
The Connection Manager Library

Greg Eisenhauer
eisen@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332

August 17, 2004 – CM Version 2.0

1 Introduction

Connection Manager is a library of communications routines which manage the complexity of sys-
tems with multiple communication links between heterogeneous machines. The library is designed
to be used as an implementation basis for networks of agents communicating application-specific
data. CM is a follow-on to the DataExchange[2] communication library and was designed to ad-
dress some of the difficulties of using DataExchange in multi-network environments and with using
DataExchange in libraries with evolving message formats. As such, it contains support for estab-
lishing communication between agents, matching incoming messages with handlers, and assisting
in the distribution of message format information to entities with which it is communicating. This
paper details the services and interfaces offered by Connection Manager.

2 Overall Description

The core purpose of Connection Manager is to ease the task of creating and operating networks of
communicating entities over specialized and configurable data transport mechanisms. In particular,
it is designed to abstract away the intricacies of those transports and to satisfy two conflicting goals:
allowing uncustomized applications and libraries to transparently use specialized data transport
mechanisms (such as raw ATM), while still allowing knowledgeable application layers to configure
transport particulars.

CM also directly supports heterogeneous applications by providing for binary data transmission
between entities and locating the most appropriate handler for incoming data. To provide hetero-
geneity support, CM relies mostly upon PBIO, a lower-level communications library that supports
binary transmission of C-style data structures between heterogeneous machines. PBIO is docu-
mented in Portable Self-Describing Binary Data Streams [1]. This document is available
in the PBIO source distribution and an older version is Georgia Institute of Technology College
of Computing Technical Report GIT-CC-94-45. Familiarity with the concepts and specifications

1

Application

Connection Manager

Demand−driven Transport Loader

CM functionality
Transport−independent

Modules
Other transport

(ATM, Myrinet)Module
TCP/IP socket

Standard

Module
FD select()

Figure 1: Structure of the Connection Manager.

used in PBIO are necessary for understanding messaging in CM. Under normal circumstance, CM
relies on PBIO’s internal mechanisms for distributing message format information. However, in
circumstances where dependency upon PBIO’s external format server is impossible, such as for
operation within the kernel, each CM application can act as its own format server.

In order to allow applications to transparently use a variety of data transport mechanisms, CM
is structured so that individual transports are implemented with dynamically loadable modules as
depicted in Figure 1. Applications can use transport mechanisms that might not have existed when
the application as written and they are not burdened with the code and memory requirements of
unused transports. In addition to the dynamically loadable transports, Figure 1 shows FD select()
functionality separated out into a loadable module. This module provides control-flow support
for transports which may be integrated into the OS file descriptor system. Its separation into a
loadable module allows CM to be used as a communications manager even in situations where FD
select() is not a viable control-flow mechanism, such as within the OS kernel.

In addition to allowing applications to transparently use different data transport mechanisms,
CM is also designed to allow more aware applications to customize the behavior of those data
transports, for example to specify bandwidth requirements, expected reliability or other transport-
specific characteristics. Because CM does not have a priori knowledge of the specific transports
that might be used by an application, it must have a mechanism though which it can pass virtually
any type of parametric specification between applications and the selected data transport. This
role is filled by attribute lists. An attribute is a name/value pair that specifies something about a
connection or message. Lists of these attributes are used to specify to CM the characteristics of
the connections it should make. For example, a standard TCP/IP connection might be specified
by the attribute list:

{IP_HOST,"latte.cc.gatech.edu"},{IP_PORT,40767}

Attribute lists are used by CM for a variety of other purposes as well, in both the application-layer
API and in communication with the data transport modules.

2.1 A “Hello, World!” Program

#include <stdio.h>
#include "atl.h"
#include "cm.h"

typedef struct _msg {
char *string_field;

} msg, *msg_ptr;

static IOField msg_field_list[] =
{

{"string_field", "string", sizeof(char*), 0},
{NULL, NULL, 0, 0}

};

static void
msg_handler(CManager cm, CMConnection conn, void *msg,

void *client_data, attr_list attrs)
{

printf("%s\n", ((msg_ptr)msg)->string_field);
}

int
main (int argc, char **argv)
{

CManager cm;
CMFormat format;
attr_list contact_list;

cm = CManager_create();
CMlisten(cm);
contact_list = CMget_contact_list(cm);
printf("Contact list \"%s\"\n",

attr_list_to_string(contact_list));
format = CMregister_format(cm, "hello",

msg_field_list, NULL);
CMregister_handler(format, msg_handler, NULL);
CMrun_network(cm);

}

At this point it is useful to discuss Con-
nection Manager in the context of a sim-
ple program. The program at the right
is the receiving side of a basic “Hello,
World!” program. Users of our ear-
lier DataExchange will find the struc-
ture of the program quite familiar. Like
DataExchange, CM provides a reactive
programming style. That is, most pro-
grams are structured around the ex-
change of messages, utilizing CM’s abil-
ity to call application-specified handlers
when messages of appropriate types ar-
rive. This particular program does noth-
ing except wait for the arrival of a “hello”
message. When one arrives, the subrou-
tine msg_handler() is called and it prints
out the string_field element of the mes-
sage.

