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Abstract—The complexity of today’s large-scale enterprise 

applications demands system administrators to monitor 
enormous amounts of metrics, and reconfigure their hardware 
and software at run-time without thorough understanding of 
monitoring results. Our on-going Elba project is designed to 
achieve an automated iterative staging to mitigate the risk of 
violating Service Level Objectives (SLOs) by providing efficient, 
accurate bottleneck detection using a fusion of machine learning 
and performance analysis. Therefore, the Elba project guides 
system administrators to effectively perform management 
activities focused on actual performance-limiting bottlenecks 
rather than a vast set of collected metrics. In this paper, we 
introduce our concrete bottleneck detection approach used in 
Elba, and then characterize the qualities of three classifiers with 
respect to our bottleneck detection process in enterprise 
applications. We utilize a well known benchmark application, 
RUBiS (Rice University Bidding System), to evaluate the 
classifiers. 
 

Index Terms—Bottleneck detection, machine learning, multi-
tier enterprise systems, performance analysis  

I. INTRODUCTION 
UALITY of service (QoS) during operation is one of the 
key areas of systems research for large scale mission-

critical applications. However, production is not the only 
phase during an application’s life cycle during which QoS 
should apply; it must also be met during pre-production 
testing, or staging. Due to the complexity of today’s enterprise 
class applications, system administrators monitor and analyze 
a massive number of application-specific metrics such as the 
number of active threads and the number of EJB entity bean 
instances, along with system metrics like CPU usage and disk 
I/O rate. This same complexity also demands automation of 
staging, and furthermore as the complexity of the applications 
increase, the importance of efficient analysis of testing results 
also increases. If staging can successfully identify metrics 
associated with performance limitation and subsequently 
correlate the metrics with performance goals, then the results 
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can also be used in the production phase as valuable 
guidelines for system administrators. 

The Elba project [6] addresses the automation of enterprise 
and tiered application staging. Automated staging in the Elba 
project is an iterative process whereby an application is 
refined and reconfigured at each iteration. Automating the 
process involves the creation of deployment plans, 
instrumentation, analysis tools, and recommendation engines 
from the policy level documents that govern both the staging 
and production policies of the application. Staging inherently 
demands an iterative approach to test an application 
adequately before placing it in a production environment. 
During each staging iteration, the application is subject to 
multiple trials of variable workload. These trials provide data 
used to identify bottlenecks in the hardware/software 
configuration. After identifying bottlenecks, the application 
can be reconfigured and tested, again going through a series of 
trials, in the next iteration.  

Machine learning classifiers constitute an important part of 
the metrics analysis in Elba. We have chosen machine 
learning techniques because they allow us to analyze many 
more metrics simultaneously than manual or ad-hoc 
approaches. As a result, the classifiers allow us to sort through 
these metrics to identify particular “bottleneck metrics” that 
indicate application mis-configuration correspondent with 
failed QoS. Our ongoing work demonstrated that a machine 
learning approach aids application tuning but avoided the 
questions related to the suitability of various types of 
classifiers to tuning multi-tier applications. 

The goal of this paper is to characterize the qualities of 
various classifiers with respect to bottleneck detection in 
enterprise applications. A superior classifier for bottleneck 
detection should have three advantages. First, it must detect 
bottlenecks more quickly. In other words, it must require 
fewer trials per iteration before detecting bottleneck metrics. 
This allows tests to be terminated earlier. Consequently, the 
application can be re-designed and re-tested more quickly. 
Second, better classifiers potentially detect multiple bottleneck 
metrics. Finally, its analysis results should be accurate—i.e. 
correct in spite of variety in system parameterizations and 
workloads. We use a well known distributed application, 
RUBiS, which is a benchmark designed to mimic auction-
based e-commerce websites, to evaluate the classifiers. Even 
though the application is a benchmark, we do not use it for 
performance comparisons. Instead, it is an exemplar 
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application. 
The remainder of this paper is organized as follows. Section 

2 outlines Elba project, classifiers used in our evaluation, and 
RUBiS. Section 3 describes our approach to bottleneck 
detection. Section 4 presents the evaluation environment. 
Section 5 presents our evaluation results utilizing RUBiS. 
Section 6 discusses related work, and Section 7 presents our 
conclusions.  

