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1 Introduction

PBIO (Portable Binary Input/Output)/JIX (Just In time XML) is a system for efficiently marshalling
data for communication in a heterogeneous computing environment. This manual servers as both an intro-
duction to using PBIO/JIX and as a reference manual for the API.

2 PBIO Basics

The basic approach of the Portable Binary I/O library is relatively simple. PBIO is record-oriented.
Writers (or encoders) of data must provide a description of the names, types, sizes and positions of the
fields in the records they are writing. On the writer’s side this is done by “registering a format.” Readers
(or decoders) must provide similar information for the records that they are interested in reading. On the
reading side, this is done for each incoming format and is called “setting a conversion,” that is, establishing
a correspondence between the fields in the incoming records and the fields in the local data structure into
which the information is to be placed. No translation is done on the writer’s end. On the reader’s end,
the format of the incoming record is compared with the format that the program expects. If there are
discrepancies the PBIO read routine performs the appropriate translations (conversions).

How does XML fit into the picture? PBIO record decoding semantics are much like what you would
get from using XML for data communication. PBIO transparently ignores extra fields that the decoder isn’t
expecting and removes any dependence upon field ordering. PBIO-encoded records can also be queried to
determine what fields and types they contain. These features are some of the most important advantages
that drive the adoption of XML in communication.

However, XML uses an inefficient character-based data encoding to provide these semantics. The
PBIO/JIX approach is quite different. Instead of every record containing the complete data and struc-
ture definition, as in an XML document. We separate the structure (XML markup) from the data. The
markup is associated with the PBIO format and is only used if the record is to be converted into XML. This
leverages the fact that most XML-producing applications operate on their data in binary forms and only
create XML just before the data is to be transmitted. In the PBIO approach, we register the XML markup
with the format. The application then encodes the data with PBIO instead of turning it into XML. This
process will be detailed in Section 6.

Because of the PBIO/JIX focus on high-performance applications, this document is written using exam-
ples in C to transmit C structs. In C++, the examples work equally well using classes without methods
instead of structs.



2.1 High-level Constructs

PBIO/JIX supports both file-oriented and online (network-based) data interchange. File-oriented PBIO
is the most straightforward. In this case the highest-level PBIO construct is the IOFile. PBIO files are
always either read-only or write-only. In writing a PBIO file, the application must first register a format
for records to be written and then may write records. In reading a PBIO file, an application must specify a
conversion for records in the file before they are read. The IOFile also controls the scope of name resolution.
That is, the name “Item” may be associated with a particular structure in one IOFile and with a different
structure in another IOFile without any conflict.

In some situations, such as when using PBIO as a data encoding mechanism for network communication,
a file-oriented abstraction is unworkable. To handle these situations, PBIO provides an abstraction called
an IOContext. IOContexts are very similar to IOFiles except for two key differences:

• Instead of IOFile read/write operations that take/put data directly to/from a filesystem, IOContexts
have encode/decode operations. In encode/decode, PBIO plays no role in actual data storage or
transmission. Instead, the application is responsible for actually moving the encoded data from place
to place.

• While IOFiles are either read-only or write-only, a single IOContext can be used for both encoding
and decoding.

Internally to PBIO, IOFile and IOContext are the same data structure. Because PBIO operations like
registering formats and setting conversions are common to both, the PBIO API generally provides similar
routines for IOFiles and IOContexts. In some more unusual situations only one routine is provided and an
application can safely cast between the two data types.

Because the IOFile interface is somewhat conceptually easier and files are a handy storage mechanism,
the remainder of this section will describe the basics of PBIO in the context of IOFiles. The IOContext
functionality will next appear in Section 5.2.

2.2 Supported Data Types

The PBIO routines support record formats consisting of fields of the following basic data types: “integer”,
“unsigned integer”, “float”, “char”, “enumeration” and “string”. Note that field type here is separate from
field size so that both the native C types “int” and “long” are “integer” types. “char” is essentially treated
as a small “integer” except that the IOdump program and other data-to-text subroutines will print it as
a character. “enumeration” is also treated as an integer and there is currently no mechanism to apprise
the IO routines of the symbolic names associated with the values. “string” is a C-style zero-terminated
variant-length string. Both NULL and zero-length strings are handled appropriately.

There is no prohibition on the use of types not listed here. However translation and display are not
available for other than the built-in types.

2.3 Field Lists

A record format is characterized by a field list. Each field is specified by its name, basic data type, the
field’s size and offset in the record. The field name and basic data type are specified with strings. The size
and offset are integers. Below is an example structure for a record and the corresponding field list:

typedef struct _first_rec {
int i;
long j;
double d;



char c;
} first_rec, *first_rec_ptr;

static IOField field_list[] = {
{"i", "integer", sizeof(int), IOOffset(first_rec_ptr, i)},
{"j", "integer", sizeof(long), IOOffset(first_rec_ptr, j)},
{"d", "float", sizeof(double), IOOffset(first_rec_ptr, d)},
{"c", "integer", sizeof(char), IOOffset(first_rec_ptr, c)},
{NULL, NULL, 0, 0},

};

The “IOOffset” macro simply calculates the offset of a field in a structure using compile-time information.
Its use is recommended to avoid hand-calculating and hard-coding offsets. The order of fields in the field
list is not important. It is not even necessary to specify every field in a structure with an entry in the field
list. Unspecified fields at the end of the structure may not be written to the IO file. Unspecified fields at
the beginning or in the middle of a structure will be written to the IO file, but no information about them
will be available.1

2.4 Formats and Conversions

While field lists characterize the layout of records, it would be inefficient to process the string-oriented
field list on every record read or write. To avoid this inefficiency, field lists must be analyzed prior to reading
or writing data. For writing/encoding, field lists are “registered” with a particular output file with the call
register IOrecord format(). This call specifies a name to be associated with the record format in the file
and returns a handle, of the type IOFormat. The returned IOFormat is used in the write IOfile() call and
specifies the format of the data to be written to the file. The names of record formats must be unique within
a PBIO file and are used on the reading end to identify specific record format within the file. Because there
is no translation upon write in the PBIO scheme, the field list which governs the writing IOFormat becomes
the file record format in the written file.

In the case of reading a PBIO file, IOConversions facilitate the common case where the reading program
knows, for the records in which it interested, the names of both the record format and the fields within
those format which it requires. For reading, the subroutine set IOconversion() serves a similar function
as register IOrecord format(). However, instead of the field list specifying the format of the records
in the file, it specifies the fields required from the file and the program format into which they are to be
converted. The format name specified in the set IOconversion() call must match the name of a format in
the file. The record format in the file must contain at least all the fields specified in the conversion field list.
If there are more fields in the file record format than the reader specifies in the conversion, those additional
fields in file records are ignored. For the fields that are common between the formats, the PBIO library will
perform any data rearrangement or conversion that is required to convert the incoming binary file record
into a native record. Reading programs must set a conversion for incoming data they wish to have converted
into comprehensible form.

