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Abstract 

 
BPEL is emerging as an open-standards language for 

Web service composition. However, its procedural style 
can lead to inflexible and tangled code for managing a 
crosscutting aspect — synchronization constraints that 
define permissible sequences of execution for activities in 
a process. In this paper, we present DSCWeaver, a tool 
that enables a synchronization-aspect extension to BPEL. 
It uses DSCL, a synchronization expression language, to 
specify constraints. DSCL has the desirable features of 
declarative syntax, fine granularity, and validation 
support. A designer can use DSCL to describe and 
validate the synchronization behavior and rely on 
DSCWeaver to generate BPEL code. We demonstrate the 
advantages of our approach in a service deployment 
process and evaluate its performance using two metrics: 
Lines of Code (LoC) and Places to Visit (PtV). Evaluation 
results show that our approach can effectively reduce 
development effort of process designers while providing 
performance competitive to un-woven BPEL code. 

1. Introduction 

The recent trend in web service composition 
languages is to specify the structure of a process using 
control constructs, such as And-split and And-join [25]. 
However, their procedural style may lead to inflexible and 
tangled code in process specification for two reasons. 
First, the procedural style is not effective in capturing 
complex synchronization behavior. For example, in BPEL 
the <link> construct results in scattered code among 
activities nested in different concurrent subprocesses [22]. 
Second, the procedural style results in centralized 
synchronization control. It has been shown that 
centralized control may degrade process performance and 
increase network load of the orchestration server [6]. In 
sharp contrast, decentralized control has the advantage of 
balancing workload among peers. 

In this paper, we address these problems by applying 
Aspect-Oriented Programming (AOP) techniques to the 

problem of synchronization constraints on process models. 
The advantages for modeling a process from multiple 
aspects have been identified by Schmidt and Assmann as 
simplified modeling complexity and increased robustness 
of the process during adaptation [20]. The utility of AOP 
on domain specific languages is also discussed in [9][17]. 
Our evaluation results further confirm their observations.  

We introduce DSCWeaver, a tool that offers a 
synchronization-aspect extension to BPEL, a popular Web 
service composition language. BPEL may become 
verbose and complex when modeling nontrivial processes 
[2][8]. One contributing factor in our observation is 
synchronization code that crosscuts the procedural 
modeling code.  

DSCWeaver has two unique features. First, 
synchronization constraints for a process are specified in 
the DAG Synchronization Constraint Language (DSCL) 
[21]. This detangles synchronization code from the base 
code of a process and provides flexible and expressive 
primitives to describe synchronization relationships. 
DSCL draws on synchronization research from parallel 
programming [5][19]. As its name indicates, DSCL can be 
used to specify a Directed Acyclic Graph (DAG) flow 
model. It has a declarative syntax, fine granularity, and 
validation support. DSCL defines three synchronization 
relations (HappenBefore, HappenTogether, and Exclusive) 
that operate on activity states (start, run, and finish). By 
specifying relationships over activity states, DSCL can 
describe a rich set of synchronization behaviors.  

The second unique feature is that synchronization 
constraints written in DSCL are automatically translated 
into a set of messages tokens carrying the synchronization 
data. Activities synchronize with each other by 
exchanging these tokens asynchronously. The translation 
relies on an intermediate Petri net representation [13]. 
DSCWeaver uses a Petri net for two reasons. One is to 
simulate and validate the synchronization constraints. The 
other reason is to map the transition firing logic of the 
Petri net into a set of token messages. The advantage of 
this approach is that the syntax of token messages is 
language-independent and can be woven into any service 
composition language that supports a messaging 



 

 

mechanism. What is more, messages can be easily 
exchanged among distributed processes, which facilitate 
conversion from centralized control to decentralized 
control for processes orchestration.  

The rest of the paper is organized as follows. In 
Section 2, we present an example to illustrate the 
synchronization constraints in a nontrivial service 
deployment process. In Section 3, we present an overview 
of the DSCWeaver implementation and explain its major 
modules. We then give a brief introduction to DSCL, 
followed by a description of the translation from 
synchronization constraints to token messages. In Section 
4, we explain how to apply DSCWeaver to BPEL. In 
Section 5, we revisit the example in Section 2 and show 
our evaluation results. Related work and conclusion are 
presented last. 

