
R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 149 – 160, 2006.
IFIP International Federation for Information Processing 2006

Detecting Bottleneck in n-Tier IT Applications Through
Analysis

Gueyoung Jung1, Galen Swint1, Jason Parekh1, Calton Pu1, and Akhil Sahai2

1 CERCS, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332

{gueyoung.jung, galen.swint, jason.parekh, calton}@cc.gatech.edu
2 HP Laboratories

Palo-Alto, CA
akhil.sahai@hp.com

Abstract. As the complexity of large-scale enterprise applications increases,
providing performance verification through staging becomes an important part
of reducing business risks associated with violating sophisticated service-level
agreement (SLA). Currently, performance verification during the staging proc-
ess is accomplished through either an expensive, cumbersome manual approach
or ad hoc automation. This paper describes an automation approach as part of
the Elba project supporting monitoring and performance analysis of distributed
multi-tiered applications that helps in bottleneck detection. We use machine-
learning to determine service-level objectives (SLOs) satisfaction and locate
bottlenecks in candidate deployment scenarios. We evaluate our tools with
TPC-W, an on-line bookstore, and RUBiS, an on-line auction site.

Keywords: Bottleneck detection, n-tier application, Decision tree, SLOs, Elba.

1 Introduction

The increasing complexity of enterprise applications has emphasized the importance of
verifying and validating the configuration performance prior to production use. While
functional properties are typically verified during system integration and testing, per-
formance as specified in SLOs of SLA is verified and validated by a pre-production
process referred to as staging. Since a failure to fulfill SLA requirements results in busi-
ness losses, staging has the critical role of verifying and validating the deployment plan
to cover a wide range of system configurations and workloads. Current staging processes
have been largely manual, augmented occasionally with ad hoc automation scripts, and
these processes have become increasingly error-prone and costly in terms of time and
effort. To reduce costs and increase the coverage of staging, the Elba project seeks to
automate staging and tuning for n-tier applications in a distributed environment [4].
Automated staging and tuning uses high-level requirement specifications and translates
them into both staging deployment and workload parameter settings which are then used
for execution in a staging environment. Monitors first collect performance data, followed
by analysis which automatically identifies performance deficiencies. Generating and ana-
lyzing performance data to uncover SLOs satisfaction and performance bottlenecks are
significant challenges to realizing tiered, self-tuning applications.

150 G. Jung et al.

Our prior work in the Elba project, represented in Figure 1, reported on the challenges
of automatically mapping design specifications into deployment tool specifications for
production and provided a solution using a code generation and translation tool [4][5].

Elba: Automated, Iterative
Staging

Cauldron

Mulini
Staging

Deployment

Redesign/
Reconfiguration

Analyzer

Staging
Environment

Staging
Environment

PoliciesPolicies

DeploymentDeployment

Staging/
Deployment
Code

Staging/
Deployment
Code

Analyzed
results

Analyzed
results

Deployment/
Resource
assignment

Deployment/
Resource
assignment

Analyzed
results

Analyzed
results

(1)

(2) (3)

(4)

(5)

TBLTBL

Elba: Automated, Iterative
Staging

Cauldron

Mulini
Staging

Deployment

Redesign/
Reconfiguration

Analyzer

Staging
Environment

Staging
Environment

PoliciesPolicies

DeploymentDeployment

Staging/
Deployment
Code

Staging/
Deployment
Code

Analyzed
results

Analyzed
results

Deployment/
Resource
assignment

Deployment/
Resource
assignment

Analyzed
results

Analyzed
results

(1)

(2) (3)

(4)

(5)

TBLTBL

Fig. 11. Staging in Elba is an automated and iterative process. (1) Cauldron converts the policy
documents into resource and deployment assignments. (2) Mulini re-maps resource assign-
ments and application staging test guideline (TBL) to generate three types of code: instru-
mented application code, deployment code, and monitoring/analysis code. (3) A deployment
tool installs and configures the application and then executes it. (4) Monitoring data is fed into
analysis tools, and (5) the result of the analysis is handed to an engine to generate recommenda-
tions for policy changes. In this paper, we focus on (4), highlighted by black boxes, for the
automated monitoring and analysis using generated code from Mulini code generator. Note that
dashed boxes are on progress.