2.5 Simple Read and Write Programs

Given the structure and field declarations above, a simple writer and reader programs are shown in
Figures 1 and 2. These simple programs handle the most common data transfer situation.2 The source

1Nota Bene: This behavior results because PBIO treats base data records (not strings or other dynamically sized elements)
as a contiguous memory block for efficiency. The compiler may leave “holes” in the data block to preserve the required alignment
for some data types. Because PBIO puts the data on the wire as a contiguous block, the values in these “holes” are put on the
wire as well. Fields in the record that are not described to PBIO via the field list are simply treated as larger “holes”. Note
that relying on the behavior of PBIO with respect to values in these “holes” is erroneous and can have unpredictable results.
For example, “hole values” may appear to be transmitted along with the data in an exchange between homogeneous systems,
yet not in other cases.



int main(int argc, char **argv)
{

IOFile iofile = open_IOfile("test_output", "w");
IOFormat first_rec_ioformat;
first_rec rec1;
int i;

first_rec_ioformat = register_IOrecord_format("first format", field_list, iofile);
for(i=0; i<10; i++) {

rec1.i = i; rec1.j = 2*i; rec1.d = 2.727 + i; rec1.c = ’A’ + 2*i;
if(!write_IOfile(iofile, first_rec_ioformat, &rec1)) {

printf("write failed\n");
}

}
close_IOfile(iofile);

}

Figure 1: A simple writer program.

program supplies the complete specification of the data being written. The destination program specifies the
fields that it is interested in and their locations and sizes in the data structure in which it would like them
placed. Fields are matched by name. If there are differences in structure specifications, the PBIO routines
perform the appropriate conversions at the time of the read operation. The reader program will read the
binary files produced by the writer program, despite potential difference in:

• byte ordering on the reading and writing architectures.
• differences in sizes of datatypes (e.g. long and int).
• compiler structure layout differences.

In the general case, the reading and writing program need not be using the same structures at all, although
all the fields that the reading program specifies must actually exist in the data. The IO routines can also
convert a float field to an integer and vice versa. There is, of course, the possibility of data loss in any
conversion. If the user requests that an 8-byte integer in the data stream be placed in a 2-byte integer in the
program, the top 6 bytes will be lost. A floating point value may not be precisely representable as an integer
nor a large integer by a floating point value. At present, loss of data occurs quietly, but future extensions
may address this issue. Note that the reading program must set a conversion for all record formats for which
it wishes to use read IOfile(). If no conversion is set, the read IOfile() call will fail and the record will
be discarded.

2Both the sample reader and writer programs use the routine open IOfile(), which is used for file-based data exchanges. The
routine open IOfd() takes an integer file descriptor instead of a filename as an argument and is used for socket- or stream-based
exchanges.

void main(int argc, char **argv)
{

IOFile iofile = open_IOfile("test_output", "r");
first_rec rec1;
int i;

set_IOconversion(iofile, "first format", field_list, sizeof(first_rec));
for(i=0; i<10; i++) {

read_IOfile(iofile, &rec1);
printf("rec had %d, %d, %g, %c\n", rec1.i, rec1.j, rec1.d, rec1.c);

}
close_IOfile(iofile);

}

Figure 2: A simple reader program.



struct {    float x;
   int    y;
   char *str;
   float z; }

Incoming File Record:  { 3.14159, 5, "hello", 2.717}

Incoming buffer layout:

h e l l o /03.14159 5 2.717

Required buffer length: 22 bytes

Program Structure: 

Program Structure Length: 16 bytes

Figure 3: Buffer layout for an incoming record containing a string.

3 More Complex Issues

The programs in the presented previous section are sufficient to handle the transmission of simple atomic
data types in the simplest of circumstances. This section will expand on that implementation basis with
additional facilities.

3.1 Strings and Memory Handling

The sample programs presented above exercise all the basic data types including “string”, but it leaves
open some questions about memory management. The principal complication in handling variable-length
strings is that exact storage requirements aren’t known beforehand. This isn’t an issue on the writing end,
but on the reading end either the user must provide memory for strings or it must be allocated by the PBIO
library. It is possible to use either approach with PBIO. In particular, if records containing string datatypes
are read using the read IOfile() routine, memory for the strings is allocated in a temporary buffer internal
to the PBIO library and the char* fields in the record given to the user point into this internal buffer. There
is one buffer per IOfile and its contents remain valid only until the next PBIO call. In this circumstance, it
is the users responsibility to ensure that char∗ pointers in input records are only used while buffer contents
are still valid.

Programs which require direct control of string memory should use the routines next IOrecord length()
and read to buffer IOfile(). next IOrecord length() returns the number of bytes required to contain
the entire contents of the next record. This returned size is the size of the native record structure plus the
length of each string in the incoming record (counting the terminating zero byte). read to buffer IOfile()
reads the input record and all its associated strings into an appropriately size buffer. The record is placed
at the beginning of the buffer and it is immediately followed by the string contents. The actual char* value
fields in the record are pointer to the strings later in the buffer. Thus the whole record including the strings
it contains can be treated as a unit for memory allocation. Figure 3 shows total memory requirements for
an example buffer layout which might result from reading a record containing a string.

3.2 Complex Data Types

PBIO also offers some facilities for constructing records which consist of more than just the simple data
types described in Section 2.2. The simplest is a mechanism for declaring a field in a record to be an array of
atomic data types. For example, a type specification of “integer[5]” is understood to be an single dimensional
array of 5 integers. “float[3][3]” is a 3× 3 two dimensional array floating point numbers. At present, PBIO
supports these fixed array sizes with one or two dimensions. The field size specified should be the size of a
single array element, not the size of entire array. (This convention was different in earlier versions of this
library.) When reading a record containing array fields, the dimensionality of each field must match that
which was used when the record was written, though the size of the elements may differ.

It is sometimes useful to use a #define-style constant in array declarations, but it is awkward to construct
the field type string for such elements because the C preprocessor doesn’t expand macros which appear inside
string constants. To help avoid this awkwardness, the PBIO header file defines two macros, IOArrayDecl()
and IOArrayDecl2() that can construct the IOField type string for an array whose size is fixed by a



compile-time constant. For example, the code in Figure 4 gives correct PBIO field lists for fixed size one-
and two-dimensional arrays. For example, the IOArrayDecl(float, ARRAY SIZE) macro expanding to the
string “float[20]”.

typedef struct _dyn_rec {
char *string;
long icount;
double *double_array;

} dyn_rec, *dyn_rec_ptr;

IOField dyn_field_list[] = {
{"string field", "string", sizeof(char *),

IOOffset(dyn_rec_ptr, string)},
{"icount", "integer", sizeof(long),

IOOffset(dyn_rec_ptr, icount)},
{"double_array", "float[icount]", sizeof(double),

IOOffset(dyn_rec_ptr, double_array)},
{ NULL, NULL, 0, 0}

};

Figure 5: A dynamic array record format

In addition to fixed array sizes, PBIO supports
dynamically sized one-dimensional arrays. In this
case, the size in the array type specification must
be the string name of an integer field in the record.
The value of that integer field gives the array size.
The actual data type in the record should be a
pointer to the element type. Figure 5 gives an ex-
ample of a dynamic array declaration. For the pur-
poses of memory allocation (as discussed in Sec-
tion 3.1), the dynamic arrays are treated like strings
on reads. That is, read IOfile() leaves the arrays
in temporary memory that will remain valid until the
next PBIO operation and read to buffer IOfile()
copies the arrays into a user-supplied buffer. In the
case of a record which contains a dynamic array,
next IOrecord length() still returns the number of
bytes required to hold the entire record including the
memory required for the dynamic array.

typedef struct R3vector_struct {
double x, y, z;

} R3vector;

typedef struct particle_struct {
R3vector loc;
R3vector deriv1;
R3vector deriv2;

} particle;

Figure 6: A nested record format

Finally, a field type may be the name of a previously registered
record format. This facility can be used to define record formats
in a hierarchical way. For example, the structure particle struct
declared as in Figure 6 could be written by registering formats defined
by these field lists:

static IOField R3field_list[] = {
{"x", "float", sizeof(double), IOOffset(R3vector*, x)},
{"y", "float", sizeof(double), IOOffset(R3vector*, y)},
{"z", "float", sizeof(double), IOOffset(R3vector*, z)},
{NULL, NULL, 0, 0},

};

static IOField particle_field_list[] = {
{"loc", "R3vector", sizeof(R3vector), IOOffset(particle*, loc)},

