
Clearwater: Extensible, Flexible, Modular Code Generation
Galen S. Swint, Calton Pu,

Gueyoung Jung, Wenchang Yan,
Younggyun Koh, Qinyi Wu
CERCS, College of Computing
Georgia Institute of Technology

801 Atlantic Drive,
Atlanta, GA 30332-0280
swintgs@acm.org,

{calton, helcyon1}@cc.gatech.edu

Charles Consel
INRIA/LaBRI

Bordeaux, France
consel@labri.fr

Akhil Sahai
HP Laboratories, Palo Alto, CA

akhil.sahai@hp.com

Koichi Moriyama
Sony Corp., Tokyo, Japan

ABSTRACT
Distributed applications typically interact with a number of het-
erogeneous and autonomous components that evolve independ-
ently. Methodical development of such applications can benefit
from approaches based on domain-specific languages (DSLs).
However, the evolution and customization of heterogeneous com-
ponents introduces significant challenges to accommodating the
syntax and semantics of a DSL in addition to the heterogeneous
platforms on which they must run. In this paper, we address the
challenge of implementing code generators for two such DSLs
that are flexible (resilient to changes in generators or input for-
mats), extensible (able to support multiple output targets and mul-
tiple input variants), and modular (generated code can be re-
written). Our approach, Clearwater, leverages XML and XSLT
standards: XML supports extensibility and mutability for in-
progress specification formats, and XSLT provides flexibility and
extensibility for multiple target languages. Modularity arises from
using XML meta-tags in the code generator itself, which supports
controlled addition, subtraction, or replacement to the generated
code via XML-weaving. We discuss the use of our approach and
show its advantages in two non-trivial code generators: the In-
fopipe Stub Generator (ISG) to support distributed flow applica-
tions, and the Automated Composable Code Translator to support
automated distributed application deployment. As an example, the
ISG accepts as input an XML description and generates output for
C, C++, or Java using a number of communications platforms
such as sockets and publish-subscribe.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – lan-
guages (e.g., description, interconnection, definition), domain-
specific architectures

General Terms
Languages

Keywords
Clearwater, Infopipes, AXpect, ISG, code generation, DSL

1. INTRODUCTION
Automating the generation of code for distributed systems soft-
ware has been an established technique since the introduction of
RPC stub generator [4]. However, significant research challenges
remain for generating flexible, reusable, and modular distributed
systems software. For example, environmental and design changes
pressure the input language to change and evolve. Often, irrefuta-
ble forces external to a project such as mergers, acquisitions, or
standards adoption dictate this evolution. Similarly, the generated
code (output) often needs customization to a range of software and
hardware platforms, also typically due to unyielding market and
technology evolution. This constant evolutionary pressure of input
and output formats has so far limited the practical life span of
code generation tools developed for distributed system software.

Two of our recent research projects have encountered the issue of
accommodating heterogeneous distributed system elements in
code generation. In the first, the Infosphere project, our obstacle
was encapsulating middleware for distributed information flow
systems, which are characterized by continuous volumes of in-
formation traversing a directed workflow network [5][19]. The
second project addressed the resource deployment problem
whereby distributed applications should start efficiently and in
provably correct order by simultaneously enforcing serialization
constraints and leveraging the distributed system’s inherent paral-
lelism. In both cases, our challenge was building a generator for
mapping evolving domain-level languages to multiple execution
platforms (lower-level output languages). The result of our ex-
periences was the Clearwater approach which applies XML,
XSLT, and XPath to address these code generation challenges
[6][8]. Our earlier publications addressed the contributions of the
tools we developed. The contribution of this paper is to illustrate
the practical and research advantages of using the Clearwater
approach to code generation for domain-specific languages
(DSLs) and present two generators built using the approach, ISG
(the Infopipe Stub Generator) and ACCT (the Automated Com-
posable Code Toolkit).

We can generalize the generator requirements needed to support
ongoing research into the need for extensibility, flexibility, and
modularity. Our reasons for each of these:

extensible — Extensibility is supported at two levels: for the
domain and for the target implementations. In the Clearwater

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011…$5.00.

context, domain extensibility means that new domain features
can be encoded in the XML specification with minimal impact
on pre-existing specifications. Furthermore, we want to sup-
port a variety of domain-level input sources (text files, pro-
gram toolkits, GUIs, etc.). With regard to target
implementations, extensibility addresses the problem of het-
erogeneity, a hallmark of complex distributed systems. There-
fore, we required support for multiple general purpose
languages and multiple communication layers as simultaneous
output.

flexible — Our specification formats are ongoing research. So,
the generators should be robust to changes in input specifica-
tion, i.e. specification changes should require no or minimal
re-writes to the generator. Likewise, supporting new imple-
mentation-level features and re-factoring of the generator code
generally should not demand re-writing of domain-level ele-
ments or re-structuring of the intermediate representation.

modular — A developer frequently needs to make controlled
changes to the generated code. For instance, quality of service
often demands such consideration. These changes may be spe-
cific to the application for which we are generating code and
therefore not suitable for general inclusion in the code genera-
tor. Supporting modularity encourages the writing of re-usable
modifications for the generated code.

Traditional code generation techniques rely on developing a lan-
guage and grammar, parsing inputs into a token stream, building a
custom abstract syntax tree (AST), and then tailoring a code gen-
erator to the AST to produce output code. Consequently, a change
to or extension of the specification language requires multiple
simultaneous activities: creating the new domain language fea-
tures, defining their lexical patterns, defining their grammar rules,
updating the AST design, and finally, reconciling the generator to
the new AST. Only when the developer has completed all these
can he or she construct a demonstration application and test the
new produced code – a non-trivial task on its own. If multiple
targets are required, the developer must change and test the gen-
erator for each and every target (implementation) platform. This
overhead proscribes specification flexibility or extensibility since
it magnifies even small changes. Code modularity is not readily
addressed in any platform independent fashion, either.

By using XML and XSLT, we can sidestep or mitigate these de-
pendencies and support cross-language development and multi-
input format specification while maintaining extensibility in terms
of language support and code generation features. XML provides
an extensible and modular specification format for the intermedi-
ate representation and the AST; and XSLT, with its use of XPath,
offers flexible structure-independent access to the information in
the AST. Interestingly, by using XML meta-information within
the generator itself and then weaving in new code after generation,
we can also achieve our goal of modular generated code.