 

II. BACKGROUND 

A. The Elba Project 
The goal of Elba project is to automate the staging process, 

determine shortfalls in application performance and 
reconfigure deployed applications. Elba, which encompasses 
both existing and new tools that we are constructing, views 
staging as an iterative process in which staging results and 
recommendations can be passed back to system designers, as 
illustrated in Fig. 1. 

The Elba project brings together several technologies. 
Policy formalizations and formal methods are used to create 
mappings guaranteed to satisfy policy-level constraints. 
Mulini and a domain specific test-bed language (TBL) capture 
the staging process and map policy documents into a staging 
environment. Distributed deployment tools and scripts are 
used to deploy, configure, and execute the application in the 
staging environment. In addition, we have extended the earlier 
version of Elba to include additional code generation and 
instrumentation, and employed machine learning methods to 
automatically analyze and detect bottlenecks from multiple 
staging executions. In this paper, we focus on the analysis and 
bottleneck detection (the rectangle box in Fig. 1). Elba and 
Mulini are described in [2]. Interested readers refer to [2] for 

 
1 We have improved the figure of Elba used in [2]. 

more detail on our approach for automated staging and code 
generation. 

B. Machine Learning Classifiers 
1) Tree-augmented naïve (TAN) Bayesian network 

A Bayesian network is a directed acyclic graph whose 
nodes embody domain attributes and arcs between nodes 
embody the probability dependency for the connected nodes. 
Given the conditional probability distribution for each 
attribute, a Bayesian network allows for the prediction of an 
unknown attribute, named the prediction attribute, in the 
network by computing its posterior probability distribution. In 
a Naïve Bayesian network, the graph is a tree with height one 
where the root node is the prediction attribute, disallowing 
dependencies between non-prediction attributes. A tree-
augmented Naïve Bayesian network extends this by allowing 
each node to have a single incoming correlation edge, 
allowing non-prediction attributes to have probabilistic 
dependencies on one another. For more details about Bayesian 
Networks, refer to [9]. 
2) C4.5 decision tree (J48 implementation) 

A decision tree consists of directed edges that embody 
decisions based on attribute values at the nodes, and whose 
leaves are the prediction nominal groups. Each node in the tree 
corresponds to an attribute (many-to-one relationship) and 
each outward edge from that node contains a range of values 
for that attribute, one of which is followed when predicting an 
outcome using the decision tree. Each attribute and its ranges 
selected best differentiate the child (direct or indirect) 
prediction attributes from other prediction attributes. J48 is the 
WEKA toolkit [3] implementation of the C4.5 algorithm, 
which generates decision trees based on information gain. For 
more details about decision trees, refer to [8]. 
3) LogitBoost 

Boosting classifiers utilize simple classifiers but 
dramatically improve prediction performance by repeated 
training of re-weighted input data, and taking a majority vote 
of the resulting simple classifiers. Particularly, LogitBoost can 
be viewed as an approximation to additive modeling on the 
logistic scale. For our experiments, LogitBoost boosts the 
Decision Stump classifier, which generates a decision tree 
with only one split. For more details about LogitBoost and 
boosting techniques, refer to [10]. 

C. RUBiS 
RUBiS, the Rice University Bidding System, is a multi-

tiered e-commerce application consisting of a web server, web 
container, EJB container, and database server. RUBiS is based 
on the scenario of an online auction site with 26 interaction 
types, such as browsing categories; browsing items within a 
category; bidding, buying, or selling items; registering users; 
and writing or reading comments. RUBiS provides two 
workload transition matrices describing two different user 
behaviors: a browsing transition consisting of read-only 
interactions and a bidding transition, including 15% write 
interactions. We utilize the bidding transition in our evaluation 
since this transition is better representative of an auction site 
workload [1]. Our system reuses and extends a recent version 

 
Fig. 11.  Elba approaches staging as an automated iterative process including 
analysis, the focus of this paper. One iteration of the staging process involves 
6 steps: (1) Administrators and customers devise policy-level guidelines; (2) 
Cauldron converts the policy documents into resource assignments; (3) 
Mulini re-maps these assignments, applies further policies, and generates 
three types of code: instrumented application code, deployment code, and 
monitoring code; (4) a deployment tool installs and configures the 
application and then executes it; (5) monitoring data is fed into automated 
analysis tools; and (6) the analysis triggers recommendations for policy 
changes. 
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of RUBiS from ObjectWeb [4]. Generally, experiments show 
that RUBiS is application-server tier intensive. In other words, 
it is characteristically constrained by performance in the EJB 
container tier as introduced in [1].  

