
Categorization and Optimization of Synchronization Dependencies in Business
Processes

Qinyi Wu', Calton Pul, Akhil Sahai2, Roger Barga3

'College ofComputing, Gatech 2HP Labs 3Microsoft Research
{qxw, calton}@cc.gatech. edu akhiLsahai@hp.com barga@microsoft.com

Abstract requirement. Furthermore, programming using sequence
constructs normally produce nested structures and

The current approach for modeling synchronization in scattered code, especially under the existence of
business processes relies on sequencing constructs, such concurrency [21]. As a result, there is no easy way to add
as sequence, parallel etc. However, sequencing constructs or delete a constraint in a process without over-specifying
obfuscate the true source of dependencies in a business necessary constraints or invalidating existing ones.
process. Moreover, because of the nested structure and In this paper, we describe a synchronization modeling
scattered code that results from using sequencing approach for business processes in which dependenciessconsteruct it is hard to add or delete additional are first-class citizens, explicitly modeled to guide activityconstructs, ithardove r netesaryiconal scheduling. This dependency-equal-to-scheduling style is
constraints without over-specifying necessary constraints the core feature of dataflow programming, which has the
or invalidating existing ones. well-known advantage of using dependencies to locate

We propose a dataflow programming approach in
which dependencies are explicitly modeled to guide potential parallelism to improve performance [14]. We
activity scheduling. We first give a systematic assume that the dependency information can be extracted
categorization ofdependencies. data, control, service and from design products like activity diagrams in UML [17],
cooperation. Each dimension models dependencyfrom its Program Dependency Graph [5] or web service
own point of view Then we show that dependencies of description requirements in WSCL [25] etc. Otherwise,
various kinds can be first merged and then optimized to they are provided by domain experts, such as high-level
generate a minimal dependency set, which guarantees business requirements for exception handling. Classical
high concurrency and minimal maintenance cost for examples of dependencies include data dependency andproessnexcurrency and minimal maintenance cost for control dependency [2], which we extend with additional

dimensions, service and cooperation, to accommodate the

1. Introduction highly interactive and complex characteristics of businessprocesses. To derive an efficient global synchronization
scheme using dependencies of various kinds, these

A business process is often created to integrate dependencies are first represented uniformly as
distributed services, and typically contains a group of synchronization constraints in DSCL [21]. The constraints
activities used to interact with remote services, or perform are then merged and optimized. We have developed a tool
some computation task within the process. In order to - DSCWeaver that accepts as input a business process and
achieve intended scenarios, the execution of the activities its associated synchronization constraints coded in DSCL.
must be synchronized according to various sequencing The DSCWeaver automatically translates DSCL code into
constraints. For example, if two activities exchange data, Petri Nets [13] for validation and finally generates BPEL
they create a happen-before constraint between the data code for real process deployment and execution. Thus,
producer and the data consumer. The leading process our approach provides a vertical solution for business
modeling languages use sequencing constructs (sequence, process specification, optimization, validation and
parallel etc.) to specify synchronization constraints. execution. For validation and execution, please refer to
Sequencing constructs [1] are highly imperative, and our early work [22]. This paper focuses on specification
often use a counter to determine the next activity or and optimization, which are summarized below:
subprocess for execution. While effective at depicting the We give a systematic categorization of dependencies
structure of a process, they obfuscate the sources of in business processes: data, control, service and
dependencies. For example, a sequence construct may be
created due to a data dependency or other business coeain ahdmninmdl ycrnzto

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 306

recClient_po
po: purchase order Po 1
au: authorization result invCredit_po rP° Credi
si: shipping info
oi: order invoice recCredit_au
ss: shipping schedule

web service

Fnvurc e 1. TheSp_poucai pc fowuchar
demnstatethnenies fe di drecSu iis in a l h

attaciv iatmiC srice ucmpo_sito,itah res of th paeris oraie aset follw.I

recShips Cs X /

r

Figure 1. The Purchasing process flow,hart
constraints from its own point of view. We then keeps the necessary ones. The removal of redundant
demonstrate that dependencies of different dimensions dependencies results in a lightweight implementation,
can be automatically merged together to form a global enabling higher flexibility for adaptation and
synchronization scheme. This feature is particuarely opportunities for concurrent execution.
attractive in automatic service composition, in that The rest of the paper is organized as follows. In
participants of service integration can simply submit their Section 2, we describe the Purchasing process, a running
dependencies like a WSCL document to a scheduling example throughout this paper. Section 3 categorizes
engine. The scheduling engine will then combine different types of dependencies. The dependency
dependencies from all services to infer a global optimization is explained in Section 4. We review related
synchronization scheme. For instance, a state-awareness work in Section 5 and conclude in Section 6.
servqce may requcre a sequenral nmvocation on lits two
ports. Instead of passively relying on the correct 2. Motivating Example
implementation of a process, the service can now submit
it as a service dependency, which tells the scheduling eah rersente the format of
eissues toascheduletequentially the corresponding illustrated in Figure 1. We borrowed this example from
invocation activities in the process. By comparison, there BPEL 1.0 specification [24] and extended it with a
is no easy way to add this constraint if a process is coded conditional branch to illustrate a more interesting scenario.
in sequencing constructs forthe reasons mentioned earlier. The purchasing process interacts with four web
As observed in [5], this is very important to relieve Cedites: Now let'scescribe terces Scerio.