Our project parallels several others using XML and XSLT for
code generation. For example, the SoftArch/MTE and Argo/MTE
teams have also had favorable experiences using XML + XSLT
generators to “glue” off-the-shelf applications together [7][13],
and XML+XSLT is advocated for code generation tasks in indus-
try as well [24]. To our knowledge, these efforts have not ex-
plored the issues of extensibility, flexibility, or modularity
presented here. Although Karsai discusses a number of possible
shortcomings in using XSLT+XML in a semantic translator [14],

we have found the two technologies to be quite amenable as a core
for code reuse through generation.

We have based two generators on this technique. The ISG under-
pins four types of input: Spi, a human readable format for In-
fopipes; Ptolemy II, a GUI builder for workflows; XIP, the XML
description of Infopipes and native format for ISG; and WSLA,
the Web Service Level Agreement specification. ACCT, which is
less mature, supports CIM-MOF. For output, the ISG generates C,
C++, and Makefiles, and ACCT generates Java and SmartFrog’s
specification language [21]. These experiences suggest that the
Clearwater approach generally is not limited to any particular
input or output language.

The rest of the paper is structured as follows: First, we introduce
our target application domains. Following that, we present a gen-
eral overview of our DSL compilation process. Then, we discuss
how XML and XSLT in the Clearwater approach introduce the
extensibility, flexibility, and to code generation. Third, Section 4
presents the ISG code generator, its AXpect weaver module, and
ACCT to illustrate their operation and how our goals of extensi-
bility, flexibility, and modularity are borne out in those systems.
Next, we discuss and present our application-building experiences
using the generators with respect to code performance and func-
tionality, and finally, we present related work and our conclusions.

2. APPLICATION BACKGROUND
The Clearwater approach was developed in the course of building
the ISG for the Infosphere project. We refer the reader to [19] for
detailed discussion, and will present enough information here to
provide an illustrative context that demonstrates Clearwater bene-
fits in practice and makes this paper self-contained. Our second
application domain, for ACCT, will be described in Section 4.3.

A simple Infopipe instance has two ends – a consumer (inport)
end and a producer (outport) end – and implements a unidirec-
tional information flow from a single producer to a single con-
sumer. Between the two ends is the developer-provided Infopipe
middle, which processes or transforms information. In operation,
an information producer exports and transmits an explicitly de-
fined and typed information flow, which goes to a consumer In-
fopipe’s inport. After appropriate transportation, storage, and
processing, the information then flows to a second information
consumer which may reside in a different geographic location.

The Infopipe abstraction is language and system independent; as a
consequence, generated stub of code in the abstraction is able to
hide the details of marshalling and unmarshalling parameters for
languages, hardware, communication middleware, etc. There are
three sources of problems in the implementation of a stub genera-
tor: (1) the heterogeneity of languages, operating systems and
hardware, (2) the translation between the language level procedure
call abstraction and the underlying communication library imple-
mentation, and (3) customization to a particular application’s re-
quirements.

3. CLEARWATER
We will first discuss a Clearwater generator’s relation to tradi-
tional compiler architecture, and then we will present and discuss
how XML and XSLT provide flexibility, extensibility, and modu-
larity inside that model.

3.1 Overview
From an architectural viewpoint, Clearwater adopts the compiler
approach of multiple serial transformation stages – a code genera-
tion pipeline. The Clearwater hallmarks are that stages typically
operate on an XML document that is the intermediate representa-
tion, and XSLT performs code generation. The overall process:

1. Compile to intermediate format (High Level Language-to-
XML). This is mainly a straightforward translation from a hu-
man-friendly representation into XML.

2. Pre-processing of the XML intermediate representation. We
lookup extra information from disk, if needed, resolving
names, etc., and add tie the new information into the XML in-
termediate representation.

3. Code generation via XSLT that transforms our representation
from XML to XML+Source code. We preserve the specifica-
tion and generate new source code into the (pre-processed)
specification. In this phase, we may also generate additional
XML tags along with the source code to be used in the next
step. One might also consider this as a parse tree annotated
with source code.

4. Post-processing. This step may involve iterative code genera-
tion steps that consume and produce XML elements.

5. Write generated source to files, directories (transform
XML+Source to pure source code).

Stage two reads and parses an XML input file to produce a DOM
(Document Object Model [16]) tree in memory, a decoupling that
facilitates one generator’s serving multiple high-level languages.
In practice, we have kept the high-level compilers of stage one
independent from steps 2 through 5 and use the XML intermediate
format as the primary input for experimentation as this allows for
greater flexibility in terms of research. However, we could easily
opt to wrap step 1 and steps 2 - 5 via a shell script. Stage two also
preps the intermediate language for processing by the code gen-
erator. Following that, stage three generates code via XSLT result-
ing in a new XML document containing both the specification and
newly generated code. Stage four provides aspect weaving and
modular modification of the generated code. Finally, stage five
writes the files to disk by stripping their XML accoutrements.

3.2 XML: Extensible Domain Specification
XML’s chief contribution to the Clearwater approach is that it
introduces extensibility at the domain-language/domain-
specification level. This stems from XML’s simple, well-defined
syntax requirements and ability to accept arbitrary new tags
thereby bypassing the overhead encountered when managing both
a grammar and code generator.

As an example of specification extension, consider a scenario in
which a developer adds new information specific to a target archi-
tecture. In Infopipes, an example is that native sockets support
only data transmission, but the ECho event middleware supports
“safe”, uploadable filters on events [12]. To accommodate the
filter functionality at the domain level, the ECho developer must
first extend the specification with new filter descriptions. Whereas
the use of a grammar based approach encounters the difficulties
listed in the introduction, in the Clearwater approach adding new
elements to the specification document alongside existing ele-
ments requires no changes to the parser, lexer, syntax checker, or
grammar definition.

In maintaining grammars, a developer spends a great deal of time
explaining the structure of a domain language to the parser by
defining tokens (lexing) and simultaneously determining what
token orderings are valid. Deviations from defined rules break the
lexer/parser and experimentation becomes difficult. Furthermore,
most approaches to generation create an abstract syntax tree based
explicitly on the grammar for the language. Therefore, any lan-
guage change finds its way into the parser’s AST, too, and from
there the code generation logic that interacts with the AST must
also be changed.

Because XML always represents a fully-parenthesized syntax tree,
document structure is always explicit (through element nesting
and angle brackets), and rules that govern the structure are (often)
implicit. Consequently, a changed specification format very often
can be accepted without syntactic complaints by the existing gen-
erator package. This extensibility sidesteps the problems of pars-
ing by isolating them from the code-generator chain. Because
XML documents implicitly encode production rules, developers of
domain language generators benefit by avoiding the premature
tying of the generator to a particular concrete grammar. Users can
add new XML tags to a well-formed XML document, and there-
fore to their language grammar, provided the changes maintain
well-formedness.

