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Abstract 
 

Correct synchronization among activities is critical in 
a business process.  Current workflow languages such as 
BPEL specify the control flow of processes explicitly. 
However, their procedural style may cause inflexibility 
and tangled code. We propose DSCL (Dag-acyclic-graph 
Synchronization Constraint Language) to achieve three 
desirable properties for a synchronization modeling 
language: declarative syntax, fine granularity and 
validation support. Instead of composing service out of 
structured constructs, DSCL declaratively describe the 
synchronization constraints in three basic relations on 
activity states. The state relationships collectively 
determine the execution order of activities in a composite 
process. The relationships are automatically translated 
into Petri Nets and simulated in the CPN/Tools, from 
which several correctness criteria can be validated for the 
composite process.  We illustrate the advantages of DSCL 
with a Purchasing workflow example from BPEL 1.0 
specification, and verify its correctness using CPN/Tools. 
 
 

1. Introduction 

Recent workflow specification languages such as 
BPEL [21], XPDL [22] have used structured constructs to 
describe the control flow of business processes.  While 
there are advantages in making process component 
composition explicit, the procedural style of such 
languages also has its limitations.  There are several 
known problems in the area of synchronization and 
concurrency modeling.  For example, to specify mutually 
exclusive execution using XOR-split and XOR-join 
constructs may require an enumeration of all execution 
scenarios [1].  Another example is the tangled and 
scattered synchronization code when using BPEL’s link 
construct to describe constraints for activities that are 
nested within different concurrent subprocesses.  

Inspired by parallel programming language research on 
synchronization [4][19], we adopt three desirable 
properties for a synchronization modeling language. First, 

the language should have a declarative syntax, so 
programmers only need to specify what to be 
synchronized instead of how to implement it. As a result, 
a process specification can be incrementally specified 
without demanding structural change in the base code.  
Second, the language should provide fine granularity 
control on synchronization constraints. Instead of being 
regarded as an atomic unit, the life cycle of an activity is a 
sequence of states and can be synchronized with other 
activities based on its current states. For instance, it 
should be possible to specify a synchronization constraint 
like “Before starting the activity of closing a purchasing 
order, the activity of customer satisfaction investigation 
should have started and a survey has been sent out to the 
customer”.  Third, the language should provide validation 
support.  A process architect needs tools to verify the 
synchronization behavior of processes, particularly for 
complex and evolving processes. We refer to three 
desirable properties (Declarative syntax, Fine granularity 
and Validation support) as DFV properties in the rest of 
the paper.   

The main contribution of the paper is the introduction 
of DAG Synchronization Constraint Language (DSCL).  
DSCL provides the DFV properties by focusing on the 
synchronization aspect of processes, in a way similar to 
aspect-oriented programming applied to modeling [8].  
DSCL specifies synchronization constraints in a 
declarative style using three basic state relations 
(HappenBefore, HappenTogether, Exclusive). They 
operate over the states of activities. An activity goes 
through three states during its life span, start, run and 
finish, each of which is viewed as a synchronization point. 
By specifying relationships over the states of activities, 
various synchronization behaviors can be described like 
And-split and And-join [22].  To demonstrate the 
validation of DSCL specifications, we translate DSCL 
into Colored Petri Nets (CPN).  Problems such as 
deadlock and infinite synchronization sequence in a 
process can be found using CPN software tools [10].  The 
expressiveness of DSCL is illustrated with a motivation 
example (Section 3) and its limitations discussed in 
Section 4.  



 

 

The rest of the paper is organized as follows. In section 
2, we summarize related work. In section 3, we describe a 
realistic motivation example process (Purchasing). 
Section 4 describes the features of DSCL. Section 5 
outlined a translation method mapping DSCL to Colored 
Petri Nets [17].  Section 6 uses DSCL to specify two 
processes. One is from the Purchasing example. The other 
is constructed to demonstrate those features not shown in 
the Purchasing process. Section 7 concludes the paper.  

2. Related Work 
Several synchronization modeling languages have been 

proposed in the literature, such as path expressions [4], 
synchronization expressions [19] and interactive 
expressions [9]. They provide constructs at different 
abstract levels to describe the concurrency in parallel 
application, although they offer limited support for 
validation. Different from the early work, DSCL models 
the process state explicitly. Synchronization depending on 
activity state is an important synchronization constraint in 
interactive system that can be observed in many real 
situations [1].  Furthermore, by establishing the mapping 
between DSCL and CPN, we can use CPN tools. 
Synchronization expressions have been mapped to Petri 
Nets [12], but they have not used Petri Net tools for 
validation.  DSCL also contains additional technical 
features such as the Exclusive state relation. 