This paper presents our work on collecting data and analyzing bottlenecks for a
significant number of performance metrics. It helps answers two questions:

• Does the application configuration meet performance requirements? This question
is answered by observing metrics that correspond to policy objectives in SLOs.

• If the requirements are not met, then where in the configuration is the bottleneck?
This question should be answered by examining metrics data establishing, first,
what metrics are relevant, and second, which metrics best represent the bottleneck.

Neither task is trivial, but both are valuable for staging and production. Of course,
over-provisioned systems can meet SLOs, but this entails additional capital outlays,
maintenance, and sometimes over-engineering of the software itself [8]. Systematic,
automated staging mitigates the risks of under- and over-provisioning and can provide
valuable application behavior information applicable to the production application.

The contribution of this paper is an approach to support automated monitoring,
analysis, and reporting by applying machine-learning in the context of staging. This
automated approach will assist service providers in answering the previous two ques-
tions while preventing resource wastage through over-provisioning. With Mulini code
generator improved from [4], our approach uses policy documents to generate metrics
monitoring and performance analysis code and hooks into a machine-learning tool for

1 We have slightly improved the figure of Elba used in [4] and [12].

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 151

automated bottleneck detection. We compared different classifiers and decided that
the decision tree classifier (J48) was more robust in detecting bottlenecks [12]. In this
article, we evaluate the accuracy of our bottleneck detection approach by analyzing
two well-known benchmarking applications2 that have differing bottleneck profiles,
TPC-W and RUBiS.

The remainder of this paper is organized as follows. Section 0 presents the chal-
lenges and our approach to providing analysis support in the Elba project. Section 0
describes the evaluation environment, and Section 0 presents evaluation results for
TPC-W and RUBiS. Section 0 discusses related work, and Section 0 presents our
conclusions.

2 Automated Staging and Analysis

2.1 Challenges

For a distributed n-tier application, staging is an important, complex task that entails
repeated tests over an extended period of time; the system and configuration are re-
fined until they meet performance requirements. If performed early in the application
development cycle, staging can provide crucial feedback that helps steer application
development by identifying bugs, performance shortfalls, “hotspots,” and resource
waste. Increasing application complexity makes staging worth automating to enable
faster, earlier testing.

Staging may share some tools and techniques with production, but three important
factors differentiate application staging from production. First, the hardware available
in a staging environment mirrors but may not replicate exactly the production envi-
ronment. Perfect duplication would provide higher application assurance once staged,
but involves high costs in terms of initial expenditures and ongoing maintenance. To
best utilize an approximate environment that minimizes the costs requires staging the
application multiple times to establish predictive performance trends. Each staging
iteration tests one particular application configuration and may involve multiple stag-
ing trials under varying staging parameters. A second differentiator is that applica-
tions may require additional fine-grained implementation to ascertain bottlenecks
accurately which must be removed from the production code. Finally, staging requires
the generation of synthetic workloads that stress the application similarly to produc-
tion environments in a limited time period.

Automated analysis adds challenges to the staging process. First, automated analy-
sis entails the orchestration of several tasks and may drive multiple executions with
slightly different staging parameterizations. Second, automated analysis requires sys-
tem and application instrumentation derived from performance requirements to record
metrics data. Third, it requires the construction of an analysis, decision, and detection
process which can answer the two questions presented in the introduction.

Automated analysis tools must translate policy-level documents into functional ar-
tifacts that become part of the staging process. Service-level indicators (SLIs) are

2 In this paper, they are used as exemplar distributed multi-tiered e-commerce applications with

defined metrics rather than as benchmarks; our results can not be used for performance com-
parisons outside this paper.

152 G. Jung et al.

obtained from the SLA and its components, SLOs; these are translated into metrics
and staging parameters. Furthermore, administrator/operator policies that may govern
aspects such as acceptable resource usage must also be mapped into metrics. Test-
specific information, such as machine locations, testing times, and workload, must be
incorporated. Once recorded, a custom analysis engine automatically processes the data
and compares its results against performance goals set forth in policy specifications.

