured separately.  In this 
section, we outline the main configuration choices explored in 
this paper. 

III.A Experimental Platforms 
Table 2 summarizes the three hardware platforms used for our 
experiments.  The first cluster (named Warp) is comprised of 
Intel Blade Servers with 56 nodes.  The second cluster (named 
Rohan) consists of homogeneous Intel Blade Servers (with a 
faster CPU) with 53 nodes.  The third platform is the Emu-
lab/Netlab distributed testbed [26]. 
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Experiment set Figure Line count of 
configuration 
files changes 
and number 
of files 

Line count of 
generated 
scripts 

Ma-
chine 
count 

Experimental configura-
tion 

Collected 
perf. data size 

Baseline RUBiS on 
JOnAS 

Figure 1 1.1 KLOC, 16 99 KLOC 300 50 (1-1-1 with varied 
write ratio and workload) 

696MB 

Baseline RUBiS on 
Weblogic 

Figure 3 1 KLOC, 17 189 KLOC 594 99 (1-1-1 with varied 
write ratio and workload) 

1,921MB 

Scale-out RUBiS on 
JOnAS 

Figure 5 9 KLOC, 27 815 KLOC 2,935 204 (1-2-1 to 1-12-3 with 
varied workload) 

15,007 MB 

Scale-out RUBiS on 
Weblogic 

Figure 
omitted 

0.9 KLOC, 20 152 KLOC 632 72 (1-2-1 to 1-5-1 with 
varied workload) 

2,153 MB 

Table 3. Scale of experiments run 

Table 1 summarizes the software configurations of the servers 
used in our experiments.  All Warp and Rohan experiments 
were run on Red Hat Enterprise Linux 4, with Linux kernel 
version 2.6.9-34-i386 on Warp and kernel 2.6.9-42-x86_64 on 
Rohan.  Emulab experiments were run on Fedora Core 4 with 
Linux kernel version 2.6.12-1-i386.  We used sysstat 7.0.2 to 
track system resource utilization. 

III.B Application Benchmarks 
The first application benchmark used in our experiments is 
RUBiS (Rice University Bidding System), an auction site pro-
totype modeled after eBay, which can be used to evaluate ap-
plication design pattern and application server’s performance 
scalability.  RUBiS stresses the application server and defines 
26 interaction types such as browsing by categories or regions, 
bidding, buying, or selling items, registering users, writing or 
reading comments.  It provides two default transition matrices 
emulating different workloads:  read-only browsing interac-
tions and bidding interactions that cause 15% writes to the 
database.  In our experiments, the write ratio is extended to 
vary between 0% and 90%.     

The second application benchmark used in our experiments is 
RUBBoS (Rice University Bulletin Board System), modeled 
after a bulletin board news site similar to Slashdot.  RUBBoS 
is a 2-tier application which places a high load on the database 
tier.  It uses 24 different interaction states in which a user may 
perform actions such as register, view story, and post com-
ment.  The client driver defines two transition matrices as 
well:  read-only user interactions and submission user interac-
tions (with a tunable write ratio).  We use the smaller of the 
two standard RUBBoS data sets. 

These benchmarks and the software they depended on had a 
wide range of complex configurable settings.  It is this flexi-
bility, which makes predicting system bottlenecks a non-trivial 
task and the observations we make more essential.  To keep 
our results as reliable, fair and reproducible as possible, we 
kept all the configuration settings as close to default as possi-
ble.  Deviations from a typical hardware or software configu-
ration are mentioned in the following sections.  

In the experiments, each trial consists of a warm-up period, a 

run period, and a cool-down period.  The warm-up period 
brings system resource utilization to a stable state.  Then 
measurements are taken during the run period.  This is fol-
lowed by the cool-down period when measurement halts and 
no additional requests are made by the clients.  For RUBiS, 
the trials consist of one-minute warm-up and cool-down peri-
ods, and a five minutes run period.  For RUBBoS, the trials 
consist of two-and-a-half minutes warm-up and cool-down 
periods, and a 15 minutes run period. 

III.C Scale of Experiments 
Table 3 shows the management scale of the experiments run to 
obtain the data described in this paper.  As we can see, the 
number of script lines required for relatively “simple” figures 
such as Figure 1, Figure 3, and Figure 5 reach hundreds of 
thousands of lines. It is impractical to write and maintain 
scripts manually at such scale.  The number of experiments 
included in this paper has been limited by the number of nodes 
available in our clusters and Emulab.  The experiments con-
tinue, since the generation of scripts is largely automated in 
our environment.  In Table 3 we also include the amount of 
performance data collected, which is typically on the order of 
gigabytes for each set of experiments run.  The format of our 
collected performance data is the output of the monitoring 
tools from the sysstat suite. 