As a domain specific language focusing on 
synchronization, DSCL supports a Directed-Acyclic-
Graph (DAG) flow model. Therefore it characterizes part 
of the spectrum of synchronization behavior without 
including loop and conditional branching. We can see 
other DAG flow model in tools like Symphony [13]. 
UNICORE [6] is another tool that does not include 
conditional branching.  Nontrivial workflow applications 
areas such as service deployment workflows have been 
completely specified without conditional branches [18]. 

Some projects have introduced synchronization at the 
granularity of activity state. In [18], a service deployment 
workflow is specified by putting synchronization 
constraints on the states of installation activity. In [19], 
activities are split into two parts, the start and the 
termination for inferring the correctness of 
synchronization history.  DSCL integrates the support for 
fine-grain synchronization as part of DFV properties. 

As the complexity of the process increases, it becomes 
more important to understand the behavior of the system 
under the occurrence of concurrency. Different techniques 
are used to simulate, test and verify the synchronization 
behavior of a process. Most work uses formal techniques 
like Petri net [17], and π-calculus [16] etc. Other work is 
based on model checking that has been widely used in 
automated software verification [3] [7]. We use Petri net 
to validate the synchronization behavior of the process 
because Petri net model state explicitly. 

 
Figure 1. Purchasing process 

3. Motivating Example 

Let consider a Purchasing business process borrowed 
from BPEL 1.0 specification [21] in Figure 1. 

The Purchasing process coordinates with three Web 
services: PurchasingService, ShippingService and 
SchedulingService in several steps to process a purchase. 
After receiving a purchase order, three subprocesses are 
instantiated concurrently: Price Calculation (SIP, SSP and 
RI), Shipping Selection (SSR and RSS), and Scheduling 
(SPSR and SSS). Due to the data dependency, the 
activities need to be synchronized to avoid race condition. 
For example, the shipping price produced by SSR is 
required to complete SSP. And the shipping schedule 
generated by RSS is required for the completion of SSS. 
We can observe its data flow in Figure 2. 

 
Figure 2. Data flow in the Purchasing process 

 
These data flows introduce several synchronization 

constraints between the finish state of the data producer 
activities and the start state of the data consumer activities. 
We denote the start state and the finish state of an activity 
by S and F respectively. We introduce a state relation 
HappenBefore (→) to describe them. 

FRPO→SSIP  FRPO→SSSR  FRPO→SSPSR  FSSR→SSSP 
FSSR→SRSS  FRSS→SSSS  FSSP→SRI   FRI→SSI 
The process further requires that the final invoice can 

be sent out only after the SSS successfully finishes such 
that a customer who receives a final invoice is guaranteed  



 

 

 
Figure 3: Synchronization relationships in 

Purchasing process 
to receive her product. To describe it, we introduce 
another state relation HappenTogether (↔). 

FRI↔FSSS 
This statement declares the constraint that RI and SSS 

will enter their finish state together. When both of them 
finish, RI can notify SI to start.  

For easy understanding, instead of writing down the 
state relationships in statement, we draw a 
synchronization graph to illustrate its synchronization 
constraints. We use a rectangle to represent an activity and 
a directed line to represent a state relationship. The line is 
labeled with states that the state relationship operates on. 
Figure 3 shows all the constraints for the Purchasing 
process.  

From the Purchasing example, we can see that the 
orchestration of a process could be well captured in a set 
of relationship statements and incrementally developed 
without side-effect on previous constraints. In real life, the 
synchronization constraints in a process can be much 
more complicated than those in the Purchasing process. 
For example, two activities may update the backend 
system like database on shared data. In that case, these 
two activities need to be executed exclusively to 
guarantee the data consistency. A process architect needs 
assistance in describing, simulating and analyzing the 
synchronization behavior in a complicated process. In the 
rest of the paper, we detail each of these issues.  

4. DAG Synchronization Constraint Language  

In this paper, we use business process and process 
interchangeably. Individual steps in the process are called 
activities. In a process, each activity goes through three 
states: start, run, and finish (States related to exception 
handling such as abort, failure are subject of ongoing 
research and beyond the scope of this paper.).  The 
activities interact and synchronize their transition from 
one state to another (in order). 