#define ARRAY_SIZE 20
#define DIMENSION 30
typedef struct _dyn_rec {

long long_value;
double double_array[ARRAY_SIZE];
float float_array[ARRAY_SIZE];

} rec, *rec_ptr;

IOField rec_field_list[] = {
{"long_value", "integer", sizeof(long), IOOffset(rec_ptr, icount)},
{"double_array", IOArrayDecl(float,ARRAY_SIZE), sizeof(double), IOOffset(rec_ptr, double_array)},
{"float_array", IOArrayDecl2(float,ARRAY_SIZE,DIMENSION), sizeof(float), IOOffset(rec_ptr, float_array)},
{ NULL, NULL, 0, 0}};

Figure 4: A record with a compile-time constant as the array size



first_rec_ioformat = register_IOrecord_format("first format", field_list, iofile);
vec_ioformat = register_IOrecord_format("R3vector", R3field_list, iofile);
particle_ioformat = register_IOrecord_format("particle", particle_field_list, iofile);
srandom(time(NULL));
strcpy(str, "A String");
rec1.s = str;
for(i=0; i<10; i++) {

if (random() % 2 == 1) {
first_rec rec1;
rec1.i = i; rec1.j = 2*i; rec1.d = 2.727 + i; rec1.c = ’A’ + 2*i;
strcat(str, "!");
if(!write_IOfile(iofile, first_rec_ioformat, &rec1)) {

printf("write failed\n");
}

} else {
particle p;
double s = i * i;
double c = s * i;
p.deriv2.x = 3.0*i; p.deriv2.y = 4.2*i; p.deriv2.z = 4.8*i;
p.deriv1.x = 1.5*s; p.deriv1.y = 2.1*s; p.deriv1.z = 2.4*s;
p.loc.x = .5*c; p.loc.y = .7*c; p.loc.z = .8*c;
if(!write_IOfile(iofile, particle_ioformat, &p)) {

printf("write failed\n");
}

}
}

Figure 7: The body of a more complex writer program.

{"deriv1", "R3vector", sizeof(R3vector), IOOffset(particle*, deriv1)},
{"deriv2", "R3vector", sizeof(R3vector), IOOffset(particle*, deriv2)},
{NULL, NULL, 0, 0},

};

3.3 Formats and Record Types

The programs in Section 2.5 are simplistic in that only known number records of a single type are
written and read. When multiple formats or unknown numbers of records are involved, the reading pro-
gram needs to know what, if anything, is coming next. PBIO allows access to this information via the
next IOrecord format() call. This subroutine returns a value of the type IOFormat. If this value is NULL,
an end of file or error condition has been encountered. If non-NULL, the value can be passed to the sub-
routine name of IOformat() to get the string name associated with the format of the next data record.
Additionally, for programs which wish to avoid multiple string comparison operations on every read oper-
ation, PBIO provides the get IOformat by name() subroutine. With these operations, the simple reader
and writer programs of Section 2.5 can be rewritten to handle records written in any order. Figures 7 and 8
give the main bodies of these programs and assume the structure and field list definitions used earlier in this
paper.

The programs in Section 2.5 are also simplistic in that the writer registers all record formats before
writing any data records and the reader will not work if this condition is violated. Many simple programs
use a fairly static set of record formats for I/O and have no problems registering all formats at the beginning.
But in some circumstances, a program may need to add a new record format at a later time. Others may
even need to change the layout or sizes of format fields on the fly. For the writer, this isn’t a significant
problem. PBIO allows new record formats to be registered to an output stream at any time. However,
reading programs need a way of knowing when new formats are encountered on input.



IOFile iofile = open_IOfile("test_output", "r");
IOFormat first_format, particle_format, next_format;

set_IOconversion(iofile, "first format", field_list, sizeof(first_rec));
set_IOconversion(iofile, "R3vector", R3field_list, sizeof(R3vector));
set_IOconversion(iofile, "particle", particle_field_list, sizeof(particle));

first_format = get_IOformat_by_name(iofile, "first format");
particle_format = get_IOformat_by_name(iofile, "particle");

next_format = next_IOrecord_format(iofile);
while(next_format != NULL) {

if (next_format == first_format) {
first_rec rec1;
read_IOfile(iofile, &rec1);
printf("rec had %d, %d, %g, %s, %c\n", rec1.i, rec1.j, rec1.d,

rec1.s, rec1.c);
} else if (next_format == particle_format) {

particle p;
read_IOfile(iofile, &p);
printf("particle.loc = %g, %g, %g, deriv1 = %g, %g, %g\n", p.loc.x,

p.loc.y, p.loc.z, p.deriv1.x, p.deriv1.y, p.deriv1.z);
}
next_format = next_IOrecord_format(iofile);

}

Figure 8: The body of a more complex reader program.

In the PBIO library, data records are just one of the types of records which appear in the input stream.
Data records are of principal interest to many programs so the PBIO interface is designed to make access to
those records easy. However, format descriptions are implicitly written to output streams whenever a new
record format is registered. In the simple programs presented thus far, record formats are read implicitly
when encountered by the data input routines. However, those descriptions are available for reading if so
desired and constitute a second record type. The current version of PBIO also allows comments to be
embedded in the data stream. Comments are simple null-terminated strings that are not interpreted by
the PBIO routines but are available for “labeling” files or data streams. Comments are written with the
write IOcomment() function and are the third type of record which can appear in a PBIO input stream.
The function next IOrecord type() returns the type of the next record in an input stream. Its return value
is one of an enumeration consisting of the values {IOdata, IOformat, IOcomment, IOend, and IOerror}.

Figure 9 shows the body of a reader program that is capable of handling new formats at any time. Its
organization is somewhat different from the previous reader program of Figure 8. For example, the new
program is careful to set conversions for formats only after they have been read. Trying to set a conversion
for a record format which has not yet been seen is an error. The new program also demonstrates how to
handle comments and unwanted records in the input stream. In the case of comments, the comment string is
held in a buffer internal to PBIO and the read comment IOfile() call returns a pointer to this buffer. The
buffer contents are only guaranteed valid until the next PBIO operation. Unwanted buffers are discarded by
issuing a read IOfile() call with a NULL buffer address. This has the effect of consuming the next buffer
on the input stream.

3.4 Bulk Record Handling

PBIO offers some limited facilities for handling more than one data record at a time. These facilities can
be separated into two groups, one intended to support handling contiguous blocks of records and the other



IOFile iofile = open_IOfile("test_output", "r");
IOFormat first_format, particle_format, next_format;

while(1) {
switch(next_IOrecord_type(iofile)) {
case IOend:
case IOerror:

close(iofile);
exit(0);
break;

case IOformat:
next_format = read_format_IOfile(iofile);
if (strcmp("first format", name_of_IOformat(next_format)) == 0) {

first_format = next_format;
set_IOconversion(iofile, "first format", field_list, sizeof(first_rec));

} else if (strcmp("particle", name_of_IOformat(next_format)) == 0) {
particle_format = next_format;
set_IOconversion(iofile, "particle", particle_field_list, sizeof(particle));

} else if (strcmp("R3vector", name_of_IOformat(next_format)) == 0) {
set_IOconversion(iofile, "R3vector", R3field_list, sizeof(R3vector));

} else {
/* no need to track other formats */

}
break;

case IOdata:
next_format = next_IOrecord_format(iofile);
if (next_format == first_format) {

first_rec rec1;
read_IOfile(iofile, &rec1);
printf("rec had %d, %d, %g, %s, %c\n", rec1.i, rec1.j, rec1.d,

rec1.s, rec1.c);
} else if (next_format == particle_format) {

particle p;
read_IOfile(iofile, &p);
printf("particle.loc = %g, %g, %g, deriv1 = %g, %g, %g\n", p.loc.x,

p.loc.y, p.loc.z, p.deriv1.x, p.deriv1.y, p.deriv1.z);
} else {

/* read and discard other records */
read_IOfile(iofile, NULL);

}
break;

case IOcomment:
{

char *comment = read_comment_IOfile(iofile);
printf("Got comment >%s<\n", comment);
break;

}
}

}

Figure 9: A reader program for dynamic format registration.



for writing smaller numbers of records.