III. BOTTLENECK DETECTION PROCESS 
An effective staging phase assures system administrators 

that a hardware/software configuration is capable of handling 
workloads to be seen during production. Starting at an initial 
configuration, this phase augments resources allowing the 
configuration to better satisfy the SLOs in cases of, for 
example, unhandled requests or poor response time. 
Possibilities of inadequacy stem from incorrectly configured 
software parameters crucial to performance, or lack of 
hardware needed to support the system under the stressed 
conditions outlined by the SLOs. Locating an exact point of 
bottleneck is a difficult problem, but, by applying machine 
learning we introduce a process that identifies metrics that 
potentially hinder system performance. The bottleneck 
detection process divides into three steps:  staging the system 
with varying workload, training a machine learning classifier 
with metric data collected during staging, and finally querying 
the trained machine learning classifier to identify potential 
bottlenecks. 

A. Staging with Varying Workload 
The first step of the bottleneck detection process is to stage 

the enterprise system with varying workload in order to collect 
metric data which is analyzed and delivered to the latter steps 
of the process. The workload variation allows the process to 
formulate the correlations between load increase and system 
performance, which are then used to discover the limitations 
causing an SLO to become violated. The SLO policy describes 
behavior that causes violation, such as average response time 
for an interaction exceeding a certain threshold, which are 
then translated to form a starting point for staging:  an initial 
workload and response time levels (per interaction type) that 
satisfy the SLO. 

During the staging phase, each machine in the enterprise 
system is instrumented with monitors that collect metric data 
from both system-level and application-specific metrics. For 
our RUBiS experiment, we collected 220 metrics. We 
summarize sample metrics in Table I which have correlation 
to SLO violations in our experiment. Most of these metrics are 
used during the second step of the bottleneck detection 
process, but the response time is used immediately after the 
staging trial to calculate the degree of SLO satisfaction. Based 
on this satisfaction level, the next staging trial’s workload is 
determined by a set of simple rules. The first step is to find an 
upper workload that violates the SLO below a certain level (in 
our experiments, this level is set at 40%) by exponentially 
increasing the workload. Then, based on the number of trials 
desired, the bottleneck detection process uniformly fills the 
gap starting from a small workload (20 concurrent users in our 
experiments) to the upper limit. While it is recommended to 
fill the entire spectrum of workload trials, the number of trials 
desired is an important variable as it should balance the speed 

of the bottleneck detection process with the accuracy of the 
identified bottlenecks. Upon completion of all staging trials, 
the collected data is analyzed to form calculations useful for 
the second step of the bottleneck detection process, such as the 
average value of each metric. 

B. Classifier Training 
The second step of the bottleneck detection process is to 

train a machine learning classifier with previously 
accumulated metric data allowing the classifier to form 
correlations between the performance of the system and the 
resulting SLO satisfaction. A machine learning classifier is 
trained with multiple training instances where each instance 
has a set of attributes along with a prediction attribute. Each 
attribute is a variable that may have some correlation to the 
prediction attribute, the variable that should be predicted by a 
trained classifier given a set of attribute values. Upon training, 
a classifier finds correlations between the attributes and the 
prediction attribute and saves them to a model. 

The bottleneck detection process assigns the metrics as 
attributes and the SLO satisfaction level as the prediction 
attribute. Each variation in workload (a separate trial) has its 
own training instance where each attribute is a function of the 
averaged metric data for that workload, and the prediction 
attribute is the SLO satisfaction level for that workload; thus, 
training the classifier allows it to analyze any correlations that 
may exist between each metric and the SLO satisfaction level.  

The initial set of collected metrics consists of 220 
application-specific and system-level metrics. In order to 
reduce the amount of extraneous non-correlated metrics, we 
apply a correlation coefficient function introduced in [7], 
comparing metrics to the overall response time. From this 
function, we apply a threshold to reduce our working set of 
metrics for training. 