Srometimers dependenciesuca imose the same gset of Afervcs Creeivin aevie,Purchase oerdier,ro ahi clivien

synchronization ronstraintson rkactivity sched ing.Inth (andProduction Service. The process consists of activitiesf
dependencies involving concurrency and synchronization each represented in the format of
sequential synchronization constraint on the invocation actionServicesfes ae int s related to a remote
We analyze the interactions between dependencies _prceSrbparameter(IPrfit i relate_S

rorrepodinger datd dependeoncy will introducemiianosthe an reI rhaei, _uparameter (InSI >o

fromdiffrentdimesion, ad exracta miimalset local computation. For example, the activity of invoking
containing only the essential dependencies to be Credit Service with parameter po is represented by
preserved for the correct execution of a process. invCredit_po. Now let's describe the process scenario.
Sometimes dependencies can impose the same set of Atrrciigaprhs re rm acin

syncroniatincostrintson ctivty chedlin. Inthe (recClient_po), the process sends it to Credit Service for
previous example, the service dependency imposes a credit card authorization (invCreditwo.I ucsfl
sequential synchronization constraint on the invocation three subprocesses are instantiated concurrently:
activities. If data are exchanged between them, the PrhsSbrcs ivucaeo nPrhs_i
corresponding data dependency will introduce another and recPurchase_oi), ShipSubprocess (invShip-po,
sequential constraint. The goal of dependency reSi_,anrchps),ndPoutnuboes
optimization is to find a minimal dependency set that only (invProductionjw, and invProduction_ss). If it fails, the

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 307

order invoice is set with failure information (set oi). As To better motivate our work, we show a sequencing-
the last step, the order invoice will be sent back to the construct implementation based on [24] in Figure 2. The
client (replyClient_oi) after the execution of constructs are chosen from BPEL. There are several
ShipSubprocess and ProductionSubprocess finishes. The limitations associated with this approach. First,
execution of these three subprocesses is not independent. programming in this manner requires that process
They synchronize at intermediate steps, particularly the designers are aware of all dependencies, both local and
synchronization between recShip si and invPurchase_si, remote, and they must choose the proper constructs for
and between recShip_ss and invProduction_ss due to data coding them. The choice becomes delicate if a construct
dependencies. must accommodate the combination of a variety of
* PurchaseSubprocess sends the purchasing order dependencies. Second, it is not obvious to tell the source
(invPurchasepo) and shipping invoice (invPurchase_si) of synchronization by directly looking at the
to Purchase service that calculates the final invoice and implementation, which further complicates the task of
sends it back to the process (recPurchase_oi). Purchase maintenance and adaptation, especially for evolving
service is state-aware. It requires a sequential invocation processes. For example, people may question why there is
at its two ports so that it does not receive a shipping a sequential synchronization between invPurchasepo and
invoice without receiving the corresponding purchase invPurchase_si. This is actually due to an invocation
order information. constraint imposed by the remote Purchase service. Third,

* ShipSubprocess sends the purchasing order (invShip_po) sequencing constructs may under- or over- specify
to Ship service that computes and sends back shipping synchronization constraints, which is hard to detect
invoice (recShip_si) and shipping scheduling without dependency information. For instance, the
(recShip_ss) back to the process for further processing. sequencing between invProductionjo and

* ProductionSubprocess sends the purchasing order invProduction_ss is an over-specified dependency
(invProductionjo) and shipping information because they do not exchange data and there are no other
(invProduction_ss) to Production service for constraints associated with them. By comparison, the
corresponding product processing. sequencing between invPurchase_o and invPurchase_si
This purchasing process example, though simple, is required because of the remote service invocation

exemplifies a typical scenario in business processes. We constraint from Purchase service, even though they do not
will use this as a running example to demonstrate change data either. Finally, manual analysis is highly
different types of dependencies and the procedure of error-prone. It is better to explicitly model dependencies
dependency optimization. Without loss of generality, we and rely on automatic dependency inference to generate a
assume that all service interactions are asynchronous synchronization scheme.
because a synchronous invocation can always be
translated to a pair of send and receive asynchronous calls. 3. Dependency Categorization

entry In general, data dependency and control dependency
<s po: purchase order are dimensions solely for program analysis, as in compiler

recClienpOl au: authorization result theory [2] and workflow modeling [15]. However, we
invCredit po i: orderinvoice argue that the complexity and highly interactive nature ofss: shipping schedulearuthttend ieacveo
recCredit au seq: sequence business processes render them inadequate. For

sequencing construct differentiation, we refer to traditional programs as
flow) T computation-centric programs, and business process