Both Table 4 and Table 5 list a subset of the files that are gen-
erated and modified by Mulini to run RUBiS experiment when 
two machines are allocated for the application server tier and 
another 2 machines for the database tier.  The experimental 
configurations shown in Table 3 are indicated by a triple (w-a-
d in column 5, where w is the number of web servers, a is the 
number of application servers, and d is the number of database 
servers).  We can see that the number of machines involved 
(from hundreds to thousands) and number of lines of scripts 
for the experiments (on the order of hundreds of thousands of 
lines) show the management complexity of these experiments.  
Typical experiments such as those reported here require many 
such graphs, with ten to twenty-fold increases in experiment 
management complexity. 
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Figure 1. RUBiS on JOnAS response time 

Generated script Line 
count 

Comment 

run.sh 898 Calls all the other 
subscripts to in-
stall, configure 
and execute a 
RUBiS experi-
ment 

TOMCAT1_install.sh 54 Installs Tomcat 
server #1 

TOMCAT1_configure.sh 48 Configures Tom-
cat server #1 

TOMCAT1_ignition.sh 16 Starts Tomcat 
server #1 

TOMCAT1_stop.sh 12 Stops Tomcat 
server #1 

SYS_MON_EJB1_install.sh 11 Installs system 
monitoring tools 
on JOnAS server 
#1 

SYS_MON_EJB1_ignition.sh 17 Starts system 
monitoring tools 
on JOnAS server 
#1 

Table 4. Examples of generated scripts 

Configuration 
file 

Line 
count 

Comment 

Work-
ers2.properties 

22 Configures Apache to con-
nect to application server tier 

Mysqldb-raidb1-
elba.xml 

16 Configures C-JDBC control-
ler to connect to databases 

monitorLo-
cal.properties 

6 Configures JimysProbe 
monitor 

Table 5. Examples of configuration files modified 

 

 

As an indication of module-level complexity of deployment 
code, 6 or more files in the RUBiS script are modified by 
Mulini for each experiment.  As an illustration, 3 of the files 
are listed in Table 5.  Without an automated code generator 
such as Mulini, these files need to be modified and 
maintained by hand.   Each of these files is a vendor-specific 
configuration file associated with a software package such as 
Apache, Tomcat, and MySQL.  Consequently, these files are 
scattered over different directory locations.  In a manual 
approach, it will be tedious and error prone to visit all these 
different directory locations to make those changes.  In 
contrast, we modify Mulini’s input specification once and the 
necessary modifications are propagated automatically. 

Our experience shows that the automated approach based on 
Mulini shows much promise in the execution of large-scale 
experiments.  As experiments become increasingly complex 
with more test variables and variety of configurations, manual 
maintenance of such scripts become less feasible.  Some of 
these complexities are due to the low abstract level of script-
ing languages, which may be partially alleviated with a higher 
level deployment language such as SmartFrog [10].  More 
concrete experience with increasingly complex experiments 
will be needed to settle this question.  For instance, database 
table partitioned among multiple database back-end nodes 
may require different steps to install and configure each data-
base node.  One of the advantages of the Mulini code genera-
tion approach is its ability to generate deployment code for a 
variety of platforms, including the higher abstraction deploy-
ment languages such as SmartFrog.  A detailed evaluation of 
other tools for generating and management experiments and a 
detailed evaluation of the experiments themselves are interest-
ing topics of future research. 

 

IV BASELINE EXPERIMENTS & RESULTS 
 

 

As a starting point to validate our scripts and setup, we ran a 
set of experiments for both RUBiS and RUBBoS by allocating 
one machine for each one of: database server, application 
server, and web server.  This section summarizes the results of 

these baseline experiments (configuration 1-1-1, meaning 1 
web server, 1 application server, and 1 database server).  Scale 
out experiments (allocating more than one machine for the 
bottleneck server) are described in Section V. 

IV.A RUBiS Experiments with JOnAS 
Although we have conducted the RUBiS experiments on sev-
eral platforms, we only report in this section the 1-1-1 experi-
ments conducted on the Emulab cluster. Due to the different 
resources requirements by each server, we allocated different 
hardware configurations for these servers: database server 
host’s CPU frequency is 600MHz, and the web server and 
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Figure 2. RUBiS on JOnAS application server CPU utilization
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Figure 4. RUBBoS response time 
 

application server CPU frequency is 3GHz.  The adoption of a 
slower database server allows for a quicker saturation of the 
database server, making the experimental results more inter-
esting. 