XML has several advantageous properties for being a general
specification format. First, XML defines a very simple lexical
pattern for characters that allows automatic tokenization by the
XML document parser. Reserved words which create a “block” of
code with some meaning are either 1) enclosed in angle brackets
and given the meta-name “element” (e.g., <subpipes> in
Figure 1), or 2) form a quote-delimited name-value pair specific to
an element and forms an “attribute” (e.g., name=“UAV”). New
reserved words can be added to a language by adding new ele-
ments or attributes to the XML representation. XML itself only
reserves two symbols, ‘<’ and ‘&’, the first to identify elements
and the second as an escape character.

We exploited extensibility to great advantage during ISG devel-
opment in that we were able to maintain multiple researchers’
efforts simultaneously without concern for specification mis-
matches. As it turned out, each researcher created a slightly differ-
ent code generator that operated from the same core XML
document. For instance, one developer worked on support for
aspects (AXpect) and introduced tags to support that effort while
another developer worked on mobile data filters with his own
custom tags added to the core document. Importantly, the devel-
opers could re-use the documents of each other for various testing
purposes without worrying about breaking their own code.

Concluding our XML discussion, one last useful feature, though
not strictly germane to fulfilling extensibility, is the XML name-
space. An XML namespace, in principle, performs for XML ele-
ments the same function as a namespace in a general language,
partitioning meaningful tokens into non-colliding subgroups. In
practice, this means that several overlapping trees of information
can exist in the same document. Clearwater uses namespaces to
clarify modularity for XML-weaving.

3.3 XSLT: Flexible, Extensible Generation
In addition to the extensible specification, we needed an extensi-
ble and flexible code generator that operated from the specifica-
tion. By flexible, we mean that the code generator is tolerant of

changes to the AST. By extensible, we mean similarly to extensi-
ble specification, new target outputs or functionality can be added
to the generator. The Clearwater approach fulfills both of these
requirements by using XSLT to generate target code. First, we
will describe XSLT and its co-standard XPath [9]; then, we will
address flexibility; and finally, we will discuss extensibility to
new outputs.

XSLT, the Extensible Stylesheets Language for Transformations,
is a (Turing complete) language for converting XML documents
into other types of documents – typically another XML or HTML
document. Each XSLT script, or stylesheet, is a collection of tem-
plates, and in the Clearwater approach, each of these roughly cor-
responds to some unit of transformation from specification to
generated code. Practically, the flexibility requirement means that
XSLT generator code must have the ability to ignore unknown
tags and still generate correct code that implements a portion of
the specification. It is the use of XPath that infuses XSLT with its
flexibility; XPath allows a developer to refer to locations and
groups of locations in an XML tree similar (syntactically) to how
a hierarchical file system allows path specification. It has two
important features improving beyond basic file paths, however.

First, XPath has a ‘//’ (“descendant-or-self”) ‘axis’ that encour-
ages writing structure-shy paths [17]. A structure-shy path is one
that is not closely tied to the absolute ordering and nesting of

nodes in a tree. The ‘//’ and the structure-shy qualities of XPath
allow a developer to perform references to information without
regard to explicit placement. Second, XPath provides predicate
execution. Because structure-shy paths do not necessarily indicate
a single, unique XML element, it may return a set of nodes from
the parsed document. Predicates can narrow these nodesets to
small or singleton subsets. In Figure 2, we illustrate moving data-
descriptions within the document does not break a properly writ-
ten XPath statement that retrieves that data from a datatype decla-
ration located in various places within the specification document.

In operation, a language developer can write a template to be acti-
vated in one of two fashions. First, the template may be invoked
explicitly by name – this is just as one calls a procedure or func-
tion in other languages. Second, the template may be invoked
implicitly by an XPath pattern match. In pattern matching, devel-
opers use XPath to select groups of elements (nodesets) from the
source XML document. These are matched to patterns specified
per template, and when an appropriate match is selected using
XSLT apply-templates instruction, a template will execute.

As an example of template execution, consider the ISG code gen-
erator’s operation over a XIP document. A XIP document can be
represented as a tree with a single element ‘xip’, containing sub-
elements. The ‘pipe’ sub-element encapsulates the data that de-
scribes an Infopipe. For a C generation template, the pattern

Specification 1 Specification 2 - Extended
<datatype name="FloatArray">
 <arg name="SIZE" type="integer"/>
 <arg name="buff" type="string"/>
</datatype>
<pipe name="UAV">
 <subpipes>
 <subpipe name="Sender" pipeOf="Sender"/>
 <subpipe name="Receiver" pipeOf="Receiver"/>
 </subpipes>
 <connections>
 <connection comm="ECho">
 <from pipe="Sender" port="out1"/>
 <to pipe="Receiver" port="in1"/>
 </connection>
 </connections>
</pipe>

<datatype name="FloatArray">
 <arg name="SIZE" type="integer"/>
 <arg name="buff" type="string"/>
</datatype>
<filter name="GREY">
 <in type="ByteArray"/>
 <out type="ByteArray"/>
</filter>
<pipe name="UAV">
 <subpipes>
 <subpipe name="Sender" pipeOf="Sender"/>
 <subpipe name="Receiver" pipeOf="Receiver"/>
 </subpipes>
 <connections>
 <connection comm="ECho">
 <from pipe="Sender" port="out1"/>
 <to pipe="Receiver" port="in1"/>
. <use-filters>
 <use-filter name="GREY"/>
 </use-filters>
 </connection>
 </connections>
 </pipe>

Figure 1. Specification 1 is a fragment from a basic Infopipe specification. We can extend our specification, without modifying any
grammars and using the same parser, to include the ‘filter’ construct and ‘use-filter’ modifier as in Specification 2.

