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Abstract. As the complexity of large-scale enterprise applications increases, 
providing performance verification through staging becomes an important part 
of reducing business risks associated with violating sophisticated service-level 
agreement (SLA). Currently, performance verification during the staging proc-
ess is accomplished through either an expensive, cumbersome manual approach 
or ad hoc automation. This paper describes an automation approach as part of 
the Elba project supporting monitoring and performance analysis of distributed 
multi-tiered applications that helps in bottleneck detection. We use machine-
learning to determine service-level objectives (SLOs) satisfaction and locate 
bottlenecks in candidate deployment scenarios. We evaluate our tools with 
TPC-W, an on-line bookstore, and RUBiS, an on-line auction site.  
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1   Introduction 

The increasing complexity of enterprise applications has emphasized the importance of 
verifying and validating the configuration performance prior to production use. While 
functional properties are typically verified during system integration and testing, per-
formance as specified in SLOs of SLA is verified and validated by a pre-production 
process referred to as staging.  Since a failure to fulfill SLA requirements results in busi-
ness losses, staging has the critical role of verifying and validating the deployment plan 
to cover a wide range of system configurations and workloads.  Current staging processes 
have been largely manual, augmented occasionally with ad hoc automation scripts, and 
these processes have become increasingly error-prone and costly in terms of time and 
effort.  To reduce costs and increase the coverage of staging, the Elba project seeks to 
automate staging and tuning for n-tier applications in a distributed environment [4].  
Automated staging and tuning uses high-level requirement specifications and translates 
them into both staging deployment and workload parameter settings which are then used 
for execution in a staging environment.  Monitors first collect performance data, followed 
by analysis which automatically identifies performance deficiencies. Generating and ana-
lyzing performance data to uncover SLOs satisfaction and performance bottlenecks are 
significant challenges to realizing tiered, self-tuning applications. 
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Our prior work in the Elba project, represented in Figure 1, reported on the challenges 
of automatically mapping design specifications into deployment tool specifications for 
production and provided a solution using a code generation and translation tool [4][5]. 
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Fig. 11. Staging in Elba is an automated and iterative process. (1) Cauldron converts the policy 
documents into resource and deployment assignments. (2) Mulini re-maps resource assign-
ments and application staging test guideline (TBL) to generate three types of code: instru-
mented application code, deployment code, and monitoring/analysis code. (3) A deployment 
tool installs and configures the application and then executes it. (4) Monitoring data is fed into 
analysis tools, and (5) the result of the analysis is handed to an engine to generate recommenda-
tions for policy changes. In this paper, we focus on (4), highlighted by black boxes, for the 
automated monitoring and analysis using generated code from Mulini code generator. Note that 
dashed boxes are on progress. 

This paper presents our work on collecting data and analyzing bottlenecks for a 
significant number of performance metrics. It helps answers two questions: 

• Does the application configuration meet performance requirements? This question 
is answered by observing metrics that correspond to policy objectives in SLOs.  

• If the requirements are not met, then where in the configuration is the bottleneck? 
This question should be answered by examining metrics data establishing, first, 
what metrics are relevant, and second, which metrics best represent the bottleneck.  

Neither task is trivial, but both are valuable for staging and production. Of course, 
over-provisioned systems can meet SLOs, but this entails additional capital outlays, 
maintenance, and sometimes over-engineering of the software itself [8]. Systematic, 
automated staging mitigates the risks of under- and over-provisioning and can provide 
valuable application behavior information applicable to the production application. 

The contribution of this paper is an approach to support automated monitoring, 
analysis, and reporting by applying machine-learning in the context of staging. This 
automated approach will assist service providers in answering the previous two ques-
tions while preventing resource wastage through over-provisioning. With Mulini code 
generator improved from [4], our approach uses policy documents to generate metrics 
monitoring and performance analysis code and hooks into a machine-learning tool for 
                                                                                              
1 We have slightly improved the figure of Elba used in [4] and [12]. 
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automated bottleneck detection. We compared different classifiers and decided that 
the decision tree classifier (J48) was more robust in detecting bottlenecks [12]. In this 
article, we evaluate the accuracy of our bottleneck detection approach by analyzing 
two well-known benchmarking applications2 that have differing bottleneck profiles, 
TPC-W and RUBiS.  

