

DSCWeaver: Synchronization-Constraint Aspect Extension to Procedural
Process Specification Languages

Qinyi Wu1, Calton Pu1, Akhil Sahai2, Roger Barga3, Gueyoung Jung1

Jason Parekh1, Galen Swint1
1College of Computing, Gatech

{qxw, calton, galen.swint, jason.parekh,
gueyoung.jung }@cc.gatech.edu

2HP Labs
akhil.sahai@hp.com

3Microsoft Research
barga@microsoft.com

Abstract

BPEL is emerging as an open-standards language for

Web service composition. However, its procedural style
can lead to inflexible and tangled code for managing a
crosscutting aspect — synchronization constraints that
define permissible sequences of execution for activities in
a process. In this paper, we present DSCWeaver, a tool
that enables a synchronization-aspect extension to BPEL.
It uses DSCL, a synchronization expression language, to
specify constraints. DSCL has the desirable features of
declarative syntax, fine granularity, and validation
support. A designer can use DSCL to describe and
validate the synchronization behavior and rely on
DSCWeaver to generate BPEL code. We demonstrate the
advantages of our approach in a service deployment
process and evaluate its performance using two metrics:
Lines of Code (LoC) and Places to Visit (PtV). Evaluation
results show that our approach can effectively reduce
development effort of process designers while providing
performance competitive to un-woven BPEL code.

1. Introduction

The recent trend in web service composition
languages is to specify the structure of a process using
control constructs, such as And-split and And-join [25].
However, their procedural style may lead to inflexible and
tangled code in process specification for two reasons.
First, the procedural style is not effective in capturing
complex synchronization behavior. For example, in BPEL
the <link> construct results in scattered code among
activities nested in different concurrent subprocesses [22].
Second, the procedural style results in centralized
synchronization control. It has been shown that
centralized control may degrade process performance and
increase network load of the orchestration server [6]. In
sharp contrast, decentralized control has the advantage of
balancing workload among peers.

In this paper, we address these problems by applying
Aspect-Oriented Programming (AOP) techniques to the

problem of synchronization constraints on process models.
The advantages for modeling a process from multiple
aspects have been identified by Schmidt and Assmann as
simplified modeling complexity and increased robustness
of the process during adaptation [20]. The utility of AOP
on domain specific languages is also discussed in [9][17].
Our evaluation results further confirm their observations.

We introduce DSCWeaver, a tool that offers a
synchronization-aspect extension to BPEL, a popular Web
service composition language. BPEL may become
verbose and complex when modeling nontrivial processes
[2][8]. One contributing factor in our observation is
synchronization code that crosscuts the procedural
modeling code.

DSCWeaver has two unique features. First,
synchronization constraints for a process are specified in
the DAG Synchronization Constraint Language (DSCL)
[21]. This detangles synchronization code from the base
code of a process and provides flexible and expressive
primitives to describe synchronization relationships.
DSCL draws on synchronization research from parallel
programming [5][19]. As its name indicates, DSCL can be
used to specify a Directed Acyclic Graph (DAG) flow
model. It has a declarative syntax, fine granularity, and
validation support. DSCL defines three synchronization
relations (HappenBefore, HappenTogether, and Exclusive)
that operate on activity states (start, run, and finish). By
specifying relationships over activity states, DSCL can
describe a rich set of synchronization behaviors.

The second unique feature is that synchronization
constraints written in DSCL are automatically translated
into a set of messages tokens carrying the synchronization
data. Activities synchronize with each other by
exchanging these tokens asynchronously. The translation
relies on an intermediate Petri net representation [13].
DSCWeaver uses a Petri net for two reasons. One is to
simulate and validate the synchronization constraints. The
other reason is to map the transition firing logic of the
Petri net into a set of token messages. The advantage of
this approach is that the syntax of token messages is
language-independent and can be woven into any service
composition language that supports a messaging

mechanism. What is more, messages can be easily
exchanged among distributed processes, which facilitate
conversion from centralized control to decentralized
control for processes orchestration.

