

DAG Synchronization Constraint Language for Business Processes

Qinyi Wu, Calton Pu
College of Computing,

Georgia Institute of Technology
{qxw, calton}@cc.gatech.edu

Akhil Sahai
HP Laboratories, Palo Alto, CA

Akhil.sahai@hp.com

Abstract

Correct synchronization among activities is critical in
a business process. Current workflow languages such as
BPEL specify the control flow of processes explicitly.
However, their procedural style may cause inflexibility
and tangled code. We propose DSCL (Dag-acyclic-graph
Synchronization Constraint Language) to achieve three
desirable properties for a synchronization modeling
language: declarative syntax, fine granularity and
validation support. Instead of composing service out of
structured constructs, DSCL declaratively describe the
synchronization constraints in three basic relations on
activity states. The state relationships collectively
determine the execution order of activities in a composite
process. The relationships are automatically translated
into Petri Nets and simulated in the CPN/Tools, from
which several correctness criteria can be validated for the
composite process. We illustrate the advantages of DSCL
with a Purchasing workflow example from BPEL 1.0
specification, and verify its correctness using CPN/Tools.

1. Introduction

Recent workflow specification languages such as
BPEL [21], XPDL [22] have used structured constructs to
describe the control flow of business processes. While
there are advantages in making process component
composition explicit, the procedural style of such
languages also has its limitations. There are several
known problems in the area of synchronization and
concurrency modeling. For example, to specify mutually
exclusive execution using XOR-split and XOR-join
constructs may require an enumeration of all execution
scenarios [1]. Another example is the tangled and
scattered synchronization code when using BPEL’s link
construct to describe constraints for activities that are
nested within different concurrent subprocesses.

Inspired by parallel programming language research on
synchronization [4][19], we adopt three desirable
properties for a synchronization modeling language. First,

the language should have a declarative syntax, so
programmers only need to specify what to be
synchronized instead of how to implement it. As a result,
a process specification can be incrementally specified
without demanding structural change in the base code.
Second, the language should provide fine granularity
control on synchronization constraints. Instead of being
regarded as an atomic unit, the life cycle of an activity is a
sequence of states and can be synchronized with other
activities based on its current states. For instance, it
should be possible to specify a synchronization constraint
like “Before starting the activity of closing a purchasing
order, the activity of customer satisfaction investigation
should have started and a survey has been sent out to the
customer”. Third, the language should provide validation
support. A process architect needs tools to verify the
synchronization behavior of processes, particularly for
complex and evolving processes. We refer to three
desirable properties (Declarative syntax, Fine granularity
and Validation support) as DFV properties in the rest of
the paper.

The main contribution of the paper is the introduction
of DAG Synchronization Constraint Language (DSCL).
DSCL provides the DFV properties by focusing on the
synchronization aspect of processes, in a way similar to
aspect-oriented programming applied to modeling [8].
DSCL specifies synchronization constraints in a
declarative style using three basic state relations
(HappenBefore, HappenTogether, Exclusive). They
operate over the states of activities. An activity goes
through three states during its life span, start, run and
finish, each of which is viewed as a synchronization point.
By specifying relationships over the states of activities,
various synchronization behaviors can be described like
And-split and And-join [22]. To demonstrate the
validation of DSCL specifications, we translate DSCL
into Colored Petri Nets (CPN). Problems such as
deadlock and infinite synchronization sequence in a
process can be found using CPN software tools [10]. The
expressiveness of DSCL is illustrated with a motivation
example (Section 3) and its limitations discussed in
Section 4.

The rest of the paper is organized as follows. In section
2, we summarize related work. In section 3, we describe a
realistic motivation example process (Purchasing).
Section 4 describes the features of DSCL. Section 5
outlined a translation method mapping DSCL to Colored
Petri Nets [17]. Section 6 uses DSCL to specify two
processes. One is from the Purchasing example. The other
is constructed to demonstrate those features not shown in
the Purchasing process. Section 7 concludes the paper.