The remainder of this paper is organized as follows. Section 0 presents the chal-
lenges and our approach to providing analysis support in the Elba project. Section 0 
describes the evaluation environment, and Section 0 presents evaluation results for 
TPC-W and RUBiS. Section 0 discusses related work, and Section 0 presents our 
conclusions. 

2   Automated Staging and Analysis 

2.1   Challenges 

For a distributed n-tier application, staging is an important, complex task that entails 
repeated tests over an extended period of time; the system and configuration are re-
fined until they meet performance requirements. If performed early in the application 
development cycle, staging can provide crucial feedback that helps steer application 
development by identifying bugs, performance shortfalls, “hotspots,” and resource 
waste. Increasing application complexity makes staging worth automating to enable 
faster, earlier testing. 

Staging may share some tools and techniques with production, but three important 
factors differentiate application staging from production. First, the hardware available 
in a staging environment mirrors but may not replicate exactly the production envi-
ronment. Perfect duplication would provide higher application assurance once staged, 
but involves high costs in terms of initial expenditures and ongoing maintenance. To 
best utilize an approximate environment that minimizes the costs requires staging the 
application multiple times to establish predictive performance trends. Each staging 
iteration tests one particular application configuration and may involve multiple stag-
ing trials under varying staging parameters. A second differentiator is that applica-
tions may require additional fine-grained implementation to ascertain bottlenecks 
accurately which must be removed from the production code. Finally, staging requires 
the generation of synthetic workloads that stress the application similarly to produc-
tion environments in a limited time period. 

Automated analysis adds challenges to the staging process. First, automated analy-
sis entails the orchestration of several tasks and may drive multiple executions with 
slightly different staging parameterizations. Second, automated analysis requires sys-
tem and application instrumentation derived from performance requirements to record 
metrics data. Third, it requires the construction of an analysis, decision, and detection 
process which can answer the two questions presented in the introduction. 

Automated analysis tools must translate policy-level documents into functional ar-
tifacts that become part of the staging process. Service-level indicators (SLIs) are 
                                                                                              
2 In this paper, they are used as exemplar distributed multi-tiered e-commerce applications with 

defined metrics rather than as benchmarks; our results can not be used for performance com-
parisons outside this paper. 
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obtained from the SLA and its components, SLOs; these are translated into metrics 
and staging parameters. Furthermore, administrator/operator policies that may govern 
aspects such as acceptable resource usage must also be mapped into metrics. Test-
specific information, such as machine locations, testing times, and workload, must be 
incorporated. Once recorded, a custom analysis engine automatically processes the data 
and compares its results against performance goals set forth in policy specifications. 

Even automating bottleneck detection from gathered data requires the recognition 
and resolution of several problems. First, a single trial may not provide enough infor-
mation to determine bottlenecks – a metric may appear “maxed” out even though it 
really reflects normal operating levels. In such cases, several trials of varying work-
loads are required to establish operating baselines and trends. Interactions between 
metrics can also make bottleneck detection difficult. For example, CPU usage and 
network throughput may trend in parallel, but only the CPU is the bottleneck. Finally, 
bottleneck detection requires sorting through copious metrics data. The total number 
of metrics varies with the number of both hardware and software components in the 
system, and they can be categorized generally as either application-level (e.g., the 
number of threads, the number of database connections, and elapsed query time) or 
system-level (e.g., CPU and memory utilization) metrics.  

To detect bottlenecks and sort through the myriad metrics produced during moni-
toring, we employ an automated classifier. The input to the classifier is the first de-
rivative of the metrics, since we are interested in trends. It is first trained by inputting 
the metrics with the result of a SLO-evaluator, a tool generated for deciding the viola-
tion of the SLOs. The output of the classifier is metrics whose derivatives correlate 
strongly to SLOs violation. From these identified metrics, we discover the bottlenecks 
of the system. 