2. A Motivating Example 

Consider a service deployment process for the 
PetStore e-commerce application. It is an online store 
where customers can browse and purchase their favorite 
pets. The PetStore application consists of a database tier 
and an application server tier. To meet performance goals, 
the database server and the application server are installed 
on different hosts. The deployment consists of a set of 
installation activities, each represented by a, each of 
which interacts with its target host to perform part of the 
installation task. The deployment process consists of three 
subprocesses: 
1) Middleware installation: It includes installing the 

database (MySQL), runtime environment (Java, Ant) 
and application server (Tomcat) denoted asql, ajava, aant, 
and atomcat respectively.  

2) Application installation. It includes installing the 
application (PetStore) and its dependent libraries (Jdbc, 
Struts, Dao, and SQLMap), propagating database with 
PetStore workload data (configure MySql) and 
configuring PetStore with database server information 
(configure PetStore) denoted apetstore, ajdbc, astruts, adao, 
asqlmap, ac_sql, and ac_petstore respectively.  

3) Application ignition. It includes starting the database 
and the application server denoted as_sql and as_tomcat. 
The deployment process is orchestrated by a BPEL 

engine on the deployment host. The target hosts for the 
database and the application server are preconfigured with 
a web service, InstallWS, which accepts installation 
instructions from activities and performs the 
corresponding tasks.  Figure 1a depicts the centralized 
control scenario. In this architecture, all synchronization 
logic is managed by the deployment machine (Host A), 
which interacts with target machines (Host B and Host C) 
by sending them installation instructions in order. The 
disadvantage of this approach is that Host A may become 
overloaded by the synchronization traffic. However, it  
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Figure 1. PetStore deployment architecture 

 
turns out that we can reduce a portion of workload from 
Host A by distributing deployment activities according to 
their target hosts. This modification leads to the 
decentralized deployment architecture in Figure 1b. In the 
decentralized approach, the process is split into two 
subprocesses, each of which is deployed on a target host 
and interacts with that host to fulfill the installation task. 
This means that all activities related to database 
installation form a subprocess to be deployed at Host B, 
while all activities related to application server installation 
form another subprocess to be deployed at Host C. These 
two subprocesses interact only with Host A to synchronize 
with each other. In Section 5, we provide run-time 
performance measurements for both architectures. 

Synchronization constraints are created either by 
installation dependencies or by user requirements. For 
instance, an installation dependency arises when the 
installation of one software package should be placed at 
certain location within the directory structure of another 
software package. An example is that PetStore code 
should be placed in the directory $Tomcat/webapp.  

User requirements come from design strategy or other 
concerns. For example, a process designer may require 
that the installation subprocess should finish before the 
ignition subprocess starts.  

Instead of describing the constraints procedurally, we 
use two relations for declaring constraints as relationship 
statements: HappenBefore(→) and HappenTogether(↔). 
Unlike other synchronization expression languages 
[5][19], these relations operate on activity state. An 
activity progresses through three states: start(S), run(R) 
and finish(F). The activities interact with each other as 
they transit from one state to the next subject to the 
relationship statements. We detail the relation and activity  
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Figure 2. Synchronization constraints in 

PetStore deployment process 
 
state in Section 3.2. Figure 2 illustrates the 
synchronization constraints of PetStore deployment. 

For example, due to an installation dependency the 
finish state of asql should happen before the start state of 
ac_sql, abbreviated as Fsql→Sc_sql. Furthermore, the 
designer requires that the runtime environment should be 
properly set up before installing application server, which 
adds Fjava→Stomcat and Fant→Stomcat. He also requires that 
the middleware should be properly installed before going 
to application-dependent installation, which introduces 
another relationship Fsql↔Ftomcat. 

3. DSCWeaver 

3.1. Implementation Overview 
DSCWeaver is an integrated tool written in Java for 

providing synchronization aspect extension to flow 
specification language. It contains several submodules to 
automate the translation from high-level specification to 
low-level implementation code. During the multi-stage 
translation process, intermediate outputs are formatted in 
XML for further processing. Figure 3 illustrates its 
architecture. The input to DSCWeaver is a process 
specification containing activities and their associated 
synchronization constraints in the form of state 
relationships. The process specification can be written in 
any host language appended by an extra section 
containing the synchronization information. DSCWeaver 
selects the corresponding code weaver for the host 
language. Below we briefly explain each submodule. 

State Relation to Petri Net (SR2PN). This module 
takes the state relationships as input and translates them 
into Petri net. The Petri net is not only an input for the 
CPN/Tools  for validation [18], but also an input for the 
next submodule PN2TM. 