DSCL is designed to describe Directed-Acyclic-Graph 
(DAG) synchronization behavior at activity level.  A 
process architect can use it to declaratively specify the 
synchronization constraint in the form of relationship 
statements informally introduced in Section 3.  DSCL 

omits loop and conditional branching synchronization 
relations to avoid the typical problems associated with 
such “procedural” facilities [14].  Similar to functional 
programming languages and logic components [5], we 
expect to combine DSCL with other aspect-oriented 
workflow specification languages as suggested in [20].  
For example, it is desirable to decompose a workflow 
system into separate aspects (functional, control, data, 
organizational) for the purpose of creating easily adapted 
and fully distributed workflow.  One possible design 
choice is to embed DSCL within a “general purpose” 
workflow specification language such as BPEL, in a way 
similar to some aspect-oriented domain specific languages 
embedded in Java.  For example, Jeeg [15] decouples the 
synchronization code from the other code in java Class. 
The synchronization code is declaratively expressed in 
linear temporal logic and later woven into the rest of the 
code by a compiler. 

In DSCL, We denote the state space (start, run, finish) 
by N={S, R, F}.  For every pair of states, we observe three 
basic relations between them: 1) the two states should be 
reached one after another; 2) the two states should be 
reached together. In other words, if one of the states 
cannot be reached due to some missing conditions, the 
other state should not be reached; 3) the two states are not 
allowed to coexist simultaneously at any point in time. We 
summarize their notation and semantics below.  
 HappenBefore (→): the state at the beginning of the 

arrow should happen before the state at the end.  
 HappenTogether (↔): the two states at both ends 

should be reached together.  
 Exclusive (O): states at both ends must not be 

concurrent. Note that this only applies to run states 
because they are the only states where activities can 
actually interfere with each other.  

One advantages of modeling a process by these three 
relations is that they naturally reflect the way how 
business people use causal relationships to describe their 
business process in real applications.  

We use a denoting an activity in a process, and X as the 
range of state space N for the state relations. Xi refers to 
some state X of activity ai. We denote domain of relations 
by Dom. Below we give the definition of the state 
relations.  

Definition 1: State relation is defined by (Xi, Xj) ∈ψ, 
where Xi, Xj ∈{S, R, F},ψ∈{→, ↔, O }. Dom(→)= 
{S, F}, Dom(↔)={S, F} and Dom(O) = {R}. N(ψ ) 
denotes all the states occurring inψ. 

ψcan describe a rich set of synchronization patterns. 
For example, Fi→Sj describes sequence. Si↔Sj and 
Fi↔Fj together express And-split and And-join. More 
than that, they can describe those synchronization patterns 
that are fairly hard to express in traditional approach. For 
instance, if we want to specify the constraint of Si→Fj 



 

 

such that activity aj should not finish until activity ai starts, 
this cannot be described by existing tools in that each 
activity is treated as an atomic synchronization unit. We 
could not specify those synchronization constraints for 
activity ai and aj when their life spans are partially 
overlapped. As a result, only sequential execution can be 
specified between them, which may make the process 
unnecessary sequential. In Section 5, ψis translated to 
Petri net. Intuitively, it is able to describe those workflow 
patterns that can be described by Petri net for activity 
state like sequence, parallel split, synchronization, 
interleave parallel routing, and milestone [1].  

Next we declare two propositions that state the 
properties of ψ . These two propositions can help us 
reduce the complexity of mapping from the state relations 
to Petri Net. We also use them to define the correctness 
criteria of synchronization constraints in terms of state 
relations.  

Proposition 1:  
i. Transitivity 
(Xi, Xj) ∈ψ→∧(Xj, Xz) ∈ψ→⇒ (Xi, Xz) ∈ψ→ 

(Xi, Xj) ∈ψ↔∧(Xj, Xz) ∈ψ↔⇒ (Xi, Xz) ∈ψ↔ 

ii. Symmetry 
(Xi, Xj) ∈ψ↔⇒ (Xj, Xi) ∈ψ↔   
Proof The follows straightforward for Definition 1.     � 
Proposition 1 implies that → or ↔ only defines a 

partial relationship between two states. We need to form a 
global view to maintain the correct synchronization 
behavior. For example, if Si↔Sj and Sj↔Sz, it means that 
the start state of ai and az should also be reached together. 
One abbreviation is Si↔Sj↔Sz . 

