iEvent Delivery Middleware

| Greg Eisenhauer

College of Computing
Georgia Institute of Technology

The general paradigm of event-based programming has received added attention as the growth of the
Internet has led to the creation of more complex enterprise-wide distributed systems. In event-based pro-
gramming, event suppliers generally are unaware of the number or location of any consumers for the events
they produce. Relying on event mechanisms in the design and composition of distributed systems tends to
produce systems which are less tightly-coupled. Event-based communication mechanisms are receiving wide
use in:

o systems involving mobility, both in mobile code (agent) systems and in support of mobile computers;

e cooperative systems that support collaboration between multiple users, from simple shared whiteboards

to distributed virtual reality;

e adaptive systems which react to changes in resources and demands to maintain a quality of service;

e extensible systems where events serve as a ‘glue’ connecting components; and

e all types of monitoring applications, from telecommunications network monitoring to application-level

monitoring of running scientific simulations.

In current practice, these applications are supported by event systems with vastly different features and
performance characteristics, ranging from statically-typed single-address-space implementations operating
at rates of millions of events per second to distributed object-based event channels delivering throughput in
the range of tens to hundreds of events per second. The dramatically lower event rates of distributed object
system implementations are partly attributable to network delays, but to a larger extent they are caused by
the overheads imposed by full object systems with features such as reflection (through which programs can
discover the methods and attributes of event objects without a-priori knowledge). While the slower speeds
are a distinct disadvantage, subclassing and reflection can be essential features in creating robust systems.
In particular, reflection allows the creation of generic event-processing components that can be dropped
into event streams. Subclassing allows event information exchange to evolve as a system evolves without
requiring the simultaneous update of all components. Both of these features are invaluable in dealing with
the application integration issues encountered in deploying and updating large distributed systems.

In addition to the advantages offered by object systems in general, event systems based on Java have
potential to offer event filtering and data reduction through the interposition of third-party objects. When
interposition 1s combined with code mobility, it creates potential for receivers to transparently customize
event traffic to precisely match their needs, performing filtering or data reduction at the event source and
avoiding network overheads. This can be a significant performance optimization for some applications,
potentially reducing their network usage by orders of magnitude.

ECho is a distributed event delivery system that combines the best aspects of prior work. In particular,
our goal was to create an event system that:
provides high-performance shared-memory communication,
offers performance similar to traditional message passing for data-intensive distributed applications,
provides application-integration advantages similar to those offered by object systems, and
implements source-side data filtering and data reduction efficiently enough to benefit communication-
intensive applications.

One of the differentiating characteristics of ECho is its support for efficient transmission and handling of
fully typed events. Some event delivery systems leave event data marshalling to the application. ECho allows
types to be associated with event channels, sinks and sources and will automatically handle heterogeneous
data transfer issues. Building this functionality into the ECho using PBIO allows for efficient layering that
nearly eliminates data copies during marshalling and unmarshalling. Careful layering to minimize data

D R Ak ST

| ProcessC

| Event | !
! Sink !

f ProcessC

Derived : Event
Event |1 | Even
Channel ! Sink

(a) Filtering an event stream (b) Derived channel with filter migration

copies is critical to delivering full network bandwidth to higher levels of software abstraction. The layering
with PBIO is a key feature of ECho that makes it suitable for applications which demand high performance
for large amounts of data.

A second distinguishing characteristic of ECho is that it supports the robust evolution of sets of programs
communicating with events by allowing variation in data types associated with a single channel. In particular,
ECho allows an event source to submit an event whose type is a superset of the event type associated with
its channel. Conversely, an event sink may have a type that is a subset of the event type associated with its
channel. Essentially this allows a new field to be added to an event at the source without invalidating existing
event receivers. This feature can be extremely valuable when a system evolves because it means that event
contents can be changed without the need to simultaneously upgrade every component to accommodate the
new type. ECho even allows type variation in intraprocess communication, imposing no conversions when
source and sink use identical types but performing the necessary transformations when source and sink types
differ in content or layout.

In addition to high efficiency in local and network event delivery, ECho makes a significant contribution
to the state of the art in that it allows event receivers to easily and efficiently customize the nature and
content of the event traffic that is sent to them. Many event-based application discard large numbers of
unwanted events because of a lack of a good mechanism for suppressing them. These useless events take up
network resources and consume CPU time for the receiver to process, filter and discard them, as shown in
Figure (a) above. ECho’s approach to this involves extending event channels with the concept of a derived
event channel, depicted in Figure (b). Rather than requiring the receiver to filter incoming events, we
create a new event channel whose contents are derived from the contents of an existing channel through
an application supplied derivation function, F'. The event channel implementation will move the derivation
function F' to all event sources in the original channel, execute it locally whenever events are submitted
and transmit any event that results in the derived channel. This approach has the advantage that we limit
unwanted event traffic (and the associated waste of compute and network resources) as much as possible.

A critical 1ssue in the implementation of derived event channels is the nature of the function F' and its
specification. Since F is specified by the sink but must be evaluated at the (possibly remote) source, a simple
function pointer is obviously insufficient. In order to avoid problems with heterogeneity one might supply
F in an interpreted language, such as a TCL function or Java code. This would allow general functions
and alleviate the difficulties with heterogeneity, but it impacts efficiency and requires a potentially large
interpreter environment everywhere event channels are used. The approach taken in ECho preserves both
expressiveness and efficiency. The function F' is expressed in E-Code, a limited subset of C, and dynamic
code generation is used to create a native version of F' on the source host. ECho’s dynamic code generation
makes source-side filtering so efficient that filters can execute in less time than it take to transmit even a
small event. So, while filtering in general expends additional source-side computing cycles to save network
bandwidth, ECho’s efficiency often results in clear benefits for all parties in the communication.

ECho runs on a variety of platforms including Sun Sparc Solaris 2.x (32 and 64-bit), Sun Sparc SunOS
4.1.3, SGI MIPS TRIX 5.x, SGI MIPS TRIX 6.x (32 and 64-bit), IBM RS6000 AIX 3.2, x86 Linux, x86 Solaris
2.x, and x86 Windows NT.

Additional information, documentation and source for ECho can be retrieved from:
http://www.cc.gatech.edu/systems/projects/ECho/.