Activities

State relationships
SR2PN 

translator
(section 3.2)

Petri net 
PN2TM 

translator
(section 3.3)

Messages

Code weaver
(section 4)

Process spec with 
state dependency

Workflow 
engine

Process spec.

Code weaver 1

CPN/Tools

Figure 3. DSCWeaver architecture overview 
 
Petri Net to Token Message (PN2TM). This maps 

the transition firing logic of a Petri net into token 
messages. These messages consist of token information 
like which transition is going to consume this token or to 
which transition this token should be delivered.  

Code Weaver. The weaver collects information from 
the token messages about which messages must be sent or 
received for the state transitions of an activity. To weave 
the messages correctly, the activities are tagged in the 
original process specification. These tags are AOP 
joinpoints that introduce hooks in the base code [11]. We 
demonstrate this using BPEL in Section 4. 

3.2. DAG Synchronization Constraint 
Language 

In Section 2, we informally introduced DSCL’s 
HappenBefore and HappenTogether relations. The design 
of DSCL adopts three features from parallel programming 
research [5][19]: 
 Fine granularity. The life cycle of an activity is a 

sequence of states and can be synchronized with other 
activities based on its current state.  

 Declarative syntax. A process designer only needs to 
specify what to be synchronized instead of how to 
implement it. This simplifies and accelerates service 
composition task [4]. 

 Validation support. A designer should have tools to 
assist the validation of synchronization behavior of 
processses, especially those that are complex or 
evolving. 
Fine granularity is accomplished by synchronizing an 

activity at different states of its life cycle. An activity goes 
through three states: start (S), run (R) and finish (F). This 
brings more expressive power for synchronization 
behavior. For example, there are cases that a designer 
wants to express “Activity B can not finish until Activity A 
starts.” The necessity of modeling activity at the 
granularity of state is discussed in [1]. 

DSCL declarative syntax defines three state relations. 
These three relations reflect the basic synchronization 
constraint, if any, between any pair of states. 



 

 

 HappenBefore (→): the state at the beginning of the 
arrow should happen before the state at the end.  

 HappenTogether (↔): the two states at both ends 
should be reached together.  

 Exclusive (O): states at both ends must not be 
concurrent. Note that this only applies to run states 
because they are the only states where activities can 
actually interfere with each other.  

By specifying synchronization relationships on 
activity states, we can express a rich set of 
synchronization behavior. For instance, the sequence is 
expressed as Fi→Sj. The And-split and And-join are 
expressed as Si ↔Sj and Fi↔Fj. DSCL is also able to 
describe the synchronization constraints such as Si →Fj, 
which are difficult to express in constructs available in 
existing workflow specification languages due to the 
atomicity of an activity. For example, it is not easy to 
enforce the constraint of “Before finishing the activity of 
closing a purchasing order, the activity of customer 
satisfactory survey should have been started.”  As a 
concrete example, the synchronization constraints in the 
PetStore deployment in Section 2 are: 
 Middleware installation  
Fjava →Stomcat , Fant →Stomcat , Fmysql ↔Ftomcat 

 Application installation  
Fsql →Sc_sql , Ftomcat →Sjdbc , Ftomcat →Spetstore , 
Fpetstore →Sc_petstore , Fpetstore →Sstruts , Fpetstore →Ssqlmap, 
Fpetstore →Sdao 

 Application ignition  
Fc_mysql →Ss_mysql , Fjdbc →Ss_tomcat , Fc_petstore →Ss_tomcat , 
Fstruts →Ss_tomcat , Fsqlmap →Ss_tomcat , Fdao →Ss_tomcat  

DSCWeaver offers validation support by translating 
state relationships into a Petri net. There are three types of 
synchronization constraints: the intrastate relation 
construction, which manages the state relations within an 
activity, and the interstate relation construction, which 
establishes the state relations between activities, and the 
exclusive relation construction, which handles the 
exclusive state relation. During the mapping, a place in 
the Petri net represents a state of an activity. A transition 
represents the conditions that need to be satisfied before 
the activity can reach that state. The firing of a transition 
means that the states it depends on corresponding to the 
in-bound places have been reached. The activity can 
transmit to its next state and put a token in its out-bound 
places. The idea is illustrated in Figure 4. It gives an 
example of state relationships between two activities ai 
and aj. The translated Petri net is formatted to the input of 
CPN/Tools. CPN/Tools is a graph editor and simulator of 
the Colored Petri Net (CPN) [10]. It provides toolkits to 
identify dead transitions, infinite occurrence sequences, 
etc. For more details, please refer to our earlier work [21]. 