=F programs as interaction-centric programs. There are two

t , | invShip_po ($. main reasons for this inadequacy. First, compared to
invPurchasepo InVShippo computation-centric programs that have only one thread
invPurchase_ recShipsi | invProduction_po | of execution, there may be multiple execution threads in

recPurchase invProdi an interaction-centric program. One thread is within the
main process, while the others are within remote services.

seq-enseq-en seq-en These execution threads interact with each other through
either synchronous or asynchronous calls that need to be
synchronized properly. Second, when programming a

replyClienLoi business process, each service is treated as a black box. A
programmer can normally assume that he only needs to
care about the input and the output of a service. However,

Figure 2. The Purchasing process implemented there are cases that the execution of a service has a side
in sequencing constructs effect on other invocations. As a result, its corresponding

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 308

invocation activities need to be synchronized. This entry
implicit dependency can not be captured by either data or y
control dependencies, and as a result it demands special T al if(flag)
treatment.

In this section, we start with the explanation of data
and control dependencies. Then we introduce service and a2 y=C1 a4 w=C2 a6 w=g(z)
cooperation dependencies along with an explanation of
why data and control dependencies alone are inadequate a3 inv(wsl,y) a5 inv(ws2,w)
to model a business process. Among these four
dimensions, data, control and cooperation dependencies
are used to model synchronization constraints within the a7 inv(ws3,w)
process. Service dependency is used to model
synchronization constraints between a process and remote
services, and within remote services. Figure 3. A process specification

3.1. Data Dependency and Control Dependency > control dependency entry
~---> data dependency

Data dependency arises between a data producer
activity and a data consumer activity. For example, in
Figure 3, data y creates a definition-use data dependency
between a2 and a3, represented by a dotted line in Figure 4.
In a general programming language, the handling of data T T
dependencies in a program is complicated due to pointers,
procedural calls, and name dependencies [2]. By a a3 a4 a5
comparison, the data dependencies in process
programming language are relatively simple for several
reasons. First, the parameter reference in the invocation of Figure 4. Data and control dependency graph
remote service is call-by-value. Second, the execution of
remote service is always local. There is no side effect on entry
the process state. Thus, the definition-use type of data po:purchaseorder
dependencies is dominant in activity scheduling. recClient_po p nvCredio si: shipping info

Control dependency changes the sequential execution .: a oi:porderinvoice
of the process by condition and iteration. For example, in
Figure 3, the execution path after a, is decided by the P T
value of flag, which creates control dependencies on all
the activities a2, a3, a4, a5 and a6 located along its
descendant branches, represented by solid lines in Figure invPurchase invShip_po T invProduction_po
4. However, a7 dominates all the paths from a, to stop. It SI recShip_i _
is not control dependent on a, any more. The edges are ErecShip_ss
annotated with control condition: "T", "F', or "NONE". recPurchase_oi

Normally, data and control dependencies can be
...........

automatically extracted from document products at the replyClient_oi
end of the design stage. For example, in the dataflow
programming approach [14], dependency information can Figure 5. Data and control dependency graph
be directly extracted from the dataflow diagram. In the for the Purchasing process
imperative programming approach, a process is Coming back to the Purchasing process, we can
implemented in procedural code, such as sequencing represent its data and control dependencies coherently as
constructs. In this case, we can use program analysis shown in Figure 5. An example of data dependency is
techniques like Program Dependency Graph (PDG) to between recClienpo and invCredit_po in that the
extract dependency information [5]. Or in meta-modeling purchase order, po, is transferred between them. An
approach like UML, dependency information is available example of control dependency is between ifau and
in activity diagrams use case diagrams etc. invPurchasepo because the execution of invPurchasepo

is controlled by if au. By examining Figure 5, we found
that the current dependencies do not satisfy all the
requirement of the original specification. For example, the

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 309

process requires that the ShipSubprocess and at in Figure 6, a deployment process that will install
ProductionSubprocess should be finished before sending middleware and application software packages after
back the invoice to the client. In the current receiving a deployment configuration (recClient_Config).
synchronization scheme, recPurchase_oi does not Deploy service accepts package installation configuration
synchronize with these two subprocesses and will send as input, and then installs the corresponding package.
the invoice back to the client as soon as the invoice data invDeploy_midConfg activity extracts middleware
becomes available. Also, even though there is a sequential configuration and send it Deploy service.
constraint on the invocation of Purchase service, there is invDeploy_appConfg activity extracts application
no enforcement of sequential ordering between configuration and sends it to Deploy service. Even
invPurchase_o and invPurchase_si. Therefore, we need though there is neither a data nor control dependency
look at other two types of dependencies to capture the between invDeploy_midConfig and invDeploy_appConfig,

lomissing information. invDeployappConfig must be executed after
invDeploy_midConfig because invDeploy_midConfig will