We use +
→}{ iX to denote the transitive closure of states 

relation →, and use +
↔}{ iX to denote the transitive and 

reflective closure of state relation ↔. Notice 
that +

↔
+
↔

+
↔ =∈∀ }{}{,}{ jiij XXXX . That is if X1 ↔ X2 

↔ X3, we can use any of them to denote the closure set 
+
↔

+
↔

+
↔ == }{}{}{ 321 XXX .  

Proposition 2: ↔ can be simulated by →. Given X1 ↔ 
X2, …, ↔ Xk whose transitive and reflective closure is 
denoted as +

↔}{ 1X , the state relationships can be simulated 
in → by creating a coordinator activity ac and replace 

+
↔}{ 1X with new state relationships as follows: 

(1) ∀  Xi∈ N(ψ), if ∃  Xj∈
+
↔}{ 1X  ∧ Xi → Xj, then 

ψ=ψ∪{Xi → Sc}-{Xi → Xj} 
(2) ∀  Xj∈

+
↔}{ 1X . Let ψ=ψ∪{ Fc →Xj} 

Proof      
From (1) the activity ac synchronizes with those states 

Xi that need to be reached before the states in +
↔}{ 1X can 

be reached at its start state Sc. Then ac notifies the states 
in +

↔}{ 1X to be reached through (2) by synchronizing 

them at its finish state Fc.      � 
For example, given the following relationship statements 
F1→S2, F3→S4, S2↔S4↔S5 for activity a1, a2, a3, a4 and a5, 
we can replace S2↔S4↔S5 by introducing ac, removing 
F1→S2, F3→S4, and finally adding the additional 
relationships F1→SC, F3→Sc, Fc→S2, Fc→S4, Fc→S5.  

Proposition 2 implies that ↔ is a “syntax sugar” and 
we can always do preprocessing to translate ↔ to → by 
introducing coordination activity. Thus without loss of 
generality, the translation method in the next section 
focuses on → and O only.  

Finally we define the correctness criteria for the state 
relationships in a process. There are two situations to 
consider. One is the dead end. The other is infinite 
synchronization sequence. Both of them are caused by the 
existence of cyclic synchronization relationships. 
Definition 2 gives the formal definition. 

Definition 2: (correctness criteria of state relationships) 
Given a process A = {a0, a1,…, an}with a0 as the starting 

activity and the associated state relationshipsψ , ψ is 
correct for process P if and only if it satisfies the 
following properties: 

1. ∀  ai∈A,{Si, Ri, Fi} +
→⊆ }{ 0S  

2. ∀  Xi ∈ψ, +
→∉ }{ ii XX  

By condition 1, there is no dead end in synchronization. 
All the states of activities are reachable from the start 
state of the root activity. By condition 2, it makes sure that 
the synchronization constraints are acyclic. There is no 
deadlock and infinite occurrence sequence. In other words, 
the state of an activity is not allowed to have a 
HappenBefore relationship with itself. Notice that the 
Exclusive relation O is not considered in the correctness 
criteria in that it only impacts the scheduling time of 
associated activities not their reachability.  

5. Translation of DSCL to Petri Net 

As a descriptive language, DSCL acquires its formal 
foundation by establishing a mapping to Petri nets. Petri 
nets are a formal and graphical language for modeling 
system behavior with concurrency.  In this section, we 
demonstrate that state relations in DSCL can be translated 
to Petri net. By studying the properties of translated Petri 
net, we are able to check the synchronization correctness 
for a process. We first give a self-contained review for 
Petri net. For more details, please refer to [17]. 

5.1 Petri Net 
Definition 3: (Petri Nets). A Petri Net is a four-

tuple ),,,( OITPC = : 
i. P is a finite set of places. 

ii. T  is a finite set of transitions. 
iii. ∞→ PTI : is the input function, a mapping from 

transitions to bags of places.  



 

 

iv. ∞→ PTO : is the output function, a mapping 
from transitions to bags of places. 

A transition is enabled if each of its input places has at 
east as many tokens in it as arcs from the place to the 
transition. The inputs and outputs of a transition jt allow 
a place to be a multiple input or a multiple output of a 
transition. We use ))(,(# ji tIp and ))(,(# ji tOp to denote 
the number of occurrences of the place in the input bag of 
the transition and the place in the output bag of the 
transition respectively.  