To create a training set, the bottleneck detection process 
does a difference in each metric value from the previous 
workload trial—that is, each training instance attribute equals 
the change in metric value from the previous workload divided 
by the change in workload. Using this delta metric value as a 
training attribute allows the machine learning classifier to 
correlate trends of metric values to SLO satisfaction rather 
than the metric values themselves. The trends are particularly 
important since as a metric becomes saturated, it becomes the 
bottleneck in which case it cannot grow any further (in terms 
of metrics that have a limit, for example CPU utilization), and 

 
Table I.  Sample system-level and application-specific metrics in RUBiS 
experiment. 
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will thus have a trend (first order derivative) approaching zero. 
Metrics that are not limited, such as database query latency, 
will have a trend that approaches infinity (that is, when the 
metric is bottlenecked and the workload keeps increasing, the 
metric value will grow exponentially larger with each 
workload increase). Both of these types of metrics can be 
correlated to the SLO satisfaction since their derivative (the 
delta metric) will not be constant. Those metrics that are not 
bottlenecks and whose values grow linearly with increase in 
workload will have constant trends, which disregards them 
from being correlated to the SLO satisfaction (for example, if 
network throughput grows by 100 KB/s through all SLO 
satisfaction levels, the delta would be constant at 100 therefore 
a correlation cannot be formed).  Thus, our bottleneck 
detection approach focuses on metrics showing throttled 
behavior, rather than linear metrics which show room for 
expansion. 

In order to remove jittery data collected through the 
multiple staging trials, we use an average window applied to 
the delta metric values. To compute the average window, each 
delta metric value is formed by averaging itself with its 
surrounding delta metric values (in the space of contiguous 
workload trials). In our experiments, we found an average 
window size of 25 smoothes oscillating delta values 
dramatically and strengthens the results of our bottleneck 
detection process.  

The training set used by the bottleneck detection process 
consists of training instances each with n attributes, where n is 
the number of metrics (each metric corresponds to one 
attribute), and a prediction attribute that corresponds to the 
SLO satisfaction. There are k-1 training instances, where k is 
the number of workload trials with all but the first workload 
corresponding to a training instance. Since the process uses 
the change in metric values between workload trials, the first 
workload serves as the base and is not represented by a 
training instance. The kth training instance consists of 
attributes where each attribute is the difference in its 
corresponding metric’s value between the k+1th workload and 
the kth workload. 

The machine learning classifiers employed by our 
bottleneck detection process all require nominal prediction 
attributes. However, the SLO satisfaction level is not nominal 
(it is a continuous variable, ranging from 0% to 100%). To 
allow proper training of the classifier, the SLO satisfaction 
level is converted to nominal values by using a partitioning 
scheme that generates uniformity in the number of training 
instances that fall into each SLO satisfaction nominal group. 
This uniformity is important as having a skewed number of 
training instances per group affects the classifier model. To 
generate these nominal groups, the bottleneck detection 
process sorts the SLO satisfaction levels (from each training 
instance) and divides the sorted list into 10 uniform groups 
with each group labeled by the highest SLO satisfaction level 
in the group. 

Finally, the training set is serialized into the ARFF-file 
format (used for machine learning training data in the WEKA 
toolkit) and each of the classifiers (TAN, J48, and LogitBoost) 

is trained while recording the generated models to a file. 

C. Identifying Bottleneck Metrics 
The final step of the bottleneck detection process is to query 

a trained classifier using an approach that discovers candidate 
bottlenecks. The process queries the classifier by creating a 
test set consisting of test instances that mimic training 
instances, with the only difference being that the prediction 
attribute is not included in the test instance since this is the 
information the classifier predicts using its model. 

In order to discover potential bottlenecks, the bottleneck 
detection process must realize which metric trends the 
classifier correlated to the SLO satisfaction. To accomplish 
this, the bottleneck detection process carefully constructs a set 
of instances that is used to query the previously generated 
classifier model. The test set consists of n test instances where 
n is the number of metrics, with each instance i testing 
whether the ith metric is a candidate bottleneck – that is 
whether the metric trend was highly correlated to SLO 
satisfaction. First, all n test instances are cloned from a single 
base instance (described later). Second, each test instance i is 
modified so that only the ith attribute (which corresponds to 
the ith metric) differs from the other test instances. Finally, the 
classifier uses its previously trained model to predict the SLO 
satisfaction nominal group for each instance in the test set. 