XPath: //datatype[@name='ppmType']/arg[@type='long']
<datatype name="ppmType">
 <arrayArg name="mag"
 type="char" size="2"/>
. <arg name="width" type="long"/>
 <arg name="height" type="long"/>
 <arg name="maxval" type="long"/>
 <arg name="pictureSize" type="integer"/>
 <arrayArg name="picture"
 type="byte" size="pictureSize"/>
</datatype>

<pipe lang="CPP" class="ReceivingPipe">
 <apply-aspect name="receiver_gpce.xsl"/>
 <ports>
 <inport name="in" type="ppmType"/>
 </ports>
</pipe>

 <pipe lang="CPP" class="ReceivingPipe">
 <apply-aspect name="receiver_gpce.xsl"/>
 <ports>
 <inport name="in" type="ppmType">
 <datatype name="ppmType">
 <arrayArg name="mag"
 type="char" size="2"/>
. <arg name="width" type="long"/>
 <arg name="height" type="long"/>
 <arg name="maxval" type="long"/>
 <arg name="pictureSize"
 type="integer"/>
 <arrayArg name="picture"
 type="byte" size="pictureSize"/>

 </datatype>
</inport>

 </ports>
</pipe>

 <pipe lang="CPP" class="ReceivingPipe">
 <datatype name="ppmType">
 <arrayArg name="mag"
 type="char" size="2"/>
. <arg name="width" type="long"/>
 <arg name="height" type="long"/>
 <arg name="maxval" type="long"/>
 <arg name="pictureSize" type="integer"/>
 <arrayArg name="picture" type="byte"
 size="pictureSize"/>
 </datatype>
 <apply-aspect name="receiver_gpce.xsl"/>
 <ports>
 <inport name="in" type="ppmType"/>
 </ports>
</pipe>

Figure 2. In this simple example, the XPath expression returns all the data members of type ‘long’ for the type named ‘ppmType’
equally well in all three cases even though datatype has been moved within the specification document – first, as global informa-
tion, then as a localized association with a pipe, and finally as an association with a single port on a pipe. Of course, these changes
do not affect XML parsing either. Such an XPath expression is used in code generation, for instance, when generating datatypes
containers (e.g., a struct or class) or marshalling code.

“ /xip//pipe[lang=’C’] ” will execute for the subset of
Infopipes with a chosen output language of “C” (<pipe
lang=“C”> in the specification) when the apply-
templates selects “/xip//pipe ” – which comprises all In-
fopipe specifications regardless of implementation language speci-
fied. If we also had a template for C++ that matched
“ /xip//pipe[lang=’CPP’] ”, then the same apply-
templates command would cause them to be executed, too. On
the other hand, if there is no match then that section of the specifi-
cation will be ignored without breaking the generator. For exam-
ple, the specification states “pipe lang=“java” ,” but there is
no “/xip//pipe[lang=‘java’] ” to recognize it.

Extensibility in the Clearwater approach emerges when runtime
compilation, pattern matching, and stylesheet importation com-
bine. In the ISG, language-specific XSLT files are imported into a
single masterTemplate.xsl file, and pattern selection from
the specification controls the execution. We re-apply the approach
at the communication layer level in our generator thereby estab-
lishing extensibility for various communications packages.

The first enabler of extension is XSLT’s option to use either call-
by-name or pattern matching. The effect of having both semantics
is that it is possible to alternate control of the generation process
between the generator and the specification. For example, using a
pattern to match the C Infopipes, as above, lets the specification
control entry into that group of templates. These templates may
call by name other templates that automatically generate header
files and make files – at which time the generator-code controls
the code production. In our experience with ISG, it is quite com-
mon for us to use both. Often, we create call-by-name templates to
separate code generation into smaller fragments when a lot of
code is to be executed for a single pattern match.

Second, XSLT also supports importation of stylesheets, as shown
in Figure 3, so that complex stylesheet behavior can be composed
from multiple simpler stylesheets. Alternatively, a complex
stylesheet can be broken into smaller stylesheets for better organi-
zation. As an example of this technique, in the ISG we use sepa-
rate stylesheets for our C and C++ generation and further
deconstruct those into smaller stylesheets based on the communi-
cation mechanism supported (e.g. TCP or the ECho middleware
package).

Finally, XSLT is runtime compiled allowing output to change
easily and quickly. One might mimic this functionality through

external resource strings if developing in a compiled, object-
oriented environment like Java, but generator development then
becomes limited to variations on pre-identified strings. Conse-
quently, any reorganization that does not already fit the estab-
lished mapping from high-level language to the implementation
language will require changes to a generator object. XSLT allows
easy change of the output without re-writing objects or re-
compiling. This shortens the development cycle and also lowers
the maintenance hurdle.

3.4 XML+XSLT: Modularity and Weaving
Finally, one sizable advantage the Clearwater approach has lever-
aged is the fact that every XSLT document is valid XML. Conse-
quently, using the Clearwater approach one can embed new XML
tags in code-generating XSLT but affect neither speed nor cor-
rectness of the transformation process. Then, when this XSLT
generates output code, these XML tags are replicated the tags into
the target code where they act as semantic markers to expose the
domain structure of the generated code. Each block of generated
code becomes a module that can be replaced or augmented. These
blocks support aspect-weaving for the generated document. In the
ISG, the weaving capability is implemented by the AXpect
weaver which we discuss in detail in Section 4.2.

XML, XSLT, and XPath combine to make the mechanics of these
code substitutions and additions easy. Given a generated docu-
ment with the aforementioned XML tags, an XSLT template can
use XPath to find those tags and replace or augment the existing
code with new code and tags. From an AOP vantage point, XPath
selects pointcuts and XSLT encapsulates advice over the join-
points. The XSLT processor performs the task of joinpoint identi-
fication and weaving for us. Note that the only language
dependency in this process is the direct dependency between the
advice and the target source language so that language-specific
weavers are bypassed. We have executed our AXpect weaver on
both C and C++ Infopipes.

Consider the excerpts in Figure 4. The jpt:pipe tags in the
generator template denote the code that performs shutdown tasks
for an Infopipe which consists of successively shutting down in-
ports and outports. On the right, we can see that the tags are kept
with the code after generation and clearly label the purpose of that
block of C code. From an AOP perspective, these tags form a set
of joinpoints on the underlying generated code. Each joinpoint
maps some logical domain feature into the “physical” implemen-
tation in a target language. There are two major benefits from this.
First, it allows code generation to be modular. If we need to re-
place some default generated functionality, we can. For instance,
Infopipe communicate connection information via files over NFS,
but we replace that code with hard-coded connection information
when we experiment in emulated distributed environments. Sec-
ond, it allows us to insert features into the generated code that are
otherwise orthogonal to the domain language. A good example of
an orthogonal feature encapsulation is a WSLA governing In-
fopipe performance [26].