3.2. Service Dependency and Cooperation set up certain directory structure for the installation of the
Dependency application package. As a real life example, an application

servlet should be installed under the application server

Service dependency defines those interactions between Tomcat's $Tomcat/webapp directory. Therefore, there is
a process and a remote service, or within a remote service. a happen-before synchronization constraint between
These external interactions put extra constraints on invDeploymidConfg and invDeployappConfig.
activity scheduling. For example, after an activity makes Sometimes cooperation dependency may depend on the
an asynchronous invocation to a remote service, a receive state of activity. For example, a business dependency
activity should be scheduled to listen for the arrival of the may require that the activity of collecting customer
asynchronous reply. Otherwise, the callback of the remote satisfaction survey collectSurvey should be started before
service may receive an exception of invalid URL. For the activity of closing a purchase order closeOrder
another example, the invocation of a remote service finishes. In this case, the life spans of two activities
requires two subsequent calls at its port1 and port2 overlap with each other. The existence of fine-granularity
respectively. The corresponding invocation activities in a synchronization put more challenge on synchronization
process should be scheduled sequentially. In the modeling.
sequencing-construct style, these service dependencies are Normally cooperation dependencies can not be found
implicitly implemented by constructs. In our approach, or directly inferred from process logic description
they are explicitly represented and used to infer execution documents, such as flowcharts or activity diagram. The
order of activities. Service dependency information is reason is that they are superimposed over data and control
likely to be found in standard description documents like dependencies to achieve more stringent high-level
WSCL that specifies the XML documents being business requirements or prevent exceptions caused by
exchanged, and the allowed sequencing of these implicit interactions. Therefore, it is likely that they are
document exchanges [25]. provided by either process analysts or domain experts.

Cooperation dependency defines synchronization The existence of both service and cooperation
constraints introduced by applications that are not dependencies highlights a distinctive feature of business
captured by either data, control or service dependencies. process from a computation-centric program that is purely
Typically, these constraints describe the cooperation of analyzed from a dataflow and control flow point of view.
activities to achieve certain business goals or to support
some implicit interactions among activities. An example entry
of this type in the Purchasing process is the dependency
between invProduction_ss and replyClient_oi. It requires recClient_Config
that the invoice only be sent back to the client after the confi config
execution of invProduction_ss. If an exception occurs at
invProduction_ss, the execution of replyclient_oi is invDeploy midConfig \
postponed until the exception is fixed. From a business midConfig
point of view, it is desirable to preserve this dependency Dey invDeploy_appConfig
so that a customer who receives an invoice is guaranteed Seric appConfig \ -l
to receive her product. Since there is neither a data nor a
control dependency between these activities, this end
synchronization constraint must be described by a Figure 6. Deployment process
cooperation dependency. Cooperation dependency can
also be used to capture implicit dependencies. Let's look

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 310

Table 1. The Purchasing process dependencies through a dummy port, named as Sd. Table 1 represents
type dependency and categorizes all of the dependencies in the Purchasing

data recClientpo -*d invCreditpo, process. The data dependencies and control dependencies
{ >d} recCreditt_au >*dif au, are obtained from Figure 5. Cooperative dependencies

recClientpo -*d invPurchasepo, come from the constraint that the invoice should be sent
recClientpo -*d invShip_o, back to the client after both ShipSubprocess and
recClientpo -*d invProductionjo, ProductionSubprocess finish. This constraint is most
recShip_si >*d invPurchase_si, likely specified by a process analyst. Service
recShip_ss >*d invProduction-ss, dependencies come from the interaction with remote
setoi >d replyClient_oi services. They can be obtained from service description
recPurchase_oi >d replyClient_oi, documents.

control if au >T invPurchase_po,
{-1*} fan >1T invPnrchas_si, 4. Dependency Optimization

if au >T recPurchase_oi,
if au >T invShipo, Each dependency imposes a sequencing constraint.
if au >T recShip_si, The task of activity scheduling is to synchronize activities
if au >T recShip_ss, in such a way that all dependencies are maintained.
if au >T invProduction_o, However, some of the dependencies may impose the same
if au >T invProduction_ss set of sequencing constraints. This is the case of
If au -F set_oi recPurchase_oi ->o replyClient_oi. If the activity
if au - replyClient_oi scheduler is already monitoring the data dependency

cooperative recPurchase_oi ->o replyClient_oi, recPurchase_oi -*d replyClient_oi, it does not need to
{ 'o} invShip_o -*o replyClient oi, monitor recPurchase_oi ->o replyClient_oi any more.