The support for contiguous blocks of records is provided by the routines:

extern int
read_array_IOfile(IOFile iofile, void *data, int count, int struct_size);

extern int
write_array_IOfile(IOFile iofile, IOFormat ioformat, void *data, int count, int struct_size);

write array IOfile() writes count records of the same format to the IOfile. data points to the start of
the block of records and struct size must be the size of each array element. Note that the size of the array
element may be different than the size of the structure outside of the array because of compiler and data
alignment issues. This type of array write operation is only available for record formats which do not contain
any fields of type string. All records in the array are written with a single write() system call.

On the reading side, read array IOfile() performs a similar function. Records which have been written
as arrays can be read individually with the normal read IOfile() routine. However, it is not possible to
read as an array records which have not been written with write array IOfile(). read array IOfile()
returns the number of records which were read, up to count. All the records will be read with a single read()
system call. The routine next IOrecord count() returns the number of array records pending.3

The other facility for bulk record handling is the routine writev IOfile(). writev IOfile() is sim-
ilar to the writev() system call. Instead of taking single data buffer (of a particular format) to write,
writev IOfile() takes a list of data buffers and formats. To the extent possible, all these buffers will be
written to the output stream with a single writev() system call.4 writev IOfile() imposes no restrictions
on the nature of the fields in the records to be written. Unfortunately, the nature of the PBIO protocol
allows no corresponding read call. Records written a single writev IOfile() must be read with multiple
read IOfile() calls. The prototype of writev IOfile() is shown in Figure 10.

typedef struct pbiovec {
void *data;
IOFormat format;

} *pbiovec;

extern int
writev_IOfile (IOFile iofile, pbiovec vec, int count);

Figure 10: Prototypes for writev IOfile().

3.5 Error Handling

Most of the routines described in the sections above can detect or return some kind of error condi-
tion. Some of them are verbose about it, printing error messages to stderr, but most return a partic-
ular value when they fail, generally NULL for the routines which return pointers or opaque data types,
like register IOrecord format(), or 0 for routines like read IOfile() which normally return an inte-
ger. Robust programs should always check the return values of the functions they call. To facilitate error
handling, PBIO provides two additional functions, IOhas error(IOfile) and IOperror(IOfile, char*).
IOhas error() returns 0 if no error has occurred on the IOfile specified as its parameter and 1 if an error

3“array records” are records which have been written with write array IOfile(). The number pending is the number
remaining in the current set that were written in a single call.

4UNIX typically restricts the number of independent memory areas that may be written with writev(). If the number and
nature of the PBIO data to be written exceeds this limit, multiple calls will be performed.



has occurred. IOperror() is similar to the UNIX perror() function. If an error has occurred on the IOfile
specified as its parameter, it prints a textual message describing the error and includes the string specified
as its second parameter.

4 Standard Tools for PBIO Files

The meta-information contained in a PBIO data stream allows the construction of general tools to operate
on PBIO files. Two such tools are provided with the PBIO library, IOdump and IOsort.

IOdump is a “cat” program for PBIO files. IOdump takes as arguments a set of options and a filename. By
default IOdump prints an ascii representation of all data records and comments in the PBIO file. Dumping
of record format information as well as header information in the file is enabled by specifying options of
+formats and +header respectively. In general, printing for any record type can be turned on or off by
specifying options of the form {+,-}{header, comments, formats, data}.

IOsort is a generalized sorting program for PBIO files. It takes three parameters, the name of the field
to sort upon, the name of the input file and the name of the output file. The sort field can be of any PBIO
atomic data type, but it must be the same basic type in all records. Any records in which the sort field does
not appear will not appear in the output file.

5 PBIO With Other Networks

The basic PBIO routines above provide for using PBIO for I/O over file descriptors. This is sufficient for
normal file and TCP/IP socket uses. But sometimes it is useful to use PBIO in other network circumstances
as well. PBIO contains two types of support for transmission over networks without using a TCP/IP layer.
The first type of support is designed for networks which still provide a TCP-like reliable, in-order, two-
ended connection. The second provides a broader kind of support which makes no assumptions about the
underlying network.

5.1 Customizing PBIO Low-Level I/O

To support binary I/O over networks providing a TCP-like interface, PBIO allows the substitution of
user-supplied low-level I/O routines for those normally used to operate on the network interface. To support
the full range of PBIO operations, the user must supply routines to read and write the network interface, a
function to poll the network interface for new data and a routine to close the network interface. A typical
call sequence to create a new PBIO file with a different low-level I/O interface follows:



{
IOFile iofile = create_IOfile(); /* initialize IOfile structure */
void *conn_info;
/*
* user code to create a network connection. Upon creation,
* place any information necessary to use the connection in
* conn_info. This pointer will be supplied to the read and
* write routines.
*/
set_fd_IOfile(iofile, conn_info); /* assoc net info with iofile */

set_interface_IOfile(iofile, new_write_func, new_read_func,
new_writev_func, new_readv_func, new_max_iov,
new_close_func, new_poll_func);

open_created_IOfile(iofile, "w"); /* open file for writing */

/* after this, operate on iofile with normal calls */
}

In the code above, the six functions new write func, new read func, new writev func, new readv func,
new close func and new poll func are the new user-supplied network access routines. new write func
and new read func are both of type IOinterface func as defined in io interface.h:

typedef int (*IOinterface_func)(void *conn, void *buffer, int length,
int *errno_p, char **result_p);

When PBIO calls these routines, the value used in the set fd IOfile() call will be supplied as the conn
parameter. buffer and length specify the buffer to be read or written. Upon correct completion, the
routines should return the number of bytes read or written. In the event of end of file, the function should
return 0. In the event of other error, the errno p or result p parameters are used to specify the nature of
the error. If the error is one which maps to a standard UNIX errno value, the integer pointed to by errno p
should be set to that value. If not, the char* pointed to by result p should be set to a string describing
the error. (This string will not be free()’d by PBIO. If it is not stored in static memory, the user routines
should ensure that it is deallocated.)

The routines new readv func and new writev func are called by PBIO to read or write multiple buffers
at a time. They are of type IOinterface funcv:

typedef int (*IOinterface_funcv)(void *conn, struct iovec *iov, int icount,
int *errno_p, char **result_p);

They are like the read and write functions except that instead of a single buffer and length, they take a
vector of type struct iovec and a buffer count value. Type struct iovec is an address,length pair. If the
network interface imposes a maximum size on the number of buffers which can be efficiently read or written
in one call, that value should be specified as the max iov value in the set interface IOfile() call. If the
network interface provides no direct multi-buffer read or write primitives, the readv and writev functions
can be specified as NULL. In this case, PBIO will instead generate multiple calls to the single-buffer read
and write routines.

The new close func and new poll func routines each take only the void *conn value as a parameter.
The close function should shut down the network connection and free all resources associated with it. Poll
should return zero if there is no data currently available for reading on the network interface. PBIO does
not use this function except in the routine poll IOfile(). Consequently, if the network interface does not
provide any means of polling the network for data, this function can possibly be left NULL with no ill effects.



If poll IOfile() is called when the poll function is NULL, poll IOfile() arbitrarily returns 0 (I.E. no
data pending).