Determining which base instance to use and how to modify 
each instance’s unique attribute (which corresponds to a 
metric) is a difficult problem since the result of testing (the 
predicted SLO satisfaction) must be translated to identify 
whether the metric is a candidate bottleneck, and if so, how 
much confidence the classifier has in its judgment. First, the 
bottleneck detection process assigns the base instance to be an 
instance from the training set since this guarantees its 
attributes to be within the valid ranges for each corresponding 
metric delta. Next, the test set generated by cloning this base 
instance n times is modified so that each instance varies from 
the base instance in one attribute. 

We set the base instance to the instance in the training set 
that has the least SLO satisfaction. Then, we modify the ith 
cloned test instance on ith attribute using the ith attribute from 
the training instance that has the highest SLO satisfaction. 
That is, each delta metric in a test instance will be its value 
from the workload that has the least SLO satisfaction, except 
for one metric that will be its value from the workload that has 
the highest SLO satisfaction. After testing this instance, we get 
the difference between the predicted SLO satisfaction and the 
least SLO satisfaction and use this as a judgment for the 
degree of correlation for this delta metric to SLO satisfaction. 
If the metric corresponding to this instance has high 
correlation, it affects the decision of the classifier greatly. 
Since the base instance has the least SLO satisfaction, if 
modifying one delta metric to a value that is completely 
opposite (taken from the opposite SLO satisfaction level: the 
highest SLO satisfaction) tricks the classifier into predicting a 
different SLO satisfaction level from the base instance, then 
that metric has high correlation. This process happens for each 
test instance (one per metric) in the test set, so more than one 
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metric can be identified as a potential bottleneck. Based on the 
difference between the predicted SLO and least SLO 
satisfaction levels of each instance, we judge how to weigh the 
corresponding metric in terms of potential bottleneck. We 
normalize each metric by dividing its SLO difference by the 
sum of all differences in SLO for the test set. Finally, we 
generate a list of potential bottlenecks and the confidence the 
classifier has in each. 

IV. EVALUATION SETUP 

A. Software 
To execute the staging phase with RUBiS, we employ 

Apache 2.0.54 as an HTTP server, MySQL max-3.23.58 as a 
database server with type 4 Connector/J 3.0.11 as a JDBC 
driver, and JOnAS4.4.6-Tomcat5.5.12 package as an EJB-
Web container. Apache HTTP server is equipped with mod_jk 
so that it can be used as a front-end server to one or several 
Tomcat engines, and it can forward servlet requests to 
multiple Tomcat instances simultaneously via AJP 1.2 
protocols. We increase the number of the maximum processes 
of Apache to avoid connection refusals from the server when 
numerous clients simultaneously request services. We also set 
the automated increment option on every primary key of 
RUBiS databases to prevent duplication errors when clients 
simultaneously attempt to insert data into a table with the 
same key. Finally, we adjust JOnAS to have adequate heap 
memory size for preventing out-of-memory exceptions during 
staging.  

For gathering system-level metrics, we wrote a shell script 
to execute Linux/UNIX utilities, sar and ps, with monitoring 
parameters such as staging duration, frequency, and the 
location of monitored hosts. We also use JimysProbing 0.1.0 
for metrics generated from JOnAS-Tomcat server, apachetop 
0.12.5 for Apache HTTP server, and mysqladmin for MySQL 
database server. We slightly modified apachetop to generate 
XML encoded monitoring results. The client workload 
generator is designed to simulate remote Web browsers that 

continuously send HTTP requests, receiving corresponding 
HTML files, and recording response time as a performance 
metric during staging. 

B. Hardware 
We used Intel Xeon machines with 2.8 GHz processors and 

1 GB of RAM in a cluster to run the servers. Two different 
types of hardware were tested, a single CPU and dual-CPU 
hyper-threading enabled machines, to identify whether CPU 
causes the performance limitation of RUBiS (Note that these 
machines are different at only the CPU configuration. Others 
such as memory, disk, and network are identical.). We have 
established a set of topology configurations to show whether 
application server tier causes the performance limitation as 
increasing the number of machines for application server tier. 
For instance, 1/2/1 means the configuration consists of one 
machine for the HTTP server tier, two machines for the 
application server tier, and one machine for database tier. Each 
configuration will be tested in a series of trials beginning with 
a minimum workload. On each trial, the workload will be 
increased by a workload increment. 