The rest of the paper is organized as follows. In
Section 2, we present an example to illustrate the
synchronization constraints in a nontrivial service
deployment process. In Section 3, we present an overview
of the DSCWeaver implementation and explain its major
modules. We then give a brief introduction to DSCL,
followed by a description of the translation from
synchronization constraints to token messages. In Section
4, we explain how to apply DSCWeaver to BPEL. In
Section 5, we revisit the example in Section 2 and show
our evaluation results. Related work and conclusion are
presented last.

2. A Motivating Example

Consider a service deployment process for the
PetStore e-commerce application. It is an online store
where customers can browse and purchase their favorite
pets. The PetStore application consists of a database tier
and an application server tier. To meet performance goals,
the database server and the application server are installed
on different hosts. The deployment consists of a set of
installation activities, each represented by a, each of
which interacts with its target host to perform part of the
installation task. The deployment process consists of three
subprocesses:
1) Middleware installation: It includes installing the

database (MySQL), runtime environment (Java, Ant)
and application server (Tomcat) denoted asql, ajava, aant,
and atomcat respectively.

2) Application installation. It includes installing the
application (PetStore) and its dependent libraries (Jdbc,
Struts, Dao, and SQLMap), propagating database with
PetStore workload data (configure MySql) and
configuring PetStore with database server information
(configure PetStore) denoted apetstore, ajdbc, astruts, adao,
asqlmap, ac_sql, and ac_petstore respectively.

3) Application ignition. It includes starting the database
and the application server denoted as_sql and as_tomcat.
The deployment process is orchestrated by a BPEL

engine on the deployment host. The target hosts for the
database and the application server are preconfigured with
a web service, InstallWS, which accepts installation
instructions from activities and performs the
corresponding tasks. Figure 1a depicts the centralized
control scenario. In this architecture, all synchronization
logic is managed by the deployment machine (Host A),
which interacts with target machines (Host B and Host C)
by sending them installation instructions in order. The
disadvantage of this approach is that Host A may become
overloaded by the synchronization traffic. However, it

Host A

BPEL

WS

Host B

WS

Host C

Installation
instruction

Installation
instruction

Host A

BPEL

WS

Host B

Host C

Synchronization
message

BPEL

Installation
instruction

WSBPEL

Installation
instruction

Synchronization
message

(a) centralized synchronization control

(b) decentralized synchronization control

Web service

BPEL engine

Synchronous message

Process specification

Figure 1. PetStore deployment architecture

turns out that we can reduce a portion of workload from
Host A by distributing deployment activities according to
their target hosts. This modification leads to the
decentralized deployment architecture in Figure 1b. In the
decentralized approach, the process is split into two
subprocesses, each of which is deployed on a target host
and interacts with that host to fulfill the installation task.
This means that all activities related to database
installation form a subprocess to be deployed at Host B,
while all activities related to application server installation
form another subprocess to be deployed at Host C. These
two subprocesses interact only with Host A to synchronize
with each other. In Section 5, we provide run-time
performance measurements for both architectures.

Synchronization constraints are created either by
installation dependencies or by user requirements. For
instance, an installation dependency arises when the
installation of one software package should be placed at
certain location within the directory structure of another
software package. An example is that PetStore code
should be placed in the directory $Tomcat/webapp.

User requirements come from design strategy or other
concerns. For example, a process designer may require
that the installation subprocess should finish before the
ignition subprocess starts.