The default configuration of the RUBiS benchmark uses 
MySQL as its database server, JOnAS [19] as application 
server, and Apache as web server.  Figure 1 shows the base-
line measurement results with a graph of three dimensions: 
workload on X-axis, response time on Y-axis, and database 
write ratio of each interaction on Z-axis.  The write ratio does 
not introduce a database bottleneck in the workload, but it 
reflects the (inverse of) amount of work done by the interac-
tions and the load on the application server, which is the bot-
tleneck.  When the write ratio is high, most operations involve 
writes to the database which does not stress the application tier 
much, so the response time is relatively short.  On the other 
hand, when the write ratio is low, most of the operations in-
volve the transforma-
tion

of data in the application tier, which make the response time 
long.  This kind of interactions among different servers is 
typical of n-tier applications.  We maintain the term “write 
ratio” for compatibility with the RUBBoS reference to work-
load.  

  

The RUBiS (JOnAS, 1-1-1) experiments were conducted on 
the Emulab cluster with each component of the 3-tier applica-
tion deployed on a separate node.  During our experiments, we 
collected the system’s response time to each emulated client’s 
request.  Each experiment’s workload varies from 50 to 250 
users, increment of 50.  Figure 1 shows the increase in re-
sponse time when the write ratio is low (more work for appli-
cation server) and number of users increases.  A bottleneck is 
apparent for the region of more than 250 users and write ratio 
below 30%.  Figure 2 shows the application server CPU con-
sumption corroborates the hypothesis of application server 
being the bottleneck.  The two figure show correlated peaks in 
response time and application server CPU consumption.  
These baseline graphs also show an expected monotonic 
growth of response time when a bottleneck is encountered (the 
application server).  At the top of the graph, the high response 
times reflect the CPU bottleneck, when the measured results 
show the uncertainties that arise at saturation.  Concretely, the 
response times of 250 users between write ratio of 0% to 40% 
contain significant random fluctuations due to CPU saturation. 

 
IV.B RUBiS Experiments with Weblogic 

As a variation, we ran the RUBiS benchmark with the We-
blogic application server replacing the default JOnAS applica-
tion server.  These experiments have similar settings as in Sec-
tion IV.A and results are shown in Figure 3. 

The RUBiS (Weblogic, 1-1-1) experiments were conducted on 
the Warp cluster with each component of the 3-tier application 
deployed on a separate node.  Each experiment’s workload 
varies from 100 to 600 users, increment of 50.  During our 
experiments, we collected the system’s response time to each 

Figure 3. RUBiS on Weblogic response time 
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Figure 5. RUBiS on JOnAS scale-out response time for 2 to 8 application servers 

emulated client’s request.  Figure 3 shows the increase in re-
sponse time when the write ratio is low (more work for appli-
cation server) and number of users increases.  The system bot-
tleneck is similar to that of Figure 1 for the region of more 
than 400 users and write ratio below 50%.  Weblogic applica-
tion server also has the same bottleneck (CPU consumption).  
At the top of the graph, the high response times reflect the 
CPU bottleneck, when the measured results also show the un-
certainties that arise at saturation.  Concretely, the response 
times of 600 users between write ratio of 0% to 50% also con-
tain random fluctuations, but the Weblogic configuration is 
shown to support a higher number of users than JOnAS (about 
twice as many users at saturation point).  

IV.C RUBBoS Experiments 
Similar to RUBiS, the RUBBoS benchmark was run as an 
application on the Emulab cluster, using the Mulini code gen-
eration tools to create the scripts.  Figure 4 shows the experi-
mental results for the baseline experiments (1-1-1 configura-
tion).  Figure 4 has the workload on X-axis (500 to 5000 con-
current users, increments of 500) and response time on Y-axis 
(in milliseconds).  Each of the 2-tier application components is 
deployed on a separate node.   

Figure 4 compares two read/write ratios provided by the 
RUBBoS benchmark:  85%(read)/15%(write) shown in the 
lighter color, and 100% read shown in the darker shade.  One 
can see from the graph that the read-only setting reaches a 

bottleneck at a much lower workload than the read/write mix.  
These results are compatible with previous experiments run on 
the Rohan cluster, which indicate the database server to be the 
bottleneck.   