Even automating bottleneck detection from gathered data requires the recognition
and resolution of several problems. First, a single trial may not provide enough infor-
mation to determine bottlenecks – a metric may appear “maxed” out even though it
really reflects normal operating levels. In such cases, several trials of varying work-
loads are required to establish operating baselines and trends. Interactions between
metrics can also make bottleneck detection difficult. For example, CPU usage and
network throughput may trend in parallel, but only the CPU is the bottleneck. Finally,
bottleneck detection requires sorting through copious metrics data. The total number
of metrics varies with the number of both hardware and software components in the
system, and they can be categorized generally as either application-level (e.g., the
number of threads, the number of database connections, and elapsed query time) or
system-level (e.g., CPU and memory utilization) metrics.

To detect bottlenecks and sort through the myriad metrics produced during moni-
toring, we employ an automated classifier. The input to the classifier is the first de-
rivative of the metrics, since we are interested in trends. It is first trained by inputting
the metrics with the result of a SLO-evaluator, a tool generated for deciding the viola-
tion of the SLOs. The output of the classifier is metrics whose derivatives correlate
strongly to SLOs violation. From these identified metrics, we discover the bottlenecks
of the system.

2.2 Automating Monitoring and Analysis

Our approach to automated staging and analysis occurs within the context of the Elba
project [4]. The project goal is to first realize iterative staging to determine the inade-
quacies of application performance, then evaluate the results, and finally enable
automated tuning of the system to meet the expected performance objectives. In par-
ticular, to integrate our automation for monitoring and analysis, we extended Elba’s
Mulini code generator which employs XML/XSLT techniques with Aspect Oriented
Programming (AOP) paradigm to create the necessary code for monitoring and analy-
sis, including the instrumentation of source code for application-level metrics, and for
the generation of the analysis code. Interested readers for code generation and Mulini
can refer to [4][9] for more details. The metrics data can then be fed to a machine-
learning tool to identify performance bottlenecks. The Analysis addresses the two
questions posed in the introduction, namely,

Does the application configuration meet its performance requirements?
This must be answered for each trial. Mulini generates an SLO-evaluator with policy-
specific code that computes the individual satisfaction of the component SLOs. The
SLO-evaluator uses data collected by the synthetic workload generators and computes
application-specific throughput and average response time. Once the SLOs satisfac-
tion is determined, overall SLA satisfaction can be determined.

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 153

If the requirements are not met, then where in configuration is the bottleneck?
This question is answered with aggregated data from multiple trials. If SLA is not
met, the tools begin a three-step bottleneck detection process to correlate performance
shortfalls and metrics. The detection process requires performance data from a series
of trials. The first trial subjects the application to a low synthetic workload, and each
subsequent trial increments the workload until consecutive trials fail the SLA. For
example, a trial for a retail store application may begin with 10 concurrent simulated
users, and then in each subsequent trial the number of concurrent simulated users in-
creases by 10 over the previous trial until the SLA is violated for 70, 80, and 90 users.

In subsequent analysis, the first step is to determine the bottleneck tier. For each
tier, the average duration spent by each service request is computed, and we identify
the bottleneck tier as tier with the fastest growing duration (change in duration divided
by the change in synthetic workload). The second step is to select, from the metrics of
the bottleneck tier, the highly utilized metrics as candidate indicators. The assumption
is that high utilization of a resource implies high demand from the application and a
potential bottleneck. This also helps distinguish between highly-correlated metrics,
such as bandwidth and CPU usage. To be considered a candidate indicator, a metric
must either surpass 90% utilization or some threshold value as specified by a policy
document, heuristic, or system administrator. The third step in bottleneck detection is
to discover the metrics indicating bottlenecks using the aggregated performance data
from all trials. For our applications and metrics, we have found that using the change in
a metric from trial to trial provides a reliable indicator for correlating a metric to SLOs
violation. The change, effectively a first derivate of the metric, will drop from some
positive factor (utilization increases) towards around zero (utilization constant) when
the underlying resource is fully utilized. In comparison, a non-bottleneck metric can
continue to increase – constant growth does not correlate a change in SLOs satisfac-
tion. In other words, our bottleneck detection searches out the metric that best corre-
lates to reduced SLOs satisfaction (i.e., greater SLOs violation).