Definition 4: (marking). A marking µ of a Petri net 

),,,( OITPC = is a function from the set of places P  to 
the nonnegative integers N. ),...,,( 10 nnnn=µ where the 

number of tokens in place ip  is in .  
Definition 5: (transition firing and occurrence 

sequence). The firing of any enabled transition jt at 
marking µ causes the change of the marking to a new 
marking µ′ defined by  

))(,(#))(,(#)()( jijiii tOptIppp +−=′ µµ .  
Two sequence results from the execution of a Petri net: 

the sequence of markings ),...,,( 10 nµµµ  and the 
sequence of transitions ),...,,( 10 jnjj ttt . The firing of 

jkt under the marking kµ  leads to marking 1+kµ . We use 

,...1,0,),( 1 == + kfort kjkk µµδ to denote this relation. 

We also write it as ...[[ 21100 µµµ ff jj tt and call it 
occurrence sequence (OS). If the sequence has infinite 
length, we call it infinite occurrence sequence (OSI).  

Definition 6: (reachability and reachability set). A 
marking µ′ is said to be reachable fromµ iff there is a 
firing sequence nttt ,...,, 21 such 
that µµµ ′fff ...[[ 210 tt . The reachability set 

),( µCR for a Petri net ),,,( OITPC = with marking µ  
is the smallest set of markings defined by 

1. ),( µµ CR∈  
2. if ),( µµ CR∈′ and ),( jtµδµ ′∈′′ for some 

Tt j ∈ , then ),( µµ CR∈′′  
Finally we introduce the concepts of liveness, which 

have been considered in studies of deadlock. Liveness is 
categorized at four levels [17]. For the purpose of this 
paper, we are interested in level 1 and level 4. For a Petri 
net ),,,( OITPC = with markingµ : 

Definition 7 (liveness level 1): A transition is live at 
level 1 if it is potentially fireable. That is, if there exists 

),( µµ CR∈′ such that jt is enabled inµ′ .  

Definition 8 (liveness level 4): A transition is live at 
level 4, if for each ),( µµ CR∈′  there is a firing sequence 

σ  such that jt is enabled inµ′ .  
We can see that liveness level 4 is much strong than 

level 1. Liveness level 1 is used to identify whether there 
is unreachable transitions. Liveness level 4 is used to 
identify whether there is infinite firing sequence in the 
Petri net. Both of them can help us verify the correctness 
of synchronization relationships. We shall see this in 
Section 5.3. Before that, we make a useful statement.  

Proposition 3: If a Petri net ),,,( OITPC = with 
marking µ is at level 4, there exists an infinite occurrence 
sequence.  

Proof  Prove by contradiction. If no infinite occurrence 
sequence exists, C  must halt at a markingµ′ , at which 
no transition is enabled. This contradicts to Definition 8.  

5.2 Translation from State Relationships to 
Petri Net 

This section describes a method to derive a Petri net 
from state relationships of a process. Due to Proposition 2, 
we can always do preprocessing to replace ↔ with →. 
Thus the method includes → and O only. Below we give 
an algorithmic description of the translation method.  

The method follows three steps: the intrastate relation 
construction, which manages the state relations within an 
activity, and the interstate relation construction, which 
establish the state relations between activities and finally 
the exclusive relation construction, which handles the 
Exclusive relation. During the mapping, a place represents 
a state of an activity. Each transition controls the 
conditions that need to be satisfied before the activity can 
reach that state. The firing of a transition means that the 
dependent states at the inbound places have been reached. 
The correspondent activities can transmit to the next state. 

Step 1: Intrastate relation construction 
Intrastate relations reflect the state transition of an 

activity in its life span. Each activity goes through three 
states{S, R, F} that can be described in → relation. Its 
Petri net is shown in Figure 4 (a).  

Step 2: Interstate relation construction 
For each Xi → Xj., i≠j, a place and two arcs are created 

to connect the outbound transition corresponding to Xi and 
the inbound transition corresponding to Xj.. For example, 
the state relation Fi→Sj is connected by place px as 
illustrated in Figure 4 (b). 