The typedef at the beginning of the
program declares the datatype of the
message. The IOField declaration creates
a PBIO-style IOFieldList that is used to
describe the message datatype to the
Connection Manager. The subroutine
msg_handler() has a prototype shared by
all CM message handlers. It has parame-
ters representing the calling Connection
Manager, the connection on which the
message was received, a pointer to the
message data (as a void* pointer, and the
client_data parameter that was given by the application when the handler was registered.

This program uses five basic CM functions:

CManager create() – This call creates and initializes a CManager data structure. All CM applica-
tions must call this at least once. The CManager data structure provides a means of associating
related communication channels. Essentially, the CManager is a control context in which
network messages are handled.

CMlisten(CManager cm) – This call requests CM to listen for incoming network connections.
What exactly this does depends upon what network transport layer is in use. In the de-
fault “sockets” transport, this will cause CM to create an internet socket on the current
host, bind it to randomly chosen IP port port num and begin listening for connections. Once
CMlisten() has been called, other programs can initiate a connection with this program

by calling CMinitiate conn() discussed further below. The contact information for a CM
is encapsulated in an attribute list. The contents of the attribute list are transport-specific.
Casual CM users should consider these attribute lists to be opaque. However, the goal of CM
is that these attribute lists might provide the mechanism through which application-specific
transport requirements, such as QOS specifications, can be communicated to the transport
layer. Applications with detailed knowledge of the transport in use can use:

extern int CMlisten_specific (CManager cm, attr_list listen_info);

to pass specific attributes to the transport-based listen call. In particular, the “sockets”
transport looks for an “IP PORT” attribute to specify the port upon which it is to listen.

CMFormat CMregister format(CManager cm, char *format name, IOFieldList field list,
CMFormatList subformat list);

– CMregister format() provides the basic mechanism for making message formats known to
CM. Registration is a prerequisite for handler registration or writing data of that format. The
field list parameter is a PBIO field list specifying the structure of the message. Record
format descriptors are described in the PBIO documentation, but basically consist of a list
of field descriptions, where each field description is a quadruple giving the field name, data
type, size and offset within the record. Given this information, PBIO can pack the record for
transmission to other machines and can decode it despite differences in machine architecture
or record layout. The subformat list parameter enables a feature not present in PBIO or
DataExchange. It is a list of format name/field list pairs as below:

typedef struct _CMformat_list {
char *format_name;
IOFieldList field_list;

} CMFormatRec, *CMFormatList;

and is used to specify the representation of any nested structures in the message. If the
message field types are simple pre-defined PBIO types, subformat list can be NULL. Oth-
erwise it should contain the transitive closure of all data types necessary to specify the message
representation. The list is terminated with a {NULL, NULL} value.

void CMregister handler(CMFormat format, CMHandlerFunc handler,
void *client data)

– CMregister handler() binds the subroutine specified in its handler parameter to the
arrival of messages of the type format. The profile of the handler function should be:

typedef void (*CMHandlerFunc) (CManager cm, CMConnection conn,
void *message, void *client_data, attr_list attrs);

The client data parameter specified in the registration call is not interpreted by CM, but
merely passed to the handler function when it is called. The attrs parameter points to an
attribute list that includes any attributes specified in the CMwrite attr() call made by the
sender, as well as attributes that might have been added by the transport on the receiving
side.

void CMrun network(CManager cm) – CMrun network() is one of the basic network event han-
dling calls in CM. A CM network event is a basic communications occurrence, such as a
connection request or message arrival. The routine CMrun network() essentially handles net-
work events until the CManager is shutdown. In this case, there is no CManager close()
call, so CMrun network() will run forever.

#include <stdio.h>
#include "atl.h"
#include "cm.h"
main(argc, argv)
int argc;
char **argv;
{

CManager cm = CManager_create();
CMConnection conn;
attr_list contact_list;

contact_list = attr_list_from_string(argv[1]);
conn = CMinitiate_conn(cm, contact_list);
CMConnection_close(conn);
CManager_close(cm);

}

Figure 2: A simple client program.

A correspondingly simple client program that connects to this server is given in Figure 2. Unlike
the sample server program, this client program doesn’t really do anything useful. Assuming that
the first argument to this program is the stringified attribute list printed out by the server program
of Section 2.1, this client connects to the server, then immediately shuts down the connection (with
CMConnection close(conn)) and shuts down the CManager with with CManager close(cm). The
return value from CMinitiate conn() is a value of type CMConnection and is a handle that can
be used to write to the CM program on other end of that particular network connection. Note
that unlike DataExchange, CM has no explicit network read function. More about this below in
Section 3.2.

These examples also introduce the two most important data types in CM, CManager and
CMConnection. A CManager value essentially represents a communications context for a program.
CM subroutines which operate on a communications context have a “CM” prefix in their name and
take a CManager value as their first parameter. This paper will refer to a CManager value as “a
CM.” Programs can create multiple CManagers and operations on those will be independent, but
most programs will need just a single CM to support all messaging operations. In multi-threaded
programs, only one thread should call CMrun network() or the other network handling functions.
CMConnection values are associated with a CManager and represent the endpoint of a bidirectional
communications link.

