
293

1

Abstract—The complexity of today’s large-scale enterprise

applications demands system administrators to monitor
enormous amounts of metrics, and reconfigure their hardware
and software at run-time without thorough understanding of
monitoring results. Our on-going Elba project is designed to
achieve an automated iterative staging to mitigate the risk of
violating Service Level Objectives (SLOs) by providing efficient,
accurate bottleneck detection using a fusion of machine learning
and performance analysis. Therefore, the Elba project guides
system administrators to effectively perform management
activities focused on actual performance-limiting bottlenecks
rather than a vast set of collected metrics. In this paper, we
introduce our concrete bottleneck detection approach used in
Elba, and then characterize the qualities of three classifiers with
respect to our bottleneck detection process in enterprise
applications. We utilize a well known benchmark application,
RUBiS (Rice University Bidding System), to evaluate the
classifiers.

Index Terms—Bottleneck detection, machine learning, multi-
tier enterprise systems, performance analysis

I. INTRODUCTION
UALITY of service (QoS) during operation is one of the
key areas of systems research for large scale mission-

critical applications. However, production is not the only
phase during an application’s life cycle during which QoS
should apply; it must also be met during pre-production
testing, or staging. Due to the complexity of today’s enterprise
class applications, system administrators monitor and analyze
a massive number of application-specific metrics such as the
number of active threads and the number of EJB entity bean
instances, along with system metrics like CPU usage and disk
I/O rate. This same complexity also demands automation of
staging, and furthermore as the complexity of the applications
increase, the importance of efficient analysis of testing results
also increases. If staging can successfully identify metrics
associated with performance limitation and subsequently
correlate the metrics with performance goals, then the results

Manuscript received February 28, 2006. This work was supported by

Hewlett Packard.
J. Parekh, G. Jung, G. Swint, and C. Pu are with the College of Computing,

Georgia Institute of Technology, Atlanta, GA 30332 USA. (e-mail:
jason.parekh@cc.gatech.edu, gueyoung.jung@cc.gatech.edu,
galen.swint@cc.gatech.edu, calton@cc.gatech.edu).

A. Sahai is with Hewlett Packard Laboratories, Palo Alto, CA 94304 USA.
(e-mail: akhil.sahai@hp.com).

can also be used in the production phase as valuable
guidelines for system administrators.

The Elba project [6] addresses the automation of enterprise
and tiered application staging. Automated staging in the Elba
project is an iterative process whereby an application is
refined and reconfigured at each iteration. Automating the
process involves the creation of deployment plans,
instrumentation, analysis tools, and recommendation engines
from the policy level documents that govern both the staging
and production policies of the application. Staging inherently
demands an iterative approach to test an application
adequately before placing it in a production environment.
During each staging iteration, the application is subject to
multiple trials of variable workload. These trials provide data
used to identify bottlenecks in the hardware/software
configuration. After identifying bottlenecks, the application
can be reconfigured and tested, again going through a series of
trials, in the next iteration.

Machine learning classifiers constitute an important part of
the metrics analysis in Elba. We have chosen machine
learning techniques because they allow us to analyze many
more metrics simultaneously than manual or ad-hoc
approaches. As a result, the classifiers allow us to sort through
these metrics to identify particular “bottleneck metrics” that
indicate application mis-configuration correspondent with
failed QoS. Our ongoing work demonstrated that a machine
learning approach aids application tuning but avoided the
questions related to the suitability of various types of
classifiers to tuning multi-tier applications.

The goal of this paper is to characterize the qualities of
various classifiers with respect to bottleneck detection in
enterprise applications. A superior classifier for bottleneck
detection should have three advantages. First, it must detect
bottlenecks more quickly. In other words, it must require
fewer trials per iteration before detecting bottleneck metrics.
This allows tests to be terminated earlier. Consequently, the
application can be re-designed and re-tested more quickly.
Second, better classifiers potentially detect multiple bottleneck
metrics. Finally, its analysis results should be accurate—i.e.
correct in spite of variety in system parameterizations and
workloads. We use a well known distributed application,
RUBiS, which is a benchmark designed to mimic auction-
based e-commerce websites, to evaluate the classifiers. Even
though the application is a benchmark, we do not use it for
performance comparisons. Instead, it is an exemplar

Comparison of Performance Analysis
Approaches for Bottleneck Detection in Multi-

Tier Enterprise Applications
Jason Parekh, Gueyoung Jung, Galen Swint, Member, IEEE, Calton Pu, Senior Member, IEEE, and

Akhil Sahai, Member, IEEE

Q

293

2

application.
The remainder of this paper is organized as follows. Section

2 outlines Elba project, classifiers used in our evaluation, and
RUBiS. Section 3 describes our approach to bottleneck
detection. Section 4 presents the evaluation environment.
Section 5 presents our evaluation results utilizing RUBiS.
Section 6 discusses related work, and Section 7 presents our
conclusions.

