
The Eighth IEEE Workshop on Hot Topics in Operating Systems

HotOS-VIII

May 20-23, 2001
Schoss Elmau, Germany

Sponsored by

IBM Research

HP Labs

Microsoft Research

This page is intentionally almost blank.

ii

Table of Contents
The Eighth Workshop on Hot Topics in Operating Systems - HotOS-VIII

Core OS

Beyond Address Spaces - Flexibility, Performance, Protection, and Resource Management
in the Type-Safe JX Operating System . 1

Michael Golm, J̈urgen Klein̈oder, Frank Bellosa

Design Issues in System Support for Programmable Routers . 7
Prashant Pradhan, Kartik Gopalan, Tzi-cker Chiueh

Lazy Process Switching . 13
Jochen Liedtke, Horst Wenske

Fault Tolerance

Robustness in Complex Systems . 17
Steven D. Gribble

Using Abstraction To Improve Fault Tolerance . 23
Miguel Castro, Rodrigo Rodrigues, Barbara Liskov

Fail-Stutter Fault Tolerance .29
Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

Frameworks for Mobility

Reconsidering Internet Mobility . 35
Alex C. Snoeren, Hari Balakrishnan, M. Frans Kaashoek

Protium, an Infrastructure for Partitioned Applications . 41
Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike,
Girija Narlikar, Sape Mullender, Eric Grosse

Modelling and (Self-)Tuning

Probabilistic Modelling of Replica Divergence . 47
Antony I. T. Rowstron, Neil Lawrence, Christopher M Bishop

Self-Tuned Remote Execution for Pervasive Computing . 53
Jason Flinn, Dushyanth Narayanan, M. Satyanarayanan

Energy is just another resource: Energy accounting and energy pricing in the Nemesis OS . 59
Rolf Neugebauer, Derek McAuley

Peer-to-Peer Computing

PAST: A large-scale, persistent peer-to-peer storage utility .65
Peter Druschel, Antony Rowstron

Building Peer-to-Peer Systems With Chord, a Distributed Lookup Service . 71
Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, Ion
Stoica, and Hari Balakrishnan

Herald: Achieving a Global Event Notification Service . 77
Luis Felipe Cabrera, Michael B. Jones, Marvin Theimer

iii

New Devices

HeRMES: High-Performance Reliable MRAM-Enabled Storage . 83
Ethan L. Miller, Scott A. Brandt, Darrell D. E. Long

Better Security via Smarter Devices . 88
Gregory R. Ganger, David F. Nagle

Research Issues in No-Futz Computing . 94
David A. Holland, William Josephson, Kostas Magoutis, Margo I. Seltzer, Christopher
A. Stein, Ada Lim

Security & FT

Don’t Trust your File Server . 99
David Mazìeres, Dennis Shasha

Active Protocols for Agile, Censor-Resistant Networks . 105
Robert Ricci, Jay Lepreau

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel . 110
George Candea, Armando Fox

Virtualisation

When Virtual is Better than Real . 116
Peter M. Chen, Brian D. Noble

Virtualization Considered Harmful: OS Design Directions for Well-Conditioned Services . 122
Matt Welsh, David Culler

Networking and OS

Systems Directions for Pervasive Computing .128
Robert Grimm, Janet Davis, Ben Hendrickson, Eric Lemar, Adam MacBeth, Steven
Swanson, Tom Anderson, Brian Berhsad, Gaetano Borriello, Steven Gribble, David
Wetherall

The Case for Resilient Overlay Networks . 133
David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, Robert Morris

Position Summaries

Position Summary: Toward a Rigorous Data Type Model for HTTP . 139
Jeffrey C Mogul

Position Summary: The Conquest File System: Life after Disks .140
An-I A Wang, Geoffrey H Kuenning, Peter Reiher, Gerald J Popek

Position Summary: Supporting Coordinated Adaption in Networked Systems . 141
Patrick G Bridges, Wen-Ke Chen, Matti A Hiltunen, Richard D Schlichting

Position Summary: Middleware for Mobile Computing: Awareness vs Transparency . 142
Licia Capra, Wolfgang Emmerich, Cecilia Mascola

Position Summary: Separating Mobility from Mobile Agents . 143
Kåre J Lauvset, Dag Johansen, Keith Marzullo

Position Summary: The Importance of Good Plumbing - Reconsidering Infrastructure in Distributed Systems 144
Andrew Warfield, Norm Hutchinson

Position Summary: Towards Global Storate Management and Data Placement .145
Alistair Veitch, Erik Riedel, Simon Towers, John Wilkes

iv

Position Summary: Towards Zero-Code Software Composition . 146
Emre Kiciman, Laurence Melloul, Armando Fox

Position Summary: Aspect-Oriented System Structure . 147
Yvonne Coady, Gregor Kiczales, Michael Feeley, Norman Hutchinson, Joon Suan Ong

Position Summary: A Streaming Interface for Real-Time Interprocess Communication . 148
Jork Löser, Hermann Ḧartig, Lars Reuther

Position Summary: Eos - the dawn of the resource economy . 149
John Wilkes, G. (John) Janakiramn, Patrick Goldsack, Lance Russel, Sharad Singhal,
Andrew Thomas

Position Summary: Transport Layer Support for Highly-Available Network Services .150
Florin Sultan, Kiran Srinivasan, Liviu Iftode

Position Summary: MANSION: A Room-based Mult-Agent Middleware . 151
Guido J. van’t Noordende, Frances M.T. Brazier, Andrew S. Tanenbaum, Maarten R.
van Steen

Position Summary: Active Streams: An Approach to Adaptive Distributed Systems . 152
Fabián E. Bustamante, Greg Eisenhauer, Patrick Widener, Karsten Schwan

Position Summary: Smart Messages: A system Architecture for Large Networks of Embedded Systems 153
Phillip Stanley-Marbell. Cristian Borcea, Kiran Nagaraja, Liviu Iftode

Position Summary: Supporting Hot-Swappable Components for System Software . 154
Kevin Hui, Jonathan Appavoo, Robert Wisniewski, Marc Auslander, David Edelsohn,
Ben Gamsa, Orran Krieeger, Bryan Rosenburg, Michael Stumm

Position Summary: Applying the VVM Kernel to Flexible Web Caches .155
Ian Piumarta, Frederic Ogel, Bertil Folliot, Carine Baillarguet

Position Summary: Hinting for goodness’ sake . 156
David Petro, Dushyanth Narayanan, Gregory R. Ganger, Garth A. Gibson, Elizabeth
Shriver

Position Summary: Censorship Resistant Publishing Through Document Entanglements . 157
Marc Waldman, David Mazieres

Position Summary: Architectures For Adaption . 158
Eyal de Lara, Dan S Wallach, Willy Zwaenepoel

Position Summary: Anypoint Communication Protocol . 159
Ken Yocum, Darrell Anderson, Jeff Chase, Amin Vahdat

Position Summary: Secure OS Extensibility That Doesn’t Cost an Arm and a Leg . 160
Antony Edwards, Gernot Heiser

Position Summary: The Lana Approach to Wireless Computing .161
Chrislain Razafimahefa, Ciaran Bryce, Michel Pawlak

Position Summary: A Backup Appliance Composed of High-capacity Disk Drives .162
Kimberley Keeton, Eric Anderson

Position Summary: Balance of Power: Energy Management for Server Clusters . 163
Jeffrey S Chase, Ron Doyle

Position Summary: Bossa: a DSL framework for Application-Specific Scheduling Policies . 164
Luciano Porto Barreto, Gilles Muller

Position Summary: Authentication Confidences . 165
Gregory R Granger

v

Position Summary: Supporting Disconnected operation in DOORS . 166
Nuno Preguica J Legatheaux Martins, Henrique Domingos, Sergio Duarte

Position Summary: DiPS: a unifying approach for developing system software . 167
Sam Michiels, Frank Matthijs, Dirk Walravens, Pierre Verbaeten

vi

Beyond Address Spaces -
Flexibility, Performance, Protection, and Resource Management in the

Type-Safe JX Operating System

Michael Golm, Jürgen Kleinöder, Frank Bellosa
University of Erlangen-Nürnberg

Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany

{golm,kleinoeder,bellosa}@informatik.uni-erlangen.de

Abstract
Early type-safe operating systems were hampered by

poor performance. Contrary to these experiences we show
that an operating system that is founded on an object-ori-
ented, type-safe intermediate code can compete with MMU-
based microkernels concerning performance while widen-
ing the realm of possibilities.

Moving from hardware-based protection to software-
based protection offers new options for operating system
quality, flexibility, and versatility that are superior to tradi-
tional process models based on MMU protection. However,
using a type-safe language—such as Java—alone, is not
sufficient to achieve an improvement. While other Java
operating systems adopted a traditional process concept, JX
implements fine-grained protection boundaries. The JX Sys-
tem architecture consists of a set of Java components exe-
cuting on the JX core that is responsible for system initial-
ization, CPU context switching and low-level domain man-
agement. The Java code is organized in components which
are loaded into domains, verified, and translated to native
code.

JX runs on commodity PC hardware, supports network
communication, a frame grabber device, and contains an
Ext2-compatible file system. Without extensive optimization
this file system already reaches a throughput of 50% of
Linux.

1 Introduction

For several years there has been an ongoing discussion in
the OS community whether software-based protection is a
promising approach [3]. We want to support the arguments
for software-based protection with the experience we
gained while building the JX operating system.

While MMU-based protection is commonly used in
today’s operating systems it has some deficiencies [10], [3].
From the point of functionality it neither meets the actual
requirements of fine grained protection (page size is too

coarse), nor offers it appropriate abstractions for access con-
trol (page tags are not capabilities).

These deficiencies justify the exploration of alternative
protection mechanisms. Java popularized a protection
mechanism that is based on a combination of type-safe
intermediate code and load-time program verification.

Several other research groups have been building Java-
based operating systems: Sun’s JavaOS [14], which was
later replaced by “JavaOS for Business” [18], JN [16], J-
Kernel [11], KaffeOS [2], and Joust [9]. But they are either
limited by a monolithic structure or are built upon a full-fea-
tured OS and JVM. Furthermore, no performance figures
for OS related functionality are published. KaffeOS and J-
Kernel are two projects that try to overcome the monolithic
structure by intruducing a process concept which is similar
to the domain concept of JX. But their research is mainly
concerned with introducing the traditional process concept
and a red line [6] between user level and kernel into their
Java operating system. While a red line between trusted and
untrusted code is indeed important, we must free our mind
from the MMU-enforced architecture of traditional operat-
ing systems. The aim of our research is a customizable and
flexible [4] open OS architecture with fine-grained protec-
tion boundaries. Depending on functionality and deploy-
ment of a system there are different levels of trust and pro-
tection. An embedded real-time system needs a different red
line than a single-user desktop system or a multi-user server
system or an active network node OS [5]. In our architecture
it is possible to draw red lines when and where they are
needed.

While other Java operating systems require a microker-
nel, or even a full operating system including a JVM, JX
runs on the bare hardware with only a minimal statically
linked core (< 100kB). The remaining operating system
functionality, including device drivers, is provided by Java
components that are verified, compiled to native code, and
optimized at load time.

1

The paper is structured as follows: In section 2 we
describe the architecture of the JX system. The problems
that appear when untrusted modules directly access hard-
ware are discussed in section 3. Section 4 gives examples of
the performance of IPC and file system access.

2 JX System Architecture

The JX system consists of a small core, written in C and
assembler, which is less than 100 kilobytes in size. The
majority of the system is written in Java and running in sep-
arate protection domains. The core runs without any protec-
tion and therefore must be trusted. It contains functionality
that can not be provided at the Java level (system initializa-
tion after boot up, saving and restoring CPU state, low-level
domain management, monitoring).

The Java code is organized in components (Sec. 2.2)
which are loaded into domains (Sec. 2.1), verified (Sec.
2.4), and translated to native code (Sec. 2.5). A domain can
communicate with another domain by using portals (Sec.
2.3).

The protection of the architecture is solely based upon
the JX core, the code verifier, the code translator, and hard-
ware-dependent components (Sec. 3). These elements are
thetrusted computing base [7] of our architecture.

2.1 Domains

A domain is the unit of protection, resource manage-
ment, and typing.

Protection. Components in one domain trust each other.
One of our aims is code reusability between different sys-
tem configurations. A component should be able to run in a
separate domain, but also together (co-located) with other
components in one domain. This leads to several problems:

•The parameter passing semantics must be by-copy in inter-
domain calls, but may be by-reference in the co-located
case. This is an open problem.

•During a portal call a component must check the validity
of the parameters because the caller could be in a different
domain and is not trusted. When caller and callee are co-
located (intra-domain call), the checks change their moti-
vation—they are no longer done for security reasons but
for robustness reasons. We currently parametrize the com-
ponent whether a safety check should be performed or not.