recShip_si ->o replyClient_oi, These redundant constraints incur unnecessary
recShip_ss -*o replyClient_oi, maintenance and computation costs if added to the
invProduction_o -*o replyClient_oi scheduling engine. In this section, we detail how to
invProduction_ss -*. replyClient_oi systematically remove all redundant dependencies to

service invCreditpo -*, Credit, obtain a minimal dependency set. We first explain DSCL
Credit -*. Creditd, for the representation of synchronization constraints of
Creditd- S recCredit_au, dependencies in Section 4.1. Then we introduce two pre-
invPurchasepo -s Purchase,, processing steps before the step of dependency
invPurchas_si -> Purchase2, optimization: DSCL representation of dependencies and
Purchased -n recPurchase_oi, service dependency translation in Section 4.2 and Section
Purchase, -* Purchased, 4.3 respectively. After that, we formally describe the
Purchase2-*, Purchased, procedure of dependency optimization.
PurchaseI-), Purchase2,
invShip_o 's Ship, 4.1. DAG Synchronization Constraint
Ship-, ShiPd, Language
ShiPd-,' recShip_si,
ShiPd-,' recShip_ss, DAG Synchronization Constraint Language (DSCL)
invProductionj_ -o Production,, is a synchronization modeling language inspired by
invProduction ss - Production2 research of parallel programming in distributed systems

[20]. DSCL treats the life cycle of an activity, a, as a
3.3. Dependency Analysis on the Purchasing sequence of states, start (S), run (R), and finish (F), and
Process synchronizes an activity with others depending on its

current state. It has a declarative syntax and defines three
After introducing four types of dependencies, we can relations to describe the synchronization relationships on

now systematically examine the dependencies in the activity states. The synchronization scheme described in
Purchasing process. For ease of discussion, we use ->d, DSCL can be mapped to Petri Nets for validation and

->, -s and -)o to represent data, control, service and finally translated to a process modeling language for
cooperative dependency respectively, and {->d}, {-> 1}, execution [22]. In our early work, it assumes the single
{-'s} and {J- } to represent their corresponding sets. For output of an activity execution. In order to use DSCL to
each service, s, if it has more than one port, we name represent the synchronization constraints of different
them as s, s2..sTin order. If a service accepts dimensions, we need to extend it with the value of states
asynchronous call, it will call back to the original invoker

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 311

in order to handle the control dependency which has ry
multiple output result. This extension is the same as the e :nt po: purchaseorderrecCliet3_p invCredit_po \ au: authorization result
extension from basic Petri Nets [13] to Colored Petri Nets si:shippinginfo1/ reiS recCredit_a oi: order invoice

[10] that differentiate the type of tokens. The three \rcdi sstu shippingvschedule
synchronization relations are described below:
* HappenBefore (-*c): the state at the beginning of the

arrow should happen before the state at the end under invPurchase " invShipp T invProducton.o
condition c. c is omitted if this relation is Purchase
unconditional. pd P2

*HappenTogether (+-*c): the two states at both ends ivrdc'ns

should be reached together under condition c. c is
omitted if this relation is unconditional.

* Exclusive (0): states at both ends must not be
concurrent. Figure 7. Synchronization Constraints for the
DSCL can describe a wide variety of synchronization Purchasing process

behavior, like sequence, parallel split, synchronization, simulated by introducing a coordinating activity and using
interleave parallel routing, and milestone [1]. For -c to represent it. For 0, it is defined to describe
example, a data dependency between ai and aj can be transactional cooperation dependency. For example, two
expressed as a HappenBefore relationship between the concurrent activities access shared data in a backend
finish state of data producer, F, and the start state of data database. Even though they do not explicitly exchange
consumer, S, represented as Fi-*Sj. Furthermore, it can data within the main process, they must be scheduled in a

also describe constraints when the life cycle of two mutual exclusive way for the purpose of maintaining data
activities are overlapped with each other. For instance, consistency. Synchronization constraints described by 0aciiteaeoerape ihi. F i

'll be dynamically checked by a schedulig engme at thethe cooperation dependency mentioned in Section 3.2 can y y g
be described as ScollectSurvey ~* ~ time of starting an activity, not for statically constructingbe described as Scollectsurvey FcloseOrder-asnhoitoncem.Trfr,wenldsusThere are several reasons that we choose DSCL as the a s

synchronization modeling language. First, a dependency when explaining synchronization optimization.
essentiallyimposes a synchronization constraint on We define the synchronization constraint set, P,essentially imposes a synchronization constraint on

deidouofepnncstsa
activity scheduling. For example, a data dependency derived out of dependency sets as
essentially impose a happen-before constraint and can be P A->d B E {d} VAU40 B E {o} V
represented by the HappenBefore relationship. Therefore, A4s B E {s}} U { 1 }
DSCL can be used as an intermediate language to Since the HappenBefore relation defines a partial
represent all the dependencies. Second, DSCL expresses order, P has transitive property i.e. A-*B A B->C 4
synchronization at the granularity of activity state, which A--C. Now we can formally define synchronization
may be required for expressing certain cooperation and constraint set.
service dependencies. Finally, the synchronization Definition 1 (synchronization constraint set): a
constraint expressed in DSCL can be validated and synchronization constraint set is a triple SC= {A, S, P},
mapped to existing process modeling language for real where
execution. This means that conflict dependencies like * A: denotes all the internal activities
infinite synchronization sequence can be detected during * S: denotes all the external services
design stage, which is important to guarantee the correct * P: denotes all unconditional (->) and conditional
execution of a business process at run time. (-'c) synchronization constraints