Instead of describing the constraints procedurally, we
use two relations for declaring constraints as relationship
statements: HappenBefore(→) and HappenTogether(↔).
Unlike other synchronization expression languages
[5][19], these relations operate on activity state. An
activity progresses through three states: start(S), run(R)
and finish(F). The activities interact with each other as
they transit from one state to the next subject to the
relationship statements. We detail the relation and activity

asql

atomcat

ajava aant

ac_sql apetstoreajdbc

astruts asqlmap adao

HB HB HB

HB

HB

HT

Middleware Installation subprocess

Application Installation subprocess

ac_petstore

HB

HB

HB

as_sql as_tomcat

HB HB HB HB

Application ignition subprocess

HB HappenBefore
HT HappenTogether

synchronization constraint

start state of activity
finish state of activity

HB

HB

HB

Figure 2. Synchronization constraints in

PetStore deployment process

state in Section 3.2. Figure 2 illustrates the
synchronization constraints of PetStore deployment.

For example, due to an installation dependency the
finish state of asql should happen before the start state of
ac_sql, abbreviated as Fsql→Sc_sql. Furthermore, the
designer requires that the runtime environment should be
properly set up before installing application server, which
adds Fjava→Stomcat and Fant→Stomcat. He also requires that
the middleware should be properly installed before going
to application-dependent installation, which introduces
another relationship Fsql↔Ftomcat.

3. DSCWeaver

3.1. Implementation Overview
DSCWeaver is an integrated tool written in Java for

providing synchronization aspect extension to flow
specification language. It contains several submodules to
automate the translation from high-level specification to
low-level implementation code. During the multi-stage
translation process, intermediate outputs are formatted in
XML for further processing. Figure 3 illustrates its
architecture. The input to DSCWeaver is a process
specification containing activities and their associated
synchronization constraints in the form of state
relationships. The process specification can be written in
any host language appended by an extra section
containing the synchronization information. DSCWeaver
selects the corresponding code weaver for the host
language. Below we briefly explain each submodule.

State Relation to Petri Net (SR2PN). This module
takes the state relationships as input and translates them
into Petri net. The Petri net is not only an input for the
CPN/Tools for validation [18], but also an input for the
next submodule PN2TM.

Activities

State relationships
SR2PN

translator
(section 3.2)

Petri net
PN2TM

translator
(section 3.3)

Messages

Code weaver
(section 4)

Process spec with
state dependency

Workflow
engine

Process spec.

Code weaver 1

CPN/Tools

Figure 3. DSCWeaver architecture overview

Petri Net to Token Message (PN2TM). This maps

the transition firing logic of a Petri net into token
messages. These messages consist of token information
like which transition is going to consume this token or to
which transition this token should be delivered.

Code Weaver. The weaver collects information from
the token messages about which messages must be sent or
received for the state transitions of an activity. To weave
the messages correctly, the activities are tagged in the
original process specification. These tags are AOP
joinpoints that introduce hooks in the base code [11]. We
demonstrate this using BPEL in Section 4.

3.2. DAG Synchronization Constraint
Language

In Section 2, we informally introduced DSCL’s
HappenBefore and HappenTogether relations. The design
of DSCL adopts three features from parallel programming
research [5][19]:
 Fine granularity. The life cycle of an activity is a

sequence of states and can be synchronized with other
activities based on its current state.

 Declarative syntax. A process designer only needs to
specify what to be synchronized instead of how to
implement it. This simplifies and accelerates service
composition task [4].

 Validation support. A designer should have tools to
assist the validation of synchronization behavior of
processses, especially those that are complex or
evolving.
Fine granularity is accomplished by synchronizing an

activity at different states of its life cycle. An activity goes
through three states: start (S), run (R) and finish (F). This
brings more expressive power for synchronization
behavior. For example, there are cases that a designer
wants to express “Activity B can not finish until Activity A
starts.” The necessity of modeling activity at the
granularity of state is discussed in [1].

DSCL declarative syntax defines three state relations.
These three relations reflect the basic synchronization
constraint, if any, between any pair of states.

 HappenBefore (→): the state at the beginning of the
arrow should happen before the state at the end.

 HappenTogether (↔): the two states at both ends
should be reached together.

 Exclusive (O): states at both ends must not be
concurrent. Note that this only applies to run states
because they are the only states where activities can
actually interfere with each other.