5.2 PBIO with Arbitrary Networks

There are many network transport mechanisms which are not TCP/IP-like in one way or another. Some
relax reliability or ordering characteristics to achieve higher performance. Others vary topology to support
such things as multiple receivers (broadcast and multicast) or multiple senders (with incoming messages
multiplexed over a single connection). Different applications may choose to use one of these network protocols
for the actual transport of data but would still find it useful to use PBIO to handle the heterogeneity
issues. Unfortunately, it is difficult for PBIO to deal directly with a non-TCP/IP-like network interface. In
particular, the basic PBIO functions assume that the input appearing at the “read” port of an IOfile should
be exactly what is written from the “write” side of a single IOfile. This is a natural assumption for TCP/IP
like transports, but it breaks down if the underlying transport mechanism allows multiplexing of writers
or readers or if it does not guarantee reliable, in-order delivery. PBIO could theoretically tolerate the loss
or misordering of complete data records, but multiplexing of streams, delivery partial data records or any
disruption affecting record format information would render some data uninterpretable.

In order to allow applications to gain the functional benefits of PBIO while using network transport
mechanisms which PBIO can not directly support, we have defined an interface that allows separating the
processes of data transport and format delivery. With this interface, instead of using write IOfile() to
transmit data, applications can encode the data in a form that can be interpreted by another PBIO library.
The application can then transmitted this encoded buffer via any mechanism at its disposal. Once at its
destination, the encoded buffer can then be passed to PBIO for decoding. Throughout this process, the
transmission of format information from the encoder to the decoder is handled transparently by PBIO.
Formats still need to be registered on the encoding side and conversions need to be set on the decoding
side, but record format information travels from the encoder to the decoder via private reliable connections
established by PBIO. Section 5.2.2 will discuss format communication in more detail.

The programs below show a simple use of these functions to transfer data. Here, the data is encoded in
one program, “transmitted” by writing it to a file in one program and reading it in another,5 and finally
decoded in the “receiving” program.

5Of course, storing data in a file is the normal function of the {read,write} IOfile interface. Files are used here only as an
example transport mechanism.



void main() /* sending program */
{

IOContext src_context = create_IOcontext();
IOFormat dyn_rec_ioformat;
dyn_rec rec;
int buf_size, fd, i;
char *encoded_buffer;
dyn_rec_ioformat = register_IOcontext_format("dynamic format",

dyn_field_list,
src_context);

rec.string = "Hi Mom!";
rec.icount = 5;
rec.double_array = (double*) malloc(sizeof(double) * 5);
for (i=0; i<5; i++)

rec.double_array[i] = i*2.717;
encoded_buffer = encode_IOcontext_buffer(src_context,

dyn_rec_ioformat, &rec, &buf_size);

/* "transmit" encoded record over a file */
fd = open("enc_file", O_WRONLY|O_CREAT|O_TRUNC, 0777);
write(fd, encoded_buffer, buf_size);

}

void main() /* receiving program */
{

IOContext dest_context = create_IOcontext();
IOFormat dyn_rec_ioformat;
dyn_rec rec;
int fd, i;
char encoded_buffer[2048]; /* hopefully big enough */

/* "receive" encoded record over a file */
fd = open("enc_file", O_RDONLY, 0777);
read(fd, encoded_buffer, sizeof(encoded_buffer));

dyn_rec_ioformat = get_format_IOcontext(dest_context, encoded_buffer);
set_conversion_IOcontext(dest_context, dyn_rec_ioformat,

dyn_field_list, sizeof(dyn_rec));
decode_IOcontext(dest_context, encoded_buffer, &rec);
printf("string is %s\n", rec.string);
printf("icount is %d\n", rec.icount);
for(i=0; i< rec.icount; i++)

printf("element %d is %g\n", i, rec.double_array[i]);
}

The example programs above are quite simple, but they illustrate two basic characteristics of the IOContext
interface:

• record formats and conversions are registered and set in an IOContext value, much as they are in
IOFile’s in the connected interface. However, unlike the IOFile, the IOContext is not directly asso-
ciated with a file, socket or other transmission or storage mechanism. It only serves as a placeholder
to hold registration and conversion information.

• The example uses files as a “transport” mechanism, but PBIO isn’t involved in the movement of
the encoded data. Actual transmission from encoder to decoder could be via TCP, UDP or paper-
tape clutched by a carrier pigeon. All that matters to PBIO is that the block of data presented to
decode IOcontext() must be one that resulted from a call to encode IOcontext().



The extreme simplicity of the examples allows the omission of details that would complicate the logic of
more general programs. For example:

• The receiving program sets a conversion for the record without examining its format, implicitly as-
suming that it is a format that can be converted to the type dyn rec. A complex program supporting
multiple record formats would presumably examine at least the name and perhaps the fields of the
format before deciding which conversion to register for it. The function has conversion IOformat()
returns true if a conversion has already been registered for a particular format, false otherwise.

• Additionally, to support record formats which might have nested subformats such as the record de-
scribed in Figure 6, the use of an additional functions. In particular, get format IOcontext() returns
only the top-level format of the record. But conversions must be set for any nested formats before a
top-level conversion can be set. The PBIO routine get subformats IOcontext() (prototype below)
returns a NULL-terminated list of IOFormat values corresponding to any nested formats contained
within the record. The last entry in the list is the format of the record itself. The format list returned
by this function should be free’d when no longer needed.

extern IOFormat *get_subformats_IOcontext(IOContext iocontext, void *buffer);

• Because the examples just exchange a single record, they do not need to explicitly mark the beginning
or end of the encoded data blocks. Because attempting to decode an incomplete or corrupted data
block is likely to have unpredictable and deleterious consequences, applications should take steps to
ensure that the data blocks they decode are always the complete and uncorrupted result of some encode
operation.

• The examples each use a single IOContext and use it for a single operation. Individual IOcontext
values can be used for both encoding and decoding and those operations will not affect each other.
Many applications can get by with a single IOContext value per process, but more may be used to
accommodate different threads of control or to ease management of the temporary memory provided
by IOcontexts.

5.2.1 Memory Handling in the IOContext Interface

As with the IOFile interface, the memory use characteristics of the IOContext interface require docu-
mentation.

Transmitting/encoding side On the encoding side, the encoded data block is stored in temporary
memory internal to PBIO and specific to the IOContext value used to encode the data. The memory will
remain valid until the next encode or decode operation associated with that IOContext value.

In addition to the basic encode IOcontext buffer() routine, there are several other variations that
manage their encoding differently and which may be more advantageous to use in certain circumstances. For
example, the routine encode IOcontext bufferB() encodes into a contiguous memory block, but instead
of using temporary memory associated with the IOContext, it uses memory associated with an IOBuffer
variable. IOBuffers exist solely as a handle to temporary memory space that can be used by PBIO. Using
memory associated with an IOBuffer instead of an IOContext decouples the memory use from the IOcontext
so that a following encode does not automatically destroy the data in memory occupied by a prior encode.
IOBuffers are allocated with create IOBuffer() and destroyed with free IOBuffer(). Note that the
pointer returned by encode IOcontext bufferB() should not be free’d. That memory will be deallocated
when the IOBuffer is free’d. IOBuffers may be used multiple times before they are deallocated, with the
caveat that each reuse destroys the previous contents. The APIs for these routines are:



extern IOBuffer create_IOBuffer();
extern void free_IOBuffer(IOBuffer buf);
extern char *encode_IOcontext_bufferB(IOContext iocontext, IOFormat ioformat, IOBuffer iobuffer,

void *data, int *buf_size);