V. EVALUATION RESULTS 
The evaluation consists of three parts. First, we show the 

bottleneck patterns of RUBiS. Second, we select a list of 
candidate bottleneck metrics from 220 metrics using a 
correlation coefficient function and metrics’ thresholds 
specified in given policy document. Finally, we evaluate three 
classifiers with chosen metrics to identify characteristics of 
these classifiers and the best suited classifier. 

 
Fig. 2.  Comparison response times (a) among four topologies, (b) two different CPU hardware configurations. 
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A. Bottleneck Pattern of RUBiS 
In this section, we show the performance characteristics of 

RUBiS in terms of which tiers cause bottleneck limitations 
and which metrics make the bottleneck inside these tiers by 
executing RUBiS with several topologies and two different 
CPU configurations. Fig. 2 (a) illustrates the application server 
tier mainly influences response time. That is, when we 
increase the number of machines for the application server tier 
(JOnAS-Tomcat), response time drastically decreases. When 
we use different topologies, which increase the number of 
machines for HTTP server tier and/or database tier, such as 
2/1/1, 2/1/2, and 1/1/2, the results are almost identical to 1/1/1. 
Fig. 2 (b) shows one of the main bottleneck metrics is CPU of 
the application server tier since the machine equipped with 
hyper-threading enabled dual-CPU performs much faster than 
single CPU machine. The gap gets worse as the number of 
concurrent users increases.  

Fig. 3 (a) shows the CPU usage of application server 
radically increases and saturates at 100% when the SLO 
satisfaction goes down to around 85%. In contrast, while the 

SLO satisfaction starts to decrease, the trends of other tiers’ 
CPU usages are almost flat. In Fig. 3 (b), the memory usages 
of both the application server and database server are under 
utilized. The memory usage of HTTP server is somewhat high, 
but its trend is almost flat.  

We may use this result as criterion to figure out classifiers’ 
accuracy. In other words, to be a suitable classifier for 
bottleneck detection, it should capture the CPU usage as a 
metric causing bottleneck limitation. 

B. Correlation between Metrics 
Fig. 4 illustrates the correlations of some metrics monitored 

from application server tier to response time. Fig. 4 (a) and (b) 
show the number of active threads and the actual memory 
usage of JVM are more correlated to response time than cache 
size metric. However, the actual memory usage of JVM 
utilized at most 0.1% of overall total memory taken by JVM. 
Therefore, this metric should be excluded from candidate 

bottleneck metrics. Table II shows the list of metrics, which 
are most correlated to response time. We used the correlation 
coefficient function introduced in [7]. For the next 

Fig. 3.  SLO satisfaction against (a) CPU usage metric and (b) memory usage metric in all tiers. 

 
Fig. 4.  Correlations of (a) the number of threads, (b) JVM actual memory usage, (c) cache size, and (d) the number of database connections to response time in 
the application server. 
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classification process, some metrics such as DB_CPU_Usage, 
DB_Mem_Usage, App_Mem_Usage, and network throughput 
metrics in the table are excluded because of their under 
utilization even though their correlation coefficient numbers 
are high enough to be included as candidate bottleneck 
metrics. 

C. Bottleneck Detection Process 
We applied our bottleneck detection process described in 

Section III to RUBiS in order to automatically identify the 
CPU bottleneck discovered manually earlier. We describe the 
accuracy of each classifier both in terms of cross-validation 
and bottleneck identification accuracy, and the convergence 
speed of each. 
1) Accuracy of Classifiers 

We define the accuracy of each machine learning classifier 
in two ways:  the cross-validation accuracy, which describes 
its accuracy in predicting the SLO satisfaction levels of a 
partitioned training set, and the bottleneck identification 
accuracy, which describes its accuracy in identifying only the 
actual bottlenecks of our experimental system. The former 
accuracy determines the accuracy in a pure machine learning 
sense, oblivious to the actual application of the classifier, by 
testing the trained classifier’s generated model on how well it 
can predict unseen instances. The latter accuracy determines 
the accuracy as applied to our bottleneck detection process. 