For the third step mentioned above, we apply machine-learning to form a decision
tree where tree nodes embody if/then decisions based on growth in a metric (the delta
metric value) and whose leaves embody overall SLOs satisfaction. After training, the
set of nodes traced from a leaf (SLOs satisfaction) to the root will be a set of inequali-
ties that is able to distinguish the leaf prediction attribute from the other prediction
attributes. We categorize the satisfaction levels as quintiles since the decision tree
classifier must have nominal types for prediction attributes. Five categories balance
enough categories to allow correlations with each category to still collect multiple
trials from the training set. By inspecting the generated decision tree, the bottleneck
detection process is able to find the metric that was identified to have the highest cor-
relation to SLOs. In situations where the decision tree consists of multiple metrics, the
metric that appears most often in the tree will be selected as the highest potential bot-
tleneck. To illustrate the bottleneck detection process, we present a sample scenario
where CPU is the bottleneck metric and memory is shown to be high but not consid-
ered a bottleneck as it is cached data that accounts for most of the memory (the
cached data will be replaced if an application requires additional memory). In Figure
2 (b), the utilization for both CPU and memory is shown along with the SLOs satis-
faction at each workload trial. The first step for bottleneck detection is taking the
difference of each metric’s utilization across the change in workload trials. The trends

154 G. Jung et al.

resulting from this are shown in Figure 2 (c) where the delta CPU utilization is some-
what linear until flattening out at 0% (in which case its utilization reaches 100%), and
the delta memory utilization remains mostly constant around 0%-1%. By feeding this
data to a decision tree classifier, we obtain a sample tree similar to Figure 2 (a). In this
case, the CPU metric was chosen at each node as its delta is most correlated to the dif-
ferent SLOs satisfaction categories. Memory was not chosen as it is not possible to use
the delta memory utilization to differentiate each of the SLOs satisfaction categories.

3 Evaluation Environment

We evaluated the described automation approach by using TPC-W, an on-line book-
store application for a transactional web-based e-commerce benchmark [2][3], and
RUBiS, e-commerce application implementing the core features of an online auction
site [2]. These applications have differing performance characteristics, as described in
[2]. In both, customer interaction is simulated by remote simulated browsers that send
and receive HTTP messages. Each simulated browser starts from a home interaction
and executes another interaction after “thinking” for a random period of time. The
visitation path is governed by a chosen transition matrix which encodes probabilities
for visiting the next page according to current visiting page. For our tests, we chose
shopping transition and bidding transition models for TPC-W and RUBiS, respec-
tively, since these are the most representatives of the workload of these applications
as described in [2][4].

0

20

40

60

80

100

10 30 50 70 90 110

Num of Users

0

20

40

60

80

100

20 40 60 80 100 120

Num of Users

CPU utilization Memory utilization

SLO satisfaction

Change in CPU > 20%

True False

100% SLO
Satisfaction Change in CPU > 1%

25% SLO
SatisfactionChange in CPU > 7%

75% SLO
Satisfaction

50% SLO
Satisfaction

True False

True False

(a)

(b)

(c)

0

20

40

60

80

100

10 30 50 70 90 110

Num of Users

0

20

40

60

80

100

20 40 60 80 100 120

Num of Users

CPU utilization Memory utilization

SLO satisfaction

Change in CPU > 20%

True False

100% SLO
Satisfaction Change in CPU > 1%

25% SLO
SatisfactionChange in CPU > 7%

75% SLO
Satisfaction

50% SLO
Satisfaction

True False

True False

(a)

(b)

(c)

Fig. 2. (a) decision tree, (b) metric utilization, and (c) delta graph

In our evaluation, we used two software architectures common in the e-commerce
domain: Java servlets for TPC-W and Enterprise Java Beans for RUBiS. A minimum
configuration of the TPC-W in our evaluation consists of a web server (Apache), a
servlet engine (Apache Tomcat), and a database server (MySQL) each running on a
dedicated host; a minimal TPC-W installation requires three machines. A minimal
RUBiS configuration comprises a web server (Apache), a servlet engine (Tomcat), an
EJB server (JOnAS), and a database server (MySQL). The servlet engine and EJB
server (the application tier) share a single machine. Beginning with these minimal

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 155

configurations, we iterate through more complex configurations by employing higher-
performance machines or adding new machines to each bottleneck tier until a con-
figuration satisfies the given SLA.