Resource Management. JX domains have their own heap
and own memory area for stacks, code, etc. If a domain
needs memory, a domain-specific policy decides whether
this request is allowed and how it may be satisfied, i.e.,
where the memory comes from. Objects are not shared
between domains, but it is possible to share memory. Other
Java systems use shared objects with the consequence of
complicated and not interdependent garbage collection,
problems during domain termination, and quality-of-ser-
vice crosstalk [13] between garbage collectors.

Typing. A domain has its own type space, that initially con-
tains exactly one type:java.lang.Object. Types (classes and
interfaces) and code (classes) can then be loaded into the
domain. Our type-space approach differs from the Java type
spaces [12] as we do not use the class loader as type-space
separator but tie type separation to resource management
and protection. By this means aSecurityManager becomes
redundant and protection boundaries are automatically
enforced.

The C and assembler code of the JX core are encapsu-
lated by a special domain, calledDomainZero. All other
domains contain only Java code. We do not allownative
methods.

2.2 Components

Code is generally loaded as a component. JX does not
support loading of single classes. A component is a collec-
tion of classes and interfaces. There are four kinds of com-
ponents:

•Library: A simple collection of reusable classes and inter-
faces (example: the Java Development Kit).

•Service: A component that implements a specific service,
e. g., a file system or a device driver. A service component
is started after it has been loaded. To start a service means
to execute a static method that is specified in a configura-
tion file that is part of the component.

•Interface: Access to a service in another domain is always
performed using an interface. An interface component
contains all interfaces that are needed to access a service.
An interface component also contains the classes of
parameter objects. A special interface libraryzero contains
all interfaces to access DomainZero.

Domain A

Heap

Java-Stacks

Components

Thread Control Blocks

Classes

Objects

Portals

Threads

Domain B

Domain Zero

Stacks
Thread Control Blocks

ThreadsC Code
Assembler

2

•Domain: A domain is started by loading a domain compo-
nent. An initial thread is created and a static method is exe-
cuted.

Components can be shared between domains. Sharing
happens at two levels. At a logical level sharing establishes
a window of type compatibility between two domains. At a
lower level, sharing saves memory, because the (machine)
code of the component has to be stored only once. While
component sharing complicates resource accounting and
domain termination, we believe that code sharing is an
essential requirement for every real operating system.
While code can be shared if the domains use the same type
of execution environment (translator, memory layout),
static variables are never shared. In JX this is implemented
by splitting the internal class representation into a domain-
local part, that contains the statics, and a shared part, that
contains code and meta information.

2.3 IPC, Portals, and Services

Domains communicate solely by using portals. An
object that may be accessed from another domain is called
service. Each service is associated with aservice thread.

A portal is a remote reference that represents a service,
which is running in another domain. Portals are capabilities
that can be passed between domains. Portals allow to estab-
lish the “principle of least privilege”. A domain gets only
the portals it needs for doing its job.

A portal looks like a normal object reference. The portal
type is an interface that is derived from the interfacePortal.
A portal invocation behaves like a normal synchronous
interface method invocation: The calling thread is blocked,
the service thread executes the method, returns the result
and is then again available for new service requests via a
portal. The caller thread is unblocked when the service
method returns. While a service thread is processing a
request, further requests for the same service are blocked.

An object reference can be passed as parameter of a por-
tal invocation only if the object is a service. In this case a
portal to the service is transferred and the reference counter
of the service is incremented. Other parameters are passed
by value. When a portal is no longer referenced in a domain,
it is removed by the garbage collector and the reference
counter of the associated service is decremented.

A portal/service connection between two domains
requires that these domains have overlapping type spaces,
i.e. the interface component must be logically shared. If the
interface component depends on other components, they
must be shared, too.

2.4 Component Verifier

When a component is loaded into a domain, its bytecode
is verified before it is translated into machine code. As in the
normal Java bytecode verifier, the conformance to the Java
rules is checked. Basically this guarantees type safety. Fur-
thermore the verifier performs additional JX-specific checks
regarding interrupt handlers (Sec. 2.6), memory objects
(Sec. 2.7), and schedulers (Sec. 2.9).

A type-safe operating system has the well-known advan-
tages of robustness and ease of debugging. Furthermore, it
is possible to base protection and optimization mechanisms
on the type information. This is extensively employed in JX
by using well-known interfaces (contained in a trusted
library) and restricting the implementability of these inter-
faces (Sec. 2.6 and 2.7).

2.5 Component Translator

Components are translated from bytecode into machine
code. The translator is a crucial element of JX to get a rea-
sonable performance. The translator is domain-specific, so
it can be customized for a domain to employ application-
specific translation strategies. The same component may be
translated differently in different domains. As the translator
is a trusted component, this facility has to be used carefully
because it affects the protection of the whole system.

Furthermore the translator is used to “short-circuit” sev-
eral portal invocations. Special portals that are exported by
DomainZero often do not need the domain context of
DomainZero. Invocations of such portals can be inlined
directly at the call site.

2.6 Interrupts

An interrupt is handled by invoking thehandleInterrupt
method of a previously installed interrupt handler object.
The method is executed by a dedicated thread while inter-
rupts on the interrupted CPU are disabled. This would be
called thefirst-level interrupt handler in a traditional oper-
ating system. To guarantee that the handler can not block the
system forever, the verifier checks all classes that imple-
ment theInterruptHandler interface whether thehandleInter-
rupt method has certain time bounds. To avoid undecidable
problems, only a simple code structure is allowed (linear
code, loops with constant bound and no write access to the
loop variable inside the loop). AhandleInterrupt method
usually acknowledges the interrupt at the device and
unblocks a thread that handles the interrupt asynchronously.

2.7 Memory Management

Heap and Garbage Collection. The memory of the
objects within a domain is managed by a heap manager with

Domain A Domain B

Portal

Service1
Client-
Thread Service2

3

garbage collector. Currently, the heap manager is part of the
JX core. It cooperates with the translator to obtain informa-
tion about the object structure and stack structure. So far we
are working with only one heap manager implementation
and one translator implementation, but it is also possible to
build domain-specific heap managers. They can even be
written in Java and run in their own domain. The heap man-
ager is a trusted part of the system.

Memory objects. To handle large amounts of data, Java
uses arrays. Java arrays are useless for operating system
components, because they do not provide access control and
it is not possible to share only a part of an array. JX uses
Memory objects instead. The memory that is represented by
such aMemory object can be accessed via method invoca-
tions. These invocations are inlined by inserting the
machine instructions for the memory access instead of the
method invocation. This makes memory access as fast as
array access. AMemory object can represent a part of the
memory of anotherMemory object andMemory objects can
be shared between domains like portals. Sharing memory
objects between domains and the ability to create subranges
are the fundamental mechanisms for a zero-copy implemen-
tation of system components, like the network stack, the file
system, or an NFS server.

Avoiding range checks by object mapping. A memory
range can be mapped to a (virtual) object that implements a
marker interface (an interface without methods that is only
used to mark a class asMappedLittleEndian or MappedBig-
Endian). The verifier ensures that a class thatimplements
one of these interfaces is never instantiated by thenew byte-
code. Instead the objects are created by mapping and the
translator generates code to directly access the memory
range for access to instance variables. This makes the range
check redundant.

2.8 Domain Termination

When a domain terminates, all resources must be
released. Further interaction with the domain raises an
exception.

All services are removed by stopping the service thread.
A service contains a reference counter, that is incremented
each time a portal to this service is passed to another
domain. It is also incremented when a client domain passes
the portal to another client domain. It is decremented, when
the portal object in a client domain is garbage collected or
when the client domain is terminated. As long as the refer-
ence counter is not zero, the service can not be completely
removed when its domain terminates. Until all reference
counters drop to zero, the domain remains in azombie state.

Interrupt handlers are uninstalled. All threads are
stopped and the memory (heap, stacks) is released.

2.9 Scheduling

CPU scheduling in JX is split into two scheduler levels.
The low-level scheduler decides which domain should run
on the CPU. Each CPU has its own low-level scheduler. The
high-level scheduler is domain-specific - each domain has
one high-level scheduler per available CPU. A domain may
not be allowed to use all CPUs. To use a CPU, the domain
must obtain aCPU portal for the specific CPU. The high-
level schedulers are responsible for scheduling the threads
of a domain.

The high-level scheduler may be part of the domain or
may be located in a different domain.

To avoid that one domain monopolizes the CPU, the
computation can be interrupted by a timer interrupt. The
timer interrupt leads to the invocation of the low-level
scheduler. The low-level scheduler first informs the high-
level scheduler of the interrupted domain about the preemp-
tion. For this purpose it invokes a method of the high-level
scheduler with interrupts disabled. An upper bound for the
execution time of this method has been verified during the
verification phase. When the method returns, the system
switches back to the low-level scheduler. The low-level
scheduler then decides, which domain to run next. After
ensuring that it will be reactivated with the next (CPU-local)
timer interrupt, the low-level scheduler activates the high-
level scheduler of the selected domain. The high-level
scheduler chooses the next runnable thread. It can switch to
this thread by calling a method at theCPU portal. This
method can only be called by a thread that runs on the cor-
responding CPU.

3 Device Drivers

Due to the enormous amount of new hardware that
appeared in the last years, operating system code is domi-
nated by device drivers. While it is rather straight forward to
move most operating system parts, such as file systems or
network protocols, out of the trusted kernel, it is very diffi-
cult for device drivers.

Developers of commodity hardware do not assume that
their products are directly accessed by untrusted code.
Although the Nemesis project has demonstrated that it is
possible to build user-safe hardware [17], we do not expect
such hardware to become commercially available in the
near future.

Device drivers in JX are programmed in Java and are
installed as service component in a domain. JX aims at only
trusting the hardware manufacturer (and not the driver pro-
vider) in assuming that the device behaves exactly accord-
ing to the device specification. When special functionality
of the hardware allows bypassing the protection mecha-
nisms of JX, the code for controlling this functionality must
also be trusted. This code can not be part of the JX core,

4

because it is device dependent. One example for such code
is the busmaster DMA initialization, because a device can
be programmed to transfer data to arbitrary main memory
locations.

To reduce the amount of critical code, the driver is split
into a (simple) trusted part and a (complex) untrusted part.

To understand the issues related to device drivers, we
have developed drivers for the IDE controller, the 3C905B
network card, and the Bt848 framegrabber chip. The IDE
controller and network card basically use a list of physical
memory addresses for busmaster DMA. The code that
builds and installs these tables is trusted. The Bt848 chip
can execute a program in a special instruction set (RISC
code). This program writes captured scanlines into arbitrary
memory regions. The memory addresses are part of the
RISC program. We currently trust the RISC generator and
thus limit extensibility. To allow an untrusted component to
download RISC code, we would need a verifier for this
instruction set.

All microkernel-based systems, where drivers are moved
into untrusted address spaces run into the same problems,
but they have much weaker means to cope with these prob-
lems. Using an MMU does not help, because busmaster
DMA accesses physical RAM without consulting page
tables. JX uses type-safety, special checks of the verifier,
and splitted drivers to address these problems.

4 Performance

IPC. We measured the performance of a portal call. Table 1
compares the IPC round-trip performance of JX with fast
microkernels and other Java operating systems.

Comparing IPC times for these systems is not easy
because they were measured on different hardware (cache
size, cache bandwidth, memory bandwidth, etc.), and, more
importantly, they have different protection models. IPC is
usually more expensive on a system with better protection.
Currently the IPC path in JX is implemented in C and not
optimized. It may be better compared with the Fiasco imple-
mentation of L4 than with L4KA. The emphasis of our work
was on getting the architecture right and enabling perfor-
mance, but not achieving it. The bad performance of Linux-

hosted JX can be attributed to the use ofsigprocmask to dis-
able/restore signals.

The IPC cost of J-Kernel doesnot include thread switch-
ing costs, because the J-Kernel uses a “segmented” stack.
IPC without switching threads complicates resource
accounting, garbage collection, termination, and type sepa-
ration.

File System. We have implemented the ext2fs in Java [19].
We reused the algorithms that are used in Linux-ext2fs.

We used the iozone benchmark to measure the Linux
ext2fs re-read throughput (file size: 4 kB, record length: 4
kB — iozone -r 4 -s 4 -i 0 -i 1). To measure JX re-read
throughput we wrote a Java benchmark, similar to iozone.

The system configuration that we measured works as fol-
lows: The virtual file system, the buffer cache, and the ext2
file system run in one domain (FSDomain). The IDE device
driver runs in another domain. The client runs in a third
domain. A service thread in theFSDomain accepts client
requests. The client domain gets a portal to the virtual file
system and calls lookup to get aFileInode portal.FSDomain
uses one thread to asynchronously receive data from the
block device driver. Only the service thread is active in this
benchmark, because all data comes from the buffer cache.

We now try to estimate the necessary performance
improvement to reach Linux throughput. The latency can be
broken down as shown in table 3.

Memory copy and IPC are relative constant costs in JX.
The poor performance of the file system logic is not a prob-
lem of the JX architecture but of our non-optimizing com-
piler. With an improvement of factor 4 in Java performance,
we would reach the Linux performance level. Although
safety-related overhead cannot be avoided completely,
recent research in JIT compiler technology has shown that
an optimizing compiler can improve the performance of a
Java program significantly. Performance differences of fac-
tor 10 are not unusual between non-optimizing and optimiz-
ing Java compilers.