2. Related Work
Several synchronization modeling languages have been

proposed in the literature, such as path expressions [4],
synchronization expressions [19] and interactive
expressions [9]. They provide constructs at different
abstract levels to describe the concurrency in parallel
application, although they offer limited support for
validation. Different from the early work, DSCL models
the process state explicitly. Synchronization depending on
activity state is an important synchronization constraint in
interactive system that can be observed in many real
situations [1]. Furthermore, by establishing the mapping
between DSCL and CPN, we can use CPN tools.
Synchronization expressions have been mapped to Petri
Nets [12], but they have not used Petri Net tools for
validation. DSCL also contains additional technical
features such as the Exclusive state relation.

As a domain specific language focusing on
synchronization, DSCL supports a Directed-Acyclic-
Graph (DAG) flow model. Therefore it characterizes part
of the spectrum of synchronization behavior without
including loop and conditional branching. We can see
other DAG flow model in tools like Symphony [13].
UNICORE [6] is another tool that does not include
conditional branching. Nontrivial workflow applications
areas such as service deployment workflows have been
completely specified without conditional branches [18].

Some projects have introduced synchronization at the
granularity of activity state. In [18], a service deployment
workflow is specified by putting synchronization
constraints on the states of installation activity. In [19],
activities are split into two parts, the start and the
termination for inferring the correctness of
synchronization history. DSCL integrates the support for
fine-grain synchronization as part of DFV properties.

As the complexity of the process increases, it becomes
more important to understand the behavior of the system
under the occurrence of concurrency. Different techniques
are used to simulate, test and verify the synchronization
behavior of a process. Most work uses formal techniques
like Petri net [17], and π-calculus [16] etc. Other work is
based on model checking that has been widely used in
automated software verification [3] [7]. We use Petri net
to validate the synchronization behavior of the process
because Petri net model state explicitly.

Figure 1. Purchasing process

3. Motivating Example

Let consider a Purchasing business process borrowed
from BPEL 1.0 specification [21] in Figure 1.

The Purchasing process coordinates with three Web
services: PurchasingService, ShippingService and
SchedulingService in several steps to process a purchase.
After receiving a purchase order, three subprocesses are
instantiated concurrently: Price Calculation (SIP, SSP and
RI), Shipping Selection (SSR and RSS), and Scheduling
(SPSR and SSS). Due to the data dependency, the
activities need to be synchronized to avoid race condition.
For example, the shipping price produced by SSR is
required to complete SSP. And the shipping schedule
generated by RSS is required for the completion of SSS.
We can observe its data flow in Figure 2.

Figure 2. Data flow in the Purchasing process

These data flows introduce several synchronization

constraints between the finish state of the data producer
activities and the start state of the data consumer activities.
We denote the start state and the finish state of an activity
by S and F respectively. We introduce a state relation
HappenBefore (→) to describe them.

FRPO→SSIP FRPO→SSSR FRPO→SSPSR FSSR→SSSP
FSSR→SRSS FRSS→SSSS FSSP→SRI FRI→SSI
The process further requires that the final invoice can

be sent out only after the SSS successfully finishes such
that a customer who receives a final invoice is guaranteed

Figure 3: Synchronization relationships in

Purchasing process
to receive her product. To describe it, we introduce
another state relation HappenTogether (↔).

FRI↔FSSS
This statement declares the constraint that RI and SSS

will enter their finish state together. When both of them
finish, RI can notify SI to start.

For easy understanding, instead of writing down the
state relationships in statement, we draw a
synchronization graph to illustrate its synchronization
constraints. We use a rectangle to represent an activity and
a directed line to represent a state relationship. The line is
labeled with states that the state relationship operates on.
Figure 3 shows all the constraints for the Purchasing
process.

From the Purchasing example, we can see that the
orchestration of a process could be well captured in a set
of relationship statements and incrementally developed
without side-effect on previous constraints. In real life, the
synchronization constraints in a process can be much
more complicated than those in the Purchasing process.
For example, two activities may update the backend
system like database on shared data. In that case, these
two activities need to be executed exclusively to
guarantee the data consistency. A process architect needs
assistance in describing, simulating and analyzing the
synchronization behavior in a complicated process. In the
rest of the paper, we detail each of these issues.