4. IMPLEMENTATIONS
Using the Clearwater approach, we have implemented two code
generators. ISG drove the development of the approach; it con-
verts Infopipe specifications, XIP, into general purpose language
implementations and supports AOP via its AXpect module. The
second generator, ACCT, resulted from a joint venture with HP

masterTemplate.xsl
<xsl:import href="allMake.xsl"/>
<xsl:import href="CPP/CPP.xsl"/>
<xsl:import href="C/C.xsl"/>
...
<xsl:apply-templates select="/xip//pipe"/>

C.xsl
...
<xsl:template match="/xip//pipe[@lang='C']">
...

CPP.xsl
...
<xsl:template match="/xip//pipe[@lang='CPP']">
...

Figure 3. By inserting an import directive and using XPath
pattern selection for the target language, extension to new
output targets is easy and independent.

Labs. Though it is newer and less developed, it is still built upon
the XML+XSLT approach of Clearwater.

4.1 The ISG Generator
The current version of the ISG generator is a hybrid language
application of C++, providing the XML parser and DOM docu-
ment interface, with an embedded XSLT processor. We recog-
nized the need for a general purpose language upon discovering
two limitations of pure XSLT. First, file support is limited, and
while new standards are enabling multi-document output, this was
not true at the time we first wrote the ISG. Second, XSLT has
only recently added the capability of accessing created XML
document fragments at run-time. This limited the ability to con-
struct XML fragments with information from a document in any
sort of recursive fashion. Because of this, we use the C++ and an
XML package to perform pre-generation processing, which in-
volves resolving connections between Infopipes and retrieving
specifications from the repository. This process specifically in-
volves recursively descending through Infopipe descriptions and
retrieving multiple documents from disk from the repository
which were then melded together to form what we call the XIP+
document actually used for generation.

As we mentioned one goal was to support multiple communica-
tion layers and implementation languages simultaneously. In the
ISG, C and C++ can be created concurrently from a single specifi-
cation. For example, a C Infopipe may communicate via ECho
event channels to a second C Infopipe, which in turn sends data
over a TCP connection to a C++ Infopipe. Even supporting sev-
eral output options, the code generator is a fairly manageable in
terms of overall size (see Table 1). In addition to the targets listed
in the table, we also have varying support for additional language
and communication layer pairings with the ISG. These include
C++ using CORBA, local IPC, or local function calls, and Java
and XML over TCP. The XSLT templates and XML AST encour-
ages language dependencies to be isolated from the language in-
dependent code of which is tailored domain-level Infopipes
information.

Mirroring our multi-output goal, we support multiple inputs via
multiple high-level language converters. Spi (Specifying In-
fopipes) is a human-friendly language which is compiled through
the Ply parser/lexer package for Python into XIP. As a second
high-level Infopipes tool, we augmented the Ptolemy II toolkit to
support Infopipes. The XML based Ptolemy II representations are
transformed via XSLT into XIP which can then be executed by
the code generator.

Figure 5 illustrates the stages of the ISG and AXpect weaver,
which we will describe more fully in the next section, and Table 1
provides corresponding source sizes (calculated by David A.

Wheeler’s SLOCCount). During generation, the specification AST
is maintained as a DOM tree in-memory. Leaving discussion of
the AXpect weaver for later, ISG code generation proceeds as
follows:

1. The Infopipe XIP description is divided into several sections
of datatypes, pipes, filters, etc. and writes the specification
fragments to the repository.

2. Elements designating which pipes to build are retrieved from
the input XIP. Each forms the nucleus of a new document,
which we term XIP+, which is built stored specifications and
has verbose connection information.

3. The ISG passes the document to and invokes an XSLT proc-
essor to execute generation templates. Both the generated
code and the reconstituted XIP+ are retained after code gen-
eration.

4. The specification+code is passed to the weaver (described in
the next section).

5. Finally, XML markup is removed, and the code is deposited
into files and directories, ready for use in an application.

The XSLT templates encapsulate the language and output depend-
ent components of code generation. Figure 6 illustrates the organi-
zation of XSLT templates, and Table 2 presents their sizes.

Generator Template Emitted XML+Code
// shutdown all our connections
int infopipe_<xsl:value-of select="$thisPipeName"/> _shutdown()
{
 <jpt:pipe point="shutdown">
 // shutdown incoming ports <xsl:for-each select=" ./ports/inport">
 infopipe_<xsl:value-of select="@name"/>_shutdown(); </xsl:for-each>
 // shutdown outgoing ports <xsl:for-each select=" ./ports/outport">
 infopipe_<xsl:value-of select="@name"/>_shutdown(); </xsl:for-each>
 </jpt:pipe>

 return 0;
}

// shutdown all our connections
int infopipe_sender_shutdown()
{
 <jpt:pipe point="shutdown">
 // shutdown incoming ports

 // shutdown outgoing ports

infopipe_ppmOut_shutdown();
 </jpt:pipe>
 return 0;
}

Figure 4. “Generator Template” displays the XML markup in the XSLT that generates shutdown code for an Infopipe – calling
shutdown functions on inports and outports. Emitted code shows how this markup persists after generation and denotes, in this
case, the shutdown of the Infopipe’s lone outport.

Table 1. Lines of C++ code in language independent ISG
modules excluding external libraries (e.g. XSLT processor).
This code is not in the templates and essentially performs
management of the generation process

Code (generation stage) Line Count
Pre-process (1, 2) 756
Generation (3, excl. XSLT) 40
Weaver (4) 90
Write Files (5) 469
Shared all stages 134
Total 1489

Table 2. Lines of code (XSLT and target language) in XSLT
templates that constitute the language dependent modules of
code generation

Code Line Count
master (Makefiles) 56
C core 276
 TCP 679
 ECho 437
C++ core 515
 TCP 612
C/C++ shared 211
Total XSLT 2773

Table 1 and Table 2 provide some interesting information with
regards to the ISG and the Clearwater approach. First, we note
that while it is not a large application, it is of significant size com-
prising well over 3000 lines of code. Second, we can observe that
XSLT allows significant factoring of common code between the
differing communication layers for the C templates and even be-
tween C and C++. Were this code (C core and C/C++ shared) not
factorable, i.e. were it required in both the TCP and ECho genera-
tors, it would increase them by over 70% and 110% respectively.

At the top of the hierarchy, the ISG invokes a master template
located in a well-known directory that run-time includes templates
for each supported language. Each of these language templates
resides in a directory dedicated to XSLT templates that support
that code generation. In the figure, we see that the C subdirectory
has templates for generation of C core code, C runtime support,
and a map table for mapping Infopipe specific data primitives to C
types. Within the C subdirectory there is a TCP subdirectory that
contains the XSLT templates for implementing TCP connections
between Infopipes. Likewise, ECho for C has a parallel subdirec-
tory and allows the two communications implementations to share

the core code. Likewise, there is a CPP (C++) subdirectory for our
C++ generation templates with it, too, having multiple communi-
cation language subdirectories.