System IPC
(cycles)

L4KA (PIII, sysenter, sysexit) [8] 800

Fiasco/L4 (PIII 450 MHz)
[http://os.inf.tu-dresden.de/fiasco/status.html]

2610

J-Kernel (LRMI on MS-VM, PPro 200MHz) [11] 440

Alta/KaffeOS [1] 27270

JX/hosted (Linux 2.2.14, PIII 500MHz) 7100

JX/native (PIII 500MHz) 650

Table 1: IPC latency (round-trip)

System Throughput
(MByte/s)

Latency
(µsec/4kB)

Linux (PIII 500 MHz) 400 10.0

JX (PIII 500MHz) 201 19.9

JX co-located (PIII 500MHz) 213 18.7

Table 2: File system re-read throughput and latency

Operation JX JX goal

memory copy 5.2 5.2

IPC 1.3 1.3

file system logic 13.2 3.5

Table 3: Latency breakdown (in µsec)

5

5 Status and future work

The system runs either on standard PC hardware (i486,
Pentium, and embedded PCs with limited memory) or as a
guest system on Linux. The JX Java components also run on
a standard JDK (with an emulation forMemory objects).
When running on the bare hardware, the system can access
IDE disks [19], 3COM 3C905 NICs [15], and Matrox G200
video cards. The network code contains IP, TCP, UDP,
NFS2 client, and SUN RPC. JX also runs on a PIII SMP
machine.

We have already implemented a heap manager that runs
in its own domain and manages the heap of another domain.
This heap manager is always called, when the managed
domain tries to create a new object or array. Creating a new
object with the build-in mechanism costs 250 cycles, calling
another domain adds at least 650 cycles. This is not practical
until we further improve IPC performance. There are also
efforts to improve the quality of the machine code generated
by the translator.

The JX architecture supports a broad spectrum of OS
structures — from pure monolithic to a vertical structure
similar to the Nemesis OS [13]. We are going to investigate
the issues that are involved when reusing components
between these diverse operating system configurations.

6 References

[1] G.Back,P.Tullmann,L.Stoller,W.C.Hsieh,J.Lepreau.Tech-
niques for the Design of Java Operating Systems. InProc. of the
2000 USENIX Annual Technical Conference, June 2000

[2] G.Back,W.C.Hsieh,J.Lepreau.Techniques for theDesignof
Java Operating Systems. InProc. of the 4th OSDI, Oct. 2000

[3] B. Bershad. S.Savage, P. Pardyak. Protection is a Software
Issue. InProc. of the Fifth Workshop on Hot Topics in Operating
Systems, pp 62-65, 1995

[4] V. Cahill.Flexibility in Object-Oriented Operating Systems: A
Review. Technical Report TCD-CS-96-05, Dep. of Comp. Science
Trinity College Dublin, 1996

[5] K.Calvert (ed.),ArchitecturalFramework forActiveNetworks,
Version 1.0, Active Networks Working Group, July 1999

[6] D. R. Cheriton. Low and High Risk Operating System Archi-
tectures. InProc. of OSDI, pg. 197, Nov. 1994

[7] Department of Defense.Trusted computer system evaluation
criteria. DOD Standard 5200.28, Dec. 1985

[8] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V.
Uhlig, J.E. Tidswell, L. Deller, and L. Reuther. The SawMill Multi-
server Approach. InProc. of the 9th SIGOPS European Workshop,
Sep. 2000.

[9] J. Hartman, L. Peterson, A. Bavier, P. Bigot, P. Bridges, B.
Montz, R. Piltz, T. Proebsting, and O. Spatscheckti. Experiences
building a communication-oriented JavaOS,Software--Practice
and Experience, 30 (10), Apr. 2000

[10] C. Hawblitzel, T. von Eicken.A case for language-based pro-
tection. Technical Report TR-98-1670, Dep. of Comp. Science,
Cornell University, March 1998

[11] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, T. von
Eicken. Implementing Multiple Protection Domains in Java. In
Proc. of the USENIX Annual Technical Conference, New Orleans,
LA, June 1998

[12] S. Liang, G. Bracha. Dynamic Class Loading in the Java Vir-
tual Machine. InProc. of OOPSLA ‘98, October 1998

[13] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D.
Evers,R.Fairbairns,andE.Hyden.Thedesignandimplementation
of an operating system to support distributed multimedia applica-
tions.IEEE Journal on Selected Areas in Communications, 14(7),
pp. 1280-1297, Sept. 1996

[14] P.Madany,et. al.JavaOS : A Standalone Java Environment.
White Paper, Sun Microsystems, May 1996

[15] M. Meyerhöfer.Design und Implementierung eines Ethernet-
Treibers und TCP/IP-Protokolls für dasJava-Betriebssystem JX,
Studienarbeit (supervised by M. Golm), University of Erlangen,
IMMD4, Oct. 2000

[16] B. R. Montague.JN: An Operating System for an Embedded
JavaNetworkComputer,TechnicalReportUCSC-CRL-9629,Uni-
versity of California, Santa Cruz, 1996

[17] I. A. Pratt.The User-Safe Device I/O Architecture. Ph.D. the-
sis, King’s College, University of Cambridge, 1997

[18] Sun Microsystems,IBM. JavaOS for Business, Reference
Manual, Version 2.1, Oct. 1998

[19] A. Weissel.Ein offenes Dateisystem mit Festplattensteuerung
für metaXaOS. Studienarbeit (supervised by M. Golm), Univ. of
Erlangen, IMMD4, Feb. 2000

6

Design Issues in System Support for Programmable Routers

Prashant Pradhan, Kartik Gopalan, Tzi-cker Chiueh
Dept. of Computer Science, SUNY Stony Brook

Abstract

Placement of computation inside the network is a pow-
erful computation model that can improve the overall per-
formance of network applications. In this paper, we address
the problem of providing sound and efficient system support
for placing computation in a network router. We identify a
set of requirements, related to protection, resource control,
scheduling and efficiency, that are relevant to the design of
this system support. We have developed a system that at-
tempts to meet these requirements, and have used it to write
a router application that performs aggregated congestion
control.

1 Introduction

The success of the Internet can largely be attributed to
the simplicity and robustness of its service model. Provid-
ing a simple, stateless forwarding service and keeping all
complexity in end-systems has allowed the Internet to scale
to enormous proportions. Good end-to-end algorithms, like
TCP for congestion control, have further contributed to the
adequacy of this model, by being able to control network
stability using purely end-to-end mechanisms.

However, there is quantitative evidence to show that
the ability to place computation inside the network can
lead to significant performance optimizations for applica-
tions. Network-resident computation has topological ad-
vantage that allows routers to perform local recovery for
reliable multicast [1] or media gateways to adapt to het-
erogenous receivers [2]. Also, by having access to multi-
ple flows belonging to an application (orglobal context),
network-resident computation can enable some global opti-
mizations for all the flows of that application. For example,
sharing of congestion state across a set of TCP flows that
share a bottleneck link helps short TCP flows achieve bet-
ter throughput [3], whereas global knowledge of session-to-
server mappings in an SSL server cluster leads to improved
connection throughput [4]. In many cases, the ability to
place computation even in a restricted set of network nodes
(e.g. edge routers) can provide a large subset of the possible

benefits. We call such computation “router extensions” or
“router applications”.

However, the success of this paradigm in real networks
critically depends upon the existence of carefully designed
system support for router programmability. Without appro-
priate resource control and protection mechanisms, dynam-
ically added computation can effect the performance and
integrity of a router in undesirable ways. Moreover, since
routers are massively shared systems, the computation and
I/O resources of a programmable router are scarce resources
that must be effectively arbitrated. In addition, in order to
make it practical for performance sensitive applications to
use router extensions, router extensions must be efficiently
executed. Our goal in this paper is to discuss some of the
requirements for sound and efficient OS support for router
programmability.

In the following sections, we describe the main require-
ments that we believe should be taken into account while
designing a router OS.

2 Efficient Memory Protection

Memory protection is a basic requirement for maintain-
ing system integrity in the presence of dynamically installed
functions. A dynamically added function may not necessar-
ily be malicious, but it may perform unintended operations
that compromise the safety of the system. Since the exe-
cution of a function, in general, may be dependent upon the
environment it executes in, it may not be possible to exhaus-
tively test it for safe operation. Thus in general, a ”trusted
function” may not be safe unless there are restrictions on
what kind of computation the function may perform.

It is possible to write functions in a restricted program-
ming language that guarantees safe execution. For certain
kind of functions it may even be possible to statically deter-
mine safety, even though they are written in an unrestrict-
ed programming language. However, our interest is in an
approach which does not restrict the expressiveness of the
language in which these functions are written. Our experi-
ences in writing two router applications that involved TCP
congestion control and splice mechanisms [4] [3] show that
router application code can be of significant complexity. We

7

feel that writing these applications in a restricted language
would have been substantially more complex, and perhap-
s suboptimal in performance. The key goal then becomes
to provide safety efficiently for unrestricted router applica-
tions.

Efficient memory protection can be provided by utilizing
the low-level hardware protection features of the router’s
processor architecture. Most general-purpose processors
provide hardware primitives for protection, where all asso-
ciated checks are embedded in the micro-architecture and
thus do not incur any extra overhead. These primitives,
when exploited at the lowest level, can provide efficiency
as well as hard protection guarantees. We have been able
to implement efficient protection domains in a router OS by
utilizing the segmentation hardware of the X86 architecture
[5]. The protection subsystem of our router OS exposes the
segmentation hardware at a low enough level that router ap-
plications can use it easily, while keeping invocation over-
heads close to that of a protected function call in hardware.
Similar approaches have been tried with other architectures
as well [6]. In general, by tuning its protection subsystem
implementation to the processor architecture, a router OS
can provide efficient as well as strong memory protection
without compromising expressiveness of router application
code. In spirit, this design principle is similar to that of
Exokernels [7], which would argue for exposing hardware
protection features to the application.

3 Performance Protection

We distinguish between flows that are bound to some
router application, calledapplication flows, and flows that
are processed by the router’s standard forwarding code,
calledgeneric flows. We call generic flow processing and
control plane processing as the router’score tasks. The
goal of performance protection is to protect the performance
seen by the router’s core tasks in the presence of applica-
tion flows. Performance protection limits the scope of the
impact that dynamically added computation has on flows
going through the router : application flows perceive the
end-to-end effects of placing computation in the router (as
desired), while the presence of this computation is transpar-
ent to generic flows.

Performance protection has two implications on a router
OS. Firstly, core router tasks must be bound to an appro-
priatecore scheduling context. This makes core task pro-
cessing explicit in the scheduler, allowing it to deliver the
appropriate performance guarantee. Secondly, the schedul-
ing policy for the core tasks must be chosen, which may be
prioritization or sharing. Recent studies using WAN traf-
fic traces [8] and inter-domain routing message traces [9]
show that traffic patterns and control plane processing load
in Internet routers is difficult to characterize accurately, and

might be bursty. Thus core tasks may need high short-term
processing bandwidth, even though long-term requirements
may be small. Thus, to provide true isolation to these tasks,
prioritization is the appropriate scheduling primitive. Prior-
itization ensures that in a programmable router, the process-
ing demands of core tasks will be handled with zero latency
in the presence of router applications1. For generic flows
and control processing, this essentially simulates a router
in which there were no applications running. Moreover, if
application flows are scheduled among themselves using a
proportional share scheduler, they will adapt gracefully to
short-term reduction in available resource bandwidth (sys-
tem virtual time will not advance while the prioritized task
is being run).

4 Event-Driven Control Flow

An important characteristic of many useful router appli-
cations is the use of functions that carry state across invoca-
tions. Protocol stacks are one example, where every ”layer”
is a stateful function. Similarly, any router application that
exploits global context across flows must use stateful func-
tions. Typically, a single stateful function would be used
by many flows. Similarly, a single flow would use several
stateful functions that act like a ”processing pipeline” for
the flow. This model localizes state in the functions, and
carries a flow’s invocations from function to function. This
is in contrast with the ”thread” model, where it is expect-
ed that a thread executing on behalf of the flow has access
to all the state. If different functions are in different pro-
tection domains (because some functions are privileged, or
installed by mutually untrusted authorities), the thread ap-
proach must either resort to state sharing through an inter-
face (since it cannot directly read/write it), or there should
be a mechanism for a thread to ”cross” protection domains.
The latter essentially takes the form of an explicit invoca-
tion, as proposed in [10] through descriptor passing.

Thus, we argue that the computation and composition
model for router applications should be event-based, as op-
posed to thread-based. Besides providing a closer match
to a computation model that uses stateful shared functions,
a key advantage of an event-based model is that all invoca-
tions areexplicit andasynchronous. Since invocations carry
the identity of the resource principal making the invocation,
the resource principal associated with a piece of work is al-
ways explicitly known throughout the system. This gives
the scheduler complete knowledge of pending work in the
system for each resource principal, and allows it to sched-
ule work correctly. Further, by being asynchronous, every
invocation acts as an instant when the scheduler gets con-
trol, leading to tighter resource control than that allowed in

1Modulo non-preemption. See section 4.