4. DAG Synchronization Constraint Language

In this paper, we use business process and process
interchangeably. Individual steps in the process are called
activities. In a process, each activity goes through three
states: start, run, and finish (States related to exception
handling such as abort, failure are subject of ongoing
research and beyond the scope of this paper.). The
activities interact and synchronize their transition from
one state to another (in order).

DSCL is designed to describe Directed-Acyclic-Graph
(DAG) synchronization behavior at activity level. A
process architect can use it to declaratively specify the
synchronization constraint in the form of relationship
statements informally introduced in Section 3. DSCL

omits loop and conditional branching synchronization
relations to avoid the typical problems associated with
such “procedural” facilities [14]. Similar to functional
programming languages and logic components [5], we
expect to combine DSCL with other aspect-oriented
workflow specification languages as suggested in [20].
For example, it is desirable to decompose a workflow
system into separate aspects (functional, control, data,
organizational) for the purpose of creating easily adapted
and fully distributed workflow. One possible design
choice is to embed DSCL within a “general purpose”
workflow specification language such as BPEL, in a way
similar to some aspect-oriented domain specific languages
embedded in Java. For example, Jeeg [15] decouples the
synchronization code from the other code in java Class.
The synchronization code is declaratively expressed in
linear temporal logic and later woven into the rest of the
code by a compiler.

In DSCL, We denote the state space (start, run, finish)
by N={S, R, F}. For every pair of states, we observe three
basic relations between them: 1) the two states should be
reached one after another; 2) the two states should be
reached together. In other words, if one of the states
cannot be reached due to some missing conditions, the
other state should not be reached; 3) the two states are not
allowed to coexist simultaneously at any point in time. We
summarize their notation and semantics below.
 HappenBefore (→): the state at the beginning of the

arrow should happen before the state at the end.
 HappenTogether (↔): the two states at both ends

should be reached together.
 Exclusive (O): states at both ends must not be

concurrent. Note that this only applies to run states
because they are the only states where activities can
actually interfere with each other.

One advantages of modeling a process by these three
relations is that they naturally reflect the way how
business people use causal relationships to describe their
business process in real applications.

We use a denoting an activity in a process, and X as the
range of state space N for the state relations. Xi refers to
some state X of activity ai. We denote domain of relations
by Dom. Below we give the definition of the state
relations.

Definition 1: State relation is defined by (Xi, Xj) ∈ψ,
where Xi, Xj ∈{S, R, F},ψ∈{→, ↔, O }. Dom(→)=
{S, F}, Dom(↔)={S, F} and Dom(O) = {R}. N(ψ)
denotes all the states occurring inψ.

ψcan describe a rich set of synchronization patterns.
For example, Fi→Sj describes sequence. Si↔Sj and
Fi↔Fj together express And-split and And-join. More
than that, they can describe those synchronization patterns
that are fairly hard to express in traditional approach. For
instance, if we want to specify the constraint of Si→Fj

such that activity aj should not finish until activity ai starts,
this cannot be described by existing tools in that each
activity is treated as an atomic synchronization unit. We
could not specify those synchronization constraints for
activity ai and aj when their life spans are partially
overlapped. As a result, only sequential execution can be
specified between them, which may make the process
unnecessary sequential. In Section 5, ψis translated to
Petri net. Intuitively, it is able to describe those workflow
patterns that can be described by Petri net for activity
state like sequence, parallel split, synchronization,
interleave parallel routing, and milestone [1].

Next we declare two propositions that state the
properties of ψ . These two propositions can help us
reduce the complexity of mapping from the state relations
to Petri Net. We also use them to define the correctness
criteria of synchronization constraints in terms of state
relations.

Proposition 1:
i. Transitivity
(Xi, Xj) ∈ψ→∧(Xj, Xz) ∈ψ→⇒ (Xi, Xz) ∈ψ→

(Xi, Xj) ∈ψ↔∧(Xj, Xz) ∈ψ↔⇒ (Xi, Xz) ∈ψ↔

ii. Symmetry
(Xi, Xj) ∈ψ↔⇒ (Xj, Xi) ∈ψ↔
Proof The follows straightforward for Definition 1. �
Proposition 1 implies that → or ↔ only defines a

partial relationship between two states. We need to form a
global view to maintain the correct synchronization
behavior. For example, if Si↔Sj and Sj↔Sz, it means that
the start state of ai and az should also be reached together.
One abbreviation is Si↔Sj↔Sz .