Our C implementation follows the traditional approach of dividing
code into file-level modules and each file corresponds to one func-
tional unit of an Infopipe. The generated C++ implementation
follows an object-oriented decomposition into base classes and
subclasses corresponding to functional units. Despite this, the two
implementations can have shared code. For instance, C++ directly
generates using C runtime support templates code for publishing
and discovering Infopipe connection information. Other times the
generators have structural similarities, such as in unmarshalling
code, but due to language idioms are not shared, e.g., unmarshal-
ling data to a struct for C but a class for C++.

4.2 The AXpect Module
One of the most important goals of the Infosphere project is ad-
dressing quality of service, such as data latency, security, or re-
source control, for information flow systems. However, our basic
code generation did not include generation of any code to support
QoS. Furthermore, it seemed that if we did add quality of service
it would be difficult to anticipate all possible QoS scenarios. In
light of this, we decided an aspect-oriented approach to QoS was
warranted. Unfortunately, while there are several Java aspect
weavers, there are no successful weavers for C or C++, our pri-
mary target languages. Still, some projects had been successful at
marrying DSL techniques and AOP [3]. Our efforts in this space
produced the AXpect weaver. (See also [20] and [26] for more
details about AXpect; [15] for more about AOP in general.)

AXpect weaving occurs subsequent to code generation and prior
to file output. Its implementation has three parts. First, we tag the
code generation templates with new XML that demarcates In-
fopipe operations in the generated code. These joinpoints have
two functions. First, they map the domain data contained in the
Infopipe specification into the generated code, and second, they
expose language-level features such as classes or header files
which might otherwise be “hidden” during code generation. The
second part of its implementation is that we can write an XSLT
template that encapsulates an aspect. In this aspect, pointcuts are
expressed as XPath statements selecting the XML joinpoints.
Finally, the third piece is a C++ wrapper and declarative <ap-
ply-aspect> tags in the XIP to integrate the weaving process
into the ISG, manipulate files, and resolve dependencies; the
weaving algorithm recursively executes as follows [26]:

1. Retrieve the first apply-aspect from the specification.

2. If the aspect depends on more aspects, then the AXpect applies
those aspects first, and re-enters the process of weaving at this
step.

3. The weaver retrieves the aspect code from disk based on the
appropriate output-language for the target pipe.

4. The weaver code then passes the aspect and the XIP+ genera-
tion document to the XSLT processor. The result is a new
XIP+ document which contains the specification, generated
code, new woven code, and joinpoints.

5. The resultant XIP+ document (still a DOM tree in memory)
serves as new input for any aspects that follow the current as-
pect. This includes aspects which depend on the current as-

Figure 5. The ISG. The shaded and crosshatched areas are the
only output-language dependent modules of the generator.
The result of the “XSLT Generator” stage is a single contain-
ing generated all code and the specification.

Figure 6. XSLT template organization for C/TCP Infopipes.
Shaded boxes are directories, clear boxes are XSLT files, and
arrows represent XSLT inclusion.

pect's functionality, or functionally independent aspects that are
applied later.

6. Once all aspects have been applied, then the entire XML result
document is passed to the last stage of the generator to be writ-
ten to disk. Residual XML joinpoints in the woven code remain
until the last stage removes them as the code the generator
writes the source files to disk.

We have found AXpect to be useful in controlling QoS and im-
plementing web service level agreements [26], and that the ap-
proach encourages good reuse of QoS code [25].

It is interesting to note that the exact same framework we use for
implementing basic Infopipes and their functionality can be used
to implement support for part of the WSLA specification without
modification. All that is required is to insert new XSLT templates
that implement the desired WSLA functionality as aspects. Fur-
thermore, this functionality can be developed on an as-needed
basis since we can choose which aspects to implement at which
times and since XSLT templates can call other XSLT templates to
form libraries of WSLA code generation functions.

4.3 The ACCT Generator
Our second generator, ACCT, we developed in conjunction with
HP Labs. ACCT connects the design stage to the deployment
stage in a business-objective driven closed loop management sys-
tem for utility computing environments [23]. ACCT maps high-
level constraints on distributed application deployment, such as
start-up sequencing, into a low-level deployment plan. Combining
such tools moves application deployment from the realm of brittle,
uncertain, ad hoc scripts to provably correct and efficient automa-
tion. Cauldron, a high-level reasoning engine [22], produces a
deployment plan for a distributed application, and SmartFrog
provides deployment management daemons that can execute de-
ployment workflows. We had two important problems: first, per-
form the non-trivial mapping of Cauldron’s MOF into
SmartFrog’s requirement for Java source and SmartFrog work-
flow specification; second, accommodate tools beyond our basic
set of Cauldron and SmartFrog.

ACCT shared similar goals to the ISG: 1) Translate Cauldron’s
high-level Managed Object Format (MOF) to low-level Smart-
Frog objects; 2) after initial support for Cauldron/SmartFrog, sup-
port translations in multiple deployment and resource
management tools, and 3) support formal verification of deploy-
ment schemes. Given the early stages of this project, we have
concentrated so far on the first two goals, but ACCT is still built

using Clearwater’s hallmark of XML for the specification and
AST and XSLT for code generation.

There are two mismatches between Cauldron and SmartFrog.
First, they have no common interchange specification. Cauldron
emits MOF, but SmartFrog requires a SmartFrog workflow docu-
ment plus a set of Java class definitions. Second, Cauldron gener-
ates a deployment plan consisting of pairwise dependencies
between application components whereas SmartFrog needs a
complete workflow specification of all dependencies in order.
ACCT fulfills both requirements.

Instead of using a C++ harness like the ISG, ACCT’s uses Java to
manage generation, although the first version of ACCT was pure
XSLT. ACCT is over 2000 lines of code has three major stages: 1)
pre-processing to convert MOF to an XML format, 2) data extrac-
tion, and 3) translation to code. In the first stage of ACCT, it
compiles the Cauldron-generated MOF input into CIM-XML, an
XML formatted document for the Common Information Model.
This is passed to stage two which has three XSLT generators that
extract the proper data to generate source code.