The baseline experiments described in this section verified the 
main setup parameters and previous published results on the 
RUBiS and RUBBoS benchmarks.  Concretely, the RUBiS 
benchmark has its bottleneck in the application server and the 
database server as the bottleneck of RUBBoS.  In the next 
section, we describe the main new results of this paper, the 
scale-out experiments that systematically add more resources 
to alleviate these bottlenecks. 

 

V SCALE-OUT EXPERIMENTS 
V.A Design of Scale-Out Experiments 

Starting from the baseline experiments in the previous section, 
we ran scale-out experiments by following a simple strategy.  
As the workload (number of users) increases for a given con-
figuration (1-1-1 in the baseline experiments), the system re-
sponse time also increases.  If we are able to see a system 
component bottleneck (e.g., application server in RUBiS), we 
increase the number of the bottleneck resource to alleviate the 
bottleneck.  This is a simple strategy chosen for the experi-
ments described here.  In order to reconfigure and redeploy 
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Performance 
improvement 

by adding 
servers 

+1 +2 +3 +4 +5 +6 

App server  
 (%) 84.3 92.4 93.6 94.1 94.1 94.1 

DB server  
(%) 13 14.9     

Table 6. Comparison of performance improvement (percent-
age of response time decrease) from 1-2-1 to 1-8-3 with 500 

users in the RUBiS (JOnAS) experiments 

 Configuration (w-a-d) 
Load 1-2-1 1-3-1 1-4-1 1-5-1 1-6-1 1-7-1 1-8-1 

300 42.0 42.3 42.5 42.2 42.3 42.3 42.3 
500 56.4 69.1 70.5 70.6 70.8 70.8 70.9 
700 57.4 83.7 96.4 98.1 98.3 98.6 98.5 
900 12.7 62.8 111 123 125 126 126.0 

1,100  39.3 97.3 137 148 152 149.8 
1,300    132 162 173 178.0 
1,500    69.7 166 185 199.2 
1,700     138 191 206.5 
1,900      196 215.8 
2,100      77.1 215.4 
2,300       156.6 
2,500       90.4 
Table 7. RUBiS measured average throughput for configu-

application for the next iteration, simply updating input TBL 
specification is enough.  The best heuristics for experimental 
design is a topic of ongoing research and beyond the scope of 
this paper. 

This scale-out of the initial bottleneck in RUBiS continues by 
the gradual increase of workload, leading to system saturation.  
The experiments continue with the addition of another appli-
cation server to alleviate the bottleneck.  This loop continues 
until the system response time is not improved by the addition 
of another application server.  This is an indication of a differ-
ent bottleneck in the system.  Then we add other system re-
sources, in this case more database servers to identify the sys-
tem bottleneck and to improve system performance.   

In addition to this simple strategy, we also have run experi-
ments that increase the number of servers that may be bottle-
necks, to improve our understanding of the interactions among 
the components.  The different strategies to explore the system 
configuration space is a challenging research topic in itself and 
beyond the scope of this paper.  In the following sections, we 
show the concrete experiments and the insights they provide in 
the performance evaluation of different system configurations. 

V.B RUBiS Scale-Out Experiments with JOnAS 
In the case of RUBiS, we know the application server was the 
bottleneck for the 1-1-1 baseline configuration.  Consequently, 
we increase the number of application servers from 1 in the 
baseline experiments to 12 (from 1-1-1 to 1-12-1).  Similarly, 
we also increase the number of database servers from 1 in the 
baseline experiments to 3 as bottleneck in database server is 
detected.  In RUBiS, web server performs as the workload 
distributor and does very little work.  In all experiments we 
have a single web server and it has not been shown to be a 
bottleneck.  To simplify the experiments (see Section III.C) 
and their analysis, we focus on the application performance 
with different system configurations for a fixed write ratio of 
15% which is a typical write ratio in auction websites.  The 
experiments to evaluate the sensitivity of our results with re-
spect to variations in write ratio is the subject of future re-
search. 

Figure 5 and Figure 6 shows all the RUBiS (JOnAS) experi-
ments on Emulab, with response times measured for all com-
binations of 1 web server, 1 to 12 application servers, and 1 to 
3 database servers.  Although the details of the lines can be 
seen better at higher resolution, some trends can be seen in the 
graph. 