We use +
→}{ iX to denote the transitive closure of states

relation →, and use +
↔}{ iX to denote the transitive and

reflective closure of state relation ↔. Notice
that +

↔
+
↔

+
↔ =∈∀ }{}{,}{ jiij XXXX . That is if X1 ↔ X2

↔ X3, we can use any of them to denote the closure set
+
↔

+
↔

+
↔ == }{}{}{ 321 XXX .

Proposition 2: ↔ can be simulated by →. Given X1 ↔
X2, …, ↔ Xk whose transitive and reflective closure is
denoted as +

↔}{ 1X , the state relationships can be simulated
in → by creating a coordinator activity ac and replace

+
↔}{ 1X with new state relationships as follows:

(1) ∀ Xi∈ N(ψ), if ∃ Xj∈
+
↔}{ 1X ∧ Xi → Xj, then

ψ=ψ∪{Xi → Sc}-{Xi → Xj}
(2) ∀ Xj∈

+
↔}{ 1X . Let ψ=ψ∪{ Fc →Xj}

Proof
From (1) the activity ac synchronizes with those states

Xi that need to be reached before the states in +
↔}{ 1X can

be reached at its start state Sc. Then ac notifies the states
in +

↔}{ 1X to be reached through (2) by synchronizing

them at its finish state Fc. �
For example, given the following relationship statements
F1→S2, F3→S4, S2↔S4↔S5 for activity a1, a2, a3, a4 and a5,
we can replace S2↔S4↔S5 by introducing ac, removing
F1→S2, F3→S4, and finally adding the additional
relationships F1→SC, F3→Sc, Fc→S2, Fc→S4, Fc→S5.

Proposition 2 implies that ↔ is a “syntax sugar” and
we can always do preprocessing to translate ↔ to → by
introducing coordination activity. Thus without loss of
generality, the translation method in the next section
focuses on → and O only.

Finally we define the correctness criteria for the state
relationships in a process. There are two situations to
consider. One is the dead end. The other is infinite
synchronization sequence. Both of them are caused by the
existence of cyclic synchronization relationships.
Definition 2 gives the formal definition.

Definition 2: (correctness criteria of state relationships)
Given a process A = {a0, a1,…, an}with a0 as the starting

activity and the associated state relationshipsψ , ψ is
correct for process P if and only if it satisfies the
following properties:

1. ∀ ai∈A,{Si, Ri, Fi} +
→⊆ }{ 0S

2. ∀ Xi ∈ψ, +
→∉ }{ ii XX

By condition 1, there is no dead end in synchronization.
All the states of activities are reachable from the start
state of the root activity. By condition 2, it makes sure that
the synchronization constraints are acyclic. There is no
deadlock and infinite occurrence sequence. In other words,
the state of an activity is not allowed to have a
HappenBefore relationship with itself. Notice that the
Exclusive relation O is not considered in the correctness
criteria in that it only impacts the scheduling time of
associated activities not their reachability.

5. Translation of DSCL to Petri Net

As a descriptive language, DSCL acquires its formal
foundation by establishing a mapping to Petri nets. Petri
nets are a formal and graphical language for modeling
system behavior with concurrency. In this section, we
demonstrate that state relations in DSCL can be translated
to Petri net. By studying the properties of translated Petri
net, we are able to check the synchronization correctness
for a process. We first give a self-contained review for
Petri net. For more details, please refer to [17].

5.1 Petri Net
Definition 3: (Petri Nets). A Petri Net is a four-

tuple),,,(OITPC = :
i. P is a finite set of places.

ii. T is a finite set of transitions.
iii. ∞→ PTI : is the input function, a mapping from

transitions to bags of places.

iv. ∞→ PTO : is the output function, a mapping
from transitions to bags of places.