II. BACKGROUND

A. The Elba Project
The goal of Elba project is to automate the staging process,

determine shortfalls in application performance and
reconfigure deployed applications. Elba, which encompasses
both existing and new tools that we are constructing, views
staging as an iterative process in which staging results and
recommendations can be passed back to system designers, as
illustrated in Fig. 1.

The Elba project brings together several technologies.
Policy formalizations and formal methods are used to create
mappings guaranteed to satisfy policy-level constraints.
Mulini and a domain specific test-bed language (TBL) capture
the staging process and map policy documents into a staging
environment. Distributed deployment tools and scripts are
used to deploy, configure, and execute the application in the
staging environment. In addition, we have extended the earlier
version of Elba to include additional code generation and
instrumentation, and employed machine learning methods to
automatically analyze and detect bottlenecks from multiple
staging executions. In this paper, we focus on the analysis and
bottleneck detection (the rectangle box in Fig. 1). Elba and
Mulini are described in [2]. Interested readers refer to [2] for

1 We have improved the figure of Elba used in [2].

more detail on our approach for automated staging and code
generation.

B. Machine Learning Classifiers
1) Tree-augmented naïve (TAN) Bayesian network

A Bayesian network is a directed acyclic graph whose
nodes embody domain attributes and arcs between nodes
embody the probability dependency for the connected nodes.
Given the conditional probability distribution for each
attribute, a Bayesian network allows for the prediction of an
unknown attribute, named the prediction attribute, in the
network by computing its posterior probability distribution. In
a Naïve Bayesian network, the graph is a tree with height one
where the root node is the prediction attribute, disallowing
dependencies between non-prediction attributes. A tree-
augmented Naïve Bayesian network extends this by allowing
each node to have a single incoming correlation edge,
allowing non-prediction attributes to have probabilistic
dependencies on one another. For more details about Bayesian
Networks, refer to [9].
2) C4.5 decision tree (J48 implementation)

A decision tree consists of directed edges that embody
decisions based on attribute values at the nodes, and whose
leaves are the prediction nominal groups. Each node in the tree
corresponds to an attribute (many-to-one relationship) and
each outward edge from that node contains a range of values
for that attribute, one of which is followed when predicting an
outcome using the decision tree. Each attribute and its ranges
selected best differentiate the child (direct or indirect)
prediction attributes from other prediction attributes. J48 is the
WEKA toolkit [3] implementation of the C4.5 algorithm,
which generates decision trees based on information gain. For
more details about decision trees, refer to [8].
3) LogitBoost

Boosting classifiers utilize simple classifiers but
dramatically improve prediction performance by repeated
training of re-weighted input data, and taking a majority vote
of the resulting simple classifiers. Particularly, LogitBoost can
be viewed as an approximation to additive modeling on the
logistic scale. For our experiments, LogitBoost boosts the
Decision Stump classifier, which generates a decision tree
with only one split. For more details about LogitBoost and
boosting techniques, refer to [10].

C. RUBiS
RUBiS, the Rice University Bidding System, is a multi-

tiered e-commerce application consisting of a web server, web
container, EJB container, and database server. RUBiS is based
on the scenario of an online auction site with 26 interaction
types, such as browsing categories; browsing items within a
category; bidding, buying, or selling items; registering users;
and writing or reading comments. RUBiS provides two
workload transition matrices describing two different user
behaviors: a browsing transition consisting of read-only
interactions and a bidding transition, including 15% write
interactions. We utilize the bidding transition in our evaluation
since this transition is better representative of an auction site
workload [1]. Our system reuses and extends a recent version

Fig. 11. Elba approaches staging as an automated iterative process including
analysis, the focus of this paper. One iteration of the staging process involves
6 steps: (1) Administrators and customers devise policy-level guidelines; (2)
Cauldron converts the policy documents into resource assignments; (3)
Mulini re-maps these assignments, applies further policies, and generates
three types of code: instrumented application code, deployment code, and
monitoring code; (4) a deployment tool installs and configures the
application and then executes it; (5) monitoring data is fed into automated
analysis tools; and (6) the analysis triggers recommendations for policy
changes.