2.2   Automating Monitoring and Analysis 

Our approach to automated staging and analysis occurs within the context of the Elba 
project [4]. The project goal is to first realize iterative staging to determine the inade-
quacies of application performance, then evaluate the results, and finally enable 
automated tuning of the system to meet the expected performance objectives. In par-
ticular, to integrate our automation for monitoring and analysis, we extended Elba’s 
Mulini code generator which employs XML/XSLT techniques with Aspect Oriented 
Programming (AOP) paradigm to create the necessary code for monitoring and analy-
sis, including the instrumentation of source code for application-level metrics, and for 
the generation of the analysis code. Interested readers for code generation and Mulini 
can refer to [4][9] for more details. The metrics data can then be fed to a machine-
learning tool to identify performance bottlenecks. The Analysis addresses the two 
questions posed in the introduction, namely, 

Does the application configuration meet its performance requirements? 
This must be answered for each trial. Mulini generates an SLO-evaluator with policy-
specific code that computes the individual satisfaction of the component SLOs. The 
SLO-evaluator uses data collected by the synthetic workload generators and computes 
application-specific throughput and average response time. Once the SLOs satisfac-
tion is determined, overall SLA satisfaction can be determined.  
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If the requirements are not met, then where in configuration is the bottleneck? 
This question is answered with aggregated data from multiple trials. If SLA is not 
met, the tools begin a three-step bottleneck detection process to correlate performance 
shortfalls and metrics. The detection process requires performance data from a series 
of trials. The first trial subjects the application to a low synthetic workload, and each 
subsequent trial increments the workload until consecutive trials fail the SLA. For 
example, a trial for a retail store application may begin with 10 concurrent simulated 
users, and then in each subsequent trial the number of concurrent simulated users in-
creases by 10 over the previous trial until the SLA is violated for 70, 80, and 90 users. 

In subsequent analysis, the first step is to determine the bottleneck tier. For each 
tier, the average duration spent by each service request is computed, and we identify 
the bottleneck tier as tier with the fastest growing duration (change in duration divided 
by the change in synthetic workload). The second step is to select, from the metrics of 
the bottleneck tier, the highly utilized metrics as candidate indicators. The assumption 
is that high utilization of a resource implies high demand from the application and a 
potential bottleneck. This also helps distinguish between highly-correlated metrics, 
such as bandwidth and CPU usage. To be considered a candidate indicator, a metric 
must either surpass 90% utilization or some threshold value as specified by a policy 
document, heuristic, or system administrator. The third step in bottleneck detection is 
to discover the metrics indicating bottlenecks using the aggregated performance data 
from all trials. For our applications and metrics, we have found that using the change in 
a metric from trial to trial provides a reliable indicator for correlating a metric to SLOs 
violation. The change, effectively a first derivate of the metric, will drop from some 
positive factor (utilization increases) towards around zero (utilization constant) when 
the underlying resource is fully utilized. In comparison, a non-bottleneck metric can 
continue to increase – constant growth does not correlate a change in SLOs satisfac-
tion. In other words, our bottleneck detection searches out the metric that best corre-
lates to reduced SLOs satisfaction (i.e., greater SLOs violation).  