First, the leftmost overlapping lines show that 1-2-1, 1-2-2  
and 1-2-3 corroborate the observation that the database server 
is not the bottleneck.  Adding more database servers makes 
very little difference in the system response time.  In contrast, 
adding an application server (e.g., from 1-2-1 to 1-3-1) im-
proves the system response time significantly.  While the satu-
ration of the 1-2-1 configuration occurs at about 500 users, the 
1-3-1 configuration saturates at about 750 users.  This trend is 
repeated for the 1-3-X, 1-4-X, 1-5-X, 1-6-X, and 1-7-X (where 
X varies from 1 to 3) configurations.  For these configurations, 
adding database server helps very little, but adding an applica-

tion server improves the system performance by supporting 
(roughly) 250 additional users. 

Table 7 shows the average throughput (successful client re-
quests per second) for the configurations of 1-2-1 to 1-8-1.  It 
shows some interesting trends more clearly than the figures.  
First, the throughput at low workloads is the same across the 
multiple servers (on the same row), validating the software 
scale out capability.  This happens for loads of 300 through 

700.  The 2 application server configuration fails to complete 
the experiment for loads higher than 700.  More generally, the 
missing squares in Table 7 reflect the experiments that could 
not complete.  We also note that the last number of each col-
umn show an anomalously low number.  We speculate this is 
caused by the same technical issues that make the experiments 
fail at high loads.   
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Figure 7. RUBiS on JOnAS scale-out response time difference 
between configurations 
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Figure 6. RUBiS on JOnAS scale-out response time for 8 to 12 application servers 
 

From the system management point of view, this trend is 
shown in Table 6, where the response time improvements are 
compared for the 1-2-1 configuration as base, with 500 users 
(near the saturation point).  Table 6 shows the percentage of 
response time improvement gained by adding more servers 
into the system.  Adding one application server to yield the 1-
3-1 configuration can get 84.3% improvement, compared with 
13% improvement by adding one database server to yield the 
1-2-2 configuration.  Consider the case of capacity planning 
for 500 concurrent users.  Table 6 shows that 3 or 4 applica-
tion servers would match well with 1 database server in terms 
of minimizing response time and avoiding over-provisioning.   

The consistent trend between 1 and 7 application servers is 
changed when we reach the 1-8-1 and 1-8-2 configurations.  
When the number of application servers reaches 8 and the 
number of users 1700, the response time difference between 1-
8-1 (around 1.3sec) and 1-8-2 (about 0.9sec) is about 40%.  
This difference is much bigger than the numbers in Table 6 
(third row).  However, the response time of 1-8-2 and 1-8-3 
configurations are quite similar. This observation is consistent 
with the hypothesis that the single database server has become 
the bottleneck at 1-8-1 configuration and 1700 users.  Once a 
second database server has been added (1-8-2), the bottleneck 
shifts away and the database server(s) is no longer the bottle-
neck. 

Figure 6 shows a trend similar to Figure 5, after the database 
bottleneck detected at 1700 users.  The curves of 1-8-Y, 1-9-Y, 
and 1-10-Y overlap (where Y varies from 2 to 3).  

To study the variation in response time in more detail, Figure 
7 shows the response time difference between different num-
bers of database servers, where X-axis contains the number of 
users and Y-axis shows the difference of response time in mil-
liseconds.  The first curve shows the difference between the 1-
8-1 and 1-8-2 configurations (from 1 to 2 database servers), 
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Figure 8. RUBiS on JOnAS scale-out CPU utilization between 
configurations 

which is flat on the left side, but has a sudden jump at 1700 
users.  The second curve shows there is little difference be-
tween 1-8-2 and 1-8-3 configurations (a third additional data-
base server) up to 1700 users.   

The third curve in Figure 7 shows the difference in response 
time between the 1-12-2 and 1-12-3 configurations, between 
1700 users and 2900 users.  At this point, we observe the jump 
in response time difference between 2 database servers and 3 
database servers.  This is consistent with the hypothesis that 
the 2 database servers have become a bottleneck at 2900 users.  
From the capacity planning point of view, 2 database servers 
appear to suffice for a workload smaller than 2900 users.   

We also plotted the CPU utilization of database servers in 
Figure 8, showing only 3 “critical” cases (1-8-1, 1-12-2, and 
1-12-3).  The first two cases show the gradual saturation of  
the database servers’ CPU utilization at 1700 users (1 server) 
and 2700 users (2 servers), which corroborates our previous 
analysis.  The third curve shows the non-saturation of 1-12-3 
configuration, at least with respect to the database servers. 

V.C Discussion 
The experiments in the previous section (V.B) show that we 
can perform the measurements of large scale benchmarks by 
scaling the number of bottleneck servers.  This way, we can 
verify the actual properties of each benchmark on representa-
tive system configurations.  These experimental results can be 
used to confirm or disprove analytical models within the sys-
tem parameter ranges covered by the experiments.  The design 
of an analytical model that fits our measurements is beyond 
the scope of this paper.   