8

a constant time-slice based scheduler. Note that at every
scheduling instant, the scheduler can look for invocations
made in the core scheduling context (section 3), and priori-
tize them.

5 Integrated Resource Scheduling

An application flow requires CPU cycles as well as link
bandwidth from the router to meet its performance require-
ment. However, the router application can only specify a
flow’s requirement in terms of the amount of work required
from each resource, and a single, global deadline (or rate)
requirement. For example, for each packet of a flow, it may
specify the CPU cycles required, the packet size in bytes,
and a single deadline for the packet to get serviced. The
application does not specify how deadlines should be allo-
cated in the CPU and the link. This task is best done by
the router OS that should figure out how to best deliver the
overall deadline by allocating a per-resource deadline. We
call this router OS functionintegrated resource scheduling.

We generalize integrated resource scheduling in terms of
deadlines, since rate requirements can be mapped to dead-
lines. Thus, we assume that a flow asks for a deadline (d)
for each of its packets, and specifies the amount of work re-
quired from the CPU (WC) and the link (WL). The goal of
integrated resource scheduling is to splitd into dC , a dead-
line for the CPU, anddL, a deadline for the link, according
to an optimization criterion. We briefly describe a dead-
line allocation algorithm here. At any time, there are a set
of requests admitted into the system, corresponding to a set
of reservations in each resource. If a resource has capacity
C and has admitted a set of requests where requesti need-
s workWi and has been allocated a deadlinedi, then the
residual capacity of the resource isR = C �

P
i
Wi=di.

When a new request comes for this resource, asking for an
amount of workW , its minimal service time in this resource
is dmin = W=R. If the sum of the quantitydmin for every
resource is less than or equal to the global deadline of the
task, then the request is admissible. However, if the sum is
less than the global deadline, these deadlines can berelaxed
such that each resource has some spare capacity left (Note
that allocating a deadline ofdmin in a resource corresponds
to using upall the residual capacity of that resource). It is in
this relaxation step that the system-wide optimization crite-
rion comes in. For instance, if the optimization goal is to
keep all resources equally utilized, so that the system keeps
spare capacity uniformly available across all resources, then
the deadline allocated in the heavily utilized resource would
be relaxed more. Such a mechanism should be an integral
part of a router OS in order to achieve tight admission con-
trol for application flows.

6 Binding Resources to Flows

Typically router resources would be shared by a large
number of application flows, which calls for appropriate
resource arbitration. Moreover, many router applications
would typically operate upon aset of flows belonging to
a type of network application, as opposed to operating on
single flows. In such cases, the router application would
typically have an aggregate, as opposed to per-flow, per-
formance requirement. This makes the task of accurately
binding router resources to flows an important one. The
expressiveness of the resource reservation interface deter-
mines how accurately router applications will be able to
express their resource requirements. An inflexible inter-
face may lead to coarse specifications, leading to under-
utilization of router resources. Likewise, an overly flexible
interface may blow up the scheduling state in the system,
while being a burden to a router application writer.

We believe that two key principles suffice to provide a
simple and flexible interface.

1. Decouple execution contexts from scheduling con-
texts: This means that the interface should clearly dis-
tinguish between a thread of control associated with
a flow, and the resource principal associated with it.
Thus, an invocation made in the context of a flow
should have two components : the identity of the flow,
and the identity of the resource principal, which may
be different in general.

2. Allow absolute as well assymbolic specification of re-
source reservations : A symbolic specification means
a reference to another principal’s resource reservation.
Thus, a flowf1 may specify that it requires an over-
all rate of100 packets/sec with each packet having64

bytes (independent link reservation of6400 bytes/sec),
but shares the CPU with flowf2 (symbolic CPU reser-
vation).

These principles have two important implications. First,
binding a flow to a resource principal now becomes an ex-
plicit operation. Second, resources can be shared on a per-
resource basis, as opposed to an all-or-none basis (where
either both CPU and link resources are shared, or none is
shared). An example application where this is needed is
a multicast application that transcodes incoming data on a
link and distributes it over three output links. Each output
flow requires its own context in its output link, and may
even have distinct link rate requirements due to receiver
heterogeneity. However, the transcoding operation is done
once on a single copy of every packet, and hence the CPU
reservation should be shared. This application can be im-
plemented using three flows that share their CPU resource.
One of the flows can make the absolute CPU reservation,

9

and the other two can refer to this reservation symbolical-
ly. A cursory look at the example might say that the same
could be done by declaring one incoming flow that only re-
serves the CPU, and three outgoing flows reserving only
the respective link rates. However, this would break the in-
tegrated CPU and link scheduling requirement described in
section 5.

7 Srishti and Aggregate TCP

The ideas presented above have been incorporated inS-
rishti, a substrate for writing applications in a router that
uses the X86 architecture for application flow processing.
Using the above design principles, Srishti allows compo-
sition of router applications through stateful functions and
flows. The functions are untrusted, preemptible functions
that can be efficiently co-located with core router function-
s in a single address space. Flows are execution contexts,
bound explicitly to resource principals using Srishti’s API.
All control transfer is explicit and asynchronous, and func-
tions are called through references. These references are
obtained by anaming service that acts like a dynamic sym-
bol table of loaded functions.

We briefly share our experience in writing a router appli-
cation over Srishti to perform aggregated TCP congestion
control. TCP does not provide mechanisms to allow a new
connection to reuse congestion estimates gathered by other
connections that have used the same path. This forces a new
TCP connection to always start from a conservative estimate
of available bandwidth, causing short connections to never
reach the correct value of the available bandwidth. Short
HTTP connections can perform at significantly sub-optimal
performance levels due to this, if there is a lot of opportu-
nity for temporal and spatial congestion state reuse. ATCP
is a router mechanism that allows congestion state reuse be-
tween TCP connections that are expected to share bottle-
neck links in the network2, without changing end-system
TCP implementations. The details on how ATCP imple-
ments its functionality and its evaluation on a real-world
HTTP trace are available in [3].

While composing ATCP using Srishti’s API, the most in-
teresting choice is in how resources are to be allocated, and
thescope of congestion state sharing. The scenario we envi-
sion is that ATCP is deployed in a router that serves a certain
number of busy TCP servers, say fromN different organi-
zations. In this case, the scope of congestion state sharing
is all TCP flows originating at theseN servers, and the re-
source allocation goal is to be max-min fair to theseN orga-
nizations. Thus the ATCP implementation usesN resource
principals, to which incoming TCP packets are bound. One
can choose to implement ATCP as a monolithic function

2ATCP approximates this by grouping together flows destined to the
same subnet.

that holds per-flow state ; or asK modules where there are
K congestion sharing groups, each of which holds per-flow
state only for the flows in that group. We have currently
implemented ATCP as a monolithic function. Only one ex-
ecution context is used, since all session state is centralized
in one function. Since there are no blocking calls in the ap-
plication, there is no need for multiple execution contexts to
hide blocking latency.

8 Evaluation

We have implemented Srishti on a400MHz Pentium and
tested it as a router with Intel eepro100 network interfaces.
While the implementation uses a Linux skeleton, it depends
more directly on the X86 architecture rather than on Linux3.
In this section, we provide some microbenchmarks on the
system that give some insight into the design decisions laid
out earlier.

We begin with some microbenchmarks related to protec-
tion. A null router application function, co-located with the
router kernel in a lesser privileged segment, incurs an over-
head of325 cycles for a call and return. When the function
also makes a protected function call to a core router function
before returning, the overhead becomes814 cycles. This is
more than twice of the single call, due to additional over-
heads of saving all general-purpose registers. To see the
advantages of co-location, we ran a ping-pong test between
two null functions in different address spaces, incurring on
overhead of1360 cycles per call. This overhead would be
higher in general for a non-null function, due to the cost of
re-populating flushed TLB entries with every address space
switch.

The next measurement shows the role of event-driven
control flow in providing fine-grained prioritization to the
router’s generic flows. We modified the eepro100 driver
to use polling instead of interrupts. Thus, interrupt con-
text is not used to process generic flows. We tried three
ways in which the scheduler could get control in order to
serve generic flows. In the first case, the scheduler on-
ly gets control at system timer interrupts (10 msec). This
simulates a time-slice based scheduler, and a system that
uses synchronous function invocations. The second case
gives control to the scheduler only when application func-
tions return, simulating asynchronous control flow, but with
no timers. In the last case, the scheduler gets control ev-
ery time a function returns or the timer fires, representing
the finest scheduling granularity. The system continuously
runs invocations whose running time is uniformly distribut-
ed from3 msec to21 msec in increments of3, centered
roughly around10 msec. The router is fed with a uniform
stream of packets with varying inter-packet gap. The metric

3Code for Srishti and ATCP is available via anonymous FTP from se-
quoia.ecsl.cs.sunysb.edu/pub/srishti.

10

0 2 4 6 8
Number of Processes

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

A
va

ila
bl

e
C

ap
ac

ity
 o

f R
es

ou
rc

e
(u

ni
ts

/s
ec

)

Resource R1 in Algorithm−1
Resource R1 in Algorithm−2
Resource R2 in Algorithm−1
Resource R2 in Algorithm−2

Figure 1. Utilization of two resources v/s admit-
ted flows for fixed allocation (algorithm 1) and load-
dependent allocation (algorithm 2).

that reflects the ”disturbance” introduced in the forwarding
path of generic flows is the standard deviation of the inter-
arrival time at the receiver. As shown in table 1, the event-
driven approach leads to lesser perturbation than a constant
time-slice based scheduler, and the scheduler that combines
events with time slices performs the best.

Sender Inter Timer Function Timer OR
Pkt Gap Interrupt Return Fn. Return

1.0 1.746 1.821 1.573
4.0 4.383 3.783 3.069
7.0 4.312 3.832 3.082
12.0 3.881 3.658 2.844

Table 1. Standard Deviation (in msec) of received
inter-packet gap for three ways in which the scheduler
can get control from router applications.

The final measurement shows the impact of integrated
resource scheduling in providing tighter admission control.
We assume two resources, each with a capacity of1000

units/sec. Flows request these resources by asking for a
rate of1 packet per100 msec, requesting1 unit of work
from one resource and10 units from the other. Figure 1
shows how resource usage for each resource changes as
flows are added, for the case when deadline slack is allocat-
ed in a fixed manner (algorithm1), and when it is allocated
in a load-dependent manner (algorithm2). Algorithm1 all-
coates half the global deadline to each resource, leading to

skewed utilization and stops admission control sooner than
algorithm2. Algorithm 2 tries to keep resource utilization
balanced by allocating more slack to the more loaded re-
source.

9 Related Work

Recent interest in providing system support for router
programmability has led to the specification of the NodeOS
interface [11] which attempts to lay down implementation-
independent primitives that a programmable router should
provide. NodeOSimplementations internally implemen-
t these primitives using substrates like language runtimes or
specialized OSes [12], and expose the NodeOS interface to
router applications. Placing our work in this context, the re-
quirements we identify pertain to NodeOS implementation-
s. In other words, we expose some of the design decisions
which are hidden beneath the NodeOS interface, but are im-
portant in making router programming a practical paradigm.
Some of the requirements that we propose are generic in the
sense that they can be incorporated in existing implementa-
tions. For example, the requirements pertaining to resource
scheduling can be incorporated into any framework that al-
ready supports scheduling, whereas efficient memory pro-
tection primitives can be utilized to sandbox non-protected
approaches such as router plugins [13]. Stateful computa-
tion may not be directly applicable in some systems, for
example those based upon functional languages. Howev-
er fine-grained scheduling afforded by event-driven control
flow can be supported in language runtimes by giving con-
trol to the language runtime upon a method invocation.

References

[1] Papadopoulos C.,et al, An Error-Control Scheme
for Large-Scale Reliable Multicast Applications, Proc.
IEEE Infocom 1998.

[2] Amir E., et al, An Applical Level Video Gateway,
Proc. ACM Multimedia 1995.

[3] Pradhan P.,et al, Aggregate TCP Congestion Control
Using Multiple Network Probing, Proc. ICDCS 2000.

[4] Apostolopoulos G.,et al, Design, Implementation and
Performance of a Content-Based Switch. Proc. IEEE
Infocom 2000.

[5] Chiueh T.,et al, Integrating Segmentation and Pag-
ing Protection for Safe, Transparent and Efficient Soft-
ware Extensions, Proc. ACM SOSP 1999.

[6] Takahashi M.,et al, Efficient Kernel Support for Fine-
Grained Protection Domains for Mobile Code, Proc.
ICDCS 1998.

11

[7] Kaashoek F.,et al, Application Performance and Flex-
ibility on Exokernel Systems, Proc. ACM SOSP 1997.