A transition is enabled if each of its input places has at
east as many tokens in it as arcs from the place to the
transition. The inputs and outputs of a transition jt allow
a place to be a multiple input or a multiple output of a
transition. We use))(,(# ji tIp and))(,(# ji tOp to denote
the number of occurrences of the place in the input bag of
the transition and the place in the output bag of the
transition respectively.

Definition 4: (marking). A marking µ of a Petri net

),,,(OITPC = is a function from the set of places P to
the nonnegative integers N.),...,,(10 nnnn=µ where the

number of tokens in place ip is in .
Definition 5: (transition firing and occurrence

sequence). The firing of any enabled transition jt at
marking µ causes the change of the marking to a new
marking µ′ defined by

))(,(#))(,(#)()(jijiii tOptIppp +−=′ µµ .
Two sequence results from the execution of a Petri net:

the sequence of markings),...,,(10 nµµµ and the
sequence of transitions),...,,(10 jnjj ttt . The firing of

jkt under the marking kµ leads to marking 1+kµ . We use

,...1,0,),(1 == + kfort kjkk µµδ to denote this relation.

We also write it as ...[[21100 µµµ ff jj tt and call it
occurrence sequence (OS). If the sequence has infinite
length, we call it infinite occurrence sequence (OSI).

Definition 6: (reachability and reachability set). A
marking µ′ is said to be reachable fromµ iff there is a
firing sequence nttt ,...,, 21 such
that µµµ ′fff ...[[210 tt . The reachability set

),(µCR for a Petri net),,,(OITPC = with marking µ
is the smallest set of markings defined by

1.),(µµ CR∈
2. if),(µµ CR∈′ and),(jtµδµ ′∈′′ for some

Tt j ∈ , then),(µµ CR∈′′
Finally we introduce the concepts of liveness, which

have been considered in studies of deadlock. Liveness is
categorized at four levels [17]. For the purpose of this
paper, we are interested in level 1 and level 4. For a Petri
net),,,(OITPC = with markingµ :

Definition 7 (liveness level 1): A transition is live at
level 1 if it is potentially fireable. That is, if there exists

),(µµ CR∈′ such that jt is enabled inµ′ .

Definition 8 (liveness level 4): A transition is live at
level 4, if for each),(µµ CR∈′ there is a firing sequence

σ such that jt is enabled inµ′ .
We can see that liveness level 4 is much strong than

level 1. Liveness level 1 is used to identify whether there
is unreachable transitions. Liveness level 4 is used to
identify whether there is infinite firing sequence in the
Petri net. Both of them can help us verify the correctness
of synchronization relationships. We shall see this in
Section 5.3. Before that, we make a useful statement.

Proposition 3: If a Petri net),,,(OITPC = with
marking µ is at level 4, there exists an infinite occurrence
sequence.

Proof Prove by contradiction. If no infinite occurrence
sequence exists, C must halt at a markingµ′ , at which
no transition is enabled. This contradicts to Definition 8.

5.2 Translation from State Relationships to
Petri Net

This section describes a method to derive a Petri net
from state relationships of a process. Due to Proposition 2,
we can always do preprocessing to replace ↔ with →.
Thus the method includes → and O only. Below we give
an algorithmic description of the translation method.

The method follows three steps: the intrastate relation
construction, which manages the state relations within an
activity, and the interstate relation construction, which
establish the state relations between activities and finally
the exclusive relation construction, which handles the
Exclusive relation. During the mapping, a place represents
a state of an activity. Each transition controls the
conditions that need to be satisfied before the activity can
reach that state. The firing of a transition means that the
dependent states at the inbound places have been reached.
The correspondent activities can transmit to the next state.

Step 1: Intrastate relation construction
Intrastate relations reflect the state transition of an

activity in its life span. Each activity goes through three
states{S, R, F} that can be described in → relation. Its
Petri net is shown in Figure 4 (a).

Step 2: Interstate relation construction
For each Xi → Xj., i≠j, a place and two arcs are created

to connect the outbound transition corresponding to Xi and
the inbound transition corresponding to Xj.. For example,
the state relation Fi→Sj is connected by place px as
illustrated in Figure 4 (b).