In terms of the Purchasing process, A { recClientpo,
4.2. DSCL Representation of Dependencies invPurchase_o, ..., replyClient_oi}, S = {Credit,

Purchase,, Purchase2, ...,Production2}, P
To derive a complete synchronization scheme out of {recClientfpo -> invPurchase_po, recClientpo

dependencies of various kinds, we use DSCL as an invShio._po invProduction_ss - Production2 }. The
intermediate language to represent the synchronization synchronization constraint set for the Purchasng process
constraints inferred from dependencies. The data, service iS illustrated in Figure 7.
and cooperation dependencies can be represented by
unconditional HappenBefore relation, represented by >. 4.3. Service Dependency Translation
The control dependencies can be represented by
conditional HappenBefore relation, represented by -. Service dependencies control the interaction between
Here c takes value either T or F. From [21], we know that a process and its interacting services. Therefore, the

cis actually a "syntax sugar" and can always be implementation of a process must consider these

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 312

entry cover of two synchronization constraint sets and transitive
___ ~~~~~~~~po:purchase order

au: authorization result equivalence of two synchronization constraint sets first.
recCreditau oi: orderinvoice Definition 3 (transitive closure of activity): Given an

re ta ,,) ss:shipping schedule ASD = {A, P}, for each activity a in A, its transitive
\, \ < closure a' under P contains all the activities that can be

reached by following its transitive path.
\>_F \ For example, given al- a2 and a2- a3, a+ = {a2, a3}

invPurchase , invShip X invProduction_po If the transitive path contains conditional constraint, the
a 5IE X Gs1TrecShts) associated activities should be annotated with the

recSh p__Xs v Xo

conditional value. Notice that the annotation procedurefecShtpss invPro\u /i -_SS will be repeatedly applied to all the activities following
rcucase oi \\/ /

the conditional constraint. For example, if al- a2 >*T
a3- a4, a,+ {a2, a3(T2), a4(T2)}. Here both a3 and a4 are

replyCltentoi conditional on a2.
Figure 8. Dependency translation on service We say two transitive closures are the same if they

dependencies contain the same set of activities and their corresponding
dependencies in order to correctly cooperate with remote conditional annotations.
services. As a result, the service dependencies should be Definition 4 (set cover of two synchronization
translated into those that take effect on corresponding constraint sets): A set of synchronization constraints P is
invocation activities. Next, we define transitive path and said to cover another set of synchronization constraints Q
use it to explain the translation procedure. if for each activity a E Q, its transitive closure a+ satisfies

Definition 2 (transitive path): Given a synchronization a+ under Q c a+ under P.
constraint set SC= {A, S, P}, a transitive path is formed Definition 5 (transitive equivalence of two
by recursively tracing the HappenBefore relationship in P. synchronization constraint sets): Two sets of
It contains either internal activity or external services or synchronization constraints P and Q are transitive
both. equivalent ifP covers Q and Q covers P.

The idea of service dependency translation is simple. Now we formally define the minimal dependency set.
As an example, given the transitive path Definition 6 (minimal synchronization constraint set):
al- a2--wsl.l1-wslI.d--a3-*a4.it is translated to A minimal synchronization constraint set P* for a
al- a2- a3- a4. In more detail, for each transitive path synchronization constraint set P satisfies the following
that contains external activities, locate its first external properties:
activity, in this example being wsll, and find its closest * P and P* is transitive equivalent.
internal ancestor activity, a2. If its closest internal * We cannot remove any synchronization
offspring activity exists, in this example being a3, add a constraints from P* and still have a set that is
synchronization constraint connecting these two internal transitive equivalent to P.
activities and remove the external activities in between Notice that similar to the minimal set of functional
and their associated dependencies. If its closest internal dependencies in database, the minimal set of
offspring activity does not exist, simply remove the synchronization constraint is not necessarily unique.
external activities and their associated dependencies Below is the algorithm for obtaining it.
because they will not impact the activity scheduling Algorithm Finding a minimal dependency set P*
within the process. Since the translated dependency set
only contains internal activities, we call it Activity for a set of partial ordering PR
Synchronization Constraint set, ASC= {A, P}. A complete 1. P*= P
translation of the purchasing process is illustrated in 2. For each partial ordering ai-*a, in P
Figure 8. The bold edges are translation results. For If P*-f aj-a } is transitive equivalent to P,
example, the Purchase--), Purchase2 is translated to Then P* = P*- ai }
invPurchase_o -- invPurchase_si. The minimal dependency set for the Purchasing

prcs is llustrated in Figure 9.4.4. Minimal Dependence Set process sis ilutae Iniue9
Table 2 tells us the number of dependencies before

and after the dependency inference. There are 23
A minimal dependency set determines the least constraints removed from the original synchronization

sequencing between activities that needs to preserve the constraints set in Table 1. This is a significant reduction in
correct execution order of a process. In order to formally terms of number of constraints to be monitored.
define the minimal dependency set, we give three
preliminary definitions: transitive closure of activity, set