Another practical use of the experimental results in Section 
V.B is in the design of system configurations for n-tier appli-
cations similar to RUBiS.  Given a concrete set of service 
level objectives and workload levels, one can use the numbers 
in Figure 5 through Figure 8 to choose the appropriate system 
resource level that will achieve the specified quality of service 
for the workload levels of interest.   

 

VI RELATED WORK 
Traditional performance analysis [1][5] [6] based on analytical 
methods such as queuing theory have limitations when han-
dling the variations and evolution of n-tier applications, often 
due to assumptions made in the underlying model.  Assump-
tions (such as mean inter-arrival time), can vary widely in 
real-world situations due to troughs and peaks in workloads.  
For n-tier applications, especially in the case of multiple serv-
ers at any tier, the average errors in prediction in any one tier 
get magnified by the average errors in the next.  Consequently, 
direct application of modeling techniques on n-tier applica-
tions has been limited. 

A second area of related research consists of experimental 
studies of complex system performance, staging environments 
to validate specific configurations.  IBM's performance opti-
mization tool, an autonomic computing tool, identifies the root 
cause of poor performance observed during a test by round-
trip response time decomposition [20].  The response time is 
broken down into the times spent within each component in 
the system enabled by the Tivoli ARM data collector.  How-
ever, since ARM needs changes to the application code, this 
approach is intrusive in nature. 

A third area of related work consists of the dynamically adap-
tive systems in the autonomic computing area.  Our observa-
tion-based approach complements well the recent efforts in the 
autonomic computing area [21][22][23][24].  We can see 
autonomic approaches to adjust system configuration in re-
sponse to workload variations [6] as a dynamic discovery 
process that searches for an optimized mapping of workload to 
system resources.  The observation-based performance charac-
terization work reduces the assumptions made and uncertain-
ties inherent in unknown configurations in the search space, 
by observing the real system behavior beforehand. 

From the infrastructure point of view, the Mulini generator 
builds on code generation concepts, techniques, and software 
tools developed in the Elba project [10][18][10].  Although the 
main application area of Elba tools has been in system man-
agement, specifically in the validation of staging deployment 
scripts, the Elba tools have been very useful in the generation 
and management of our experiments. 

 

VII CONCLUSION 
N-tier applications have grown in economic and social impor-
tance in recent years.  While they offer unprecedented flexibil-
ity to grow and evolve, they also introduce significant man-
agement problems due to the changing nature of their work-
load and evolution of their functionality.  However, traditional 
methods of performance evaluation, based on models such as 
queuing theory, have difficulties with systems that may or 
may not have a steady state.  Unfortunately, experimental 
methods that measure directly system performance also have 
difficulties, this time with the cost and errors in manually writ-
ten scripts for many configuration settings.   

We have developed the Mulini code generator to support auto-
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mated deployment and evaluation of n-tier applications in a 
distributed environment.  By generating the deployment 
code/script automatically, we are able to lower the develop-
ment costs and reduce errors at the same time.  The first major 
contribution of this paper is the application of code generation 
tools to support large-scale experimental measurements of n-
tier application benchmarks such as RUBiS and RUBBoS.  
Using our tools, we generated several hundred thousands of 
lines of scripting code and ran hundreds of experiments to 
observe the actual performance of the benchmark applications 
on a variety of software and hardware combinations. 

Our experiments show both expected and unexpected results.  
Section IV describes the baseline experiments (one machine 
for each of database server, application server, and web 
server) for RUBiS (with two different application servers) and 
RUBBoS.  Section V describes the scale-out experiments for 
RUBiS (for JOnAS and Weblogic) on the system bottleneck – 
the application server, and for RUBBoS also on the bottleneck 
– the database server.  The RUBiS experiments show quantita-
tively how many application and database servers are required 
to provide good response time for a given number of users.  
For the configuration studied (Emulab), 1 web server and 1 
database server can serve up to 1700 users, but 7 application 
servers are needed for the 1700-user workload.  For higher 
workloads, 2 database servers and 12 application servers are 
able to serve up to 2700 users.   

Our experiments show both the feasibility of the observation-
based performance characterization approach.  Further, the 
non-trivial interactions among the scaled out severs as well as 
interactions among components shows the need for more re-
search (and perhaps experiments) to study and characterize 
these phenomena using theoretical or analytical models.   
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