SmartFrog itself requires three types of files. First, a workflow file
is created by converting pairwise event dependencies emitted in
Cauldron MOF into totally-ordered and properly synchronized
events in for SmartFrog workflow language. The other two files
SmartFrog needs are ACCT-generated component definitions
written in Java. These are also converted from data contained in
the MOF, and define generic component functionality, and corre-
sponding instances of components that define the fully parameter-
ized (needed at run-time) definitions of the components. These
generated specifications are converted wrapped into a single XML
format called XACCT (XML for ACCT) that should provide
flexibility for other deployment tools in the future. Finally, one
more XSLT template strips the XML and provides the ultimate
conversion into SmartFrog-deployable sources.

5. EXPERIENCE
So far, ISG-based information flow systems have shown favorable
performance results when compared to traditional RPC systems.
Particularly, they are able to obtain better bandwidth in synthetic
benchmarks [27][28]. This indicates that our Clearwater architec-
ture poses no inherent limit on the generated code when compared
to a traditional generation tool like rpcgen .

We have used the ISG to build two differing C/TCP-based In-
fopipes systems. The first system we concentrated on was a sim-
ple, two Infopipe image streaming system with quality of service.

Figure 7. The ACCT generator maps CIM-XML into SmartFrog specification and Java code. ACCT splits a CIM-XML document
into three parts as input to three XSLT-based code generators. After generation, ACCT comprises them into a single XACCT
document which is stripped of XML by an XSLT then written to disk as output.

In this scenario, a streaming image server fed a lightweight client
with limited CPU resource. We used the ISG to generate commu-
nication stubs and AXpect to add WSLA implementation code for
the CPU monitoring and adaptation [26].

To implement the CPU monitoring and adaptation, we wrote six
AXpect aspects (listed in Table 3) and a WSLA document that
described the adaptation parameters. In our test case, we targeted
20% CPU usage for the receiver and adjusted our sender’s rate
based on returned CPU usage metrics. Even for such a simple
application, the communication code generated by the ISG was
nearly 1000 lines and over 400 more lines were added by aspects
in the weaving process to implement CPU usage measuring, to
install a control channel, and to add parameterization hooks from
the application into the WSLA. In the end, about 30% of the gen-
erated application skeleton code was dedicated to providing QoS
measurement and adaptation. Most significantly, the use of the
AXpect weaver allowed this additional code to be encapsulated
for later re-use rather than being “one-off” modifications applied
for each application.

Secondly, we have used the ISG and AXpect weaver to build a
variant of Linear Road benchmark [25]. The Linear Road bench-
mark stresses the performance of a continual query system, in our
case STREAM [1], as it executes queries that calculate real-time
tolls. The application is sensitive to latencies since it must receive
data and return answers to drivers. To calculate the tolls, the query
engine must receive and evaluate data points from simulated vehi-
cles on the highway to calculate traffic flow volume, from which
the toll is set. In our version, we added adaptive QoS mechanisms
to react to out-of-bounds latency conditions that reduced latencies
and allowed for greater system utilizations [25].

As a third test of our code generation architecture, we have used
ACCT in benchmarks with Cauldron and SmartFrog evaluating
the complete toolkit. In our tests, we compared using the gener-
ated SmartFrog deployment of a 3-tier application to deployment
using only hand-written scripts. While this tool is still in the early
phase of its development, the generated plan matched the hand-
written deployment plan for startup performance time, but signifi-
cantly, provably met deployment constraints whereas no such
statement could be made for the handcrafted script.

6. RELATED WORK
Most closely related to the architecture of our code generator is
that it adopts a similar architecture already used by compilers.
Also, it adopts an intermediate format for flexibility like gcc and
Flick [11]. However, there are several important features. Tradi-
tional compilers only map into basic assembly code. Flick, too, is
restricted in its ability to output because it does not maintain a
system state document as we do with XIP. This is crucial in
achieving the flexibility to do code weaving. SourceWeave.NET
is also similar in that it is a cross-platform weaver.

The Polyglot project has focused on creating extensible high-level
languages [18]. However, while Polyglot has seen use in other
projects, users are limited to variants on Java syntax whereas our
architecture permits the use of any human-friendly syntax which
can then be compiled to an XML intermediate format.

The SoftArch/MTE [13] and Argo/MTE [7] projects have also
used XML + XSLT for code generation. Their project has primar-
ily concerned with resolving mismatches between software engi-
neering tools. Our results corroborate their experience. In

addition, we go significantly beyond this and use Clearwater in
the ISG as a DSL implementation technique and for aspect weav-
ing.

7. CONCLUSION
Based on our experience, using XML technologies in code genera-
tion efforts can be extremely beneficial. We have described our
general architecture and given two examples of generators em-
ployed by our research group that illustrate the ability of this tech-
nique to accommodate a variety of implementation languages and
a variety of input languages.

When we generate a new document by using XML, we are able to
express the semantic structure as inherited from in the higher lay-
ers of abstraction – the Spi or XIP document. In computer science
theory, it is well-known that it is impossible to prove the equiva-
lence of two programs – it is impossible for any computer pro-
gram to “understand” another program. However, maintaining this
domain information means that instead of understanding the gen-
eral purpose language that has been generated, our code generator,
and any later stages, need only operate on source code performing
specific tasks taken from our domains.

Our future research plans are to expand the weaver capabilities to
the system level from just source-level weaving for the ISG. This
work would also include exploration for new ways to write the
encode aspects for the AXpect module so that they are more read-
able. We anticipate this being a valuable architecture for imple-
menting multiple domain specific languages that encode differing
aspects of information flow systems. Also, we are proceeding on
with goals 2 and 3 of ACCT, and there may well be some integra-
tion work done between the two efforts in the future.

Finally, it is worth noting that while we have encountered much of
the important technology in XSLT we are also investigating the
Apache Software Foundation’s DVSL [10], a scripting language
based on Velocity, for code generation, also, as it promises en-
hanced readability over XSLT.

8. ACKNOWLEDGEMENTS
This work was partially supported by NSF/CISE IIS and CNS
divisions through grants IDM-0242397 and ITR-0219902,
DARPA ITO and IXO through contract F33615-00-C-3049 and
N66001-00-2-8901, and Hewlett-Packard. Also, we wish to thank
the anonymous reviewers for their helpful comments and sugges-
tions.