293

3

of RUBiS from ObjectWeb [4]. Generally, experiments show
that RUBiS is application-server tier intensive. In other words,
it is characteristically constrained by performance in the EJB
container tier as introduced in [1].

III. BOTTLENECK DETECTION PROCESS
An effective staging phase assures system administrators

that a hardware/software configuration is capable of handling
workloads to be seen during production. Starting at an initial
configuration, this phase augments resources allowing the
configuration to better satisfy the SLOs in cases of, for
example, unhandled requests or poor response time.
Possibilities of inadequacy stem from incorrectly configured
software parameters crucial to performance, or lack of
hardware needed to support the system under the stressed
conditions outlined by the SLOs. Locating an exact point of
bottleneck is a difficult problem, but, by applying machine
learning we introduce a process that identifies metrics that
potentially hinder system performance. The bottleneck
detection process divides into three steps: staging the system
with varying workload, training a machine learning classifier
with metric data collected during staging, and finally querying
the trained machine learning classifier to identify potential
bottlenecks.

A. Staging with Varying Workload
The first step of the bottleneck detection process is to stage

the enterprise system with varying workload in order to collect
metric data which is analyzed and delivered to the latter steps
of the process. The workload variation allows the process to
formulate the correlations between load increase and system
performance, which are then used to discover the limitations
causing an SLO to become violated. The SLO policy describes
behavior that causes violation, such as average response time
for an interaction exceeding a certain threshold, which are
then translated to form a starting point for staging: an initial
workload and response time levels (per interaction type) that
satisfy the SLO.

During the staging phase, each machine in the enterprise
system is instrumented with monitors that collect metric data
from both system-level and application-specific metrics. For
our RUBiS experiment, we collected 220 metrics. We
summarize sample metrics in Table I which have correlation
to SLO violations in our experiment. Most of these metrics are
used during the second step of the bottleneck detection
process, but the response time is used immediately after the
staging trial to calculate the degree of SLO satisfaction. Based
on this satisfaction level, the next staging trial’s workload is
determined by a set of simple rules. The first step is to find an
upper workload that violates the SLO below a certain level (in
our experiments, this level is set at 40%) by exponentially
increasing the workload. Then, based on the number of trials
desired, the bottleneck detection process uniformly fills the
gap starting from a small workload (20 concurrent users in our
experiments) to the upper limit. While it is recommended to
fill the entire spectrum of workload trials, the number of trials
desired is an important variable as it should balance the speed

of the bottleneck detection process with the accuracy of the
identified bottlenecks. Upon completion of all staging trials,
the collected data is analyzed to form calculations useful for
the second step of the bottleneck detection process, such as the
average value of each metric.

B. Classifier Training
The second step of the bottleneck detection process is to

train a machine learning classifier with previously
accumulated metric data allowing the classifier to form
correlations between the performance of the system and the
resulting SLO satisfaction. A machine learning classifier is
trained with multiple training instances where each instance
has a set of attributes along with a prediction attribute. Each
attribute is a variable that may have some correlation to the
prediction attribute, the variable that should be predicted by a
trained classifier given a set of attribute values. Upon training,
a classifier finds correlations between the attributes and the
prediction attribute and saves them to a model.

The bottleneck detection process assigns the metrics as
attributes and the SLO satisfaction level as the prediction
attribute. Each variation in workload (a separate trial) has its
own training instance where each attribute is a function of the
averaged metric data for that workload, and the prediction
attribute is the SLO satisfaction level for that workload; thus,
training the classifier allows it to analyze any correlations that
may exist between each metric and the SLO satisfaction level.

The initial set of collected metrics consists of 220
application-specific and system-level metrics. In order to
reduce the amount of extraneous non-correlated metrics, we
apply a correlation coefficient function introduced in [7],
comparing metrics to the overall response time. From this
function, we apply a threshold to reduce our working set of
metrics for training.

To create a training set, the bottleneck detection process
does a difference in each metric value from the previous
workload trial—that is, each training instance attribute equals
the change in metric value from the previous workload divided
by the change in workload. Using this delta metric value as a
training attribute allows the machine learning classifier to
correlate trends of metric values to SLO satisfaction rather
than the metric values themselves. The trends are particularly
important since as a metric becomes saturated, it becomes the
bottleneck in which case it cannot grow any further (in terms
of metrics that have a limit, for example CPU utilization), and

Table I. Sample system-level and application-specific metrics in RUBiS
experiment.