Step 3: Exclusive relationship construction
For exclusive relation O, a place with a shared token is

added to the transitions that corresponding to the running
state of all involved activities. The shared token at place
py guarantees that only one of them is executed at any
point in time, as seen in Figure 4 (c).

Figure 4: Translation from state relationships to

Petri net
Proposition 4: Given a set of state relationships, the

translated CPN correctly reflect the synchronization
constraints prescribed by these relationships.

Proof Due to proposition 2, we only need to prove the
proposition holds for → and O.

Step 1: Prove →
According to the interstate relation construction, given

a HappenBefore relation Xi → Xj, a place p and two arcs,
(Xi, p) and (p, Xj), are added to the CPN. Thus the state Xj
will not be entered until Xi fires and adds a token to p.
Thus the construction maintains the semantic of →.

Step 2: Prove O
With the extension to the basic algorithm, all activities

involved in the exclusive relationship share a token.
Before an activity enters into its running state, it should
obtain the exclusive access to the shared token and return
it back after it finishes the execution. Thus the
construction maintains the semantic of O.

In order to infer the correctness of a process in terms of
synchronization relations by way of Petri net, we need to
correlate the Petri net properties to the correctness criteria
(Definition 2). Proposition 5 does the job.

Proposition 5: Given a set of activities A = {a0, a1,…,
an} and its associated state relationships ψ , the
synchronization constraints are correct if and only if its
corresponding Petri net is at liveness level 1 and there is
no transition at liveness level 4.

Proof this can be inferred from Definition 2, Definition
7, and Proposition 3 �

5.3 Simulation in CPN/Tools
We choose CPN/Tools [10] as the simulation tool.

CPN/Tools is a graphical editor and simulator of Colored
Petri Nets (CPNs). It is a high-level net allowing typed
token to carry complex data. Basically, in CPN a place
has a color indicating the type of the token this place can
hold. The type of the token can be arbitrarily complex like
a record in programming language. There are two
considerations to choose it as the simulation tool. First,

Colored Petri Net (CPN) is more expressive than Petri Net
to describe a system [11]. This leaves us more flexibility
if the DSCL is extended to accommodate richer
synchronization behaviors, for instance conditional state
transition. Second, the CPN/Tools provides substantial
support for validation, i.e. a simulation tool, a state space
tool for verifying various properties like liveness,
boundedness and fairness [11]. Third, this tool takes a
CPN formatted in XML. This facilitates us to translate the
Petri net to the input of CPN/Tools. Since CPN requires
that each place should have a type, we assign each place a
single type e, which means no data contained.

In the simulation, we use the State Space Toolkit. This
toolkit constructs an occurrence graph in which each node
stands for a reachable marking and an arc for each firing
of transition. Based on the occurrence graph, it generates
information like the number of nodes in the graph, the
bound for each place, dead and live transitions etc. In the
generated report, we are particularly interested in two
parts. One is the record for the dead transitions, which
corresponds to the transition liveness level 1. If dead
transition is none, the Petri net satisfy liveness level 1.
The second is the size of state space and the number of
Strongly Connected Components (SCC). A SCC is a
maximal subgraph in which it is possible to reach from
any node to any other node. If the number of SCC is
fewer than the state space nodes, it implies that the net has
at least one SCC with more than one node, which implies
infinite occurrence sequences exist [10]. In other words,
the net may not terminate. Thus we can infer the liveness
level 4 by comparing the number of nodes in SCC and the
number of nodes in the occurrence graph. Another useful
tool is the Simulation Toolkit. It is useful when the state
space of the net is unbounded.

6. Applications

In this section, we look at two processes to illustrate
the DFV properties of DSCL in process modeling. The
first process is the Purchasing process introduced in
Section 3. The second one is artificially constructed to
demonstrate those features that are not reflected in the
first process.

6.1 Process 1 (Purchasing Process)
Description Based on the description in Section 3, its

synchronization constraint graph is illustrated in Figure 5.