Cross-validation involves partitioning the training set into 
k-folds and generating k different trained models, with each 
model trained on a unique set of k-1 folds. Each trained model 
is then tested against an independent set of data from the 
training data – the 1 fold left out while training the model. 
Based on the sum of all the positively classified instances with 

the total number of instances from the combined testing sets, 
we form our prediction accuracy. For k-fold cross-validation, k 
must be less than the number of training instances for which 
our lowest was 11 workloads. In our experiments, we use 10-
fold cross-validation as it provided results comparative to 100-
fold cross-validation (which we tested using our maximum 
number of workload, 115), while allowing us to stay 
consistent in prediction accuracy measurement throughout all 
our workload trials. 

Fig. 5 (a) shows each classifier’s prediction accuracy using 
10-fold cross-validation for the 115 workload experiment. 
LogitBoost has the highest prediction accuracy among the 
three at 60.87%, followed by J48 at 60.12%, and finally TAN 
at 57.39%. While these accuracies could be stronger, our 
experiments show that the classifiers’ bottleneck identification 
accuracies are high. 

Fig. 5 (b) shows each classifier’s bottleneck identification 
accuracy on three different workload experiments. The first 
workload experiment consists of 92 workloads. In this 
experiment, the TAN and LogitBoost classifiers both 
identified only the application-tier CPU as being a potential 
bottleneck, whereas the J48 classifier identified the 
application-tier CPU and HTTP-tier memory as being 
potential bottlenecks. However, the difference in predicted and 
actual SLO satisfaction for the application-tier CPU is 33.0%, 
whereas for the HTTP-tier memory it is only 3.5%. Hence, to 
calculate the bottleneck identification accuracy for J48 the 
process divides 33.0% (the actual bottleneck) by the sum of 
33.0% and 3.5%, which equals 90.4%. In the 104 workload 
experiment, the J48 and LogitBoost classifiers’ bottleneck 
identification accuracy is at 100% bottleneck identification 
accuracy whereas the TAN classifier is at 93.6% (TAN’s 
difference in SLO prediction and actual SLO for application-
tier CPU is 51.4%, and for HTTP-tier memory it is 3.5%). 

 
Fig. 5.  The accuracies of the machine learning classifiers. (a) illustrates the prediction accuracy using 10-fold cross-validation. (b) illustrates the bottleneck 
identification accuracy over three staging trials: 92, 104, 115. 

 
Table II.  Correlation coefficients of metrics, which are mostly correlated to 
response time. 
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2) Convergence Speed 
The convergence speed of a classifier defines how many 

trials of staging (with each trial varying in workload and thus 
training set size) is needed to obtain strong accuracy. This 
speed becomes relevant as we measure the efficiency of each 
classifier, which is the minimal amount of staging required for 
the classifier to identify bottlenecks in the system. 

Fig. 6 (a) displays the convergence speed for the prediction 
accuracy, which shows the minimal number of staging trials 
needed to obtain good prediction accuracy. The period from 
experiments using 10 to 50 staging trials shows a low 
accuracy at start, but heading toward stabilization at around 90 
staging trials. The period from 50 to 90 staging trials shows a 
slight decrease in accuracy, which can be explained from each 
of these being independent experiments consisting of random 
transition tables for RUBiS, which affects metric values that 
comprise the training set. Each of the classifiers in the graph 
show similar behavior, although once stabilized LogitBoost 
has a slightly higher prediction accuracy, immediately 
followed by J48 and finally by TAN. 

Fig. 6 (b) displays the convergence speed for the bottleneck 
identification accuracy, which shows the minimal number of 
staging trials needed for the bottleneck detection process to 
have strong results. The period from 10 staging trials to 40 
staging trials shows some erratic behavior which can be 
explained by the under developed classifiers (which can be 
seen by looking at the convergence speed for prediction 
accuracy graph, Fig. 6 (a)). The period from 40 staging trials 
onwards shows positive results as each classifier increases 
toward 100% bottleneck identification accuracy. The J48 
classifier remains above the TAN classifier (aside from the 94 
staging trial experiment), whereas the LogitBoost classifier 
shows interesting behavior of having no bottleneck 
identification until the 77 staging trials experiment, from 
which onwards it has 100% bottleneck identification accuracy. 
From our experiments with all of the classifiers, we deduce the 
minimum number of staging trials for positive results is 70, 

whereas 90 staging trials provides even stronger results. While 
all the classifiers performed well, the LogitBoost classifier 
seemed to excel in terms of convergence speed by reaching 
100% bottleneck detection accuracy first. However, in terms 
of overall reliability the J48 classifier seemed to provide better 
results due to its steady increase in bottleneck detection 
accuracy toward 100% and its higher bottleneck detection 
accuracy throughout a majority of the variations in number of 
staging trials. 