293

4

will thus have a trend (first order derivative) approaching zero.
Metrics that are not limited, such as database query latency,
will have a trend that approaches infinity (that is, when the
metric is bottlenecked and the workload keeps increasing, the
metric value will grow exponentially larger with each
workload increase). Both of these types of metrics can be
correlated to the SLO satisfaction since their derivative (the
delta metric) will not be constant. Those metrics that are not
bottlenecks and whose values grow linearly with increase in
workload will have constant trends, which disregards them
from being correlated to the SLO satisfaction (for example, if
network throughput grows by 100 KB/s through all SLO
satisfaction levels, the delta would be constant at 100 therefore
a correlation cannot be formed). Thus, our bottleneck
detection approach focuses on metrics showing throttled
behavior, rather than linear metrics which show room for
expansion.

In order to remove jittery data collected through the
multiple staging trials, we use an average window applied to
the delta metric values. To compute the average window, each
delta metric value is formed by averaging itself with its
surrounding delta metric values (in the space of contiguous
workload trials). In our experiments, we found an average
window size of 25 smoothes oscillating delta values
dramatically and strengthens the results of our bottleneck
detection process.

The training set used by the bottleneck detection process
consists of training instances each with n attributes, where n is
the number of metrics (each metric corresponds to one
attribute), and a prediction attribute that corresponds to the
SLO satisfaction. There are k-1 training instances, where k is
the number of workload trials with all but the first workload
corresponding to a training instance. Since the process uses
the change in metric values between workload trials, the first
workload serves as the base and is not represented by a
training instance. The kth training instance consists of
attributes where each attribute is the difference in its
corresponding metric’s value between the k+1th workload and
the kth workload.

The machine learning classifiers employed by our
bottleneck detection process all require nominal prediction
attributes. However, the SLO satisfaction level is not nominal
(it is a continuous variable, ranging from 0% to 100%). To
allow proper training of the classifier, the SLO satisfaction
level is converted to nominal values by using a partitioning
scheme that generates uniformity in the number of training
instances that fall into each SLO satisfaction nominal group.
This uniformity is important as having a skewed number of
training instances per group affects the classifier model. To
generate these nominal groups, the bottleneck detection
process sorts the SLO satisfaction levels (from each training
instance) and divides the sorted list into 10 uniform groups
with each group labeled by the highest SLO satisfaction level
in the group.

Finally, the training set is serialized into the ARFF-file
format (used for machine learning training data in the WEKA
toolkit) and each of the classifiers (TAN, J48, and LogitBoost)

is trained while recording the generated models to a file.

C. Identifying Bottleneck Metrics
The final step of the bottleneck detection process is to query

a trained classifier using an approach that discovers candidate
bottlenecks. The process queries the classifier by creating a
test set consisting of test instances that mimic training
instances, with the only difference being that the prediction
attribute is not included in the test instance since this is the
information the classifier predicts using its model.

In order to discover potential bottlenecks, the bottleneck
detection process must realize which metric trends the
classifier correlated to the SLO satisfaction. To accomplish
this, the bottleneck detection process carefully constructs a set
of instances that is used to query the previously generated
classifier model. The test set consists of n test instances where
n is the number of metrics, with each instance i testing
whether the ith metric is a candidate bottleneck – that is
whether the metric trend was highly correlated to SLO
satisfaction. First, all n test instances are cloned from a single
base instance (described later). Second, each test instance i is
modified so that only the ith attribute (which corresponds to
the ith metric) differs from the other test instances. Finally, the
classifier uses its previously trained model to predict the SLO
satisfaction nominal group for each instance in the test set.

Determining which base instance to use and how to modify
each instance’s unique attribute (which corresponds to a
metric) is a difficult problem since the result of testing (the
predicted SLO satisfaction) must be translated to identify
whether the metric is a candidate bottleneck, and if so, how
much confidence the classifier has in its judgment. First, the
bottleneck detection process assigns the base instance to be an
instance from the training set since this guarantees its
attributes to be within the valid ranges for each corresponding
metric delta. Next, the test set generated by cloning this base
instance n times is modified so that each instance varies from
the base instance in one attribute.