Two additional variations of the PBIO encode routines are encode IOcontext to vector() and
encode IOcontext to vectorB(). The vector-based encode can be somewhat more efficient than the rou-
tines that return a contiguous block of encoded data because the contiguous-buffer routines necessarily copy
all of the data from its original location to the final buffer. Since PBIO tries to transmit all data in its orig-
inal representation, some copy overhead can be eliminated by representing the return value from an encode
operation as a list of memory blocks to be transmitted, rather than a single contiguous block. In that list
of memory blocks, some blocks will be segments of temporary memory and some will be components of the
original data. If whatever message transport mechanism is being used requires a contiguous block of data,
it is best to use the encode IOcontext buffer() routines. But if the transport can handle lists of buffers,
such as the Unix-style writev() call, copy elimination can significantly improve performance where large
data blocks are involved. For example, the encoding example above can be rewritten to use the vector based
calls as seem below:

void main() /* sending program */
{

IOContext src_context = create_IOcontext();
IOFormat dyn_rec_ioformat;
dyn_rec rec;
int iovcnt, fd, i;
IOEncodeVector encode_vector;
dyn_rec_ioformat = register_IOcontext_format("dynamic format",

dyn_field_list,
src_context);

rec.string = "Hi Mom!";
rec.icount = 5;
rec.double_array = (double*) malloc(sizeof(double) * 5);
for (i=0; i<5; i++)

rec.double_array[i] = i*2.717;
encoode_vector = encode_IOcontext_to_vector(src_context,

dyn_rec_ioformat, &rec);

/* count the number of blocks */
iovcnt = 0;
while (encode_vector[iovcnt].iov_base != NULL) iovcnt++;

/* "transmit" encoded record over a file */
fd = open("enc_file", O_WRONLY|O_CREAT|O_TRUNC, 0777);
writev(fd, encode_vector, iovcnt);

}

The full APIs of the vector-based encoding routines are given below. As in the buffer-based routines, there
is a version that uses an IOBuffer variable to supply the temporary memory necessary for the encoding.



typedef struct _io_encode_vec {
void *iov_base;
long iov_len;

} *IOEncodeVector;

extern IOEncodeVector
encode_IOcontext_to_vector(IOContext iocontext, IOFormat ioformat, void *data);

extern IOEncodeVector
encode_IOcontext_vectorB(IOContext iocontext, IOBuffer tmp_buffer, IOFormat ioformat, void *data);

Receiving/decoding side On the receiving end, PBIO offers three different decode operations. The
operations decode IOcontext() and decode to buffer IOcontext() are analogous to read IOfile() and
read to buffer IOfile(). In both cases, the encoded data is preserved and the base record structure
(excluding strings and dynamic arrays) in placed in memory provided by the user. In decode IOcontext()
(as in read IOfile()), strings and dynamic arrays are copied into PBIO temporary memory associated with
the decoding IOContext. The contents of that memory will remain valid until the next encode or decode
operation performed in that context. However, in decode to buffer IOcontext(), all data is placed in
user-supplied memory. The routine:

extern int
this_IOrecord_length(IOContext context, char *src, int encoded_record_length);

returns the number of bytes of user memory required to hold the decoded record. This call requires the
length of the encoded record block as a parameter and returns a conservative estimate of the number of
bytes required to decode the record.

The third decode option offered by PBIO is decode in place IOcontext(). The first two calls,
decode IOcontext() and decode to buffer IOcontext(), always leave their output in a different location
than where the encoded buffer resides. This requires even data fields that need no significant modifica-
tion to be moved to a different location and may not the most efficient way to decode the record. This is
particularly true for transfers between homogeneous targets. In contrast, decode in place IOcontext()
attempts to decode the message and leave it where it is in memory. Where this is possible it is at least as
efficient as decode IOcontext() and perhaps much more efficient because it need not involve any significant
data movement. However, sometimes it isn’t possible to decode the buffer in place. Sometimes the fields
in the current and the desired structure overlap in ways that make it difficult to rearrange them in place.
When this kind of conflict happens, decode in place IOcontext() must copy the encoded buffer into a
temporary location (managed by PBIO), and then do a normal decode IOcontext() with the source being
the temporary buffer and the destination being where the data used to sit.

Despite differences in performance, each call will always maintain the appropriate semantics. That is,
decode in place IOcontext() will always leave the result in the same memory as the encoded buffer and
decode IOcontext() will always leave the result in the specified destination buffer. Some programs may
choose to ignore the performance differences and use one call or the other depending upon which of those
semantics best fits the memory use requirements of the application. However, smarter applications can
achieve the best of both worlds by making use of the decode in place possible() routine which separates
the two possible situations. The following example demonstrates its use.



/* buffer msg contains encoded message */
IOFormat format = get_format_IOcontext(context, msg);

if (decode_in_place_possible(format)) {
char *msg_start;
decode_in_place_IOcontext(context, msg, &msg_start);
/*
* note that with an in-place decode, byte 0 of the resulting
* decoded structure is probably not at byte 0 of the encoded
* buffer. Therefore, msg_start is probably a few bytes into
* the buffer msg. The precise relationship between msg and
* msg_start is a PBIO implementation detail.
*/
process_message(msg_start);

} else {
int length = this_IOrecord_length(context, msg, incoming_size);
char *new_msg = malloc(length);
decode_to_buffer_IOcontext(context, msg, new_msg);
process_message(new_msg);
free(new_msg);

}

5.2.2 Communication of Format Information

While the actual communication of record format information from the encoding context to the decoding
context is generally handled entirely within PBIO, the manner in which this communication is accomplished
may influence the behavior of the application in some ways.

PBIO does have mechanisms and APIs through which applications can directly participate and manage
the exchange of format information. However, those mechanisms are complex and their use is a topic
beyond the bounds of this manual. Therefore we describe the one standard mechanism for managing format
informat, the use of a third party format server. When a register IOcontext format() is done, PBIO
synchronously and reliably transmits record format information to a format server, running on a known host
and listening at a known port. Then, PBIO waits for the format server to return to it a 64-bit format ID.
The register IOcontext format() operation returns only when the format ID has been received at the
encoding side and stored with the IOContext value. When data for that format is encoded, PBIO appends
the format ID to the data to identify the format. On the receiving side, get format IOcontext() extracts
the 64-bit format ID from the data and looks in the decoding IOContext to see if that particular format
ID has been seen before. If not, PBIO synchronously queries the format server and retrieves the format of
record. Thereafter, the format information is associated with the format ID in the IOContext value and no
further contact with the format server is necessary to process records of this type.6

The use of a centralized format server as a data repository has several side effects. As a centralized
resource, the format server is a possible bottleneck in a large system. To mitigate this effect, the format
server consolidates identical record formats registered by hosts of the same architecture and assigns them
all the same format ID. This means that a host receiving the same type of information from N machines of
M different types will only query the format server M times. Another side effect is that the format server
is subject to periodic information loss due to power outages, etc. This possibility limits the length of time
a format ID will remain associated with a particular set of format information, and may potentially limit
the life of encoded data. Because events that require a format server to restart are rare in practice, because
many applications that exchange data online are relatively short lived, and because the IOFile() interface
is available for long-term data storage, most applications are not affected in any way by the robustness of

6However, as this association is maintained in the IOContext value, the use of multiple IOContexts may require multiple
contacts to the format server.



the format server. For those applications that may be especially long-lived, the format server does have a
checkpoint/restart mechanism that allows format IDs to remain valid across multiple server instances.

At this time the location (host and IP port) of the format server is a compile-time parameter to PBIO.
The host value in particular is encoded in the file config.h by the configure script. The actual value
placed in config.h is controlled by the optional --with-format-server=HOST argument to configure. If
this argument is specified at build time, it is used as the default host for the PBIO library to attempt to
contact a format server. If that argument is not specified at build time, the default format server host will
be the host upon which the configure script is running.7 The format server host which was specified at
build time for the PBIO library may be overridden at run-time through the use of the FORMAT SERVER HOST
environment variable.