By specifying synchronization relationships on
activity states, we can express a rich set of
synchronization behavior. For instance, the sequence is
expressed as Fi→Sj. The And-split and And-join are
expressed as Si ↔Sj and Fi↔Fj. DSCL is also able to
describe the synchronization constraints such as Si →Fj,
which are difficult to express in constructs available in
existing workflow specification languages due to the
atomicity of an activity. For example, it is not easy to
enforce the constraint of “Before finishing the activity of
closing a purchasing order, the activity of customer
satisfactory survey should have been started.” As a
concrete example, the synchronization constraints in the
PetStore deployment in Section 2 are:
 Middleware installation
Fjava →Stomcat , Fant →Stomcat , Fmysql ↔Ftomcat

 Application installation
Fsql →Sc_sql , Ftomcat →Sjdbc , Ftomcat →Spetstore ,
Fpetstore →Sc_petstore , Fpetstore →Sstruts , Fpetstore →Ssqlmap,
Fpetstore →Sdao

 Application ignition
Fc_mysql →Ss_mysql , Fjdbc →Ss_tomcat , Fc_petstore →Ss_tomcat ,
Fstruts →Ss_tomcat , Fsqlmap →Ss_tomcat , Fdao →Ss_tomcat

DSCWeaver offers validation support by translating
state relationships into a Petri net. There are three types of
synchronization constraints: the intrastate relation
construction, which manages the state relations within an
activity, and the interstate relation construction, which
establishes the state relations between activities, and the
exclusive relation construction, which handles the
exclusive state relation. During the mapping, a place in
the Petri net represents a state of an activity. A transition
represents the conditions that need to be satisfied before
the activity can reach that state. The firing of a transition
means that the states it depends on corresponding to the
in-bound places have been reached. The activity can
transmit to its next state and put a token in its out-bound
places. The idea is illustrated in Figure 4. It gives an
example of state relationships between two activities ai
and aj. The translated Petri net is formatted to the input of
CPN/Tools. CPN/Tools is a graph editor and simulator of
the Colored Petri Net (CPN) [10]. It provides toolkits to
identify dead transitions, infinite occurrence sequences,
etc. For more details, please refer to our earlier work [21].

Figure 4. Translation of state relationships to

Petri net

3.3. Translation of Petri Net to Token Messages

The PN2TM submodule translates the Petri net to a set
of token messages that carry the Petri net firing
information. There are two types of token messages: the
receive token message (<receive place=p value=e
/>), which tells from which place p a transition receives a
message with value e, and the send token message (<send
place=p value=e />), which tells to which place p the
transition send a message with value e. A transition should
receive all inbound messages before sending outbound
tokens. Figure 5 illustrates this procedure.

Figure 5. Translation from Petri net to token
messages

Each activity contains three transitions corresponding
to its start, run and finish states. Each transition collects
message information that is formatted in Figure 5.
Translating the synchronization constraints to token
messages is a distinctive feature of our approach. Unlike
other work using formal technique for process verification
[14][15], our approach augments formal techniques used
to analyze the existing process with formal messages
derivation that need to be exchanged to enforce the
synchronization constraints.

There may be race conditions between activities. If the
receiver is not active by the time the sender begins
sending the message, it gets lost. We need a persistent
queue for these messages until delivery to the receiver.
Instead of direct communication, a sender sends its token
to a queuing web service. When a receiver is ready to
receive a particular message, it sends its request to the
queue. If the message is present, the queue will forward it

to the receiver. Otherwise the receiver blocks until the
arrival of the message. We implemented a
PersistentQueue web service that has two ports: register,
which queues a message, and query, which accepts a
query for the existence of a particular message and
notifies the receiver when it becomes available. Notice
that the PersistentQueue is slightly different from the
standard message brokers in that the message delivery
among queues is dependent. Only when all the messages
corresponding to the inbound places of a transition have
arrived will they be delivered together to the subscribers.
In standard persistent message broker, the messages are
delivered to the requester as soon as they arrive,
independent of other messages.