For the third step mentioned above, we apply machine-learning to form a decision 
tree where tree nodes embody if/then decisions based on growth in a metric (the delta 
metric value) and whose leaves embody overall SLOs satisfaction. After training, the 
set of nodes traced from a leaf (SLOs satisfaction) to the root will be a set of inequali-
ties that is able to distinguish the leaf prediction attribute from the other prediction 
attributes. We categorize the satisfaction levels as quintiles since the decision tree 
classifier must have nominal types for prediction attributes. Five categories balance 
enough categories to allow correlations with each category to still collect multiple 
trials from the training set. By inspecting the generated decision tree, the bottleneck 
detection process is able to find the metric that was identified to have the highest cor-
relation to SLOs. In situations where the decision tree consists of multiple metrics, the 
metric that appears most often in the tree will be selected as the highest potential bot-
tleneck. To illustrate the bottleneck detection process, we present a sample scenario 
where CPU is the bottleneck metric and memory is shown to be high but not consid-
ered a bottleneck as it is cached data that accounts for most of the memory (the 
cached data will be replaced if an application requires additional memory). In Figure 
2 (b), the utilization for both CPU and memory is shown along with the SLOs satis-
faction at each workload trial. The first step for bottleneck detection is taking the  
difference of each metric’s utilization across the change in workload trials. The trends 
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resulting from this are shown in Figure 2 (c) where the delta CPU utilization is some-
what linear until flattening out at 0% (in which case its utilization reaches 100%), and 
the delta memory utilization remains mostly constant around 0%-1%. By feeding this 
data to a decision tree classifier, we obtain a sample tree similar to Figure 2 (a). In this 
case, the CPU metric was chosen at each node as its delta is most correlated to the dif-
ferent SLOs satisfaction categories. Memory was not chosen as it is not possible to use 
the delta memory utilization to differentiate each of the SLOs satisfaction categories.  

3   Evaluation Environment 

We evaluated the described automation approach by using TPC-W, an on-line book-
store application for a transactional web-based e-commerce benchmark [2][3], and 
RUBiS, e-commerce application implementing the core features of an online auction 
site [2]. These applications have differing performance characteristics, as described in 
[2]. In both, customer interaction is simulated by remote simulated browsers that send 
and receive HTTP messages. Each simulated browser starts from a home interaction 
and executes another interaction after “thinking” for a random period of time. The 
visitation path is governed by a chosen transition matrix which encodes probabilities 
for visiting the next page according to current visiting page. For our tests, we chose 
shopping transition and bidding transition models for TPC-W and RUBiS, respec-
tively, since these are the most representatives of the workload of these applications 
as described in [2][4].  
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Fig. 2. (a) decision tree, (b) metric utilization, and (c) delta graph 

In our evaluation, we used two software architectures common in the e-commerce 
domain: Java servlets for TPC-W and Enterprise Java Beans for RUBiS.  A minimum 
configuration of the TPC-W in our evaluation consists of a web server (Apache), a 
servlet engine (Apache Tomcat), and a database server (MySQL) each running on a 
dedicated host; a minimal TPC-W installation requires three machines. A minimal 
RUBiS configuration comprises a web server (Apache), a servlet engine (Tomcat), an 
EJB server (JOnAS), and a database server (MySQL). The servlet engine and EJB 
server (the application tier) share a single machine. Beginning with these minimal 
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configurations, we iterate through more complex configurations by employing higher-
performance machines or adding new machines to each bottleneck tier until a con-
figuration satisfies the given SLA.  

We employ two classes of hardware in our evaluation. A low-end machine, L, is a 
Pentium III 800MHz dual-processor with 512 MB memory, and a high-end machine, 
H, is a Xeon 2.8GHz dual-processor with 4GB memory. A configuration may com-
bine these two classes of hardware. For instance, the L/2H/L configuration represents 
one low-end machine for a web server, two high-end machines as application servers, 
and one low-end machine for a database server. All machines are connected through 
100 Mbps Ethernet. For basic cost accounting of the configurations, we assign low-
end machines a cost of $500 and high-end machines a cost of $3500. 

4   Evaluation Results 

4.1   Automated Analysis for TPC-W 

Consistent with [2], the SLO-evaluator indicates that the L/L/L configuration for TPC-
W fails the SLA of 10.7 WIPS with average response times less than 500 ms at staging 
with 150 concurrent simulated users. This triggers the process of the automated bottle-
neck detection with aggregated monitoring results of the L/L/L configuration, which is 
adjusted, and then re-staged iteratively until a configuration satisfies the SLA. 