 
Figure 4. Translation of state relationships to 

Petri net 

3.3. Translation of Petri Net to Token Messages 

The PN2TM submodule translates the Petri net to a set 
of token messages that carry the Petri net firing 
information. There are two types of token messages: the 
receive token message (<receive place=p value=e 
/>), which tells from which place p a transition receives a 
message with value e, and the send token message (<send 
place=p value=e />), which tells to which place p the 
transition send a message with value e. A transition should 
receive all inbound messages before sending outbound 
tokens. Figure 5 illustrates this procedure.  

Figure 5. Translation from Petri net to token 
messages 

Each activity contains three transitions corresponding 
to its start, run and finish states. Each transition collects 
message information that is formatted in Figure 5. 
Translating the synchronization constraints to token 
messages is a distinctive feature of our approach. Unlike 
other work using formal technique for process verification 
[14][15], our approach augments formal techniques used 
to analyze the existing process with formal messages 
derivation that need to be exchanged to enforce the 
synchronization constraints. 

There may be race conditions between activities. If the 
receiver is not active by the time the sender begins 
sending the message, it gets lost. We need a persistent 
queue for these messages until delivery to the receiver. 
Instead of direct communication, a sender sends its token 
to a queuing web service. When a receiver is ready to 
receive a particular message, it sends its request to the 
queue. If the message is present, the queue will forward it 



 

 

to the receiver. Otherwise the receiver blocks until the 
arrival of the message. We implemented a 
PersistentQueue web service that has two ports: register, 
which queues a message, and query, which accepts a 
query for the existence of a particular message and 
notifies the receiver when it becomes available. Notice 
that the PersistentQueue is slightly different from the 
standard message brokers in that the message delivery 
among queues is dependent. Only when all the messages 
corresponding to the inbound places of a transition have 
arrived will they be delivered together to the subscribers. 
In standard persistent message broker, the messages are 
delivered to the requester as soon as they arrive, 
independent of other messages.  

4. BPEL Extension 

In this section, we demonstrate how DSCWeaver 
operates on BPEL to implement the synchronization-
aspect extension. We start with the explanation of 
extending BPEL with the DSCL syntax and then explain 
how the extended code can be woven into BPEL to form a 
complete process specification. 

4.1. BPEL Syntax Extension 

The BPEL specification is extended with new XML 
tags to express the state relationships among activities. We 
call it DSCL+BPEL, or DSCL+ for abbreviation when 
there is no confusion. Table 1 summarizes its syntax and 
semantics.  

Table 1. Tag extenstion for BPEL 
Tag Syntax Semantics 
activity <activity aid=”qname”> 

     Activity 
</activity> 

It demarcates the 
boundary of an activity 
with a unique id. 

HappenBef
ore  

 

<happenBefore> 
<begin aid="A1" state="ncname" />  
<end aid="A2" state="ncname" />   

</happenBefore>  

It defines →. State is 
one of {start, finish} 

HappenTog
ether  

 

<happenTogether> 
  <end aid="A1" state=" ncname " />  

  … … … 
  <end aid="A2" state=" ncname " /> 
</happenTogether >  

It defines ↔. State is 
one of {start, finish} 

Exclusive 
 

< Exclusive > 
  < end aid="A1" state=" ncname " />  
   … … … 
  <end aid="A2" state=" ncname " /> 
</ Exclusive >  

It defines ◊. State is 
{run} 

 
A code snippet for PetStore’s DSCL+BPEL 

specification is shown in Figure 6. We highlight the 
relevant activities for clarity.  

 
Figure 6. Code snippet for DSCL+ specification 

 
Figure 7. Snippet code after code-weaving.  



 

 

4.2. BPEL Code Weaving 

From the previous discussion, we know that at each 
state an activity waits for token messages carrying the 
status of state it depends on. After all required messages 
have been received, the activity can transit to its next state. 
It announces this event to dependent states via token 
messages. This is a typical message exchange scenario 
and can be supported by the built-in facilities of BPEL. In 
particular, we use the following tags.  
 <invoke>: invokes a operation on a web service 
 <receive>: specifies message it expects to receive in 
synchronous mode.  

 <sequence>: provides sequential execution for all 
nested subprocesses. 

 <flow>:provides concurrency and synchronization. It 
exits when all the activities in the flow have completed. 
In the translation, each activity is wrapped in a <flow>. 
Each state is a subprocess in the <flow>. The execution 
order is synchronized by the token messages. 