Step 3: Exclusive relationship construction 
For exclusive relation O, a place with a shared token is 

added to the transitions that corresponding to the running 
state of all involved activities. The shared token at place 
py guarantees that only one of them is executed at any 
point in time, as seen in Figure 4 (c). 



 

 

 
Figure 4: Translation from state relationships to 

Petri net 
Proposition 4: Given a set of state relationships, the 

translated CPN correctly reflect the synchronization 
constraints prescribed by these relationships.  

Proof Due to proposition 2, we only need to prove the 
proposition holds for → and O.  

Step 1: Prove → 
According to the interstate relation construction, given 

a HappenBefore relation Xi → Xj, a place p and two arcs, 
(Xi, p) and (p, Xj), are added to the CPN. Thus the state Xj 
will not be entered until Xi fires and adds a token to p. 
Thus the construction maintains the semantic of →.  

Step 2: Prove O 
With the extension to the basic algorithm, all activities 

involved in the exclusive relationship share a token. 
Before an activity enters into its running state, it should 
obtain the exclusive access to the shared token and return 
it back after it finishes the execution. Thus the 
construction maintains the semantic of O. 

In order to infer the correctness of a process in terms of 
synchronization relations by way of Petri net, we need to 
correlate the Petri net properties to the correctness criteria 
(Definition 2). Proposition 5 does the job.  

Proposition 5:  Given a set of activities A = {a0, a1,…, 
an} and its associated state relationships ψ , the 
synchronization constraints are correct if and only if its 
corresponding Petri net is at liveness level 1 and there is 
no transition at liveness level 4.  

Proof this can be inferred from Definition 2, Definition 
7, and Proposition 3      � 

5.3 Simulation in CPN/Tools 
We choose CPN/Tools [10] as the simulation tool. 

CPN/Tools is a graphical editor and simulator of Colored 
Petri Nets (CPNs). It is a high-level net allowing typed 
token to carry complex data. Basically, in CPN a place 
has a color indicating the type of the token this place can 
hold. The type of the token can be arbitrarily complex like 
a record in programming language. There are two 
considerations to choose it as the simulation tool. First, 

Colored Petri Net (CPN) is more expressive than Petri Net 
to describe a system [11]. This leaves us more flexibility 
if the DSCL is extended to accommodate richer 
synchronization behaviors, for instance conditional state 
transition. Second, the CPN/Tools provides substantial 
support for validation, i.e. a simulation tool, a state space 
tool for verifying various properties like liveness, 
boundedness and fairness [11]. Third, this tool takes a 
CPN formatted in XML. This facilitates us to translate the 
Petri net to the input of CPN/Tools. Since CPN requires 
that each place should have a type, we assign each place a 
single type e, which means no data contained. 

In the simulation, we use the State Space Toolkit. This 
toolkit constructs an occurrence graph in which each node 
stands for a reachable marking and an arc for each firing 
of transition. Based on the occurrence graph, it generates 
information like the number of nodes in the graph, the 
bound for each place, dead and live transitions etc. In the 
generated report, we are particularly interested in two 
parts. One is the record for the dead transitions, which 
corresponds to the transition liveness level 1. If dead 
transition is none, the Petri net satisfy liveness level 1. 
The second is the size of state space and the number of 
Strongly Connected Components (SCC). A SCC is a 
maximal subgraph in which it is possible to reach from 
any node to any other node. If the number of SCC is 
fewer than the state space nodes, it implies that the net has 
at least one SCC with more than one node, which implies 
infinite occurrence sequences exist [10]. In other words, 
the net may not terminate. Thus we can infer the liveness 
level 4 by comparing the number of nodes in SCC and the 
number of nodes in the occurrence graph. Another useful 
tool is the Simulation Toolkit. It is useful when the state 
space of the net is unbounded.  

6. Applications 

In this section, we look at two processes to illustrate 
the DFV properties of DSCL in process modeling. The 
first process is the Purchasing process introduced in 
Section 3. The second one is artificially constructed to 
demonstrate those features that are not reflected in the 
first process.  

6.1 Process 1 (Purchasing Process) 
Description Based on the description in Section 3, its 

synchronization constraint graph is illustrated in Figure 5.  