We employ two classes of hardware in our evaluation. A low-end machine, L, is a
Pentium III 800MHz dual-processor with 512 MB memory, and a high-end machine,
H, is a Xeon 2.8GHz dual-processor with 4GB memory. A configuration may com-
bine these two classes of hardware. For instance, the L/2H/L configuration represents
one low-end machine for a web server, two high-end machines as application servers,
and one low-end machine for a database server. All machines are connected through
100 Mbps Ethernet. For basic cost accounting of the configurations, we assign low-
end machines a cost of $500 and high-end machines a cost of $3500.

4 Evaluation Results

4.1 Automated Analysis for TPC-W

Consistent with [2], the SLO-evaluator indicates that the L/L/L configuration for TPC-
W fails the SLA of 10.7 WIPS with average response times less than 500 ms at staging
with 150 concurrent simulated users. This triggers the process of the automated bottle-
neck detection with aggregated monitoring results of the L/L/L configuration, which is
adjusted, and then re-staged iteratively until a configuration satisfies the SLA.

From the first step of the automated bottleneck detection process, the automated bot-
tleneck detection identifies the database server tier as the bottleneck tier. Figure 3 shows
the results of application-level monitoring in the L/L/L configuration of TPC-W. Mulini
weaves monitoring code with the TPC-W application source code to record response
times elapsed in database
queries and execution for the
presentation and business
logic of “BestSeller” interac-
tion, a representative TPC-W
interaction. This figure shows
that the duration of the data-
base tier grows fastest. That
is, the database server tier
dominates the overall re-
sponse time of the interac-
tion. In fact, the average du-
ration for executing database
queries is about 89s while the
average duration both for
executing presentation and
business logic and for execut-
ing requests forwarding at
web server are about 1.3s when the synthetic workload generators run 150 concurrent
simulated users. Once the database server tier is identified as a bottleneck, the bottleneck
detection proceeds to the thresholding step, which focuses on metrics that indicate
high-resource utilization.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Num of Users

T
im

e
(m

s)

Overall Response time Duration in HTTP server
Duration in App. server Duration in DB server

Fig. 3. Average response time and duration in each tier of
BestSeller interaction

156 G. Jung et al.

Figure 4 (a) displays each metric as a percentage of its maximum capability. Any
metric not reaching 90% utilization is automatically dropped from bottleneck consid-
eration. We can see from the figure that the metrics reaching the 90% threshold are
the CPU and overall memory usage.

The final step of bottleneck detection is training the J48 decision tree classifier
(WEKA toolkit’s implementation of the C4.5 decision tree [6]) to locate metrics that
most influence the SLOs satisfaction. Our classifier is trained with the nine derivative
metrics values and the first order derivatives of the metrics to identify trends rather
than the values of metrics to SLOs satisfaction. In our experience using only metric
values can lead to false conclusions about which metrics are the real bottlenecks as is
illustrated in this case by overall memory utilization. In Figure 4 (a), we see that the
overall memory usage value is about 98% under a load of 100 concurrent simulated
users. Note that the memory usage of database processes is very low. If we turn our
attention to the derivatives of the metrics in Figure 4 (b), our inquiries are guided a
different direction. The trend of the memory usage derivative is nearly constant. In
this case, it turns out that memory is not the bottleneck because the high utilization

-40

-20

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satisfaction

-40

-20

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satisfaction

 (a) (b)

Fig. 4. For the TPC-W database tier, (a) metric values and (b) their derivatives

stems from OS caching. Taking the derivative screens out linearly increasing metrics,
which correlate but have adequate headroom for growth. The metric with the highest
correlation to SLOs satisfaction is the CPU usage since the inequality “change in CPU
usage > 20” can be used to differentiate the 100% SLOs satisfaction. The decision
tree further differentiates the 75% SLOs satisfaction with the inequality “change in
CPU usage > 2 and change in CPU usage < 15”.