Figure 7 is the woven result of Figure 6.  

5. Evaluation 

5.1.   Developing Effort Evaluation 

Similar to the programming language community that 
typically compares programming languages in terms of 
lines of code, ease of use, etc. [16], we introduce two 
metrics to measure the developing effort of a process 
designer. One is the number of Lines of Code (LoC) that 
measures number of lines of code that he need to write to 
express the synchronization constraints of a process. The 
second metric is the number of Places to Visit (PtV) that 
measures the number of places a process designer has to 
jump back and forth to specify the synchronization 
constraints.  

For LoC, we consider three situations: effort in 
specifying original process specification, effort in 
modifying the original specification, and effort in 
implementing synchronization control decentralization. In 
BPEL, each structured construct, like <sequence> and 
<flow>, counts as 1 LoC and each unstructured construct, 
like <link>, counts as 2 LoC because they requires extra 
code to declare. In DSCL+, each synchronization 
statement counts as 1 LoC. The result for our PetStore 
example is shown in Table 2.  

 
Table 2. Number of LoC in PetStore process 

 BPEL Centralized 
DSCL+ 

Decentralized 
DSCL+ 

Specification 10 16 16 
Spec. Adaptation 7 1 1 
Sync. Control  
Decentralization 

N/A N/A 16 
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Figure 8. PetStore Process in BPEL 
 
Original process specification.  BPEL requires 8 LoC 

(four <flow>/ four <sequence>; one <link>),  shown 
in Figure 8, while DSCL+ requires 16 LoC for each 
relationship statement, shown in Figure 2. DSCL+ 
requires more code than BPEL because DSCL+ uses 
finer-grained primitives than structured constructs. For 
example, to specify the parallel between ajava and aant we 
need only one <flow> in BPEL, while we need four 
relationship statements in DSCL+. There is a tradeoff 
between the flexibility of DSCL and the ease of 
expression from the high-level construct of BPEL. 
Language choice depends on the requirements of 
particular processes. In our opinion, when describing a 
process without much concurrency, BPEL is preferred. 
Otherwise, DSCL+ is better. 

Process adaptation. The advantage of DSCL+ 
becomes obvious during adaptation. Imagine that the 
restriction “the middleware installation subprocess should 
finish before the application installation subprocess” has 
been removed. In BPEL, we must remove the <flow> for 
middleware installation subprocess, insert asql into the 
database subprocess, and insert ajava, aant, and atomcat into 
the application server subprocess. To manage the 
constraint between atomcat, apetstore, and ajdbc, we need one 
<sequence> to execute atomcat first and one <flow> for the 
parallel execution between apetstore and ajdbc. That is 7 LoC 
in total. In DSCL+, we simply remove one statement: 
Fmysql ↔Ftomcat. That is 1 LoC.  

Synchronization control decentralization. BPEL 
cannot coordinate activities nested in distributed 
processes because there is no easy way to universally 
identify an intermediate activity in a process and to 
specify its relationship to other activities. Developers may 
split the BPEL specification for decentralization 
according to the approach in [6], but that would result in 



 

 

the creation of a subprocess for each intermediate activity 
to be synchronized. Furthermore, it could not handle the 
synchronization constraint for exclusive execution. By 
comparison, in the decentralized DSCL+, each activity is 
uniquely tagged. The DSCWeaver inserts synchronization 
code pertinent to each activity in a subprocess. The 
designer only needs to specify the constraint for each 
subprocess. Therefore the LoC remains the same as the 
centralized version.  

Now let’s look at the metric of PtV. One PtV counts 
each time a designer has to jump to a different place in a 
process specification when implementing a task. The 
result is shown in Table 3.  

 
Table 3. Number of PtV in PetStore process 

 BPEL Centralized 
DSCL+ 

Decentralized 
DSCL+ 

Specification 19 1 2 
Spec. Adaptation 7 1 1 
Sync. Control 
Decentralization 

N/A N/A 2 

For the decentralized DSCL+, all synchronization 
constraints can be specified at one place. Therefore it is 
only 1 PtV for both the process design stage and the 
adaptation stage. The designer can totally rely on 
DSCWeaver to weave the synchronization code into the 
base code. But he has to edit each subprocess 
specification in the decentralized scenario. Therefore it 
requires 2 PtV for the decentralized deployment of 
PetStore. By comparison, the developing effort in BPEL 
increases a lot in PtV metric. Take the effort in specifying 
original specification for instance. Each structured 
constructs requires two places to visit. Each unstructured 
construct requires three places to visit. Since we have 
eight structure constructs and one unstructured construct, 
the total is 19 PtV. The reduction from 19 PtV to 1 PtV 
represents a significant reduction in developer effort. 
Similar results can be observed during adaptation.  