 
Figure 5: Synchronization constraints 



 

 

Petri net translation We implemented a parser called 
SR2PN (State Relationships to Petri Nets) that reads these 
state relationships and translates them into Petri net. For 
each activity Ai, we name the Petri net places si, ri, fi 
corresponding to its start, run and finish state. The 
transitions between places are named as Si, Ri, Fi 
respectively. The initial place s1 is assigned with initial 
marking 1`e (1`e represents one token with the color type 
e). For a transition ti, if there is more than one outbound 
place, we call them xi0, xi1, …, xin, x ∈ {s,r,f} 
respectively. For a HappenTogether relationship between 
Ai and Aj, we name the coordinator activity Aij. Figure 6 is 
a screenshot from the CPN/Tools. 

 
Figure 6. Petri net for process 1 

 
We can see that there are three places and three 

transitions for each activity. That is why translated Petri 
net has more nodes than the number of activities. Actually 
for validation purpose, we can apply reduction rules to 
reduce its size [11]. 

Simulation result   
 Statistics
------------------------------------------------------------------------
  State Space  
    Nodes:  391
    Arcs:   966
    Secs:   0
    Status: Full
  Scc Graph 
    Nodes:  391
    Arcs:   966
    Secs:   0
    ... ... ...
 Liveness Properties
------------------------------------------------------------------------
  Dead Transitions Instances: None
    ... ... ...  

Figure 7. Simulation report from CPN/Tools 
 

Figure 7 is part of the state space report generated by 
the State Space Toolkit. From the report, we can see that 
the size of state space is equal to that of SCC and no dead 
transition exists. Therefore, the synchronization behavior 
of the Purchasing process is correct.  

6.2 Process 2 
Description Process 2 consists of four activities A1, 

A2, A3 and A4. It has three synchronization constraints.  

• SA1→SA2: A2 can start after A1 starts. In other 
words, the execution of A2 does not have to wait for A1 
to finish. 

• SA1→FA3: A3 can only finish after A1 starts. That 
is A3 has to make sure A1 has been started before it 
finishes. Otherwise, it has to wait until this event 
happens. 

• FA3→SA4: A3 finishes first, and then A4 starts.  
To make it more interesting, suppose that the 

synchronization constraint FA4→SA3 is accidentally added 
to the process. The synchronization constraint graph is 
portrayed in Figure 8. Intuitively, we would expect that 
there is a deadlock between A3 and A4.  

 
Figure 8. Synchronization constraints process 2 

 
Petri net translation 

 
Figure 9. Petri net for process 2 

The initial place s0 is added to start A1 and A3 
concurrently with the initial marking 1`e. 

Simulation result  
 Statistics
------------------------------------------------------------------------
    ... ... ...
  Dead Transitions Instances: 
  F3 1
  F4 1
  R3 1
  R4 1
  S3 1
  S4 1  
Figure 10. Simulation report for process 2 

 
From the report, we can see that those transitions 

involved in the loop are dead (highlight in the dashed 
rectangle). This is caused by the cyclic synchronization 
constraint in the state relations, which violates Definition 
2. Therefore we should go back and check the 
correspondent constraints in the original specification for 
correction. The updated relationships should be feed into 
the SR2PN parser for another round of validation until the 
correctness criteria is satisfied.  



 

 

7. Conclusion and Future Work 

In this paper, we describe DSCL, a domain specific 
synchronization constraint language to support the DFV 
properties: declarative syntax, fine granularity and 
validation support. DSCL provides three state relations 
for a process architect to declaratively specify what to be 
done for synchronization instead of how to implement it. 
The feature of fine granularity is realized by specifying 
constraint on activity state instead of treating it as an 
atomic unit. The synchronization constraints specified by 
DSCL are finally translated to Petri net for simulation, 
analysis and validation.  

We use a Purchasing workflow example (from BPEL 
1.0 specifications [21]) to illustrate the expressiveness of 
DSCL.  The synchronization constraints are specified 
using the three state relations of DSCL: HappenBefore, 
HappenTogether, and Exclusive.  The DSCL specification 
is translated into CPN and verified using CPN tools, 
demonstrating the DFV advantages of DSCL. 

DSCL could be used to deal with process 
synchronization in general. Our current work extends the 
practical application of DSCL.  We plan to extend an 
existing workflow language (e.g., BPEL) with DSCL such 
that a process architect can model the synchronization 
aspect of a process at the abstract level of state 
relationships and let the compiler (or a code generation 
tool) produce the executable code automatically. For 
implementation, we may leverage on existing techniques 
capable of translating Petri net to BPEL [2].  
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