From the first step of the automated bottleneck detection process, the automated bot-
tleneck detection identifies the database server tier as the bottleneck tier. Figure 3 shows 
the results of application-level monitoring in the L/L/L configuration of TPC-W. Mulini 
weaves monitoring code with the TPC-W application source code to record response 
times elapsed in database 
queries and execution for the 
presentation and business 
logic of “BestSeller” interac-
tion, a representative TPC-W 
interaction. This figure shows 
that the duration of the data-
base tier grows fastest. That 
is, the database server tier 
dominates the overall re-
sponse time of the interac-
tion. In fact, the average du-
ration for executing database 
queries is about 89s while the 
average duration both for 
executing presentation and 
business logic and for execut-
ing requests forwarding at 
web server are about 1.3s when the synthetic workload generators run 150 concurrent 
simulated users. Once the database server tier is identified as a bottleneck, the bottleneck 
detection proceeds to the thresholding step, which focuses on metrics that indicate 
high-resource utilization.  
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Figure 4 (a) displays each metric as a percentage of its maximum capability. Any 
metric not reaching 90% utilization is automatically dropped from bottleneck consid-
eration. We can see from the figure that the metrics reaching the 90% threshold are 
the CPU and overall memory usage. 

The final step of bottleneck detection is training the J48 decision tree classifier 
(WEKA toolkit’s implementation of the C4.5 decision tree [6]) to locate metrics that 
most influence the SLOs satisfaction. Our classifier is trained with the nine derivative 
metrics values and the first order derivatives of the metrics to identify trends rather 
than the values of metrics to SLOs satisfaction. In our experience using only metric 
values can lead to false conclusions about which metrics are the real bottlenecks as is 
illustrated in this case by overall memory utilization. In Figure 4 (a), we see that the 
overall memory usage value is about 98% under a load of 100 concurrent simulated 
users. Note that the memory usage of database processes is very low. If we turn our 
attention to the derivatives of the metrics in Figure 4 (b), our inquiries are guided a 
different direction. The trend of the memory usage derivative is nearly constant. In 
this case, it turns out that memory is not the bottleneck because the high utilization 
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Fig. 4. For the TPC-W database tier, (a) metric values and (b) their derivatives 

stems from OS caching. Taking the derivative screens out linearly increasing metrics, 
which correlate but have adequate headroom for growth. The metric with the highest 
correlation to SLOs satisfaction is the CPU usage since the inequality “change in CPU 
usage > 20” can be used to differentiate the 100% SLOs satisfaction. The decision 
tree further differentiates the 75% SLOs satisfaction with the inequality “change in 
CPU usage > 2 and change in CPU usage < 15”.  

Since the CPU of the database server tier limits performance, we set Elba to first in-
crease the number of low-end database server machines. This approach is much cheaper 
than the approach employing a few high-end machines in terms of configuration cost. 
The results of several iterations are shown in Figure 5. We see that only the L/L/H2L 
configuration (cost $5500), in which we use one high-end and two low-end machines 
as database servers, and the more-costly L/L/2H (cost $8000) configuration satisfy 
the given SLOs (configurations arranged by increasing cost). To show that neither the 
web server nor the application server is the bottleneck, we set Elba to conduct 
 



 Detecting Bottleneck in n-Tier IT Applications Through Analysis 157 

 
                              (a)                                                                          (b) 

Fig. 5. TPC-W iterative staging results (a) WIPS and (b) overall average response time 

extra staging with the H/H/H configuration. Fig. 5 shows that the performance results 
of both the L/L/H and the H/H/H configurations are almost identical in terms of WIPS 
and overall average response time even though we use high-end machines for both the 
web and the application servers. Therefore, H/H/H configuration is discovered as an 
over-provisioning.  

Figure 6 breaks performance into per-interaction SLOs which must meet a 90% SLOs 
satisfaction level. Configurations that employ only cheap machines like L/L/3L cannot 
meet the SLOs in most interactions of the TPC-W. Using a single high-end as database 
server, L/L/H, also fails the SLOs for “BestSeller” and “BuyConf”. The L/L/H2L con-
figuration narrowly meets these SLOs, and L/L/2H is clearly sufficient.  From this stag-
ing result, the service provider can choose either a configuration at lower cost with less 
growth potential (i.e., L/L/H2L) or higher cost with high growth potential (i.e., L/L/2H). 