A CM acting as a simple client with a single communications connection will have only one
CMConnection. A CM operating as a server with many connections will have many CMConnection’s,
one for each client to which it is connected. CM communications links have a CMConnection on
each end. CM’s write subroutines for data operate on CMConnection values and send data across
the communications link represented by their CMConnection parameter.

3 Sending Data

To actually make the program in Figure 2 useful, it has to send a message. Before a message can
be sent, the message format must be registered with CM. This is done in the same manner as in the
first sample program of Section 2.1 with the CMregister format() call. The CMFormat return
value is then used in a call to CMwrite().

extern int CMwrite (CMConnection conn, CMFormat format, void *data);

The body of the client program of Figure 2 then becomes:

{
CManager cm = CManager_create();
CMConnection conn;
attr_list contact_list;
CMFormat format;
msg message;

contact_list = attr_list_from_string(argv[1]);
conn = CMinitiate_conn(cm, contact_list);
format = CMregister_format(cm, "hello",

msg_field_list, NULL);

message.string_field = "Hello, World!";
if(CMwrite(conn, format, (void*)&message) != 1) {

printf("write failed\n");
}
CMConnection_close(conn);
CManager_close(cm);

}

This program should be run with its first argument being the contact list string printed out by the
example in Section 2.1.

3.1 Linking and Running

CM is built with ‘libtool’, a tool which hides the complexity of building and using shared libraries
behind a consistent, portable interface. On platforms where it is possible, the library will be built
as both a traditional static library (.a file) and a shared library (.so file). CM extensively uses
libtool’s support for dynamically loading code modules at runtime.

CM applications can also be built with libtool. How this is done is best explained by the
libtool documentation, available from http://www.gnu.org/software/libtool/libtool.html. If libtool
is utilized, using CM involves adding “-lcm” to the link line, preceeded if necessary by an appropriate
“-Llibdirectory” flag. Libtool will locate any other libraries required by libtool.

It is also possible to link CM applications without libtool. If this is done, the libraries that CM
depends upon must be specified explicitly. A typical library spec might be “-lcm -latl -lIO”, again
preceeded by an appropriate “-Llibdirectory” flag. (Some platforms, such as Solaris, may also need
“-lnsl -lsocket”.) However there are some subtleties that may cause difficulties. In particular, on
many platforms, the linker will preferentially use the shared library if it is available. So, if both a
.a and .so file are available in “libdirectory”, the .so form will be used with implications describe
in the next subsection.

3.1.1 Using the shared library version

On some platforms (such as Solaris), the -L flag is not the only flag that controls where shared
libraries might be found. In particular, -L only controls the link time search path for shared
libraries. Other flags, typically -R, control the search path that will be used at run time. libtool
would automatically do this for you, but you must do it manually if you don’t use libtool. If you
don’t specify the appropriate run-time link path, the dynamic linker won’t be able to locate the
appropriate shared libraries and you’ll get a run-time error. On most platforms, ’ldd’ is a tool that
lists the dynamic dependencies of an executable, including what the library search paths are and
which libraries would be loaded if the program were run.

3.1.2 Using the traditional library version

Creating statically linked versions of programs can be useful for debugging. You can (generally)
use the traditional library version (.a files) of CM if you specify the .a file directly. Additionally,
some versions of ld accept flags that cause only the static versions of libraries to be used (such as
-Bstatic on Solaris).

The principal caveat to using static libraries is that CM uses program-controlled dynamic linking
(dlopen-style) to load its network transport layer. On some platforms, statically linked programs
cannot use dlopen(). If CM is unable to load its transport layer, your program will exit with the
error “Failed to initialize default transport. Exiting.”. You may be able to avoid this by linking only
some libraries statically and letting others, particularly libc, be dynamic. libtool users can produce
a completely statically linked executable because CM uses libtool’s ltdl library. That library is
capable of simulating dynamic linking in a statically linked environment (if all the dlls are known
at link time.) See the libtool docs for how this works.

3.1.3 Running

Depending upon how they were linked, CM applications may require the environment variable
LD LIBRARY PATH to be set at run-time. Using LD LIBRARY PATH can fix-up exe-
cutables which do not have the correct run-time link paths built in with ld’s -R flag.

3.1.4 Example Scripts

The tty sessions below demonstrate compiling, linking and running the programs a CoC Solaris
7 Sparc. The example of Section 2.1 is in the file “server.c” and the program of Section 3 is in

“client.c”. Note that the contact list specified to the client is protected from interpretation in the
shell by quoting it.

marquesas% cc -c -I/users/c/chaos/include server.c
marquesas% cc -L/users/c/chaos/sun7/lib -R/users/c/chaos/sun7/lib -o server server.o -lcm \
-latl -lIO -lsocket -lnsl
marquesas% ./server
Contact list "{IP_HOST,S9,marquesas},{IP_PORT,4,33035},"
Hello, World!

Figure 3: Compiling, linking and running the server.

latte% cc -g -c -I/users/c/chaos/include client.c
latte% cc -L/users/c/chaos/sun7/lib -R/users/c/chaos/sun7/lib -g -o client client.o -lcm \
-latl -lIO -lsocket -lnsl
latte% ./client "{IP_HOST,S9,marquesas},{IP_PORT,4,33035},"
latte%

Figure 4: Compiling, linking and running the client.