4. BPEL Extension

In this section, we demonstrate how DSCWeaver
operates on BPEL to implement the synchronization-
aspect extension. We start with the explanation of
extending BPEL with the DSCL syntax and then explain
how the extended code can be woven into BPEL to form a
complete process specification.

4.1. BPEL Syntax Extension

The BPEL specification is extended with new XML
tags to express the state relationships among activities. We
call it DSCL+BPEL, or DSCL+ for abbreviation when
there is no confusion. Table 1 summarizes its syntax and
semantics.

Table 1. Tag extenstion for BPEL
Tag Syntax Semantics
activity <activity aid=”qname”>

 Activity
</activity>

It demarcates the
boundary of an activity
with a unique id.

HappenBef
ore

<happenBefore>
<begin aid="A1" state="ncname" />
<end aid="A2" state="ncname" />

</happenBefore>

It defines →. State is
one of {start, finish}

HappenTog
ether

<happenTogether>
 <end aid="A1" state=" ncname " />

 … … …
 <end aid="A2" state=" ncname " />
</happenTogether >

It defines ↔. State is
one of {start, finish}

Exclusive

< Exclusive >
 < end aid="A1" state=" ncname " />
 … … …
 <end aid="A2" state=" ncname " />
</ Exclusive >

It defines ◊. State is
{run}

A code snippet for PetStore’s DSCL+BPEL

specification is shown in Figure 6. We highlight the
relevant activities for clarity.

Figure 6. Code snippet for DSCL+ specification

Figure 7. Snippet code after code-weaving.

4.2. BPEL Code Weaving

From the previous discussion, we know that at each
state an activity waits for token messages carrying the
status of state it depends on. After all required messages
have been received, the activity can transit to its next state.
It announces this event to dependent states via token
messages. This is a typical message exchange scenario
and can be supported by the built-in facilities of BPEL. In
particular, we use the following tags.
 <invoke>: invokes a operation on a web service
 <receive>: specifies message it expects to receive in
synchronous mode.

 <sequence>: provides sequential execution for all
nested subprocesses.

 <flow>:provides concurrency and synchronization. It
exits when all the activities in the flow have completed.
In the translation, each activity is wrapped in a <flow>.
Each state is a subprocess in the <flow>. The execution
order is synchronized by the token messages.

Figure 7 is the woven result of Figure 6.

5. Evaluation

5.1. Developing Effort Evaluation

Similar to the programming language community that
typically compares programming languages in terms of
lines of code, ease of use, etc. [16], we introduce two
metrics to measure the developing effort of a process
designer. One is the number of Lines of Code (LoC) that
measures number of lines of code that he need to write to
express the synchronization constraints of a process. The
second metric is the number of Places to Visit (PtV) that
measures the number of places a process designer has to
jump back and forth to specify the synchronization
constraints.

For LoC, we consider three situations: effort in
specifying original process specification, effort in
modifying the original specification, and effort in
implementing synchronization control decentralization. In
BPEL, each structured construct, like <sequence> and
<flow>, counts as 1 LoC and each unstructured construct,
like <link>, counts as 2 LoC because they requires extra
code to declare. In DSCL+, each synchronization
statement counts as 1 LoC. The result for our PetStore
example is shown in Table 2.