[8] Feldmann A., et al, Data Networks as Cascades :
Explaining the Multifractal Nature of Internet WAN
Traffic Proc. ACM SIGCOMM 1998.

[9] Malan R., at al, Internet Routing Instability, Proc.
ACM SIGCOMM 1997.

[10] Banga G.,et al, Resource Containers : A New Facili-
ty for Resource Management in Server Clusters, Proc.
USENIX 1999.

[11] Peterson L.,et al, NodeOS Interface Specification.

[12] Peterson L.,et al, A NodeOS Interface for Active Net-
works, In IEEE JSAC 2001.

[13] Decasper D.et al, Router Plugins : A Software Archi-
tecture for Next-Generation Routers, Proc. ACM SIG-
COMM 1998.

12

Lazy Process Switching

Jochen Liedtke Horst Wenske

University of Karlsruhe, Germany
liedtke@ira.uka.de

1 Motivation

Although IPC has become really fast it is still too slow on cer-
tain processors. Two examples motivating even faster IPC, critical
sections in real-time applications and multi-threaded servers, are
briefly discussed below.

Critical sections in real-time applications suffer from the well-
known priority-inversion problem [7]. Multiple solutions have
been proposed, e.g. priority inheritance (which is generally not
sufficient), priority ceiling [7], and stack-based priority ceiling [2].
All methods need to modify a thread’s priority while the thread
executes the critical section. In the stack-based priority-ceiling
protocol, for example, a thread has to execute the critical section
always with the maximum priority of all threads that might even-
tually execute the critical section, regardless of its original priority.

A very natural solution for stack-based priority ceiling in a
thread/IPC-based system is to have a dedicated thread per critical
section. This thread’s priority is set to the (static) ceiling priority.
Any “client” thread calls the critical section through RPC (two
IPCs). Priorities are automatically updated through the undelying
thread switch. The synchronous IPC mechanism also serializes
threads automatically that compete for the critical section. Pro-
vided that simultaneously pending request IPCs are delivered in
prioritized order, we have a simple and elegant implementation of
stack-based priority ceiling.

However, this method of implementing critical section requires
very lightweight threads. In particular, IPC should be very fast.
180 cycles which is the current L4 time on a Pentium III is too ex-
pensive. Such costs are acceptable when real synchronization ac-
tions are necessary such as entering the invoker into a wait queue
if the critical-section thread is blocked on a page fault. However,
typically a critical-section thread can be called directly. 180 cycles
are inacceptable in this case.Therefore, we need much faster IPC!

For achieving highest performance,multi-threaded servers of-
ten needcustomized policies how to distribute incoming requests
to worker threads. For instance, a server might want to handle up
to 3 requests in parallel but queue further requests. The natural
solution is one distributor thread which also implements a request
queue and 3 worker threads that communicate through IPC with
the distributor. Again, 180 cycles are inacceptable.Therefore, we
need much faster IPC!

In general, we see that the availability of fast IPC lets people
think about fine-grain system componentization. Once they are on
this path they ask for mechanisms that enable even more fine-grain
componentization, in particular infinitely fast IPC.Therefore, we
need much faster IPC!

2 Is User-Level IPC Possible?

Nicely, we seem to need superfast IPC particularly for intra-task
communication which does not include an address-space switch.
User-level threads which are no kernel objects [1, 6, 5] might

achieve the required speed. Since a tasks’s user-level threads are
unknown objects for the kernel and execute all in the context of a
single kernel thread user-level-thread switchs are invisible to the
kernel and can entirely execute in user mode. However, the over-
head required to make user-level threads kernel schedulable [1]
more than compensates the above speed gain in a system that of-
fers sufficiently lightweight threads and fast IPC. From our previ-
ous experience, we are convinced that the total costs of user-level
threads in terms of time and total system complexity are much
higher than their gain. Furthermore, having two concepts, kernel
threads and user-level threads, is conceptually inelegant and con-
tradicts the idea of conceptual minimality.

Therefore, our goal is to find an implementation of kernel
threads that offers all speed advantages of user-level threads for
intra-task communication.

Let us revisit how an intra-address-space thread switch hap-
pens. We assume an atomicSendAndWaitForReply IPC which is
typically used for RPC. Client and server variant of this call dif-
fer only marginally. The client thread sends a request to a server
thread and waits for a reply from that server. Correspondingly,
the server thread replies to the client thread and waits for the next
request which may arrive from any client. We show the client
variant:

A! B :
call IPC function, i.e. push A’s instruction pointer ;
if B is a valid thread id AND thread B waits for thread A

then save A’s stack pointer ;
set A’s status to “wait for B” ;
set B’s status to “run”
load B’s stack pointer ;
current thread := B ;
return, i.e. pop B’s instruction pointer

else
more complicated IPC handling

endif .

There are two reasons why to be execute this code in kernel mode:

1. Atomicity. Checking B’s state and the following thread
switch have to be executed atomically to avoid inconsisten-
cies.

2. Kernel Data. Stack pointer, thread status, and “current
thread” are protected data that can only be accessed by the
kernel to prevent user-level code from compromising the
system.

On processors with relatively expensive kernel/user-mode-switch
operations such as x86, the above two reasons increase IPC costs
from 20– cycles to 180 cycles (Pentium III, using systenter/sysexit
instructions). Therefore, we should find a way to invalidate both
reasons, i.e. to execute the above IPC operation entirely in user
mode.

13

2.1 Atomicity

Ensuring atomicity in user mode is relatively simple as long as
the kernel knows the executed code. The method goes back to an
idea that Brian Ford [3] proposed in 1995: Let some unmodifi-
able “kernel code” execute in user space so that the kernel can act
specifically to this code if an interruption within this “kernel code”
occurs.

In our example, the kernel would simply reset the thread’s in-
struction pointer to the beginning of the IPC routine if an inter-
ruption occurs before a real status modification has become ef-
fective. After the system state has been partially modified, the
kernel would have to either undo those modifications or complete
the IPC operation before handling the interruption. Such a method
cannot ensure atomicity in general; e.g., it fails if the questionable
code experiences a page fault. However, we can easily implement
the IPC code such that the described forward-completion method
works:

A! B :
call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;
— restart point —
if B is a valid thread id AND thread B waits for thread A

then — forward point —
set A’s status to “wait for B” ;
set B’s status to “run”
load B’s stack pointer ;
current thread := B ;
— completion point —
return, i.e. pop B’s instruction pointer

else . . .
Interruptions including page faults between restart point and for-
ward point occur before the system’s state has really changed. Pro-
vided that no required registers have been overwritten, resetting to
the restart point heals the interruption:

interruption between restart point and forward point:
set interrupted instruction pointer to restart point .

The algorithm is robust against page faults1 upon accessing
thread-control blocks (TCBs): If a page fault occurs when TCB
B is accessed to check B’s status the IPC operation simply restarts
after page-fault handling. We assume thatafter the forward point,
no legal page faults can occur since both TCBs have been accessed
in the check phase. However, illegal page faults might occur, e.g.
if a user program jumps directly to the middle of the code or even
to the middle of an instruction. Consequently, any page fault in
this region is illegal and permits to kill the thread.

interruption between restart point and complete point:
if is page fault

then kill thread A
else A’s status := “wait for B” ;

B’s status := “run” ;
load B’s stack pointer ;
current thread := B ;
set interrupted instruction pointer to completion point

endif .

On a uniprocessor, we have thus guaranteed atomicity without us-
ing privileged instructions. For multiprocessors, the method can
be extended to work for threads residing on the same processor.
(Cross-processor communication is anyhow an order of magnitude

1Some systems might hold TCBs in virtual memory.

more expensive than intra-processor communication. Restricting
user-level IPC to intra-processor is thus acceptable.)

2.2 Kernel Data

The kernel data involved are A-TCB and B-TCB variablesstack
pointer, status and the system variablecurrent thread. We have
to analyze whether these variables must be really protected from
unautorized user access.

For the time being, assume that the above mentioned IPC code
runs in user mode. Then, the TCB variablestack pointer holds a
thread’suser stack pointer. Remember that A and B both run in the
same address space so that they can arbitrarily modify each other
stacks and perhaps even code. Protection would therefore not be
significantly better if A’s stack pointer would be protected against
access from B.Consequently, the TCB variable stack pointercan
be user accessible.

The status case is a little more complicated. Assume that a
thread’s status can only be “run” or “wait for X”. We have to an-
alyze three cases when thread A maliciously switches thread B’s
status: from “run”2 to “wait for X”, from “wait for X” to “wait for
Y”, and from “wait for X” to “run”.

Whenever A modifies B’s status illegaly we see user-level ef-
fects and system effects. User-level effects within A’s address
space can be ignored (see above). Effects in different address
space that indirectly result from user-level effects within A’s ad-
dress space are also irrelevant since A has full access to their data
even without modifying the thread states. As long as only thread
states within the same task are accessible, user-level effects are
thus uncritical.

System effects are more serious. Whenever the system state
depends on a thread’sstatus variable we need provisions ensuring
system integrity. Unauthorized modification of astatus variable
must in no case lead to system inconsistencies. For instance, the
kernel can no longer assume that a thread ofstatus “run” is always
in the run queue. Similarly, a thread might be in the run queue
although itsstatus says “wait for X”. This run-queue problem can,
e.g., be solved by the lazy-scheduling technique [4] where the run
queue is updated lazily.

A more generally applicable technique is based on the idea
to have akernel twin for each unprotected user-accessible kernel
variable. Before the unprotected variable is used by the kernel,
the kernel always checks consistency. If unprotected variable and
kernel twin do not match the kernel takes appropriate actions to
reestablish consistency. The fundamental problem is to determine
whether the recognized inconsistency is legal or not. If it is le-
gal the unprotected variable is used to update the protected kernel
state. If it is illegal the unprotected variable can be reconstructed
based on its kernel twin or the current thread can be killed.

For example, we could have an unprotectedstatusu variable in
user space and a protected kernel twin,statusk in kernel space per
thread. Whenever the kernel detectsstatusu 6= statusk it will
reestablish consistency by:

2On this level of abstraction, “run” is used to denote a ready-to-run
thread as well as a thread that currently executes on a processor.

14

status inconsistency:
if statusu = “run” AND statusk is wait for

then insert thread into run queue ;
statusk := statusu

elif statusu is wait for AND statusk = “run”
then delete thread from run queue

statusk := statusu
else kill thread

endif .

The algorithm can be straightforwardly extended to handle more
thread states than only “run” and “wait for X”. Ignoring perfor-
mance questions and potential complications due to dependencies
between multiple kernel objects, we can conclude that, in princi-
ple,some kernel data can be made user-mode accessible.

3 Lazy Switching

The fundamental insight is that twin inconsistencies need only to
be checked on kernel entry. This sounds trivial. However, its im-
mediate consequence is that an IPC executing completely in user
level does not need to synchronize with the kernel.

In particular, this type of IPC can switch threads without di-
rectly telling the kernel. The kernel will synchronize, i.e. exe-
cute the thread switch in retrospect upon the next kernel entry, e.g.
timer tick, device interrupt, cross-address-space IPC, or page fault.

In general, lazily-evaluated operations pay if more of them oc-
cur than have to be evaluated effectively. Correspondingly, lazy
switching can pay if only a samll fraction of lazy-switching op-
erations lead finally to real kernel-level process switches. Such
behavior can be expected whenever a second IPC, for example the
reply or a forwarding IPC, happens before an interrupt occurs. Our
motivating examples “critical region” and “request distribution”
fall into this category provided their real work phase is short.

3.1 UTCBs and KTCBs

Now let us try to apply the insights of the previous section to the
concrete problem:

1. The IPC system-call code is mapped to a fixed address in
user address space and can be executed in user mode; atom-
icity is guaranteed as described in Section 2.1.

2. We separate each thread’s TCB into a UTCB and a KTCB.
The UTCB is unprotected and user accessible. The KTCB
can only be accessed by the kernel. A thread’s UTCB holds
its user stack pointer and itsstatusu. Statusk is in the KTCB.
Furthermore, the UTCB holds the KTCB address which is
of course not trustworthy. However, the KTCB holds a
backpointer to its corresponding UTCB so that the UTCB’s
KTCB pointer can be validated (see algorithm below).

3. An unprotected kernel variableCurrentUTCBu can be ac-
cessed from user mode. It is intended to point to the current
thread’s UTCB. Its protected twinCurrentUTCBk lives in
kernel space.

The only variable that triggers synchronization isCurrentUTCB.
Inconsistencies that include onlystatus are ignored because they
are always illegal. Due to lazy scheduling [4],status inconsisten-
cies can be tolerated.

CurrentUTCB inconsistency:
if CurrentUTCBu is in valid utcb region

then NewKTCB := CurrentUTCBu�>ktcb ;
if NewKTCB is in valid ktcb region and aligned

AND NewKTCB�>utcb = CurrentUTCBu
then switch from CurrentKTCB to NewKTCB ;

CurrentKTCB := NewKTCB ;
CurrentUTCBk := CurrentUTCBu ;
return

endif
endif ;
kill thread (CurrentKTCB) .