3.2 Differences from DataExchange

For the benefit of users of DataExchange, this section will detail some of the basic differences that
will be encountered when porting to CM.

Different handling of network contact information – DataExchange was largely oriented to-
wards the use of TCP/IP sockets as an underlying transport layer. Using a different transport
was possible, but it relied on using different DataExchange and PBIO calls to initiate con-
nections, etc. In practice, this made it very difficult for higher-level libraries such as ECho
to support multiple network transport layers. The orientation towards a single transport
was also evident in DataExchanges assumption that a connection point would be completely
specified by a hostname and IP port number.

In order to support many potential network transports and to allow their customization (with
such things as Quality-of-Service parameters), CM uses attribute lists. As noted in Section 2,
attribute is a name/value pair that specifies something about a connection or message. Lists
of these attributes are used to specify to CM the characteristics of the connections it should
make. In the case of TCP/IP socket connections, the attribute list required contains the
same hostname/IP port pair that DataExchange would have used. Conceptually however,
what is in the attribute list used to specify network contact information is of interest only
to the CM transport layer making the connection. Non-specialized applications should treat
the attribute lists as if they were opaque.

Attribute lists operations are supported by the “atl.h” include file and the “atl” library.
The include file defines the attr list data type. Most CM applications will need only two
functions that operate on attribute lists. attr list to string() converts an attribute list to
string form and attr list from string() does the reverse, parsing a string into an attribute
list. Attribute lists can be freed with free attr list().

extern char *attr_list_to_string(attr_list attrs);
extern attr_list attr_list_from_string(char * str);
extern void free_attr_list(attr_list list);

Format handling is not “name” oriented – In DataExchange, message format registration
and handling were heavily name oriented. Only one format and one handler for a partic-
ular message name could be registered. This was a simple arrangement, but it seriously
limited program adaptability and evolution. For example, if an server wanted to add a field
to the request messages it accepted, it could not continue to service old clients by registering
a handler for both the old and new message formats. CM has considerably more complex
features that aid in program evolution, but in order to support them it was necessary to
eliminate the idea that a format’s name was its principal “handle”. Accordingly, there are
no direct counterparts to calls like DataExchange’s DEport write data by name(). Instead,
applications should save the CMFormat value that is returned by format registration for use
in CMwrite(). Because data storage may be difficult in some situations, such as for libraries
built on top of CM, there is a CMlookup format() call that takes a field list as a parame-
ter and returns the CMFormat value that was created when the field list was registered. This
features relies on the fact that field lists are typically statically allocated and their memory
is not reused in the course of a CM application. If you rely on this feature, you should ensure
that all field lists used to register formats are unique.

Subformat lists in format registration – In DataExchange, format registration was cumula-
tive. If you wanted to register a format that had nested subformats, you had to register those
subformats first. When looking for subformats, DataExchange looked them up by name. In
order to avoid the types of problems, described in the item above, CM does things differ-
ently. In particular, every format registration is completely independent. Any subformats
that are necessary for the main format must be represented in the subformat list, a set of
name/field list pairs that should hold the transitive closure of nested formats. For example,
the doubly-nested structure simple rec below can be registered using simple field list
and simple format list.

typedef struct _complex_rec {
double r;
double i;

} complex, *complex_ptr;

typedef struct _nested_rec {
complex item;

} nested, *nested_ptr;

typedef struct _simple_rec {
int integer_field;
nested nested_field;

} simple_rec, *simple_rec_ptr;

static IOField complex_field_list[] =
{

{"r", "double", sizeof(double), IOOffset(complex_ptr, r)},
{"i", "double", sizeof(double), IOOffset(complex_ptr, i)},
{NULL, NULL, 0, 0}

};

static IOField nested_field_list[] =
{

{"item", "complex", sizeof(complex), IOOffset(nested_ptr, item)},
{NULL, NULL, 0, 0}

};

static IOField simple_field_list[] =
{

{"integer_field", "integer",
sizeof(int), IOOffset(simple_rec_ptr, integer_field)},
{"nested_field", "nested",
sizeof(nested), IOOffset(simple_rec_ptr, nested_field)},
{NULL, NULL, 0, 0}

};

static CMFormatRec simple_format_list[] = {
{"complex", complex_field_list},
{"nested", nested_field_list},
{NULL, NULL}

};

Adaptability features of format handling – Because CM is not as name-oriented as DataEx-
change, the name of an incoming message format does not map directly to a handler. In fact,
an application may have registered many handlers for a particular format name, each having
different field and subformat lists. Thus, when an incoming message arrives CM tries to find
the most appropriate handler for it. Matching is first done by the format name, and then by
field lists. Any handler which requires fields not present in the incoming message is rejected
as inappropriate. Among the remaining handlers, the one which matches the most fields in
the incoming record is selected to handle the message. In the event of a tie, the format with
fewest fields is selected.

Assuming that the format names match and ignoring data types for the moment, consider
the following local formats with registered handlers: Handler 1 : Format has fields “a”, “b”
Handler 2 : Format has fields “a”, “b”, “c” Handler 3 : Format has fields “a”, “b”, “c”, “d”

• An incoming message with fields “a”, “b”, “c” is passed to handler 2, matching all fields
exactly.