We set the base instance to the instance in the training set
that has the least SLO satisfaction. Then, we modify the ith
cloned test instance on ith attribute using the ith attribute from
the training instance that has the highest SLO satisfaction.
That is, each delta metric in a test instance will be its value
from the workload that has the least SLO satisfaction, except
for one metric that will be its value from the workload that has
the highest SLO satisfaction. After testing this instance, we get
the difference between the predicted SLO satisfaction and the
least SLO satisfaction and use this as a judgment for the
degree of correlation for this delta metric to SLO satisfaction.
If the metric corresponding to this instance has high
correlation, it affects the decision of the classifier greatly.
Since the base instance has the least SLO satisfaction, if
modifying one delta metric to a value that is completely
opposite (taken from the opposite SLO satisfaction level: the
highest SLO satisfaction) tricks the classifier into predicting a
different SLO satisfaction level from the base instance, then
that metric has high correlation. This process happens for each
test instance (one per metric) in the test set, so more than one

293

5

metric can be identified as a potential bottleneck. Based on the
difference between the predicted SLO and least SLO
satisfaction levels of each instance, we judge how to weigh the
corresponding metric in terms of potential bottleneck. We
normalize each metric by dividing its SLO difference by the
sum of all differences in SLO for the test set. Finally, we
generate a list of potential bottlenecks and the confidence the
classifier has in each.

IV. EVALUATION SETUP

A. Software
To execute the staging phase with RUBiS, we employ

Apache 2.0.54 as an HTTP server, MySQL max-3.23.58 as a
database server with type 4 Connector/J 3.0.11 as a JDBC
driver, and JOnAS4.4.6-Tomcat5.5.12 package as an EJB-
Web container. Apache HTTP server is equipped with mod_jk
so that it can be used as a front-end server to one or several
Tomcat engines, and it can forward servlet requests to
multiple Tomcat instances simultaneously via AJP 1.2
protocols. We increase the number of the maximum processes
of Apache to avoid connection refusals from the server when
numerous clients simultaneously request services. We also set
the automated increment option on every primary key of
RUBiS databases to prevent duplication errors when clients
simultaneously attempt to insert data into a table with the
same key. Finally, we adjust JOnAS to have adequate heap
memory size for preventing out-of-memory exceptions during
staging.

For gathering system-level metrics, we wrote a shell script
to execute Linux/UNIX utilities, sar and ps, with monitoring
parameters such as staging duration, frequency, and the
location of monitored hosts. We also use JimysProbing 0.1.0
for metrics generated from JOnAS-Tomcat server, apachetop
0.12.5 for Apache HTTP server, and mysqladmin for MySQL
database server. We slightly modified apachetop to generate
XML encoded monitoring results. The client workload
generator is designed to simulate remote Web browsers that

continuously send HTTP requests, receiving corresponding
HTML files, and recording response time as a performance
metric during staging.

B. Hardware
We used Intel Xeon machines with 2.8 GHz processors and

1 GB of RAM in a cluster to run the servers. Two different
types of hardware were tested, a single CPU and dual-CPU
hyper-threading enabled machines, to identify whether CPU
causes the performance limitation of RUBiS (Note that these
machines are different at only the CPU configuration. Others
such as memory, disk, and network are identical.). We have
established a set of topology configurations to show whether
application server tier causes the performance limitation as
increasing the number of machines for application server tier.
For instance, 1/2/1 means the configuration consists of one
machine for the HTTP server tier, two machines for the
application server tier, and one machine for database tier. Each
configuration will be tested in a series of trials beginning with
a minimum workload. On each trial, the workload will be
increased by a workload increment.

V. EVALUATION RESULTS
The evaluation consists of three parts. First, we show the

bottleneck patterns of RUBiS. Second, we select a list of
candidate bottleneck metrics from 220 metrics using a
correlation coefficient function and metrics’ thresholds
specified in given policy document. Finally, we evaluate three
classifiers with chosen metrics to identify characteristics of
these classifiers and the best suited classifier.

Fig. 2. Comparison response times (a) among four topologies, (b) two different CPU hardware configurations.