5.2. Performance 

There are two purposes for the performance 
experiment. One is to evaluate the overhead brought by 
the DSCL+ for token messages exchange. We deploy and 
compare the PetStore process by using the standard BPEL 
constructs and the instrumented code generated by the 
DSCWeaver. The other is to demonstrate that DSCL+ can 
describe synchronization constraints for distributed 
processes and coordinate them in decentralized manner.  
We also generated the decentralized DSCL code and 
measure its performance in term of deployment time.  
Experiment setup.   Our experiment uses a cluster of 
Intel Pentium machines (2x 3Ghz Pentium 4, 1GB 
memory) in Redhat Linux 9. The BPEL engine is 
ActiveBPEL [23]. The web service engine is Axis [24].  
We call the machine that starts the process the deployment 

machine and the machine that hosts the PetStore 
application the target machine. In the centralized setup of 
Figure 1a, the deployment machine is installed with 
ActiveBPEL engine for orchestrating process and Axis for 
providing the PersistentQueue web service. Two client 
machines for database and application are configured with 
Axis as the web service engine. In the decentralized setup 
of Figure 1b, three of the machines were set up with 
ActiveBPEL and Axis engines. The role of the 
deployment machine is to coordinate with two processes 
running on two client machines. The ActiveBPEL engine 
on the client machines interacts with local Axis to execute 
those activities that perform the tasks on the local host. 
Table 4 is the deployment time. 
 

Table 4: Deployment time for PetStore 
 ActiveBPEL Centralized 

DSCL+ 
Decentralized 

DSCL+ 
Time (s) 75 83 75 

 
We can see that centralized DSCL requires more time than 
BPEL, but the decentralized DSCL is as good as the 
ActiveBPEL. 

6. Related Work 

Our work complements other projects exploring the 
use of AOP to improve the flexibility and adaptability of 
workflow processes. Bachmendo and Unland describe an 
approach to use aspects for dynamic workflow evolution 
by changing behavior of structured constructs like 
Sequence and And-split at run time [3]. The AO4BPEL 
project [7] uses aspect for service composition and 
collects auditing information at runtime. Both of these 
projects work on the run time behavior of composite 
services. On the other hand, our work targets 
synchronization aspects during the design stage. 

Translation from Petri net to code can be seen in early 
work [8][2]. Grid-Flow [8] provides a Petri net based user 
interface for workflow modeling in grid and automatically 
translates a net to the Grid Flow Description Language. 
Instead of targeting a particular domain specific language, 
our approach of synchronization by exchanging token 
messages can easily accommodate different workflow 
languages because it simply requires support of a 
messaging mechanism from the host language.  Aalst 
introduced another tool translating Petri net to BPEL [2]. 
Instead of establishing a mapping between a Petri net and 
the structured constructs in BPEL, we translate the Petri 
net to token messages. This enables us to handle the 
exclusive state relation and also facilitates the task of 
converting BPEL from centralized control to 
decentralized control, which is a significant advantage. 

DSCWeaver is capable of providing synchronization-
aspect extensions to general purpose flow languages. In 



 

 

this sense, our work is similar to [12]  that models 
synchronization in temporal logic and integrates it with 
Java programming.  

7. Conclusion 

In this paper, we discussed a limitation of BPEL in 
modeling synchronization constraints, due to its 
procedural style. To address this limitation we presented 
DSCWeaver, an integrated tool that provides a 
synchronization-aspect extension to BPEL. It uses DSCL, 
a synchronization expression language to express 
synchronization constraints in the form of relationship 
statements. These statements can then be individually 
validated and later woven into the base BPEL code to 
form a complete process specification.  

This paper presents two major contributions. First, we 
demonstrate the practicality and feasibility of providing a 
synchronization-aspect extension to a “general purpose” 
flow language by implementing the tool of DSCWeaver 
and applying it to BPEL.  Second, our weaving approach 
is unique. The synchronization constraints are woven into 
a set of token messages, the exchange of which forms a 
synchronization protocol among activities in a process. 
The token messages can be easily integrated with different 
flow languages and easily exchanged among distributed 
processes and web services. 
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