3.2 Coprocessor Synchronization

Most modern processors permit to handle floating-point registers
and those of other coprocessors lazily. Those resources can be
locked by the kernel. If another thread tries to access them an
exception is raised that permits the kernel to save the coprocessor
register in that TCB which has used the coprocessor so far and
reload the registers from the current TCB. Typically, coprocessors
can only be locked by kernel-mode software.

Therefore, we have to extend the above CurrentUTCB-
synchronization algorithm to make it coprocessor safe.

We introduce a pair of flagsCoprocessorUsedu=k . Both flags
are set by the kernel whenever it allocates the coprocessor to the
current thread. IfCoprocessorUsedk is set the kernel locks the co-
processor when switching from this thread to another one and re-
sets both flag twins. The user-level IPC code now checks whether
CoprocessorUsedu is not set. If it is set user-level IPC is not pos-
sible and a full kernel IPC is invoked.

Of course,Coprocessoru is not trustworthy. Therefore, we
might see an invalid coprocessor flag when switching through
user-level code from A to B. A potential coprocessor confusion
between A, B, and other threads of the same task can be ignored.
However, we must ensure that the information “one of the current
task’s threads has currently allocated the coprocessor” never gets
lost. Otherwise, the coprocessor confusion could infect threads of
other tasks. Fortunately, this can be done lazily, i.e. needs only to
be checked when a an UTCB inconsistency is handled:

Switch from CurrentKTCB to NewKTCB:
. . .
NewKTCB�>CoprocessorUsed := CurrentKTCB�>CoprocessorUsed ;
. . .

Remember that user-level IPC never legally switches away from
a thread that currently uses the coprocessor. As long as all lazy
switches have been legal, the above statement copies therefor al-
ways a 0-flag. However, as soon as we have a coprocessor con-
fusion through an illegally resetCoprocessorUsedu, it copies a 1-
flag and propagates the coprocessor confusion to the new thread.
If later a kernel IPC or other kernel-level thread switch switches to
another task the coprocessor is deallocated so that the coprocessor
confusion can not infect the other task.

4 Prototype Performance

The current prototype takes 12 cycles for the fast IPC path on a
Pentium III. Slight increases have to be expected when integrating
it into a fully-functional L4 version 4 microkernel.

15

5 Conceptual Summary

Lazy switching enables very fast blocking intra-task IPC between
kernel-implemented threads. This type of IPC can typically be
entirely executed in user mode although it operates on kernel ob-
jects. We hope that lazy switching adds the advantages of user-
level threads to kernel-level threads.

The work on lazy switching is ongoing research in its early
stage. Whether all its promising properties can make it to real-
ity is still open. Further open questions:

1. Can we include the structural modifications required for lazy
switching into an existing microkernel at almost no cost?

2. Processors with low kernel/user-switch costs such as Alpha
obviously do not require lazy switching. Can we find an API
that permits lazy switching on x86 without impose additional
costs on an Alpha implementation?

3. Can we extend lazy switching to certain cross-address-space
process switches?

References
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.

Scheduler activations: Effective kernel support for the user-level man-
agement of parallelism. In13th ACM Symposium on Operating Sys-
tem Principles (SOSP), Pacific Grove, CA, October 1991.

[2] T. P. Baker. A stack-based resource allocation policy for realtime pro-
cesses. In11th Real-Time Systems Symposium (RTSS). IEEE, Decem-
ber 1990.

[3] B. A. Ford. private communication, December 1995.

[4] J. Liedtke. Improving IPC by kernel design. In14th ACM Symposium
on Operating System Principles (SOSP), pages 175–188, Asheville,
NC, December 1993.

[5] F. Mueller. A library implementation of POSIX threads under UNIX.
In Winter USENIX Technical Conference, page 29, January 1993.

[6] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and
M. Weeks. SunOS multithreaded architecture. InWinter USENIX
Technical Conference, page 65, El Cerrito, CA, January 1991.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization.IEEE Transactions
on Computers, 39(9), September 1990.

16

Robustness in Complex Systems

Steven D. Gribble
Department of Computer Science and Engineering

The University of Washington
gribble@cs.washington.edu

Abstract

This paper argues that a common design paradigm for
systems is fundamentally flawed, resulting in unstable, un-
predictable behavior as the complexity of the system grows.
In this flawed paradigm, designers carefully attempt to pre-
dict the operating environment and failure modes of the sys-
tem in order to design its basic operational mechanisms.
However, as a system grows in complexity, the diffuse cou-
pling between the components in the system inevitably leads
to the butterfly effect, in which small perturbations can re-
sult in large changes in behavior. We explore this in the
context of distributed data structures, a scalable, cluster-
based storage server. We then consider a number of design
techniques that help a system to be robust in the face of
the unexpected, including overprovisioning, admission con-
trol, introspection, adaptivity through closed control loops.
Ultimately, however, all complex systems eventually must
contend with the unpredictable. Because of this, we believe
systems should be designed to cope with failure gracefully.

1. Introduction

As the world grows more dependent on complex com-
puting systems (such as scalable web sites, or even the In-
ternet itself), it has become increasingly evident that these
systems can exhibit unpredictable behavior when faced with
unexpected perturbations to their operating environment.
Such perturbations can be small and innocuous, but due
to latent flaws in the design of the system combined with
widespread coupling between its components, the effects of
small perturbations may be large and destructive, possibly
rendering the system inoperative.

For example, in [5], Floyd and Jacobson demonstrated
that periodic signals (such as router broadcasts) in the Inter-
net tend to become abruptly synchronized, leading to pat-
terns of loss and delays. As another example, in [4], Dr-
uschel and Banga demonstrate that with web servers run-

ning on traditional interrupt-driven operating systems, a
slight increase in load beyond the capacity of the server can
drive the server into a persistent state of livelock, drasti-
cally reducing its effective throughput. As a third example,
in [1], Arpaci-Dusseau et al. demonstrate that with conven-
tional software architectures, the difference in performance
resulting from placing data on the inner tracks vs. outer
tracks of a single disk can affect the global throughput of
an eight node cluster of workstations by up to 50%. A final
example is that of BGP “route flap storms” [11, 12]: un-
der conditions of heavy routing instability, the failure of a
single router can instigate a storm of pathological routing
oscillations. According to [11], there have been cases of
flap storms that have caused extended Internet outages for
millions of network customers.

By their very nature, large systems operate through the
complex interaction of many components. This interaction
leads to a pervasive coupling of the elements of the system;
this coupling may be strong (e.g., packets sent between ad-
jacent routers in a network) or subtle (e.g., synchronization
of routing advertisements across a wide area network). A
well-known implication of coupling in complex systems is
the butterfly effect [14]: a small perturbation to the system
can result in global change.

Avoiding Fragility

A common goal that designers of complex systems strive
for is robustness. Robustness is the ability of a system to
continue to operate correctly across a wide range of opera-
tional conditions, and to fail gracefully outside of that range.
In this paper, we argue against a seemingly common design
paradigm that attempts to achieve robustness by predicting
the conditions in which a system will operate, and then care-
fully architecting the system to operate well in those (and
only those) conditions. We claim that this design technique
is akin to precognition: attempting to gain knowledge of
something in advance of its actual occurrence.

As argued above, it is exceedingly difficulty to com-
pletely understand all of the interactions in a complex sys-

17

tema priori. It is also effectively impossible to predict all
of the perturbations that a system will experience as a re-
sult of changes in environmental conditions, such as hard-
ware failures, load bursts, or the introduction of misbehav-
ing software. Given this,we believe that any system that
attempts to gain robustness solely through precognition
is prone to fragility.

In the rest of this paper, we expore this hypothesis by
presenting our experiences from building a large, complex
cluster-based storage system. We show that although the
system behaved correctly when operating within its design
assumptions, small perturbations sometimes led to the vio-
lation of these assumptions, which in turn lead to system-
wide failure. We then describe several design techniques
that can help systems to avoid this fragility. All of these
techniques have existed in some form in previous systems,
but our goal in this paper is to consolidate these techniques
as a first step towards the design of more robust systems.

2. DDS: A Case Study

In [7], we presented the design and implementation of
a scalable, cluster-based storage system called adistributed
data structure (DDS). A DDS, shown in Figure 1, is a high-
capacity, high-throughput virtual hash table that is parti-
tioned and replicated across many individual storage nodes
called bricks. DDS clients (typically Internet services such
as web servers) invoke operations on it through a library that
acts as a two-phase commit coordinator across replicas af-
fected by the operation. These two-phase commits are used
to achieve atomicity of all operations and one-copy equiva-
lence across the entire cluster.

The design philosophy we used while building the DDS
was to choose a carefully selected set of reasonable opera-
tional assumptions, and then to build a suite of mechanisms
and an architecture that would perform robustly, scalably,
and efficiently given our assumptions. Our design strategy
was essentially predictive: based on extensive experience
with such systems, we attempted to reason about the behav-
ior of the software components, algorithms, protocols, and
hardware elements of the system, as well as the workloads it
would receive. In other words, we largely relied on precog-
nition while designing mechanisms and selecting operating
assumptions to gain robustness in our system.

Within the scope of our assumptions, the DDS design
proved to be very successful. We were able to scale the
number of nodes in the system across two orders of mag-
nitude, and we observed a corresponding linear scaling in
performance. We also demonstrated fault-tolerance by de-
liberately inducing faults in the system and showing that the
storage remained available and consistent. However, as we
operated the system for a period of more than a year, we
observed several very unexpected performance and behav-

������

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

�������
�	�
��

����
������
��

�����
	�����
	

����
������
��

�����
	�����
	

����
������
��

�����
	�����
	

��
�����
��� ��
�����
��� ��
�����
��� ��
�����
��� ��
�����
���

������

�������

�������	���
���

	�
�����
�
�����������
����	��������

��	��

���������������
����������
���
�����������
�������

Figure 1. DDS architecture: each box in the diagram
represents a software process. In the simplest case, each
process runs on its own physical machine in a cluster, how-
ever there is nothing preventing processes from sharing
physical machines.

ioral anomalies. In all cases, the anomalies arose because
of an unforeseen perturbation to the system that resulted in
the violation of one of our operating assumptions; the con-
sequences of these violations were usually severe.

In this section of the paper, we describe several of the
more interested and unexpected behavioral anomalies that
we encountered over the one or two years’ worth of experi-
ence we had with this system. Some may choose to consider
these anomalies simply as bugs in the design of the system,
arising from lack of foresight or na¨ıvety on the part of its
designers. We argue, however, that these “bugs” all shared
similar properties: they were extremely hard to predict, they
arose from subtle interactions between many components
or layers in the system, and they bugs led to severe impli-
cations in our system (specifically, the violation of several
operating assumptions which in turn led to system unavail-
ability or data loss).

2.1. Garbage Collection Thrashing and Bounded
Synchrony

Various pieces in the DDS relied on timeouts to detect
the failure of remote components. For example, the two-
phase commit coordinators used timeouts to identify the
deaths of subordinates. Because of the low-latency (10-100
�s), redundant network in the cluster, we chose to set our
timeout values to several seconds, which is four orders of
magnitude higher than the common case round trip time of
messages in the system. We then assumed that components
that didn’t respond within this timeout had failed: we as-
sumedbounded synchrony.

18

throughput

la
te

nc
y

saturation
point

increasing load

Figure 2. Performance with GC thrashing: this graph
depicts the (parametric) curve of latency and throughput as
a function of load. As load increases, so does throughput
and latency, until the system reaches a saturation point. Be-
yond this, additional load results in GC thrashing, and a
decrease in throughput with a continued latency increase.
After saturating, the system falls into a hole out of which it
must “climb”.

The DDS was implemented in Java, and therefore made
use of garbage collection. The garbage collector in our JVM
was a mark-and-sweep collector; as a result, as more active
objects were resident in the JVM heap, the duration that
the garbage collector would run in order to reclaim a fixed
amount of memory would increase. If the DDS were operat-
ing near saturation, slight (random) fluctuations in the load
received by bricks in the system would increase the pressure
on their garbage collector, causing the effective throughput
of these bricks to drop. Because the offered load to the sys-
tem is independent of this effect, this would cause the de-
graded bricks to “fall behind” relative to its peers, leading
to more active objects in its heap and a further degradation
in performance. This catastrophe leads to a performance
response of the system as shown in Figure 2.

Once the system was pushed past saturation, the catas-
trophe would cause the affected node to slow down until its
latency exceeded the timeouts in the system. Thus, the pres-
ence of garbage collection would cause the system to violate
the assumption of bounded synchrony as it approached and
then exceeded saturation.

2.2. Slow Leaks and Correlated Failure

We used replication in the DDS to gain fault-tolerance:
by replicating data in more than one location, we gained
the ability to survive the faults of individual components.
We further assumed thatfailures would be independent, and
therefore the probability that multiple replicas would simul-
taneously fail is vanishingly small.