Figure 5: Synchronization constraints

Petri net translation We implemented a parser called
SR2PN (State Relationships to Petri Nets) that reads these
state relationships and translates them into Petri net. For
each activity Ai, we name the Petri net places si, ri, fi
corresponding to its start, run and finish state. The
transitions between places are named as Si, Ri, Fi
respectively. The initial place s1 is assigned with initial
marking 1`e (1`e represents one token with the color type
e). For a transition ti, if there is more than one outbound
place, we call them xi0, xi1, …, xin, x ∈ {s,r,f}
respectively. For a HappenTogether relationship between
Ai and Aj, we name the coordinator activity Aij. Figure 6 is
a screenshot from the CPN/Tools.

Figure 6. Petri net for process 1

We can see that there are three places and three

transitions for each activity. That is why translated Petri
net has more nodes than the number of activities. Actually
for validation purpose, we can apply reduction rules to
reduce its size [11].

Simulation result
 Statistics
--
 State Space
 Nodes: 391
 Arcs: 966
 Secs: 0
 Status: Full
 Scc Graph
 Nodes: 391
 Arcs: 966
 Secs: 0

 Liveness Properties
--
 Dead Transitions Instances: None

Figure 7. Simulation report from CPN/Tools

Figure 7 is part of the state space report generated by
the State Space Toolkit. From the report, we can see that
the size of state space is equal to that of SCC and no dead
transition exists. Therefore, the synchronization behavior
of the Purchasing process is correct.

6.2 Process 2
Description Process 2 consists of four activities A1,

A2, A3 and A4. It has three synchronization constraints.

• SA1→SA2: A2 can start after A1 starts. In other
words, the execution of A2 does not have to wait for A1
to finish.

• SA1→FA3: A3 can only finish after A1 starts. That
is A3 has to make sure A1 has been started before it
finishes. Otherwise, it has to wait until this event
happens.

• FA3→SA4: A3 finishes first, and then A4 starts.
To make it more interesting, suppose that the

synchronization constraint FA4→SA3 is accidentally added
to the process. The synchronization constraint graph is
portrayed in Figure 8. Intuitively, we would expect that
there is a deadlock between A3 and A4.

Figure 8. Synchronization constraints process 2

Petri net translation

Figure 9. Petri net for process 2

The initial place s0 is added to start A1 and A3
concurrently with the initial marking 1`e.

Simulation result
 Statistics
--

 Dead Transitions Instances:
 F3 1
 F4 1
 R3 1
 R4 1
 S3 1
 S4 1
Figure 10. Simulation report for process 2

From the report, we can see that those transitions

involved in the loop are dead (highlight in the dashed
rectangle). This is caused by the cyclic synchronization
constraint in the state relations, which violates Definition
2. Therefore we should go back and check the
correspondent constraints in the original specification for
correction. The updated relationships should be feed into
the SR2PN parser for another round of validation until the
correctness criteria is satisfied.

7. Conclusion and Future Work

In this paper, we describe DSCL, a domain specific
synchronization constraint language to support the DFV
properties: declarative syntax, fine granularity and
validation support. DSCL provides three state relations
for a process architect to declaratively specify what to be
done for synchronization instead of how to implement it.
The feature of fine granularity is realized by specifying
constraint on activity state instead of treating it as an
atomic unit. The synchronization constraints specified by
DSCL are finally translated to Petri net for simulation,
analysis and validation.

We use a Purchasing workflow example (from BPEL
1.0 specifications [21]) to illustrate the expressiveness of
DSCL. The synchronization constraints are specified
using the three state relations of DSCL: HappenBefore,
HappenTogether, and Exclusive. The DSCL specification
is translated into CPN and verified using CPN tools,
demonstrating the DFV advantages of DSCL.

DSCL could be used to deal with process
synchronization in general. Our current work extends the
practical application of DSCL. We plan to extend an
existing workflow language (e.g., BPEL) with DSCL such
that a process architect can model the synchronization
aspect of a process at the abstract level of state
relationships and let the compiler (or a code generation
tool) produce the executable code automatically. For
implementation, we may leverage on existing techniques
capable of translating Petri net to BPEL [2].

8. Acknowledgements

This work was partially supported by NSF/CISE IIS
and CNS divisions through grants IDM-0242397 and
ITR-0219902, DARPA IPTO through grant FA8750-05-1-
0253, and Hewlett-Packard.