• An incoming message with fields “a”, “b”, “c”, “d” is passed to handler 3.

• An incoming message with fields “a”, “b”, “d” is passed to handler 1, effectively dis-
carding field “d”.

• An incoming message with fields “a”, “b”, “c”, “e” is passed to handler 2, effectively
discarding field “e”.

• An incoming message with fields “a”, “c” is discarded because no handler matches.

In actual practice, most of these matching rules are unlikely to come into play. They just pro-
vide a format structure for CM to pick an appropriate handler while supporting the evolution
of message formats in a system of communicating programs. For example, the rules mean
that if a new field is added to an existing format, old clients can receive the new messages
and with transparently convert them into the old format. At the same time, new servers can
register handlers for both the old and new formats and have them called at the appropriate
times.

no “read” call – Unlike DataExchange, CM has no explicit network “read” call. Instead there
is only the implicit read achieved through registering handlers. CM eliminates explicit read
because it is a appropriate only in the rarest of circumstances, and even then it is easily
emulated while maintaining more generality than an actual explicit read. Because an explicit
DataExchange-style read blocks at least the thread that performs the read and because it
bypasses the normal handler mechanisms, explicit read is only appropriate for a pure client
with no ability to accept connections from others, only one current network connection, and
absolute knowledge of the message type it is to receive next. Generally this only happens in
client-side request-reply traffic. In this circumstance, it’s easy to emulate a read using CM’s
condition variables (explained in more detail in Section 4.3). Instead of issuing an explicit
read, as in the following code segment:

request_msg_t request;
reply_msg_t reply;
CMwrite(conn, request_format, &request);
CMread(conn, reply_format, &reply);

the program should register a handler for the reply message and use a CM condition variable
to wait for the message. Using CMCondition wait() has the advantage that messages of
other types are properly handled while waiting for the reply. The following code substitutes
for the write/read pair above, with an additional integer “condition” field in the request and
reply formats:

request_msg_t request;
reply_msg_t reply;
int condition;
condition = CMCondition_get(cm, conn);
CMCondition_set_client_data(cm, condition, &reply);
request.condition = condition;
CMwrite(conn, request_format, &request);
CMCondition_wait(cm, condition);

In addition, a handler must be registered for the “reply” message format. This handler should
be of this form:

extern void
Reply_handler(cm, conn, data, client_data)
CManager cm;
CMConnection conn;
void *data;
void *client_data;
{

int condition = reply.condition;
reply_msg_t *incoming_reply_msg = (reply_msg_t *) data;
reply_msg_t *saved_reply_ptr;

saved_reply_ptr = CMCondition_get_client_data(cm, condition);
*saved_reply_ptr = *incoming_reply_msg;
CMCondition_signal(cm, condition);

}

The request handler in the server should fill in the reply.condition field with the value from
request.condition.

4 Control Flow

Unlike simple send-receive communications libraries, CM provides facilities that impact the flow of
control in programs that use the library. While using CM does not imply a specific control model
in the application and various control styles are possible, CM does need to know some basics, such
as what thread library in use. Given that, it can infer other information, such as which thread is
responsible for handling network traffic.

4.1 Threads Interface

In order to avoid the need to build a different version of the CM library for every available thread
package, CM does not contain embedded calls to any particular thread package. Instead, invokes
thread locking through function pointers provided by a package called gen thread. Gen thread
is distributed with CM and essentially, it provides a generic wrapper mechanism that captures
common functionality of thread packages. CM and gen thread are organized such that it is only
necessary to link with the gen thread library if a thread package is in use. Gen thread comes with
interfaces to three threads libraries, Georgia Tech Cthreads, generic POSIX threads, and native
Windows NT threads, but interfaces to additional libraries are easily constructed.1 To a great
extent, the impact upon the application caused by CM using thread functions should be minimal.
Except where discussed in the next section, CM only uses mutex locks to protect critical data
structures from simultaneous access. When locks are used, CM attempts to lock at the smallest
granularity possible to maximize the potential for concurrent execution. In general, read operations
do not interfere with write operations, and operations on a single CMConnection lock only that
port. Blocking operations, such as connection writes, hold the appropriate lock for the duration of
the operation. To avoid broad long-term locks, the polling operations are an exception to this rule.
They acquire locks just before data is read from ready ports. Many miscellaneous informational
and housekeeping operations (such as format and handler registration, etc.) also momentarily
acquire locks on CM-level data structures. However these operations are not generally blocking, so
short-term locking involved is unlikely to significantly affect application behavior.

4.2 Common Control Structures for CM Programs

The principal issue in considering control structures for CM programs is “what thread will service
the network?”. If noone is servicing the network (receiving messages, accepting connections, etc.)
distributed deadlock is possible when other programs try to communicate. Additionally, if multiple
threads try to service the network, serious confusion may result inside CM. So for multi-threaded
programs, exactly one thread should be responsible for servicing the network. This thread will also
execute message handlers, so any long-running handler should be forked into a separate thread so
that the original can go back to servicing the network.