Table 2. Number of LoC in PetStore process

 BPEL Centralized
DSCL+

Decentralized
DSCL+

Specification 10 16 16
Spec. Adaptation 7 1 1
Sync. Control
Decentralization

N/A N/A 16

<sequence> <flow>

Install
mysql

<flow>

<sequence> <sequence>

Config
MySQL

Start
MySQL

<flow>

<sequence>
<flow>

Install
Java

Install
Ant

Install
Tomcat

Install
JDBC

<link source>

Install
Petstore

Config
Petstore

Install
SQLMap

Install
Struts

Install
DAO

<link target>
Start

Tomcat

Figure 8. PetStore Process in BPEL

Original process specification. BPEL requires 8 LoC

(four <flow>/ four <sequence>; one <link>), shown
in Figure 8, while DSCL+ requires 16 LoC for each
relationship statement, shown in Figure 2. DSCL+
requires more code than BPEL because DSCL+ uses
finer-grained primitives than structured constructs. For
example, to specify the parallel between ajava and aant we
need only one <flow> in BPEL, while we need four
relationship statements in DSCL+. There is a tradeoff
between the flexibility of DSCL and the ease of
expression from the high-level construct of BPEL.
Language choice depends on the requirements of
particular processes. In our opinion, when describing a
process without much concurrency, BPEL is preferred.
Otherwise, DSCL+ is better.

Process adaptation. The advantage of DSCL+
becomes obvious during adaptation. Imagine that the
restriction “the middleware installation subprocess should
finish before the application installation subprocess” has
been removed. In BPEL, we must remove the <flow> for
middleware installation subprocess, insert asql into the
database subprocess, and insert ajava, aant, and atomcat into
the application server subprocess. To manage the
constraint between atomcat, apetstore, and ajdbc, we need one
<sequence> to execute atomcat first and one <flow> for the
parallel execution between apetstore and ajdbc. That is 7 LoC
in total. In DSCL+, we simply remove one statement:
Fmysql ↔Ftomcat. That is 1 LoC.

Synchronization control decentralization. BPEL
cannot coordinate activities nested in distributed
processes because there is no easy way to universally
identify an intermediate activity in a process and to
specify its relationship to other activities. Developers may
split the BPEL specification for decentralization
according to the approach in [6], but that would result in

the creation of a subprocess for each intermediate activity
to be synchronized. Furthermore, it could not handle the
synchronization constraint for exclusive execution. By
comparison, in the decentralized DSCL+, each activity is
uniquely tagged. The DSCWeaver inserts synchronization
code pertinent to each activity in a subprocess. The
designer only needs to specify the constraint for each
subprocess. Therefore the LoC remains the same as the
centralized version.

Now let’s look at the metric of PtV. One PtV counts
each time a designer has to jump to a different place in a
process specification when implementing a task. The
result is shown in Table 3.

Table 3. Number of PtV in PetStore process

 BPEL Centralized
DSCL+

Decentralized
DSCL+

Specification 19 1 2
Spec. Adaptation 7 1 1
Sync. Control
Decentralization

N/A N/A 2

For the decentralized DSCL+, all synchronization
constraints can be specified at one place. Therefore it is
only 1 PtV for both the process design stage and the
adaptation stage. The designer can totally rely on
DSCWeaver to weave the synchronization code into the
base code. But he has to edit each subprocess
specification in the decentralized scenario. Therefore it
requires 2 PtV for the decentralized deployment of
PetStore. By comparison, the developing effort in BPEL
increases a lot in PtV metric. Take the effort in specifying
original specification for instance. Each structured
constructs requires two places to visit. Each unstructured
construct requires three places to visit. Since we have
eight structure constructs and one unstructured construct,
the total is 19 PtV. The reduction from 19 PtV to 1 PtV
represents a significant reduction in developer effort.
Similar results can be observed during adaptation.

5.2. Performance

There are two purposes for the performance
experiment. One is to evaluate the overhead brought by
the DSCL+ for token messages exchange. We deploy and
compare the PetStore process by using the standard BPEL
constructs and the instrumented code generated by the
DSCWeaver. The other is to demonstrate that DSCL+ can
describe synchronization constraints for distributed
processes and coordinate them in decentralized manner.
We also generated the decentralized DSCL code and
measure its performance in term of deployment time.
Experiment setup. Our experiment uses a cluster of
Intel Pentium machines (2x 3Ghz Pentium 4, 1GB
memory) in Redhat Linux 9. The BPEL engine is
ActiveBPEL [23]. The web service engine is Axis [24].
We call the machine that starts the process the deployment