9. Reference
[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.

Kiepuszewski, and A.P. Barros, “Workflow Patterns,”
Distributed and Parallel Databases, 14(3), pages 5-51, July
2003.

[2] W.M.P. van der Aalst and K.B. Lassen. Translating
Workflow Nets to BPEL4WS. BPM Center Report BPM-
05-16, BPMcenter.org, 2005.

[3] A. Betin-Can, T. Bultan, X. Fu. Design for verification for
asynchronously communicating Web services. Proceedings
of the 14th international conference on World Wide Web,
750-759. Chiba, Japan, ACM Press. 2005.

[4] R. H. Campbell and A. N. Habermann. “The Specification
of Process Synchronization by Path Expressions.” Lecture
Notes in Computer Science 16, Springer-Verlag, Berlin,
1974, 89−−102.

[5] D. Churches, G. Gombas, et al. Programming Scientific
and Distributed Workflow with Triana Services. In Grid
Workflow 2004 Special Issue of Concurrency and
Computation: Practice and Experience, to be published,

2005.
[6] D. W. Erwin. UNICORE: A Grid Computing Environment.

Lecture Notes in Computer Science, Vol. 2150
Volume(Issue): 825-34. 2001.

[7] H. Foster, J. Kramer, J. Magee and S. Uchitel. Model-
based Verification of Web Service Compositions. IEEE
ASE 2003, Montreal, Canada. October 2003.

[8] J. Gray, T. Bapty, S. Neema, et al. Handling Crosscutting
Constraints in Domain-Specific Modeling.
Communications of the ACM, October 2001, pp. 87-93.

[9] C. Heinlein. Workflow and process synchronization with
interaction expressions and graphs. Proceedings of 17th
International Conference on Data Engineering. 243.2001.

[10] K. Jensen. An Introduction to the Practical Use of
Coloured Petri Nets. In: W. Reisig and G. Rozenberg (eds.):
Lectures on Petri Nets II: Applications, Lecture Notes in
Computer Science vol. 1492, Springer-Verlag 1998, 237-
292.

[11] K. Jensen. Coloured Petri Nets. Vol 1: Basic Concepts,
Springer-Verlag 1992.

[12] P. E. Lauer and R. H. Campbell. A description of path
expressions by Petri nets. Proceedings of the 2nd ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, Palo Alto, California, ACM Press.
1975.

[13] M. Lorch and D. Kafura. Symphony - A Java-based
Composition and Manipulation Framework for
Computational Grids. In Proceedings of 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGrid 2002), Berlin, Germany. May 21-24, 2002.

[14] B. Ludäscher, I. Altintas, et al. Scientific Workflow
Management and the Kepler System. Concurrency and
Computation: Practice & Experience, Special Issue on
Scientific Workflows, to appear, 2005.

[15] G. Milicia, V. Sassone. Jeeg: temporal constraints for the
synchronization of concurrent objects. Concurrency -
Practice and Experience 17(5-6): 539-572 2005

[16] R. Milner. Communicating and Mobile Systems: the Pi-
Calculus, Cambridge University Press; 1st edition.June 15,
1999

[17] T. Murata. Petri Nets: Properties, analysis and applications.
Proc. of the IEEE, 77(4):541--580, 1989.

[18] A. Sahai, S. Singhal, V. Machiraju and R. Joshi.
Automated Generation of Resource Configurations
through Policy. Policy-2004, New York. June 7-9, 2004.

[19] K. Salomaa and S. Yu. Synchronization expressions and
languages. Journal of Universal Computer Science Vol. 5:
610-621. 1999.

[20] R. Schmidt, U. Assmann. Extending Aspect-Oriented-
Programming in Order to Flexibly Support Workflows.
Proceedings of the ICSE98 AOP Workshop, pages 41 - 46,
Kyoto, April 1998.

[21] Business Process Execution Language for Web Services
(BPEL), Version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel.

[22] Workflow Management Coalition: Workflow Process
Definition Interface – XML Process Definition Language.
Document Number WFMC-TC-1025, October 25, 2002.