 

Fig. 6. TPC-W, per-interaction 90% SLOs satisfaction 
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4.2   Automated Analysis for RUBiS 

Our SLO-evaluator indicates the L/L/L fails the target SLA of 25.7 WIPS and overall 
average response time of less than 500 ms under a load of 360 concurrent simulated 
users. This triggers the process of the automated bottleneck detection just as we have 
done with the TPC-W evaluation. 

In the first step with “SearchItemsInCategory” interaction, we found that the appli-
cation server tier dominates the overall response time of the interaction. In fact, the 
average duration for executing presentation and business logic (i.e., time spent in 
servlets and EJBs) is about 28s while the average duration in database server tier for 
executing database queries is about 30ms, and web server tier for forwarding requests 
and responses 104ms with 360 concurrent users.  
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Fig. 7. For RUBiS app server tier, (a) metric values and (b) derivative values 

Figure 7 (a) displays that the only metrics reaching the 90% threshold are the CPU 
and overall memory usage. In the final step, the decision tree classifier is trained us-
ing eleven instances. In Figure 7 (a), we see that the overall memory usage value is 
about 98% under a load of 360 concurrent users. However, its trend linearly increases. 
In Figure 7 (b), the trend of the memory usage derivative is first nearly constant and 
then erratic. Taking the derivative screens out the jittery metrics, which have no corre-
lation, and linearly increasing metrics, which correlate but have adequate headroom 
for growth.  

The metric with the highest correlation to the SLOs satisfaction is CPU usage since 
the inequality “change in CPU usage > 4” can be used to differentiate the 100% SLOs 
satisfaction. The decision tree would be able to further differentiate SLOs satisfaction 
with a more fine-grained distinction since the CPU reaches its peak of near-100% 
utilization and the derivatives approach much smaller values. The inequality “change 
in CPU < 1.5 and change in CPU > -1” distinguishes the 50% SLOs satisfaction.  

5   Related Work 

Argo/MTE [1] uses automation and code generation via XSLT to evaluate middle-
ware implementations. The Weevil framework supports the management of testing in 
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widely distributed systems again using a generative programming approach [11]. 
Weevil’s focus has been on automating deployment and workload generation for  
applications utilizing overlay networks. Our work targets the enterprise n-tier IT envi-
ronment and applications and emphasizes the re-use of existing policy-level specifica-
tions for automation of both performance testing and bottleneck identification with 
machine-learning technique.  

Te-Kai et al. [10] have provided a capacity sizing tool to recommend cost-effective 
hardware configuration for integrated business processes; their tool is tailored to the 
WebSphere InterChange server. It assumes a prototype of the system is not available 
for system staging. Instead, it relies on similar previously benchmarked systems to 
predict capacity. The Elba project is geared towards staging an application that will be 
deployed to a production without pre-existing performance data. Our approach for 
bottleneck detection shares similarities with [7], but their work targets production 
systems to forecast problems; our work intervenes during application design to locate 
candidate bottleneck points, and our system also emphasizes automation support for 
testing alternative designs.  

6   Conclusion 

With the increasing complexity of large-scale enterprise applications, effective stag-
ing can ensure the SLA performance goals of complex application configurations.  
The goal of the Elba project is to automate iterative staging. The main contribution of 
this paper is the automated monitoring and performance analysis of large-scale appli-
cations through a decision tree approach for bottleneck detection assisted by code 
generation techniques. From declarative specifications of distributed n-tier applica-
tions, we generated the code to collect, process, and analyze performance data (e.g., 
SLOs satisfaction levels) to locate performance bottlenecks in configurations being 
staged.  

Our evaluation results of TPC-W and RUBiS demonstrated the feasibility and ef-
fectiveness of automating the monitoring and performance analysis in the staging 
process. By generating and running various configurations, our tools analyzed the 
SLOs satisfaction levels, found potential bottlenecks, and guided the reconfiguration 
process towards the lowest cost solution.  The analysis tool utilized simple machine-
learning techniques to classify the resource consumption metrics and find potential 
bottlenecks. 
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