machine and the machine that hosts the PetStore
application the target machine. In the centralized setup of
Figure 1a, the deployment machine is installed with
ActiveBPEL engine for orchestrating process and Axis for
providing the PersistentQueue web service. Two client
machines for database and application are configured with
Axis as the web service engine. In the decentralized setup
of Figure 1b, three of the machines were set up with
ActiveBPEL and Axis engines. The role of the
deployment machine is to coordinate with two processes
running on two client machines. The ActiveBPEL engine
on the client machines interacts with local Axis to execute
those activities that perform the tasks on the local host.
Table 4 is the deployment time.

Table 4: Deployment time for PetStore
 ActiveBPEL Centralized

DSCL+
Decentralized

DSCL+
Time (s) 75 83 75

We can see that centralized DSCL requires more time than
BPEL, but the decentralized DSCL is as good as the
ActiveBPEL.

6. Related Work

Our work complements other projects exploring the
use of AOP to improve the flexibility and adaptability of
workflow processes. Bachmendo and Unland describe an
approach to use aspects for dynamic workflow evolution
by changing behavior of structured constructs like
Sequence and And-split at run time [3]. The AO4BPEL
project [7] uses aspect for service composition and
collects auditing information at runtime. Both of these
projects work on the run time behavior of composite
services. On the other hand, our work targets
synchronization aspects during the design stage.

Translation from Petri net to code can be seen in early
work [8][2]. Grid-Flow [8] provides a Petri net based user
interface for workflow modeling in grid and automatically
translates a net to the Grid Flow Description Language.
Instead of targeting a particular domain specific language,
our approach of synchronization by exchanging token
messages can easily accommodate different workflow
languages because it simply requires support of a
messaging mechanism from the host language. Aalst
introduced another tool translating Petri net to BPEL [2].
Instead of establishing a mapping between a Petri net and
the structured constructs in BPEL, we translate the Petri
net to token messages. This enables us to handle the
exclusive state relation and also facilitates the task of
converting BPEL from centralized control to
decentralized control, which is a significant advantage.

DSCWeaver is capable of providing synchronization-
aspect extensions to general purpose flow languages. In

this sense, our work is similar to [12] that models
synchronization in temporal logic and integrates it with
Java programming.

7. Conclusion

In this paper, we discussed a limitation of BPEL in
modeling synchronization constraints, due to its
procedural style. To address this limitation we presented
DSCWeaver, an integrated tool that provides a
synchronization-aspect extension to BPEL. It uses DSCL,
a synchronization expression language to express
synchronization constraints in the form of relationship
statements. These statements can then be individually
validated and later woven into the base BPEL code to
form a complete process specification.

This paper presents two major contributions. First, we
demonstrate the practicality and feasibility of providing a
synchronization-aspect extension to a “general purpose”
flow language by implementing the tool of DSCWeaver
and applying it to BPEL. Second, our weaving approach
is unique. The synchronization constraints are woven into
a set of token messages, the exchange of which forms a
synchronization protocol among activities in a process.
The token messages can be easily integrated with different
flow languages and easily exchanged among distributed
processes and web services.

8. Reference

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.
Kiepuszewski, and A.P. Barros, “Workflow Patterns,”
Distributed and Parallel Databases, 14(3), pages 5-51, July
2003.

[2] W. M. P. v. d. Aalst and K. B. Lassen. Translating
Workflow Nets to BPEL4WS. BPM Center Report BPM-
05-16, BPMcenter.org. 2005.

[3] B. Bachmendo, R. Unland. Aspect-Based Workflow
Evolution, Workshop on Aspect-Oriented Programming and
Separation of Concerns, Lancaster, UK, August 23, 2001

[4] B. Benatallah, Q. Z. Sheng, et al. Declarative Composition
and Peer-to-Peer Provisioning of Dynamic Web Services.
Proceedings of the 18th International Conference on Data
Engineering (ICDE'02), IEEE Computer Society.2002

[5] R. H. Campbell, A. N. Habermann: “The Specification of
Process Synchronization by Path Expressions.” Lecture
Notes in Computer Science 16, Springer-Verlag, Berlin,
1974, pp 89 – 102.