If no format server responds at the default host, PBIO will attempt to contact a “fallback” format server.
At the present time, this is always the format server on marquesas.cc.gatech.edu. Because we don’t want the
format server on marquesas to be the default server for the world, there is a primitive protection mechanism
built into the format server. In particular, the format server has a format service domain build parameter.
When a client connects to a format server, the server uses a reverse DNS lookup based on the peer IP
address associated with the connection to determine the clients hostname. If the hostname appears to be
within the format service domain, the client is allowed unconditional access to the format server. However,
if the hostname is outside of the domain, or if the hostname lookup fails, the IP address of that client is
logged and clients from that IP address may only use the format server for three (3) days. The client will
print a provisional use warning that states the “contacted format server daemon allows only temporary use.”
Connections from IP addresses that have expired will be rejected. The list of expired IP address is not part
of the checkpoint/restore format server functionality, so restarting the format server will reset the list to
empty. The actual service domain used is a build-time parameter to PBIO and is controlled by the the
optional --with-service-domain=DOMAINLIST argument to configure. DOMAINLIST is a list of domain
names separated with ’:’ characters. If the argument is not given, the DOMAINLIST defaults to empty,
which allows unrestricted access to all hosts.8

6 XML and PBIO/JIX

PBIO’s XML support had its origins in the observation that PBIO and XML both provide similar
semantics to the receivers of data. Both formats are self-describing and allow third-parties to interpret and
process data about which they have no a priori knowledge. Both formats also allow readers to be relatively
robust to changes in the data that is sent. In particular, most mechanisms for reading XML (parsers, DOM
interfaces, etc.) do not depend upon the ordering of fields in the XML document and are not affected if
the XML document contains extra fields are attributes. PBIO is similar because of the semantics of the
set IOConversion() and set conversion IOcontext() routines. In particular, the IOFieldList supplied
in the conversion call specifies the order and layout that the receiver want to see the data in. If the incoming
data contains fields in a different order or contains additional fields, those differences are resolved in the
conversion process. Fields are reordered and extraneous fields are dropped.

6.1 Operating on Unknown Data

Our experience with PBIO has shown that most programs do not operate upon data that they have no
prior knowledge about. While PBIO IOFieldLists can be created and used dynamically, it is a rare practice
because it is only necessary if the structures to be manipulated are dynamic and that is not a semantic that
is directly supported by common programming environments. Therefore, PBIOs routines that query and
manipulate field lists will not be described in detail here. Instead we will just enumerate them below:

7Except when the script is running in the “gatech.edu” network domain. Then the default format server host will be
marquesas.cc.gatech.edu.

8Except when the configure scripts is run on machines in the gatech.edu domain. In this case the default DOMAINLIST is
“gt.atl.ga.us:gatech.edu”.



extern IOFieldList field list of IOformat(IOFormat format) returns the NULL-terminated
IOFieldList associated with a given

extern int compare field lists(IOFieldList list1, IOFieldList list2) compares two field lists
for strict equality.

extern IOFieldList copy field list(IOFieldList list) returns a copy of an IOFieldList

extern IOFieldList localize field list(IOFieldList list) this routine assigns “reasonable” values
to the size and offset values for the given field list. Here “reasonable” means acceptable to the current
underlying machine architecture. This routine is used to support higher-level dynamic code generation
routines in doing third-party data processing and filtering.

extern int struct size field list(IOFieldList list, int pointer size) returns the size of the
“base” structure described by a field list. The pointer size parameter is required because that
information is implicit in format registration and not carried with the field list.

6.2 Just-In-Time Expansion to XML

Because PBIO records are completely self-describing, it is possible to “print” them into XML (or
virtually any ASCII form) at any point. Two subroutines in PBIO specifically support the produc-
tion of XML. One, IOencoded to XML string() operates on data in its encoded form (as produced by
encode IOcontext buffer() for example). The second, IOunencoded to XML string() operates on unen-
coded data. Both routines return a char* string value that is the XML representation of the data. The
string should be free’d when it is no longer needed. The APIs of these routines are:

extern char *IOencoded_to_XML_string(IOContext iocontext, void *data);

extern char *IOunencoded_to_XML_string(IOContext iocontext, IOFormat ioformat, void *data));

By default, the XML expansion of PBIO data is relatively simple and is governed by the format that describes
the data. The “format name” string provided in the original register IOcontext format() call is used
as the name in the surrounding begin/end XML tags for a structure. Within a structure, each fields name
is used in begin/end XML tags for that field. Within the field begin/end tags is XML that represents
the contents of that field. If the field type is a simple atomic type, the contents are simply printed in an
appropriate format. Integer types appear in decimal representations, characters as simple chars, booleans
appear as either “true” or “false”, strings appear directly and floating point types are printed using the
“appear as nested XML elements. Arrays appear as repeated XML elements. In arrays of atomic data types,
the field name appears as the standard begin/end XML tags where the element contents are the actual array
element values with whitespace separators. Fixed-length and variable-length arrays are treated identically.

For example, the record written in the simple encoding example of Section 5.2 expands to the following
XML if IOencoded to XML string() is called on the resulting encoded buffer.

<dynamic format>
<string field>Hi Mom!</string field>
<icount>5</icount>
<double_array>
0 2.717 5.434 8.151 10.868 </double_array>
</dynamic format>

6.3 Customizing the XML Representation

Note that in the default XML representation, all data is presented as an XML element without use of
XML attributes. In practice, users may require more control of the manner in which PBIO-based records are



expanded as XML. In PBIO’s model of XML support, additional XML markup information can be associated
with IOFormats at the time of registration.9 The mechanism for this is a special format registration call
that allows optional format information to be specified along with the registration. The optional format
information API is generalized for future extensions, though at the time of this writing the only optional
information supported is the XML markup information. The API for registering a format with optional
information and for retrieving the optional information associated with a format is shown below:

typedef struct _IOOptInfo {
int info_type;
int info_len;
char *info_block;

} IOOptInfo;

extern IOFormat register_opt_format(const char *format_name, IOFieldList field_list,
IOOptInfo *optinfo, IOContext iocontext);

extern void * get_optinfo_IOFormat(IOFormat ioformat, int info_type, int *len_p);

The optinfo parameter to register opt format() is a list of optional information values to be associated
with the format. The list is terminated by an entry with an info type value of 0. To specify optional XML
markup information, the info type value must be XML OPT INFO, the info block value should point to an
XML markup string, and the info len parameter should be set to the length of the markup string. The
format of the markup string is described in the next sections.

6.3.1 Basic XML Markup

The XML markup string is essentially a template into which the values from the actual data will be
substituted. The substitution points are marked by XML-like PBIO:data tags. Those tags contain as an
attribute the identity of the particular data field that is to be substituted, specified by either field name or
field id (a zero-based index into the field list). Except for PBIO:* tags, all elements of the XML markup
string are copied directly from the template into the hydrated XML. Thus, any non-variant elements in
the XML, including tags, constant attributes, or whitespace, can be supplied with the XML markup. For
example, an XML markup string that will produce exactly the default output for the example above is:

"<dynamic format>
<string field><PBIO:data field_name="string field"></string field>
<icount><PBIO:data field_name=icount></icount>
<double_array>
<PBIO:data field_id=2></double_array>
</dynamic format>"

Note the variations in the attribute associated with each PBIO:data tag. Field names are used for the first
two tags, and in the case of string field the name must be surrounded by quotes because it contains a
space character. The last field is specified by its zero-based index in the field list (“double array” is field 2).

"<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dynamic [

<!ELEMENT dynamic (strfield, icount, doublearray)>
<!ELEMENT strfield (#PCDATA)>
<!ELEMENT icount (#PCDATA)>

9Note that this approach means that XML formatting is controlled at the time of encoding of data, not at the point at which
it is hydrated into XML.