“Servicing the network” is done by any of several mechanisms, including two explicit mechanisms
that are normally used in non-threaded programs:

void CMrun network(CManager cm); – A blocking call that causes the current thread to handle
1Information on constructing new interfaces can be found in the README file in the gen thread distribution.

network requests until the CManager is shut down with CManager close().

void CMpoll network(CManager cm); – A non-blocking call that handles any network requests
that are pending at the time of the call and then returns control. Principally used in single-
threaded programs that only occasionally service the network. Such programs must take care
to call it regularly or risk delaying communicating programs.

In addition, several calls in CM implicitly service the network. Those calls are:

void CMsleep(CManager cm, int secs); Waits for secs seconds and then returns.

void CMusleep(CManager cm, int usecs); Waits for usecs microseconds and then returns.

void CMCondition wait(CManager cm, int cond); Waits for the CMCondition cond to be sig-
nalled. Described in more detail in Section 4.3 below.

These calls can be used in threaded or non-threaded programs. In non-threaded programs, they
always service the network while waiting. In threaded programs, their behavior depends upon what
thread calls them. If they are called from a thread which does not normally service the network,
they block using thread-based mechanisms until it is time for them to return. If they are called
from the thread which normally services the network (such as when called from a handler), they
service the network while waiting.

Figures 5 through 9 give some example control styles for threaded and non-threaded CM pro-
grams. Figure 9 shows the use of CMfork comm thread(), a useful utility function that forks a
network handler thread if there is a kernel-level thread package in use. Otherwise it returns 0. This
is just a convenience for programs that use threads packages, but it is yet more useful for libraries
built on CM that might not have knowledge of the actual application’s use of threads.

4.3 Waiting for Conditions

As is mentioned in Section 3.2, CM provides a general mechanism for safely waiting for some
condition, such as a response to an outgoing request, while continuing to handle incoming message.
This is often necessary for libraries and programs which need to perform distributed operation in
a “synchronous” manner. (That is, they don’t return until the operation is compete).

The CM facilities for waiting for some event to occur are similar to those associated with
condition variables in threads libraries with the simplification that there are generally no mutex
variables associated with these conditions and they can only be used once. The complete API for
CM condition variables is give below:

int CMCondition_get(CManager cm, CMConnection conn);
int CMCondition_wait(CManager cm, int condition);
void CMCondition_signal(CManager cm, int condition);
void CMCondition_set_client_data(CManager cm, int condition, void* client_data);
void *CMCondition_get_client_data(CManager cm, int condition);

The typical use of these routines in a synchronous operation would be begin with the use
of CMcondition get() to “allocate” a condition variable. The ID of this condition variable (an

main() {
CManager cm = CManager_create();
/*
* register formats and handlers
*/
CMrun_network(cm); /* service network until shutdown */

}

Figure 5: A reactive server that runs forever (or until a handler calls CManager close()).

main() {
CManager cm = CManager_create();
/*
* register formats and handlers
*/
CMsleep(cm, 600); /* service network for 600 seconds */
CManager_close(cm);

}

Figure 6: A reactive server that runs for a specified time.

main() {
CManager cm = CManager_create();
/*
* register formats and handlers
*/
while (!done) {

/* do some work here */
CMpoll_network(cm);

}
CManager_close(cm);

}

Figure 7: A reactive server that does work in between handling the network.

main() {
CManager cm = CManager_create();

gen_pthread_init(); /* initialize Pthreads */
/*
* register formats and handlers
*/
thr_fork(worker_task, data); /* fork worker threads */
thr_fork(worker_task2, data2); /* fork worker threads */
CMrun_network(cm); /* service network until shutdown */
CManager_close(cm);

}

Figure 8: A threaded program where the main program handles the network.

main() {
CManager cm = CManager_create();

gen_pthread_init(); /* initialize Pthreads */
/*
* register formats and handlers
*/

CMfork_comm_thread(cm); /* fork network handler thread */
work_thread = thr_fork(worker_task, data); /* fork worker threads */
work_thread2 = thr_fork(worker_task2, data2); /* fork worker threads */
thr_thread_join(work_thread);
thr_thread_join(work_thread2); /* wait for threads to exit */
CManager_close(cm);

}

Figure 9: A threaded program that forks a network handler thread while the main program does
other things.

integer for easy transmission) would then be sent along with the “request” message (the first part
of the synchronous exchange). Then CMCondition wait() is called to wait for the condition to
be signaled. While waiting, CM will perform whatever action is necessary in order to continue
handling requests from the network. In order to complete the synchronous operation, a handler
should have been registered for the “result” message and that message should contain the ID
of the condition upon which the initiator is waiting. The handler’s role is to store the results
somewhere and use CMCondition signal() to signal the occurrence of the condition. The routines
CMCondition set client data() and CMCondition get client data() are provided to allow an
arbitrary client address to be associated with the condition variable. This simplifies communication
between the initiating and the handling routines because the initiator can setup a results area and
associate its address with the condition, where it can be retrieved by the handler routine. The
code in Section 3.2 showing how a read() operation can be replaced with a CMCondition wait()
provides a concrete example of how CMConditions might be used.

There are two exceptional conditions worthy of discussion. The first concerns the situation where
the far end of the synchronous operation dies between the time the request is sent and the time the
response is received. CM cannot handle this situation totally transparently because more than one
host may actually be involved in completing a remote operation. However, if the CMConnection
parameter in the CMCondition get() is set to a non-NULL value, the CMCondition wait() will
terminate if the indicated connection is closed. In this situation, CMCondition wait() will return
0 rather than its normal 1 return.