For the most part, this assumption was valid. We only
encountered two instances of correlated failure in our DDS.
The first was due to blatant, naive bugs that would cause
bricks to crash; these were quickly fixed. However, the sec-
ond was much more subtle. Our bricks had a latent race con-

dition in their two-phase commit handling code that didn’t
affect correctness, but which had the side-effect of a caus-
ing a memory leak. Under full load, the rareness of this
race condition caused memory to leak at the rate of about
10KB/minute. We configured each brick’s JVM to limit its
heap size to 50MB. Given this leak rate, the bricks’ heaps
would fill after approximately 3 days.

Whenever we launched our system, we would tend to
launch all bricks at the same time. Given roughly balanced
load across the system, all bricks therefore would run out
of heap space at nearly the same time, several days after
they were launched. We also speculated that our automatic
failover mechanisms exacerbated this situation by increas-
ing the load on a replica after a peer had failed, increase the
rate at which the replica leaked memory.

We did in fact observe this correlated failure in practice:
until we isolated and repaired the race condition, our bricks
would fail predictably within 10-20 minutes of each other.
The uniformity of the workload presented to the bricks was
itself the source of coupling between them; this coupling,
when combined with a slow memory leak, lead to the vio-
lation of our assumption of independent failures, which in
turn caused our system to experience unavailability and par-
tial data loss.

2.3. Unchecked Code Dependencies and Fail-Stop

As mentioned above, we used timers in order to detect
failures in our system. If a timer expired, we assumed that
the corresponding entity in the system had crashed; there-
fore, in addition to assuming bounded synchrony, we also
assumed nodes would behave in afail-stop manner (i.e.,
a node that failed to respond to one message would never
again respond to any message).

To gain high performance from our system given the
highly concurrent workload, we implemented our bricks us-
ing an event-driven architecture: the code was structured as
a single thread executing in an event loop. To ensure the
liveness of the system, we strove to ensure that all long-
latency operations (such as disk I/O) were performed asyn-
chronously. Unfortunately, we failed to notice that portions
of our code that implemented a network session layer made
use of blocking (synchronous) socketconnect() routines
in the Java class library. This session layer was built to at-
tempt to automatically reinstantiate a network connection
if it was broken. The main event-handling thread therefore
could be surreptitiously borrowed by the session layer to
forge transport connections.

On several occasions, we noticed that some of our bricks
would seize inexplicably for a multiple of 15 minutes (i.e.,
15 minutes, 30 minutes, 45 minutes, ...), and then resume
execution, egregiously violating our fail-stop assumption.
After much investigation, we traced this problem down to

19

a coworker that was attempting to connect a machine that
was behind a firewall to the cluster. The firewall was silently
dropping incoming TCP syn packets, causing session layers
to block inside theconnect() routine for 15 minutes for
each connection attempt made to that machine.

While this error was due to our own failure to verify the
behavior of code we were using, it serves to demonstrate
that the low-level interaction between independently built
components can have profound implications on the overall
behavior of the system. A very subtle change in behavior
(a single node dropping incoming SYN packets) resulted in
the violation of our fail-stop assumption across the entire
cluster, which eventually lead to the corruption of data in
our system.

3. Towards Robust Complex Systems

The examples in the previous section served to illustrate
a common theme: small changes to a complex, coupled
system can result in large, unexpected changes in behavior,
possibly taking the system outside of its designers’ expected
operating regime. In this section, we outline a number of
design strategies that help to make systems more robust in
the face of the unexpected. None of these strategies are
a panacea, and in fact, some of them may add significant
complexity to a system, possibly introducing more unex-
pected behavior. Instead, we present them with the hope of
stimulating thought in the systems community for dealing
with this increasingly common problem: we believe that
an important focus for future systems research is building
systems that can adapt to unpredictably changing environ-
ments, and that these strategies are a useful starting point
for such investigation.

Systematic overprovisioning: as exemplified in Sec-
tion 2.1, systems tend to become less stable when operating
near or beyond the threshold of load saturation. As a sys-
tem approaches this critical threshold, there is less “slack”
in the system to make up for unexpected behavior: as a re-
sult, the system becomes far less forgiving (i.e., fragile). A
simple technique to avoid this is to deliberately and system-
atically overprovision the system; by doing so, the system
is ensured to operate in a more forgiving regime (Figure 3).

Overprovisioning doesn’t come for free; an overprovi-
sioned system is underutilizing its resources, and it is tempt-
ing to exploit this underutilization instead of adding more
resources as the load on the system grows. In fact, it
is only when the system nears saturation that many well-
studied problems (such as load balancing) become inter-
esting. However, we believe it is usually better to have
a well-behaved, overprovisioned system than a poorly be-
haved, fully utilized one, especially given that computing
resources are typically inexpensive relative to the cost of
human designers.

throughput

la
te

nc
y

(underprovisioned)
saturation

increasing load

(overprovisioned)
saturation

increasing load

desired operating
point (expected load)

Figure 3. An overprovisioned system: by overprovi-
sioning relative to the expected load, the system has slack:
it can withstand unexpected bursts of load without falling
into the “hole” associated with operating beyond saturation.

However, overprovisioning contains the implicit as-
sumption that the designers can accurately predict the ex-
pected operating regime of the system. As we’ve argued in
Section 1, this assumption is often false, and it can lead to
unexpected fragility.

Use admission control: given that systems tend to be-
come unstable as they saturate, a useful technique is to use
admission control to reject load as the system approaches
the saturation point. Of course, to do this requires that the
saturation point is identifiable; for large systems, the num-
ber of variables that contribute to the saturation point may
be large, and thus statically identifying the saturation point
may be difficult. Admission control often can be added to a
system as an “orthogonal” or independent component. For
example, high throughput web farms typically use layer 5
switches for both load balancing and admission control.

To reject load still requires resources from the system;
each incoming task or request must be turned back, and
the act of turning it back consumes resources. Thus, we
view systems that perform admission control as having two
classes of service: normal service, in which tasks are pro-
cessed, and an extremely lightweight service, in which tasks
are rejected. It is important to realize that the lightweight
service has a response curve similar to that shown in Fig-
ure 2: a service, even if it is performing admission control,
can saturate and then collapse. This effect is called livelock,
and it is described in [4]. Admission control simply gives
a system the ability to switch between two response curves,
one for each class of service.

Build introspection into the system: an introspective
system is one in which the ability to monitor the system is
designed in from the beginning. As argued in [2], by build-
ing measurement infrastructure into a system, designers are
much more readily able to monitor, diagnose, and adapt to
aberrant behavior than in a black-box system. While this
may seem obvious, consider the fact that the Internet and
many of its protocols and mechanisms do not include the
ability to introspect. As a result, researchers have often

20

found it necessary to subvert features of existing protocols
[9, 15], or to devise cunning mechanisms to deduce prop-
erties of network [13]. We believe that introspection is a
necessary property of a system for it to be both managable
and for its designers and operators to be able to help it adapt
to a changing environment.

Introduce adaptivity by closing the control loop: the
usual way for systems to evolve over time is for their de-
signers and operators to measure its current behavior, and
then to correspondingly adapt its design. This is essentially
a control loop, in which the human designers and operators
form the control logic. This loop operates on a very long
timescale; it can take days, weeks, or longer for humans to
adapt a complex system.

However, an interesting class of systems are those which
include internal control loops. These systems incorporate
the results of introspection, and attempt to adapt control
variables dynamically to keep the system operating in a sta-
ble or well-performing regime. This notion of adaptation
is important even if a system employs admission control or
overprovisioning, becauseinternal as well as external per-
turbations can affect the system. For example, modern disks
occasionally perform thermal recalibration, vastly affecting
their performance; if a system doesn’t adapt to this, tran-
sient periods of poor performance or even instability may
result.

Closed control loops for adaptation have been exploited
in many systems, including TCP congestion control, online
adaptation of query plans in databases [8, 10], or adaptive
operating systems that tuning their policies or run-time pa-
rameters to improve performance [16]. All such systems
have the property that the component performing the adap-
tation is able to hypothesize somewhat precisely about the
effects of the adaptation; without this ability, the system
would be “operating in the dark”, and likely would become
unpredictable. A new, interesting approach to hypothesiz-
ing about the effects of adaptation is to use statistical ma-
chine learning; given this, a system can experiment with
changes in order to build up a model of their effects.

Plan for failure: even if a system employs all of
the above strategies, as it grows sufficiently complex, un-
expected perturbations and failure modes inevitably will
emerge.Complex systems must expect failure and plan for
it accordingly.

Planning for failure might imply many things: systems
may attempt to minimize the damage caused by the failure
by using robust abstractions such as transactions [6], or the
system may be constructed so that losses are acceptable to
its users (as is the case with the web). Systems may attempt
to minimize the amount of time in which they are in a failure
state, for example by checkpointing the system in known
good states to allow for rapid recovery. In addition, systems
may be organized as several weakly coupled compartments,

in the hope that failures will be contained within a single
compartment. Alternatively, systems may stave off failure
by proactively “scrubbing” their internal state to prevent it
from accumulating inconsistencies [3].

4. Summary

In this paper, we have argued that a common design
paradigm for complex systems (careful design based on a
prediction of the operating environment, load, and failures
that the system will experience) is fundamentally fragile.
This fragility arises because the diffuse coupling of compo-
nents within a complex systems makes them prone to com-
pletely unpredictable behavior in the face of small pertur-
bations. Instead, we argue that a different design paradigm
needs to emerge if we want to prevent the ever-increasing
complexity of our systems from causing them to become
more and more unstable. This different design paradigm is
one in which systems are given the best possible chance of
stable behavior (through techniques such as overprovision-
ing, admission control, and introspection), as well as the
ability to adapt to unexpected situations (by treating intro-
spection as feedback to a closed control loop). Ultimately,
systems must be designed to handle failures gracefully, as
complexity seems to lead to an inevitable unpredictability.

In the future, we hope to explore the rich design space
associated with robust, complex systems. Our plans include
evaluating and extending the techniques identified in this
paper in the context of adaptive, wide-area information de-
livery systems, such as caching hierarchies, content distri-
bution networks, and peer-to-peer content sharing systems.

References

[1] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E.
Culler, J. M. Hellerstein, D. A. Patterson, and K. Yelick.
Cluster I/O with River: Making the Fast Case Common. In
Proceedings of the Sixth Workshop on I/O in Parallel and
Distributed Systems (IOPADS ’99), May 1999.

[2] A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubi-
atowicz, and D. A. Patterson. ISTORE: Introspective storage
for data intensive network services. InProceedings of the
7th Workshop on Hot Topics in Operating Systems (HotOS-
VII), March 1999.

[3] G. Candea and A. Fox. Reboot-based High Availability. In
Presented in the WIP Session of the 4th Symposium for Op-
erating System Design and Implementation (OSDI 2000),
San Diego, CA, October 2000.

[4] P. Druschel and G. Banga. Lazy Receiver Processing: A
Network Subsystem Architecture for Server Systems. In
Proceedings of the USENIX 2nd Symposium on Operat-
ing System Design and Implementation (OSDI ’96), Seattle,
WA, USA, October 1996.

21

[5] S. Floyd and V. Jacobson. The synchronization of peri-
odic routing messages.ACM Transactions on Networking,
2(2):122–136, April 1994.

[6] J. Gray. The Transaction Concept: Virtues and Limitations.
In Proceedings of VLDB, Cannes, France, September 1981.

[7] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, Distributed Data Structures for Internet Service
Construction. InProceedings of the 4th USENIX Symposium
on Operating System Design and Implementation (OSDI
2000), San Diego, California, USA, October 2000.

[8] Z. G. Ives, M. Friedman, D. Florescu, A. Y. Levy, and
D. Weld. An Adaptive Query Execution System for Data
Integration. InProceedings of SIGMOD 1999, June 1999.

[9] V. Jacobsen. Traceroute.ftp://ftp.ee.lbl.gov/
traceroute.tar.Z, 1989.

[10] N. Kabra and D. J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. In
Proceedings of SIGMOD 1998, Seattle, WA, June 1998.

[11] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing
instability. InProceedings of ACM SIGCOMM ’97, Cannes,
France, September 1997.

[12] C. Labovitz, G. R. Malan, and F. Jahanian. Origins of inter-
net routing instability. InProceedings of IEEE INFOCOMM
’99 Conference, New York, New York, March 1999.

[13] K. Lai and M. Baker. Measuring Link Bandwidths Using
a Deterministic Model of Packet Delay. InProceedings of
the 2000 ACM SIGCOMM Conference, Stockholm, Sweden,
August 2000.

[14] E. N. Lorentz.The Essence of Chaos. University of Wash-
ington Press, Seattle, WA, 1993.

[15] S. Savage. Sting: a TCP-based Network Measurement Tool.
In Proceedings of the 1999 USENIX Symposium on Internet
Technologies and Systems (USITS ’99), October 1999.

[16] M. Seltzer and C. Small. Self-monitoring and self-adapting
operating systems. InProceedings of the 6th Workshop on
Hot Topics in Operating Systems (HotOS-VII), May 1997.