293

6

A. Bottleneck Pattern of RUBiS
In this section, we show the performance characteristics of

RUBiS in terms of which tiers cause bottleneck limitations
and which metrics make the bottleneck inside these tiers by
executing RUBiS with several topologies and two different
CPU configurations. Fig. 2 (a) illustrates the application server
tier mainly influences response time. That is, when we
increase the number of machines for the application server tier
(JOnAS-Tomcat), response time drastically decreases. When
we use different topologies, which increase the number of
machines for HTTP server tier and/or database tier, such as
2/1/1, 2/1/2, and 1/1/2, the results are almost identical to 1/1/1.
Fig. 2 (b) shows one of the main bottleneck metrics is CPU of
the application server tier since the machine equipped with
hyper-threading enabled dual-CPU performs much faster than
single CPU machine. The gap gets worse as the number of
concurrent users increases.

Fig. 3 (a) shows the CPU usage of application server
radically increases and saturates at 100% when the SLO
satisfaction goes down to around 85%. In contrast, while the

SLO satisfaction starts to decrease, the trends of other tiers’
CPU usages are almost flat. In Fig. 3 (b), the memory usages
of both the application server and database server are under
utilized. The memory usage of HTTP server is somewhat high,
but its trend is almost flat.

We may use this result as criterion to figure out classifiers’
accuracy. In other words, to be a suitable classifier for
bottleneck detection, it should capture the CPU usage as a
metric causing bottleneck limitation.

B. Correlation between Metrics
Fig. 4 illustrates the correlations of some metrics monitored

from application server tier to response time. Fig. 4 (a) and (b)
show the number of active threads and the actual memory
usage of JVM are more correlated to response time than cache
size metric. However, the actual memory usage of JVM
utilized at most 0.1% of overall total memory taken by JVM.
Therefore, this metric should be excluded from candidate

bottleneck metrics. Table II shows the list of metrics, which
are most correlated to response time. We used the correlation
coefficient function introduced in [7]. For the next

Fig. 3. SLO satisfaction against (a) CPU usage metric and (b) memory usage metric in all tiers.

Fig. 4. Correlations of (a) the number of threads, (b) JVM actual memory usage, (c) cache size, and (d) the number of database connections to response time in
the application server.

293

7

classification process, some metrics such as DB_CPU_Usage,
DB_Mem_Usage, App_Mem_Usage, and network throughput
metrics in the table are excluded because of their under
utilization even though their correlation coefficient numbers
are high enough to be included as candidate bottleneck
metrics.

C. Bottleneck Detection Process
We applied our bottleneck detection process described in

Section III to RUBiS in order to automatically identify the
CPU bottleneck discovered manually earlier. We describe the
accuracy of each classifier both in terms of cross-validation
and bottleneck identification accuracy, and the convergence
speed of each.
1) Accuracy of Classifiers

We define the accuracy of each machine learning classifier
in two ways: the cross-validation accuracy, which describes
its accuracy in predicting the SLO satisfaction levels of a
partitioned training set, and the bottleneck identification
accuracy, which describes its accuracy in identifying only the
actual bottlenecks of our experimental system. The former
accuracy determines the accuracy in a pure machine learning
sense, oblivious to the actual application of the classifier, by
testing the trained classifier’s generated model on how well it
can predict unseen instances. The latter accuracy determines
the accuracy as applied to our bottleneck detection process.

Cross-validation involves partitioning the training set into
k-folds and generating k different trained models, with each
model trained on a unique set of k-1 folds. Each trained model
is then tested against an independent set of data from the
training data – the 1 fold left out while training the model.
Based on the sum of all the positively classified instances with

the total number of instances from the combined testing sets,
we form our prediction accuracy. For k-fold cross-validation, k
must be less than the number of training instances for which
our lowest was 11 workloads. In our experiments, we use 10-
fold cross-validation as it provided results comparative to 100-
fold cross-validation (which we tested using our maximum
number of workload, 115), while allowing us to stay
consistent in prediction accuracy measurement throughout all
our workload trials.

Fig. 5 (a) shows each classifier’s prediction accuracy using
10-fold cross-validation for the 115 workload experiment.
LogitBoost has the highest prediction accuracy among the
three at 60.87%, followed by J48 at 60.12%, and finally TAN
at 57.39%. While these accuracies could be stronger, our
experiments show that the classifiers’ bottleneck identification
accuracies are high.