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 313

Table 2. Number of dependency Comparison rewriting rules [22] to translate constructs into
original minimized synchronization constraints, and then participates in the

constraints constraints step of dependency inference and optimization. Therefore,
Purchasing process 40 17 similar to [3] that proposed the way of translating

imperative language to data flow graph to establish the
entry connection between these two paradigms, our work can

po: purchase order recClientpo be regarded as an intermediate representation for both
au: authorization result paradigms in business process implementation and
si: shipping info invcredit_pooi: order invoice optimization. Recently we can see an emergence of these
ss: shipping schedule recCredit au two paradigms. Scientific workflow starts to adopt control

Iif_au flow constructs [4]. Business processes also start to using
--- T"-F dependencies for scheduling, decentralization [12].

incasepo invShip_p invProductior po Most of the early process modeling languages has an
l InvPuic\asepoimperative style and uses control constructs or workflow

invPurchai set_oi patterns to specify the skeleton of a process [24]. Until
very recently, the necessity of providing a declarativerecShips-, invProduction_S flow language for service scheduling has caught up its
pace. [17] proposed an approach of using temporal logic
to specify the synchronization constraints between
different components. Temporal logic provides a richer

Figure 9. Minimal synchronization constraints syntax for describing and monitoring synchronization
dependencies. But its non-determinism makes it

5. Related Work impractical for generating a message-exchanging
synchronization protocol for synchronization enforcement.

Much work on program analysis and optimization has Another related area of research is rule-based service

. . . . ~~~~~~~~comdosition -16- -18-. Rules are defined to decide rolebeen done on computation-centric programs by using . .

techniques from compiler theory [5] [11]. However, little assignment in process execution, message exchange, and

work on these perspectives has been done on interaction- flow constraints etc. Most business rules could be recast
to dependencies defined in our framework and used ascentric programs. In process modeling languages, people

more focus on workflow patterns [1] or the interaction of i
structure related rules in [16] could be recast either as

' control dependencies or data dependencies. These earlyroles, actors [9], not from the view of multiple dimensions work focused more on rule classification and process
of dependencies. One work related to us is [12] that uses
PDG to analyze dataflow, control flow and constructs in a m
process to decentralize execution control with the goal of dependencies crucial to service scheduling and studied

minimizing communication overhead. We use a -different their interaction effect. Therefore, our approach can serverminmilzing communication overhead. We use a different asarl-ae'ceuigegn n plu inothi
approach in rewriting the constructs and focus on the as a rule-based scheduling engine and plug into their
interaction of multiple dependencies with the goal of systems.interactiovingred mundantiples.dependencieswiththegoalA traditional approach to handling dependencies

There are two paradigms in workflow programming implicitly uses extended transaction models [6][8] that
[15]. One iS dataflow paradigm,smostlykseenpinrscint introduce new data manipulation semantics more
workflows. The other is imperative paradigm, commonly sophisticated than serializability. Typical methods toworkflows.~~~~~~~~~Th te siprtveprdg,cmol mplementing extended transaction models, e.g.seen in business processes. Our work bears lots of implemting T ransaction models, e.g.,Reflective Transaction Framework [23], extendfeatures with dataflow programming in the way of using a u i
dependency to determine execution instead of using calgorrthms usedcn database manasement sstems such as

constructs. The limitation of introducing concurrency addres th control. In contrast our research results
address the synchronization needs of programs,constructs into programming languages have been y . gay.demonstrated in the literature of dataflow programming in w

that the explicit placement destroys one of the appealing
features of implicit parallelism in the dataflow concept 6. Conclusion
[14]. Moreover, our approach can be applied to process
implemented in imperative paradigm as well. A process In this paper, we discussed the limitation of
implemented in workflow patterns [1], which essentially sequencing constructs in specifying synchronization
follows the imperative programming paradigm, can be constraints in business processes. To address this
parsed to a dependency graph such as PDG and use limitation, we proposed a dataflow programming