Since the CPU of the database server tier limits performance, we set Elba to first in-
crease the number of low-end database server machines. This approach is much cheaper
than the approach employing a few high-end machines in terms of configuration cost.
The results of several iterations are shown in Figure 5. We see that only the L/L/H2L
configuration (cost $5500), in which we use one high-end and two low-end machines
as database servers, and the more-costly L/L/2H (cost $8000) configuration satisfy
the given SLOs (configurations arranged by increasing cost). To show that neither the
web server nor the application server is the bottleneck, we set Elba to conduct

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 157

 (a) (b)

Fig. 5. TPC-W iterative staging results (a) WIPS and (b) overall average response time

extra staging with the H/H/H configuration. Fig. 5 shows that the performance results
of both the L/L/H and the H/H/H configurations are almost identical in terms of WIPS
and overall average response time even though we use high-end machines for both the
web and the application servers. Therefore, H/H/H configuration is discovered as an
over-provisioning.

Figure 6 breaks performance into per-interaction SLOs which must meet a 90% SLOs
satisfaction level. Configurations that employ only cheap machines like L/L/3L cannot
meet the SLOs in most interactions of the TPC-W. Using a single high-end as database
server, L/L/H, also fails the SLOs for “BestSeller” and “BuyConf”. The L/L/H2L con-
figuration narrowly meets these SLOs, and L/L/2H is clearly sufficient. From this stag-
ing result, the service provider can choose either a configuration at lower cost with less
growth potential (i.e., L/L/H2L) or higher cost with high growth potential (i.e., L/L/2H).

Fig. 6. TPC-W, per-interaction 90% SLOs satisfaction

158 G. Jung et al.

4.2 Automated Analysis for RUBiS

Our SLO-evaluator indicates the L/L/L fails the target SLA of 25.7 WIPS and overall
average response time of less than 500 ms under a load of 360 concurrent simulated
users. This triggers the process of the automated bottleneck detection just as we have
done with the TPC-W evaluation.

In the first step with “SearchItemsInCategory” interaction, we found that the appli-
cation server tier dominates the overall response time of the interaction. In fact, the
average duration for executing presentation and business logic (i.e., time spent in
servlets and EJBs) is about 28s while the average duration in database server tier for
executing database queries is about 30ms, and web server tier for forwarding requests
and responses 104ms with 360 concurrent users.

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Statisfaction

-100

-80

-60

-40

-20

0

20

40

60

80

100

60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
nt

ag
e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satsifaction

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Statisfaction

-100

-80

-60

-40

-20

0

20

40

60

80

100

60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
nt

ag
e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satsifaction

 (a) (b)

Fig. 7. For RUBiS app server tier, (a) metric values and (b) derivative values

Figure 7 (a) displays that the only metrics reaching the 90% threshold are the CPU
and overall memory usage. In the final step, the decision tree classifier is trained us-
ing eleven instances. In Figure 7 (a), we see that the overall memory usage value is
about 98% under a load of 360 concurrent users. However, its trend linearly increases.
In Figure 7 (b), the trend of the memory usage derivative is first nearly constant and
then erratic. Taking the derivative screens out the jittery metrics, which have no corre-
lation, and linearly increasing metrics, which correlate but have adequate headroom
for growth.

The metric with the highest correlation to the SLOs satisfaction is CPU usage since
the inequality “change in CPU usage > 4” can be used to differentiate the 100% SLOs
satisfaction. The decision tree would be able to further differentiate SLOs satisfaction
with a more fine-grained distinction since the CPU reaches its peak of near-100%
utilization and the derivatives approach much smaller values. The inequality “change
in CPU < 1.5 and change in CPU > -1” distinguishes the 50% SLOs satisfaction.

5 Related Work

Argo/MTE [1] uses automation and code generation via XSLT to evaluate middle-
ware implementations. The Weevil framework supports the management of testing in

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 159

widely distributed systems again using a generative programming approach [11].
Weevil’s focus has been on automating deployment and workload generation for
applications utilizing overlay networks. Our work targets the enterprise n-tier IT envi-
ronment and applications and emphasizes the re-use of existing policy-level specifica-
tions for automation of both performance testing and bottleneck identification with
machine-learning technique.