9. REFERENCES
[1] Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M.,

Table 3. Lines of C code contributed by each AXpect tem-
plate in the streaming video application [26]

Aspect Where Lines
control_sender sender 117
sla_sender sender 73
timing receiver 50
control_receive receiver 125
cpumon receiver 14
sla_receiver receiver 55
Total from aspects 434
Base Implementation 976
Base + Aspects 1410

Ito, K., Motwani, R., Srivastava, U., and Widom, J.,
STREAM: The Stanford data stream management system. In
Data Stream Management: Processing High-Speed Data
Streams. Garofalakis, M., Gehrke, J., and Rastogi, R., eds.
To appear 2006. Springer

[2] Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.,
Ryvkina, E., Stonebraker, M., and Tibbetts, R., Linear Road:
A Stream Data Management Benchmark. In Proceedings of
the 30th International Conference on Very Large Data Bases
(VLDB), August, 2004.

[3] Barreto, L., Douence, R., Muller, G., and Südholt, M., Pro-
gramming OS schedulers with domain-specific languages
and aspects: new approaches for OS kernel engineering. In-
ternational Workshop on Aspects, Components, and Patterns
for Infrastructure Software at AOSD, April 2002.

[4] Birrell, A., and Nelson, B. Implementing Remote Procedure
Calls. ACM Trans. on Computer Systems, 2, 1 (Feb. 1984),
39-59. Also appeared in Proceedings of SOSP’83.

[5] Black, P., Huang, J., Koster, R., Walpole, J., and Pu, C. In-
fopipes: an abstraction for multimedia streaming. ACM Mul-
timedia Systems Journal, 8(5): 406-419, 2002.

[6] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
Yergeau, F., and Cohan, J., eds. Extensible Markup Lan-
guage. http://www.w3.org/TR/xml11. World Wide Web
Consortium (W3C). 2004.

[7] Cai, Y., Grundy, J., and Hosking, J. Experiences Integrating
and Scaling a Performance Test Bed Generator with an Open
Source CASE Tool. ASE 2004.

[8] Clark, J. ed. XSL Transformations.
http://www.w3.org/TR/xslt. World Wide Web Consortium
(W3C). 1999.

[9] Clark, J., and De Rose, S., eds. XML Path Language
http://www.w3.org/TR/xpath. World Wide Web Consortium
(W3C). 1999.

[10] DVSL. http://jakarta.apache.org/velocity/dvsl/

[11] Eide, E., Frei, K., Ford, B., Lepreau, J., and Lindstrom, G.
Flick: a flexible, optimizing IDL compiler. In Proceedings of
the 1997 SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ‘97) (Las Vegas, NV, Jun
15-18, 1997).

[12] Eisenhauer, G., Bustamente, F., and Schwan, K. A middle-
ware toolkit for client-initiated service specialization. Pro-
ceedings of the PODC Middleware Symposium – (Portland
Oregon, July 18-20, 2000).

[13] Grundy, J., Cai, Y., and Liu, A. SoftArch/MTE: generating
distributed system test-beds from high-level software archi-
tecture descriptions. In the Proceedings of ASE 2001: The
16th IEEE Conference on Automated Software Engineering.
(Coronado, CA, November 26-29, 2001).

[14] Karsai, G. Why XML is not suitable for semantic translation.
Research note, Nashville, TN, April, 2000.

[15] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Videira Lopes, C., Loingtier, J.-M., and Irwin, J. Aspect-
oriented programming. In the Proceedings of European Con-
ference on Object-Oriented Programming, Aspect-Oriented

Programming Workshop (ECOOP ’97). (Jyväskylä, Finland,
June 10, 1997.)

[16] Le Hégaret, P., DOM Activity Lead. Document Object Model
(DOM). http://www.w3.org/DOM/. World Wide Web Con-
sortium (W3C).

[17] Lieberherr, K. Adaptive Object Oriented Software: The De-
meter Method with Propagation Patterns. PWS Publishing
Company, Boston, 1996.

[18] Nystrom, N., Clarkson, M. R., and Myers, A. C. Polyglot: an
extensible compiler framework for Java. In Proceedings of
the 12th International Conference on Compiler Construction
(Warsaw, Poland, April 2003). Springer-Verlag LNCS 2622,
138–152.

[19] Pu, C., Schwan, K., and Walpole, J. Infosphere project: sys-
tem support for information flow applications. ACM SIG-
MOD Record, 30, 1 (Mar. 2001), 25-34.

[20] Pu, C., and Swint, G. DSL weaving for distributed informa-
tion flow systems (Invited Keynote). Proceedings of the 2005
Asia Pacific Web Conference. (APWeb05). (Shanghai, China.
March 29 - April 1, 2005.) Springer-Verlag LNCS. 2005.

[21] Sahai, A., Pu, C., Jung, G., Wu, Q., Yan, W., and Swint, G.
Towards automated deployment of built-to-Order systems. In
Proceedings of the 16th IFIP/IEEE Distributed Systems: Op-
erations and Management (DSOM ‘05) (Barcelona, Spain.
October 24-26, 2005). To appear.

[22] Sahai, A., Joshi, R., Singhal, S., and Machiraju, V. Auto-
mated policy based resource construction in utility comput-
ing environments. In the Proceedings of the 2004 IEEE/IFIP
Network Operations & Management Symposium (NOMS
2004). (Seoul, Korea. April 19-24, 2004.)

[23] Salle, M., Sahai, A., Bartolini, C., and Singhal, S. A busi-
ness-driven approach to closed-loop management. HP Labs
Technical Report HPL-2004-205, November 2004.

[24] Sarkar, S. Model driven programming using XSLT: an ap-
proach to rapid development of domain-specific program
generators. www.XML-JOURNAL.com. August 2002.

[25] Swint, G., Jung, G., and Pu, C. Event-based QoS for a dis-
tributed continual query system. The 2005 IEEE Interna-
tional Conference on Information Reuse and Integration (IRI
2005) (Las Vegas, Nevada. August 14-17, 2005).

[26] Swint, G., and Pu, C. Code generation for WSLAs using
AXpect. Proceedings of 2004 IEEE International Conference
on Web Services (ICWS 2004) (San Diego, California. July 6-
9, 2004).

[27] Swint, G., Pu, C., Koh, Y., Liu, L., Yan, W., Consel, C.,
Moriyama, K., and Walpole, J. Infopipes: The ISL/ISG Im-
plementation Evaluation. Proceedings of the 3rd IEEE Net-
work Computing and Application Symposium 2004 (IEEE
NCA04). (Cambridge, Massachusetts. August 30 - September
2, 2004.)

[28] Swint, G., Pu, C., and Moriyama, K., Infopipes: Concepts
and ISG Implementation. The 2nd IEEE Workshop on Soft-
ware Technologies for Embedded and Ubiquitous Computing
Systems, Vienna, Austria, 2004.