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 314

approach, in which dependencies are treated as first-class Press.2004
citizens and explicitly modeled to guide activity [13] T. Murata. Petri Nets: Properties, analysis and applications.
scheduling. To capture the interactive and complex Proc. of the IEEE, 77(4):541- 580, 1989.
characteristics of business processes, we extended [14] W. M. Johnston, J. R. P. Hanna and R. J. Millar. Advances

traditional dependencies, data and control, with additional in dataflow programming languages. ACM Comput. Surv.tradiional dependencies, data and control, with addiional 36(1): 1-34. 2004
dimensions of service and cooperation. These four [15] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
dimensions of dependencies provide a systematic Frank, M. Jones, E. Lee, J. Tao, Y. Zhao. Scientific
framework to describe the synchronization behavior of a Workflow Management and the Kepler System.
process. Furthermore, we show how dependencies from Concurrency and Computation: Practice & Experience,
different dimensions can be merged and optimized Special Issue on Scientific Workflows, to appear, 2005.
through an intermediate synchronization constraint [16] B. Orriens, J Yang, and M.P. Papazoglou (2003): A
modeling language DSCL. The result is a practical and Framework for Business Rule Driven Service Composition.
effective way of specifying and optimizing a business Proceedings ofthe Fourth International Workshop on

specification for execution. Conceptual Modeling Approaches for e-Business Dealing
process spec* with Business Volatility, Chicago, United States, Oktober

13-16, 2003.
7. Reference [17] M. Pesic and W.M.P. van der Aalst. DecSerFlow: Towards

a Truly Declarative Service Flow Language. In F. Leymann,
[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. W. Reisig, S.R. Thatte, and W.M.P. van der Aalst, editors,

Kiepuszewski, and A.P. Barros. Workflow Patterns. The Role of Business Processes in Service Oriented
Distributed and Parallel Databases, 14(3), pages 5-51, July Architectures, number 6291 in Dagstuhl Seminar
2003. Proceedings. 2006

[2] Alfred V. Aho , Ravi Sethi , Jeffrey D. Ullman, Compilers: [18] Steven P. Reiss. Constraining Software Evolution.
principles, techniques, and tools, Addison-Wesley Proceedings of the International Conference on Software
Longman Publishing Co., Inc., Boston, MA, 1986 Maintenance (ICSM'02)

[3] M. Beck, R. Johnson and K. Pingali. From control flow to [19] James Rumbaugh, Ivar Jacobson, and Grady Booch. The
dataflow. J. Parallel Distrib. Comput. 12(2): 118-129. 1991. Unified Modeling Language Reference Manual. Addison-

[4] S. Bowers, B. Ludascher, A. H.H. Ngu, T. Critchlow. Wesley, 1998.
Enabling Scientific Workflow Reuse through Structured [20] K. Salomaa and S. Yu. Synchronization Expressions and
Composition of Dataflow and Control-Flow. In Languages. Journal of Universal Computer Science Vol. 5:
Proceedings of IEEE Workshop on Workflow and Data 610-621. 1999.
Flow for Scientific Applications (SciFlow 2006) [21] Qinyi Wu, Calton Pu, Akhil Sahai. DAG Synchronization

[5] H. Cervantes and R.S. Hall. Automating Service Constraint Language for Business Processes. IEEE
Dependency Management in a Service-Oriented Conference on E-Commerce Technology CEC'06
Component Model. Proceedings of the Sixth Component- [22] Qinyi Wu, Calton Pu, Akhil Sahai, Roger Barga, Gueyoung
Based Software Engineering Workshop. May 2003 Jung, Jason Parekh, Galen Swint. DSCWeaver:

[6] A.K. Elmagarmid, editor. Database Transaction Models for Synchronization-Constraint Aspect Extension to Procedural
Advanced Applications. Morgan Kaufmann, 1992. Process Specification Languages. IEEE International

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program Conference on Web Services 2006.
dependence graph and its use in optimization. ACM [23] Roger S. Barga and Calton Pu. A Practical and Modular
Transactions on Programming Languages and Systems, Implementation of Extended Transaction Models. VLDB
9(3), 1987. 1995: 206-217

[8] Sushil Jajodia, Larry Kerschberg. Advanced Transaction [24] Business Process Execution Language for Web Services
Models and Architectures. Kluwer 1997 (BPEL). http://www.ibm.com/developerworks/library/ws-

[9] Kwang-Hoon Kim. Workflow dependency analysis and its bpel
implications on distributed workflow systems. 17th [25] Web Services Conversation Language (WSCL) 1.0.
International Conference on Advanced Information http://www.w3.org/TR/wsclIO/
Networking and Applications. p677- 682. 2003. AINA
2003.

[10] K. Jensen. Coloured Petri Nets. Vol 1: Basic Concepts,
Springer-Verlag 1992.

[11] D. J. Kuck, R. H. Kahn, D. A. Padua, B. Leasure and M.
Wolfe. Dependence graphs and compiler optimizations. In
8th Annual ACM Symposium on Principles of
Programming

[12] M. G. Nanda, S. Chandra and V. Sarkar. Decentralizing
execution of composite web services. Proceedings of the
19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications. 170-187. Vancouver, BC, Canada, ACM

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 315