Te-Kai et al. [10] have provided a capacity sizing tool to recommend cost-effective
hardware configuration for integrated business processes; their tool is tailored to the
WebSphere InterChange server. It assumes a prototype of the system is not available
for system staging. Instead, it relies on similar previously benchmarked systems to
predict capacity. The Elba project is geared towards staging an application that will be
deployed to a production without pre-existing performance data. Our approach for
bottleneck detection shares similarities with [7], but their work targets production
systems to forecast problems; our work intervenes during application design to locate
candidate bottleneck points, and our system also emphasizes automation support for
testing alternative designs.

6 Conclusion

With the increasing complexity of large-scale enterprise applications, effective stag-
ing can ensure the SLA performance goals of complex application configurations.
The goal of the Elba project is to automate iterative staging. The main contribution of
this paper is the automated monitoring and performance analysis of large-scale appli-
cations through a decision tree approach for bottleneck detection assisted by code
generation techniques. From declarative specifications of distributed n-tier applica-
tions, we generated the code to collect, process, and analyze performance data (e.g.,
SLOs satisfaction levels) to locate performance bottlenecks in configurations being
staged.

Our evaluation results of TPC-W and RUBiS demonstrated the feasibility and ef-
fectiveness of automating the monitoring and performance analysis in the staging
process. By generating and running various configurations, our tools analyzed the
SLOs satisfaction levels, found potential bottlenecks, and guided the reconfiguration
process towards the lowest cost solution. The analysis tool utilized simple machine-
learning techniques to classify the resource consumption metrics and find potential
bottlenecks.

References

[1] Cai, Y., Grundy, J., and Hosking, J.: Experiences Integrating and Scaling a Performance
Test Bed Generator with an Open Source CASE Tool. Int. Conf. on Automated Software
Engineering, Linz, Austria, Nov. 2004.

[2] Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., and Zwaenepoel, W.: Performance
Comparison of Middleware Architectures for Generating Dynamic Web Content. Int.
Middleware Conf., Rio de Janeiro, Brazil, June 2003.

[3] García, D., and García, J.: TPC-W E-Commerce Benchmark Evaluation, IEEE Computer,
Feb. 2003.

160 G. Jung et al.

[4] Swint, S. G., Jung, G., Pu, C., and Sahai, A.: Automated Staging for Built-to-Order Ap-
plication Systems. Network Operations and Management Symposium, Vancouver, Can-
ada, April 2006.

[5] Sahai, A., Pu, C., Jung, G., Wu, Q., Yan, W., and Swint, S. G.: Towards Automated De-
ployment of Built-to-Order Systems, Distributed Systems; Operation and Management,
Barcelona, Spain, Oct. 2005.

[6] WEKA distribution. http://www.cs.waikato.ac.nz/ml/weka.
[7] Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., and Chase, J.: Correlating Instrumenta-

tion Data to System States: A building block for automated diagnosis and control. Operat-
ing System Design and Implementation, San Francisco, CA, USA, Dec. 2004.

[8] Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., and Radziuk, E.: SLA De-
sign from a Business Perspective, Distributed Systems: Operation and Management, Bar-
celona, Spain, Oct. 2005.

[9] Swint, S. G., Pu, C., Consel, C., Jung, G., Sahai, A., Yan, W., Koh, Y., and Wu, Q.:
Clearwater - Extensible, Flexible, Modular Code Generation. Int. Conf. on Automated
Software Engineering, Long Beach, CA, USA, Nov. 2005.

[10] Te-Kai, L., Hui, S., and Kumaran, S.: A capacity sizing tool for a business process inte-
gration, Int. Middleware Conf., Toronto, Ontario, Canada, Oct. 2004.

[11] Wang, Y., Rutherford, M., Carzaniga, A., Wolf, A.: Automating Experimentation on
Distributed Testbeds, Int. Conf. on Automated Software Engineering, Long Beach, CA,
USA, Nov. 2005.

[12] Parekh, J., Jung, G., Swint, S, G., Pu, C., and Sahai, A.: Comparison of Performance
Analysis Approaches for Bottleneck Detection in Multi-Tier Enterprise Applications, Int.
Workshop on Quality of Service, Yale University, New Haven, CT, USA, June, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