VI. RELATED WORK 
Cohen et al [5] apply a tree-augmented Naïve Bayesian 

network (TAN) to discover correlations between system-level 
metrics and performance states, such as SLO satisfaction and 
SLO failure. Similarly, we utilize TAN to investigate 
performance patterns, however we differ on three aspects. 
First, we perform a comparative study of classifiers beyond 
TAN and include the J48 decision tree and LogitBoost, two 
well known machine learning algorithms that have yet to be 
applied to performance analysis. Our goal is to compare the 
performance of classifiers in terms of bottleneck detection, 
and finally identify the classifier that best detects bottlenecks 
in multi-tier applications. Second, in addition to correlating 
metrics to performance states, we focus on the detection of 
actual performance-limiting bottlenecks by employing a 
unique change in metric training procedure. Finally, our set of 
metrics for bottleneck detection includes 193 application-level 
metrics as well as system-level metrics. 

Urgaonkar et al [11] introduce a dynamic queuing model 
combined with predictive and reactive provisioning. Their 
contribution allows an enterprise system to increase capacity 
in bottleneck tiers during flash crowds in production. Elba, in 
addition to being oriented towards avoiding in-production 
performance shortfalls, emphasizes fine-grained 
reconfiguration. By identifying specific limitations such as 
low-level system metrics (CPU, memory, etc.) and higher 

Fig. 6.  The convergence speed of a classifier reveals how lengthy of a staging phase is needed to obtain accurate results from a classifier. Each staging trial uses 
a new workload which is then translated to an instance in the training set for the classifiers. (a) shows the prediction accuracy (based on 10-fold cross-
validation) of each classifier as the number of trials increases. (b) shows the final bottleneck identification accuracy as the number of trials increases. 
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level application parameters (pool size, cache size, etc.) 
configurations are tuned to the particular performance problem 
at hand.  

Powers et al [12] similarly use machine learning techniques 
to analyze performance. However, rather than detecting 
bottlenecks in the current system, they predict whether the 
system will be able to withstand load in the following hour. 
The machine learning classifiers they use differ from ours (we 
apply a J48 decision tree and LogitBoost) as does the 
approach for classification.  Rather than predicting immediate 
failures, our paper addresses the performance of each classifier 
in terms of detecting bottlenecks in multi-tier applications. We 
also differ in service level objectives, which they formulate as 
target values for underlying system-level metric values, such 
as CPU utilization exceeding 75%. Elba, by addressing policy 
level SLOs, targets business-level objectives, such as response 
time, translates these objective into system and tier-specific 
objectives, and then uses low-level and application-level 
metrics to meet these goals. 

VII. CONCLUSION 
In this paper, we explore the performance of various 

machine learning classifiers with regard to bottleneck 
detection in enterprise, multi-tier applications governed by 
service level objectives. This builds on our previous work 
which used a J48 decision tree to assist tuning the TPC-W 
application. Specifically, in this paper, we demonstrate the 
effectiveness of three classifiers, a tree-augmented Naïve 
Bayesian network, a J48 decision tree, and LogitBoost, using 
our bottleneck detection process, which delves into a new area 
of performance analysis based on the trends of metrics (first 
order derivative) rather than the metric value itself. 
Furthermore, we illustrate the efficiency of each classifier by 
measuring the convergence speed, or the number of staging 
trials required in order to provide positive results. Using 
RUBiS, we test our bottleneck detection process on a set of 
220 combined system-level (CPU, memory, etc.) and 
application-level metrics (open database connections, EJB 
pool size). Finally, we show the effectiveness of the classifiers 
used in our bottleneck detection process as each classifier 
strongly identifies the enterprise system bottleneck. 
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