<!ELEMENT doublearray (#PCDATA)>
]>
<dynamic>

<strfield><PBIO:data field_name="string field"></strfield>
<icount><PBIO:data field_name=icount></icount>
<doublearray><PBIO:data field_name=double_array></doublearray>

</dynamic>"

A program that demonstrates this facility and its output appear in Figures 11 and 12.

6.3.2 XML Markup for Arrays

The simple template mechanism discussed is perfectly adequate for simple and nested structures, but
doesn’t allow complete control of how arrays are hydrated into XML. In particular, the use of a simple
PBIO:data tag doesn’t allow control of the text that is to appear before and after each array element. In
order to attain that control, we again follow an XML style in the template and introduce two new tags,
PBIO:array and PBIO:array data mark. Essentially, where the basic use of PBIO:data produces a template
with this conceptual behavior:

. . .<PBIO:data field name=field a>
text between field a and field b (appears once)
<PBIO:data field name=field b>
text between field b and field c¿ (appears once)
<PBIO:data field name=field c> . . .

The new tags define the text in this manner:

. . .<PBIO:data field name=field a>
text between field a and start of array (appears once)
<PBIO:array>
text that appears before every array element
<PBIO:array data tag field name=field b>
text that appears after every array element
</PBIO:array>
text after array and before field c (appears once)
<PBIO:data field name=field c> . . .

This is sufficient to allow complete control if the representation of arrays in lists in XML hydra-
tion. As an example of using this facility, consider the program of Figure 11 and replace the line
“<doublearray><PBIO:data field name=double array></doublearray>” with:

<doublearray><PBIO:array>
<list_element>

<PBIO:array_data_mark field_name=double_array>
</list_element></PBIO:array>

</doublearray>

The modified portion of the output of the program is shown in Figure 13.

7 Statistical Information



#include "io.h"
typedef struct _dyn_rec {

char *string;
long icount;
double *double_array;

} dyn_rec, *dyn_rec_ptr;

char markup[] = "\
<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n\
<!DOCTYPE dynamic [\n\

<!ELEMENT dynamic (strfield, icount, doublearray)>\n\
<!ELEMENT strfield (#PCDATA)>\n\
<!ELEMENT icount (#PCDATA)>\n\
<!ELEMENT doublearray (#PCDATA)>\n\

]>\n\
<dynamic>\n\

<strfield><PBIO:data field_name=\"string field\"></strfield>\n\
<icount><PBIO:data field_name=icount></icount>\n\
<doublearray><PBIO:data field_name=double_array></doublearray>\n\

</dynamic>";

IOField dyn_field_list[] = {
{"string field", "string", sizeof(char *), IOOffset(dyn_rec_ptr, string)},
{"icount", "integer", sizeof(long), IOOffset(dyn_rec_ptr, icount)},
{"double_array", "float[icount]", sizeof(double), IOOffset(dyn_rec_ptr, double_array)},
{ NULL, NULL, 0, 0}

};
int main() /* sending program */
{

IOContext src_context = create_IOcontext();
IOFormat dyn_rec_ioformat;
dyn_rec rec;
int buf_size, fd, i;
char *encoded_buffer, *xml_hydration;
IOOptInfo opt_info[2];

opt_info[0].info_type = XML_OPT_INFO;
opt_info[0].info_len = strlen(markup);
opt_info[0].info_block = markup;
opt_info[1].info_type = 0;
dyn_rec_ioformat = register_opt_format("dynamic format", dyn_field_list, opt_info, src_context);
rec.string = "Hi Mom!";
rec.icount = 5;
rec.double_array = (double*) malloc(sizeof(double) * 5);
for (i=0; i<5; i++) rec.double_array[i] = i*2.717;
encoded_buffer = encode_IOcontext_buffer(src_context,

dyn_rec_ioformat, &rec, &buf_size);

xml_hydration = IOencoded_to_XML_string(src_context, encoded_buffer);
printf("encoded data is %d bytes, XML string is %d bytes\n", buf_size, strlen(xml_hydration));
printf("XML string is :\n%s", xml_hydration);

}

Figure 11: A program using explicit XML markup specified as optional information in format registration.



encoded data is 80 bytes, XML string is 341 bytes
XML string is :
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dynamic [

<!ELEMENT dynamic (strfield, icount, doublearray)>
<!ELEMENT strfield (#PCDATA)>
<!ELEMENT icount (#PCDATA)>
<!ELEMENT doublearray (#PCDATA)>

]>
<dynamic>

<strfield>Hi Mom! </strfield>
<icount>5 </icount>
<doublearray>0 2.717 5.434 8.151 10.868 </doublearray>

</dynamic>

Figure 12: Output for the program in the previous figure.
struct _IOContext_stats {

int decode_bytes;
int decode_msg_count;
int encode_bytes;
int encode_msg_count;
int formats_present_count;
int format_registration_count;
int format_fetch_count;
int to_format_server_bytes;
int from_format_server_bytes;
long last_server_time;

} *IOContext_stats;
extern IOContext_stats get_IOstats(IOContext iocontext);
extern void print_IOstats(IOContext_stats);

The library does track some basic in-
formation relating to basic input and out-
put statistics. The tracking is centered on
IOContexts and IOFiles and is available with
the get IOstats() routine. The return value
from get IOstats() is a pointer to a structure
defined in io.h. The actual structure returned
is malloc’d and should be free’d when no longer
needed. The relevant APIs are given at right.
The routine print IOstats() dumps a given
set of statistical information to standard output. get IOstats() can be used with IOContexts or IOFiles
cast to IOContext.

The meaning of the values in the IOContext stats structure varies slightly for IOFiles and IOContexts.

decode bytes, decode msg count - In IOFiles, these values refer to data values read, rather than de-
coded. The byte value follows the number of data bytes read from the input file or passed to the
decoding routine. The msg count is simply the count of data elements read or decoded.

encode bytes, encode msg count - In IOFiles, these values refer to data values written, rather than
encoded. The byte value follows the number of data bytes written to the output file or the size of the
encoded data blocks. The msg count is simply the count of data elements written or encoded.

formats present count, format registration count, format fetch count - In IOFiles, these values
refer to formats written to the output file rather than registered, and formats read from input rather
than fetched. In IOFiles, the formats present count may be less than either of these because formats
can be overwritten.

to format server bytes, from format server bytes - in IOFiles these values roughly correspond to
the amount of format-related data in the input or output file. In IOContexts, they represent traffic to
the format server.

last server time - this value is only non-zero for IOContexts. This the time of the last contact with the
format server. It is a standard time() value cast to a long, representing time in seconds since 00:00:00
UTC, January 1, 1970.



<doublearray>
<list_element>

0
</list_element>
<list_element>

2.717
</list_element>
<list_element>

5.434
</list_element>
<list_element>

8.151
</list_element>
<list_element>

10.868
</list_element>

</doublearray>

Figure 13: New output with array expansion explicitly controlled.

8 Deprecated PBIO/JIX Interfaces

PBIO and JIX have evolved considerably since their first use. As a result, there are many external PBIO
APIs which are either deprecated or are now useful only under rare and highly specialized circumstances.
These routines remain in the external interface, but generally their use should be avoided in preference for
the routines documented in this manual. For example, the routine encode IOcontext release vector()
which returned an encoded buffer in malloc’d memory is now deprecated and new applications should use
the IOBuffer-based routine encode IOcontext vectorB(). Similarly, the entire set of routines using the
IOFieldPtr data structure, including the get IO* routines for each data type, were the principal means
of retrieving encoded data before the concept of whole-message input conversion was introduced. These
routines are still useful in some specialized circumstances, but because these routines were last widely used
before arrays and dynamically-sized data structures were introduced, they cannot easily be used when those
elements are present. Users with highly specialized needs should seek counsel from the PBIO/JIX developers
before using PBIO routines not documented here.
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