Fig. 5 (b) shows each classifier’s bottleneck identification
accuracy on three different workload experiments. The first
workload experiment consists of 92 workloads. In this
experiment, the TAN and LogitBoost classifiers both
identified only the application-tier CPU as being a potential
bottleneck, whereas the J48 classifier identified the
application-tier CPU and HTTP-tier memory as being
potential bottlenecks. However, the difference in predicted and
actual SLO satisfaction for the application-tier CPU is 33.0%,
whereas for the HTTP-tier memory it is only 3.5%. Hence, to
calculate the bottleneck identification accuracy for J48 the
process divides 33.0% (the actual bottleneck) by the sum of
33.0% and 3.5%, which equals 90.4%. In the 104 workload
experiment, the J48 and LogitBoost classifiers’ bottleneck
identification accuracy is at 100% bottleneck identification
accuracy whereas the TAN classifier is at 93.6% (TAN’s
difference in SLO prediction and actual SLO for application-
tier CPU is 51.4%, and for HTTP-tier memory it is 3.5%).

Fig. 5. The accuracies of the machine learning classifiers. (a) illustrates the prediction accuracy using 10-fold cross-validation. (b) illustrates the bottleneck
identification accuracy over three staging trials: 92, 104, 115.

Table II. Correlation coefficients of metrics, which are mostly correlated to
response time.

293

8

2) Convergence Speed
The convergence speed of a classifier defines how many

trials of staging (with each trial varying in workload and thus
training set size) is needed to obtain strong accuracy. This
speed becomes relevant as we measure the efficiency of each
classifier, which is the minimal amount of staging required for
the classifier to identify bottlenecks in the system.

Fig. 6 (a) displays the convergence speed for the prediction
accuracy, which shows the minimal number of staging trials
needed to obtain good prediction accuracy. The period from
experiments using 10 to 50 staging trials shows a low
accuracy at start, but heading toward stabilization at around 90
staging trials. The period from 50 to 90 staging trials shows a
slight decrease in accuracy, which can be explained from each
of these being independent experiments consisting of random
transition tables for RUBiS, which affects metric values that
comprise the training set. Each of the classifiers in the graph
show similar behavior, although once stabilized LogitBoost
has a slightly higher prediction accuracy, immediately
followed by J48 and finally by TAN.

Fig. 6 (b) displays the convergence speed for the bottleneck
identification accuracy, which shows the minimal number of
staging trials needed for the bottleneck detection process to
have strong results. The period from 10 staging trials to 40
staging trials shows some erratic behavior which can be
explained by the under developed classifiers (which can be
seen by looking at the convergence speed for prediction
accuracy graph, Fig. 6 (a)). The period from 40 staging trials
onwards shows positive results as each classifier increases
toward 100% bottleneck identification accuracy. The J48
classifier remains above the TAN classifier (aside from the 94
staging trial experiment), whereas the LogitBoost classifier
shows interesting behavior of having no bottleneck
identification until the 77 staging trials experiment, from
which onwards it has 100% bottleneck identification accuracy.
From our experiments with all of the classifiers, we deduce the
minimum number of staging trials for positive results is 70,

whereas 90 staging trials provides even stronger results. While
all the classifiers performed well, the LogitBoost classifier
seemed to excel in terms of convergence speed by reaching
100% bottleneck detection accuracy first. However, in terms
of overall reliability the J48 classifier seemed to provide better
results due to its steady increase in bottleneck detection
accuracy toward 100% and its higher bottleneck detection
accuracy throughout a majority of the variations in number of
staging trials.

VI. RELATED WORK
Cohen et al [5] apply a tree-augmented Naïve Bayesian

network (TAN) to discover correlations between system-level
metrics and performance states, such as SLO satisfaction and
SLO failure. Similarly, we utilize TAN to investigate
performance patterns, however we differ on three aspects.
First, we perform a comparative study of classifiers beyond
TAN and include the J48 decision tree and LogitBoost, two
well known machine learning algorithms that have yet to be
applied to performance analysis. Our goal is to compare the
performance of classifiers in terms of bottleneck detection,
and finally identify the classifier that best detects bottlenecks
in multi-tier applications. Second, in addition to correlating
metrics to performance states, we focus on the detection of
actual performance-limiting bottlenecks by employing a
unique change in metric training procedure. Finally, our set of
metrics for bottleneck detection includes 193 application-level
metrics as well as system-level metrics.