The second exceptional condition concerns the side effects that might be encountered if somehow
a condition is never signaled or completed via connection closure. Essentially, the results and side-
effects in this circumstance depend a great deal upon the application control structure and any
underlying thread library. The possibilities range from a thread that is blocked forever to a stack
leak.2 However, none of the possible results are likely to be desirable and robust applications should

2A stack leak is a permanent loss of stack space, such as might occur if a subroutine always pushed more items on
the stack than it removed. In this case, it might be caused by an event handler subroutine calling itself recursively
but never returning.

restrict their use of CM conditions to circumstances where waiting periods are relatively short and
response is assured. In other circumstances, behavior is unpredictable.

5 User Formats

The formats registered using CMregister format() are used to encode messages that go directly
over the network connections, or to decode messages that come in over those connections. PBIO
manages these formats, gathering formats that it needs and caching them for future use.

However, CM also has facilities to support a second class of PBIO formats, called user formats.
Applications using these facilities can take advantage of CM’s format management services to
encode data that is not transmitted directly over the network links.

To understand when this might be appropriate, consider an remote procedure call library that
allows its users to register procedure names and parameter type profiles and make them available
for remote access. The library might be implemented in CM using a “RPC Request” message with
a the procedure to call specified by a string name and the parameters to that procedure passed
as a dynamically sized block of characters. This is a simple approach to library implementation,
but how should the parameter block be encoded? Leaving the marshalling/unmarshalling to the
application is simple, but unappealing. PBIO’s IOContext routines were designed for precisely
this sort of situation, allowing data to be encoded into an arbitrary memory block, transmitted
elsewhere by any mechanism, and then decoded upon arrival. The RPC library could use PBIO
for this task independently of CM, but then is loses out on the features that CM provides (such as
each CM acting as its own format server instead of using a common format server).

CM’s user formats support routines allow such a library to leverage CM’s format services while
still largely using PBIO without interference. Because these facilities are preliminary, subject to
change, and unlikely to be required except for the most advanced uses of CM, they are not described
here in detail. Instead we just list the current interface. Users requiring more information are
encouraged to contact the author.

extern IOContext CMget_user_type_context(CManager cm);
extern void CMfree_user_type_context(CManager cm, IOContext context);
extern IOFormat CMregister_user_format(CManager cm, IOContext context, char *format_name,

IOFieldList field_list, CMFormatList format_list);
extern IOFormat CMlookup_user_format(CManager cm, IOFieldList field_list);
extern IOFormat CMget_IOformat_by_name(CManager cm, IOContext context, char *name);
extern IOFormat CMget_format_IOcontext(CManager cm, IOContext context, void *buffer);
extern IOFormat *CMget_subformats_IOcontext(CManager cm, IOContext context, void *buffer);
extern void CMset_conversion_IOcontext(CManager cm, IOContext context, IOFormat format,

IOFieldList field_list, int native_struct_size);

6 Miscellaneous Features

The previous sections have covered the most basic of CM functionality. This section wraps up some
loose ends and covers smaller topics that do not fit well elsewhere.

6.1 Data Management

Generally speaking, incoming message data in CM is guaranteed to remain valid only for the
duration of the execution of the handler function. Thereafter, the memory where the data is
stored is subject to being overwritten or free()’d. Application which need to store all or part of the
incoming message beyond the lifetime of the handler should copy the data into application-managed
memory. Alternatively, the application can use the routine CMtake buffer() to inform CM that
it is taking control of the buffer containing the incoming message data.

extern void CMtake_buffer(CManager cm, void *data);
extern void CMreturn_buffer(CManager cm, void *data);

The data parameter is the address of the incoming data (as provided to the handler). After
CMtake buffer() has been called during processing of a record, the CM library allocates itself a
new buffer for holding input data and stops referencing the old buffer. The application is then
responsible for eventually passing the buffer to CMreturn buffer() when it is no longer of use.

6.2 Useful Variants of Standard Routines

In addition to the basic routines described in prior sections, there are a couple of variations that
are useful in some circumstances.

CMConnection CMget conn(CManager cm, attr list contact list)
CMget conn() behaves like CMinitiate conn() except that it first checks to see if an existing
connection matches the contact list. If so, it increments the reference count of that connection
and returns it. Otherwise it initiates a new connection.

int CMwrite attr(CMConnection conn, CMFormat format, void *data, attr list attrs)
CMwrite attr() allows an attribute list to be specified along with the write request. While
no current transports interpret per-write attributes, this call could be used to specify QoS
parameters, priorities, deadlines, etc. CMwrite() is equivalent to CMwrite attr() with NULL
passed for the attrs parameter.