[6] G. Chafle, S. Chandra, et al. Decentralized Orchestration of
Composite Web Services. Proceedings of the 13th
International World Wide Web Conference, NY, USA,
ACM Press, 2004.

[7] A. Charfi and M. Mezini. Aspect-Oriented Web Service
Composition with AO4BPEL In Proc. of the European
Conference on Web Services ECOWS 2004, LNCS 3250.
Erfurt, Germany, September 2004.

[8] Z. Guan, F. Hernandez, et al. Grid-Flow: A Grid-Enabled

Scientific Workflow System with a Petri Net-Based
Interface. the Grid Workflow Special Issue of Concurrency
and Computation: Practice and Experience. 2005.

[9] J. Gray, T. Bapty, et al. Handling Crosscutting Constraints
in Domain-Specific Modeling. Communications of the
ACM: pp. 87-93. October 2001

[10] K. Jensen. Coloured Petri Nets. Vol 1: Basic Concepts,
Springer-Verlag 1992.

[11] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. Proceedings of the 27th
international conference on Software engineering, St. Louis,
MO, USA, ACM Press.2005

[12] Giuseppe Milicia, Vladimiro Sassone: Jeeg: Temporal
Constraints for the Synchronization of Concurrent Objects.
Concurrency - Practice and Experience 17(5-6): pp 539-572
2005

[13] T. Murata. Petri Nets: Properties, analysis and applications.
Proc. of the IEEE, 77(4):541– 580, 1989.

[14] S. Narayanan and S. A. McIlraith. Simulation, Verification
and Automated Composition of Web Services. Proceedings
of the 11th international conference on World Wide Web,
Honolulu, Hawaii, USA, ACM Press. 2002.

[15] C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas,
A.H.M. ter Hofstede, and H.M.W. Verbeek. Formal
Semantics and Analysis of Control Flow in WS-BPEL.
BPM Center Report BPM-05-13, BPMcenter.org, 2005.

[16] L. Prechelt. An Empirical Comparison of Seven Pro-
gramming Languages. IEEE Computer, vol 33, no 10,
October 2000, pp 23-29.

[17] Calton Pu and Galen S. Swint. DSL Weaving for
Distributed Information Flow Systems. (Invited Keynote.)
Proceedings of the 2005 Asia Pacific Web Conference.
(APWeb05). Springer-Verlag LNCS. March 29 - April 1,
2005. Shanghai, China.

[18] A.V. Ratzer, L. Wells et.al. CPN Tools for Editing,
Simulating, and Analysing Coloured Petri Nets. In W. v.d.
Aaalst and E. Best, (Eds.) Application and Theory of Petri
Nets 2003.

[19] K. Salomaa and S. Yu. Synchronization Expressions and
Languages. Journal of Universal Computer Science Vol. 5:
610-621. 1999.

[20] R. Schmidt, U. Assmann. Extending Aspect-Oriented-
Programming In Order To Flexibly Support Workflows. In:
Proceedings of Aspect-Oriented Programming Workshop at
ICSE’98, ed. Lopes, C., Murphy, G., Kiczales G.

[21] Q. Wu, C. Pu, et al. DAG Synchronization Constraint
Language for Business Processes. Technical Report.
http://www.cc.gatech.edu/~qxw/academic/pub/DSCLRepor
t.pdf, 2005.

[22] Business Process Execution Language for Web Services
(BPEL), Version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel.

[23] ActiveBPEL. http://www.activebpel.org/
[24] Axis. http://ws.apache.org/axis/
[25] Workflow Management Coalition: Workflow Process

Definition Interface – XML Process Definition Language.
Document Number WFMC-TC-1025, October 25, 2002.