Urgaonkar et al [11] introduce a dynamic queuing model
combined with predictive and reactive provisioning. Their
contribution allows an enterprise system to increase capacity
in bottleneck tiers during flash crowds in production. Elba, in
addition to being oriented towards avoiding in-production
performance shortfalls, emphasizes fine-grained
reconfiguration. By identifying specific limitations such as
low-level system metrics (CPU, memory, etc.) and higher

Fig. 6. The convergence speed of a classifier reveals how lengthy of a staging phase is needed to obtain accurate results from a classifier. Each staging trial uses
a new workload which is then translated to an instance in the training set for the classifiers. (a) shows the prediction accuracy (based on 10-fold cross-
validation) of each classifier as the number of trials increases. (b) shows the final bottleneck identification accuracy as the number of trials increases.

293

9

level application parameters (pool size, cache size, etc.)
configurations are tuned to the particular performance problem
at hand.

Powers et al [12] similarly use machine learning techniques
to analyze performance. However, rather than detecting
bottlenecks in the current system, they predict whether the
system will be able to withstand load in the following hour.
The machine learning classifiers they use differ from ours (we
apply a J48 decision tree and LogitBoost) as does the
approach for classification. Rather than predicting immediate
failures, our paper addresses the performance of each classifier
in terms of detecting bottlenecks in multi-tier applications. We
also differ in service level objectives, which they formulate as
target values for underlying system-level metric values, such
as CPU utilization exceeding 75%. Elba, by addressing policy
level SLOs, targets business-level objectives, such as response
time, translates these objective into system and tier-specific
objectives, and then uses low-level and application-level
metrics to meet these goals.

VII. CONCLUSION
In this paper, we explore the performance of various

machine learning classifiers with regard to bottleneck
detection in enterprise, multi-tier applications governed by
service level objectives. This builds on our previous work
which used a J48 decision tree to assist tuning the TPC-W
application. Specifically, in this paper, we demonstrate the
effectiveness of three classifiers, a tree-augmented Naïve
Bayesian network, a J48 decision tree, and LogitBoost, using
our bottleneck detection process, which delves into a new area
of performance analysis based on the trends of metrics (first
order derivative) rather than the metric value itself.
Furthermore, we illustrate the efficiency of each classifier by
measuring the convergence speed, or the number of staging
trials required in order to provide positive results. Using
RUBiS, we test our bottleneck detection process on a set of
220 combined system-level (CPU, memory, etc.) and
application-level metrics (open database connections, EJB
pool size). Finally, we show the effectiveness of the classifiers
used in our bottleneck detection process as each classifier
strongly identifies the enterprise system bottleneck.

ACKNOWLEDGMENT
We would like to thank Sharad Singhal of HP Labs for his

valuable insight and comments during the development of this
paper.

REFERENCES
[1] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel,

“Performance comparison of middleware architectures for generating
dynamic Web content,” in 2003 Proc. of the International Middleware
Conf., Rio de Janeiro, Brazil, June 2003.

[2] G. S. Swint, G. Jung, C. Pu, and A. Sahai, “Automated staging for built-
to-order application systems,” in 2006 Proc. Network Operations and
Management Symposium (NOMS 2006), Vancouver, Canada, April
2006.

[3] WEKA distribution. http://www.cs.waikato.ac.nz/ml/weka.
[4] RUBiS distribution.

http://forge.objectweb.org/project/showfiles.php?group_id=44.

[5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase,
“Correlating instrumentation data to system states: A building block for
automated diagnosis and control,” in Proc 6th Operating System Design
and Implementation (OSDI), San Francisco, CA, USA, Dec. 2004.

[6] Elba project. http://www-static.cc.gatech.edu/systems/projects/Elba.
[7] M. Raghavachari, D. Reimer, and R. D. Johnson, “The deployer’s

problems: configuring application servers for performance and
reliability”, in Proc. 25th International Conference on Software
Engineering (ICSE), Portland, OR, USA, May 2003.

[8] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers Inc, 1993.

[9] N. Friedman, and M. Goldszmidt, “Building classifiers using Bayesian
networks”, in Proc. Thirteenth National Conference on Artificial
Intelligence (AAAI96), 1996.

[10] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” Dept. of Statistics, Stanford University
Technical Report, 1998.

[11] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, “Dynamic provisioning
of multi-tier Internet applications,” in Proc. Second International
Conference on Autonomic Computing (ICAC), Seattle, WA, USA, 2005.

[12] R. Powers, M. Goldszmidt, I. Cohen, “Short term performance
forecasting in enterprise systems,” in Proc. 11th conf. on Knowledge
Discovery in Data (KDD ‘05), Chicago, IL, USA, 2005.