6.3 More Rarely Used Routines

There are also some rarely used routines that fill special needs. In particular:

int CMcontact self check(CManager cm, attr list attrs)
Generally, it is bad form for an application to try to initiate a connection to itself.3 However,
contact lists are semi-opaque abstractions with properties that vary with various transports,
so checking to see if a contact list denotes yourself is not necessarily straightforward. This

3Ever use a phone to call its own number? Sometimes if you dial and hang up quickly enough you can call your
own phone. Not always though, it depends upon what phone company hardware is involved. Initiating a network
connection to yourself is like that. Sometimes it works, othertimes it deadlocks, depending upon the OS and transport
involved.

is where CMcontact self check() comes in. It interacts with the CM transports to answer
the question “Does this contact list point to me”. It returns 1 if yes, 0 if no.

void CMregister close handler(CMConnection conn, CMCloseHandlerFunc func,
void *client data))

This call provides a mechanism through which an appliation can be notified when one of its
connections closes, either through the application calling CMConnection Close() or through
a failure or shutdown of the network-layer connection.

CMregister non CM message handler((int header, CMNonCMHandler handler)
It is not unusual for messaging schemes to use a “magic number” as the first element of
their message in order that they are recognized on arrival. In CORBA’s IIOP, for example,
all messages begin with the string “GIOP”. In CM, messages begin with the 4-byte integer
0x434d440 (the string “CMD\0” expressed as an integer). This arrives as 0x00444d43 when
the native byte orders of the parties differs. CMregister non CM message handler() provides
a mechanism through which CM can be extended to directly accept and process IIOP and
other messages. The handler routine is passed the CMConnection upon which the message
has arrived and the 4-byte integer with which the header has been recognized. The remainder
of the message must be read directly from the connection. The prototype of the handler is:

typedef void (*CMNonCMHandler) (CMConnection conn, int header);

6.4 Asynchronous Task Support

CM contains the following support for asynchronous tasks:

CMTaskHandle CMadd periodic task (CManager cm, int period sec, int period usec,
CMPollFunc func, void *client data);

This call schedules a function to be called repeatedly, at a regular period. The period is
specified in seconds and microseconds. The function (whose profile is specified below) is passed
only the CManager value and the client data value. The periodic task can be cancelled with
the CMremove task() call below.

CMTaskHandle CMadd delayed task (CManager cm, int secs, int usec,
CMPollFunc func, void *client data);

This call schedules a function to be called one time only, after a particular period of time has
elapsed. The period is specified in seconds and microseconds. Otherwise the behavior is like
CMadd periodic task().

void CMadd poll (CManager cm, CMPollFunc func, void *client data);
This call adds a function that will be called “occasionally.” In particular, it will be called
after every message arrival and every timer expiration. The function cannot be cancelled.

All calls specifying a period are best-effort and are only as accurate as the underlying infrastructure.
Generally timing functions somehow map into a select() call with a particular timeout.

typedef void (*CMPollFunc)(CManager cm, void *client_data);
void CMremove_task (CMTaskHandle handle);

6.5 Shutdown

void CMConnection close(CMConnection conn)
This call is used to shut down a connnection. This call normally disables writing and incoming
messages on the connection as well as closing the underlying network link. However, because
CMget conn() can return an existing connection (as opposed to initiating a new connection),
CM maintains a reference count on connections. CMConnection close() decrements this
reference count and only has its final effect only when the reference count for the connec-
tion reaches zero. In general, the number of CMConnection close() calls should match the
number of CMinitiate conn() and CMget conn() calls. However, if connection was accepted
implicitly through a CMlisten() call, it can still be shutdown with CMConnection close().
CMConnection close() will be called implicitly if there is a permanent write error on the
connection or if CM detects that the network-layer link is terminated. The application is also
free to call CMConnection close() within a handler using the CMConnection value passed in
to the handler function.

void CMConnection add reference(CMConnection conn)
This call increments the reference count of a connection. This is useful if the application passes
CMConnection values to other contexts. Then each context can call CMConnection close()
and only the final close will have effect.

void CManager close(CManager cm)
This call shuts down an entire CM. It closes all connections, and terminates any network
handler thread forked with CMfork comm thread(). It also causes any CMrun network() call
to return to the caller.

6.6 Debugging

CM contains relatively a extensive tracing facility that dumps debuging output to standard output.
This tracing facility is turned on by setting shell environment variables prior to running the program.
The following environment variables are understood:

CMDataVerbose – Causes CM to print out the contents of every message that is sent or received.

CMConnectionVerbose – Prints information about connection initiation and acceptance.

CMControlVerbose – Prints information about control flow, condition waits, periodic task
scheduling, etc.

CMTransportVerbose – Turns on tracing of transport-level happenings.

CMLowLevelVerbose – Traces low-level read/write and locking behavior. (Probably only useful
for CM developers.)

CMVerbose – Turns on all CM*Verbose traces except CMLowLevelVerbose.

CMDumpSize – Controls the maximum number of length of the message contents output that
CMDataVerbose displays. Default value is 256.

7 Writing a CM Transport DLL

WAY outside the scope of this paper. Contact the author.

References

[1] Greg Eisenhauer. Portable self-describing binary data streams. Technical Report GIT-CC-94-
45, College of Computing, Georgia Institute of Technology, 1994. http://www.cc.gatech.edu/
tech reports.

[2] Greg Eisenhauer, Beth Schroeder, and Karsten Schwan. Dataexchange: High performance
communication in distributed laboratories. Journal of Parallel Computing, 24(12-13):1713–
1733, November 1998.