22

Using Abstraction To Improve Fault Tolerance

Miguel Castro
Microsoft Research Ltd.

1 Guildhall St., Cambridge CB2 3NH, UK

mcastro@microsoft.com

Rodrigo Rodrigues and Barbara Liskov
MIT Laboratory for Computer Science

545 Technology Sq., Cambridge, MA 02139, USA

frodrigo,liskovg@lcs.mit.edu

Abstract

Software errors are a major cause of outages and they
are increasingly exploited in malicious attacks. Byzantine
fault tolerance allows replicated systems to mask some soft-
ware errors but it is expensive to deploy. This paper de-
scribes a replication technique, BFTA, which uses abstrac-
tion to reduce the cost of Byzantine fault tolerance and to
improve its ability to mask software errors. BFTA reduces
cost because it enables reuse of off-the-shelf service imple-
mentations. It improves availability because each replica
can be repaired periodically using an abstract view of the
state stored by correct replicas, and because each replica
can run distinct or non-deterministic service implementa-
tions, which reduces the probability of common mode fail-
ures. We built an NFS service that allows each replica to
run a different operating system. This example suggests that
BFTA can be used in practice — the replicated file system
required only a modest amount of new code, and prelimi-
nary performance results indicate that it performs compa-
rably to the off-the-shelf implementations that it wraps.

1. Introduction

There is a growing demand for highly-available systems
that provide correct service without interruptions. These
systems must tolerate software errors because these are a
major cause of outages [7]. Furthermore, there is an in-
creasing number of malicious attacks that exploit software
errors to gain control or deny access to systems that provide
important services.

This paper proposes a replication technique, BFTA, that
combines Byzantine fault tolerance [12] with work on data
abstraction [11]. Byzantine fault tolerance allows a repli-
cated service to tolerate arbitrary behavior from faulty repli-
cas, e.g., the behavior caused by a software bug, or the be-
havior of a replica that is controlled by an attacker. Abstrac-

This research was partially supported by DARPA under contract F30602-
98-1-0237 monitored by the Air Force Research Laboratory.

tion hides implementation details to enable the reuse of off-
the-shelf implementations of important services (e.g., file
systems, databases, or HTTP daemons) and to improve the
ability to mask software errors.

We extended the BFT library [1, 2] to implement BFTA.
The original BFT library provides Byzantine fault tolerance
with good performance and strong correctness guarantees if
no more than1=3 of the replicas fail within a small window
of vulnerability. However, it requires all replicas to run the
same service implementation and to update their state in a
deterministic way. Therefore, it cannot tolerate determinis-
tic software errors that cause all replicas to fail concurrently
and it complicates reuse of existing service implementations
because it requires extensive modifications to ensure identi-
cal values for the state of each replica.

The BFTA library and methodology described in this pa-
per correct these problems — they enable replicas to run dif-
ferent or non-deterministic implementations. The method-
ology is based on the concepts ofabstract specification and
abstraction function from work on data abstraction [11]. We
start by defining acommon abstract specification for the
service, which specifies anabstract state and describes how
each operation manipulates the state. Then we implement
aconformance wrapper for each distinct implementation to
make it behave according to the common specification. The
last step is to implement an abstraction function (and one of
its inverses) to map from the concrete state of each imple-
mentation to the common abstract state (and vice versa).

Our methodology offers several important advantages.
Reuse of existing code. BFTA implements a form of state
machine replication [14, 10], which allows replication of
services that perform arbitrary computations, but requires
determinism: all replicas must produce the same sequence
of results when they process the same sequence of opera-
tions. Most off-the-shelf implementations of services fail
to satisfy this condition. For example, many implementa-
tions produce timestamps by reading local clocks, which
can cause the states of replicas to diverge. The conformance
wrapper and the abstract state conversions enable the reuse
of existing implementations without modifications. Fur-
thermore, these implementations can be non-deterministic,
which reduces the probability of common mode failures.
Software rejuvenation. It has been observed [9] that there

23

is a correlation between the length of time software runs and
the probability that it fails. BFTA combines proactive re-
covery [2] with abstraction to counter this problem. Repli-
cas are recovered periodically even if there is no reason to
suspect they are faulty. Recoveries are staggered such that
the service remains available during rejuvenation to enable
frequent recoveries. When a replica is recovered, it is re-
booted and restarted from a clean state. Then it is brought
up to date using a correct copy of the abstract state that
is obtained from the group of replicas. Abstraction may
improve availability by hiding corrupt concrete states, and
it enables proactive recovery when replicas do not run the
same code or run code that is non-deterministic.
Opportunistic N-version programming. Replication is
not useful when there is a strong positive correlation be-
tween the failure probabilities of the different replicas, e.g.,
deterministic software bugs cause all replicas to fail at the
same time when they run the same code. BFTA enables an
opportunistic form of N-version programming [3] — repli-
cas can run distinct, off-the-shelf implementations of the
service. This is a viable option for many common services,
e.g., relational databases, HTTP daemons, file systems, and
operating systems. In all these cases, competition has led to
four or more distinct implementations that were developed
and are maintained separately but have similar (although not
identical) functionality. Furthermore, the technique is made
easier by the existence of standards that provide identical
interfaces to different implementations, e.g., ODBC [6] and
NFS [5]. We can also leverage the large effort towards stan-
dardizing data representations using XML.

It is widely believed that the benefits of N-version pro-
gramming [3] do not justify its high cost [7]. It is better
to invest the same amount of money on better development,
verification, and testing of a single implementation. But op-
portunistic N-version programming achieves low cost due
to economies of scale without compromising the quality of
individual implementations. Since each off-the-shelf imple-
mentation is sold to a large number of customers, the ven-
dors can amortize the cost of producing a high quality im-
plementation. Additionally, taking advantage of interoper-
ability standards keeps the cost of writing the conformance
wrappers and state conversion functions low.

The paper explains the methodology by walking through
an example, the implementation of a replicated file service
where replicas run different operating systems and file sys-
tems. For this methodology to be successful, the confor-
mance wrapper and the state conversion functions must be
simple to reduce the likelihood of introducing more errors
and introduce a low overhead. Experimental results indicate
that this is true in our example.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the BFTA methodology and
library. Section 3 explains how we applied the methodol-
ogy to build the replicated file system. Section 4 presents
our conclusions and some preliminary results.

2. The BFTA Technique

This section provides an overview of our replication tech-
nique. It starts by describing the methodology that we use to
build a replicated system from existing service implemen-
tations. It ends with a description of the BFTA library.

2.1. Methodology

The goal is to build a replicated system by reusing a
set of off-the-shelf implementations,I1; :::; In, of some ser-
vice. Ideally, we would liken to equal the number of repli-
cas so that each replica can run a different implementation
to reduce the probability of simultaneous failures. But the
technique is useful even with a single implementation.

Although off-the-shelf implementations of the same ser-
vice offer roughly the same functionality, they behave dif-
ferently: they implement different specifications,S1; :::; Sn

using different representations of the service state. Even the
behavior of different replicas that run the same implementa-
tion may be different when the specification they implement
is not strong enough to ensure deterministic behavior. For
instance, the specification of the NFS protocol [5] allows
implementations to choose arbitrary values for file handles.

BFTA, like any form of state machine replication, re-
quires determinism: replicas must produce the same se-
quence of results when they execute the same sequence of
operations. We achieve determinism by defining acom-
mon abstract specification, S, for the service that is strong
enough to ensure deterministic behavior. This specification
defines the abstract state, an initial state value, and the be-
havior of each service operation.

The specification is defined without knowledge of the in-
ternals of each implementation unlike what happens in the
technique sketched in [13]. It is sufficient to treat them as
black boxes, which is important to enable the use of existing
implementations. Additionally, the abstract state captures
only what is visible to the client rather than mimicking what
is common in the concrete states of the different implemen-
tations. This simplifies the abstract state and improves the
effectiveness of our software rejuvenation technique.

The next step, is to implementconformance wrappers,
C1; :::; Cn, for each ofI1; :::; In. The conformance wrap-
pers implement the common specificationS. The imple-
mentation of each wrapperCi is a veneer that invokes the
operations offered byIi to implement the operations inS;
in implementing these operations it makes use of acon-
formance rep that stores whatever additional information is
needed to allow the translation from the concrete behavior
of the implementation to the abstract behavior.

The final step is to implement theabstraction function
and one of its inverses. These functions allow state transfer
among the replicas. State transfer is used to repair faulty
replicas, and also to bring slow replicas up-to-date when

24

messages they are missing have been garbage collected. For
state transfer to work replicas must agree on the value of the
state of the service after executing a sequence of operations;
they will not agree on the value of the concrete state but our
methodology ensures that they will agree on the value of
the abstract state. The abstraction function is used to con-
vert the concrete state stored by a replica into the abstract
state, which is transferred to another replica. The receiving
replica uses the inverse function to convert the abstract state
into its own concrete state representation.

To enable efficient state transfer between replicas, the
abstract state is defined as an array of variable-sized objects.
We explain how this representation enables efficient state
transfer in Section 2.2.

There is an important trend that simplifies the method-
ology. Market forces push vendors towards extending their
products to offer interfaces that implement standard spec-
ifications for interoperability, e.g., ODBC [6]. Usually, a
standard specificationS 0 cannot be used as the common
specificationS because it is too weak to ensure determin-
istic behavior. But it can be used as a basis forS and, be-
causeS andS 0 are similar, it is relatively easy to implement
conformance wrappers and state conversion functions, these
implementations can be mostly reused across implementa-
tions, and most client code can use the replicated system
without modification.

2.2. Library

The BFTA library extends BFT with the features neces-
sary to provide the methodology. Figure 1 presents a sum-
mary of the library’s interface.
Client call:
int invoke(Byz req *req, Byz rep *rep,

bool read only);

Execution upcall:
int execute(Byz req*req, Byz rep*rep,

int client, Byz buffer *non-det);

Checkpointing:
void modify(int nobjs, int* objs);

State conversion upcalls:
int get obj(int i, char** obj);

void put objs(int nobjs, char **objs,
int *is, int *szs);

Figure 1. BFTA Interface and Upcalls

Theinvoke procedure is called by the client to invoke
an operation on the replicated service. This procedure car-
ries out the client side of the replication protocol and returns
the result when enough replicas have responded. When the
library needs to execute an operation at a replica, it makes
an upcall to anexecute procedure that is implemented
by the conformance wrapper for the service implementation
run by the replica.

To perform state transfer in the presence of Byzantine
faults, it is necessary to be able to prove that the state being
transferred is correct. Otherwise, faulty replicas could cor-
rupt the state of out-of-date but correct replicas. (A detailed
discussion of this point can be found in [2].) Consequently,
replicas cannot discard a copy of the state produced after
executing a request until they know that the state produced
by executing later requests can be proven correct. Repli-
cas could keep a copy of the state after executing each re-
quest but this would be too expensive. Instead replicas keep
just the current version of the concrete state plus copies of
the abstract state produced every k-th request (e.g., k=128).
These copies are called checkpoints.

As mentioned earlier, to implement checkpointing and
state transfer efficiently, we require that the abstract state
be encoded as an array of objects. Creating checkpoints by
making full copies of the abstract state would be too ex-
pensive. Instead, the library uses copy-on-write such that
checkpoints only contain the objects whose value is dif-
ferent in the current abstract state. Similarly, transferring
a complete checkpoint to bring a recovering or out-of-date
replica up to date would be too expensive. The library em-
ploys a hierarchical state partition scheme to transfer state
efficiently. When a replica is fetching state, it recurses down
a hierarchy of meta-data to determine which partitions are
out of date. When it reaches the leaves of the hierarchy
(which are the abstract objects), it fetches only the objects
that are corrupt or out of date.

To implement state transfer, each replica must provide
the library with two upcalls, which implement theabstrac-
tion function and one of its inverses.get obj receives an
object indexi, allocates a buffer, obtains the value of the
abstract object with indexi, and places that value in the
buffer. It returns the size for that object and a pointer to
the buffer.put objs receives a vector of objects with the
corresponding indices and sizes. It causes the application
to update its concrete state using the new values for the ab-
stract objects passed as arguments. The library guarantees
that theput objs upcall is invoked with an argument that
brings the abstract state of the replica to a consistent value
(i.e., the value of a valid checkpoint). This is important to
allow encodings of the abstract state with dependencies be-
tween objects, e.g., it allows objects to describe the meaning
of other objects.

Each time theexecute upcall is about to modify an
object in the abstract state it is required to invoke amod-
ify procedure, which is supplied by the library, passing the
object index as argument. This is used to implement copy-
on-write to create checkpoints incrementally: the library in-
vokesget obj with the appropriate index and keeps the
copy of the object until the corresponding checkpoint can
be discarded.

BFTA implements a form of state machine replication
that requires replicas to behave deterministically. The metho-
dology uses abstraction to hide most of the non-determinism

25

in the implementations it reuses. However, many services
involve forms of non-determinism that cannot be hidden by
abstraction. For instance, in the case of the NFS service, the
time-last-modified for each file is set by reading the server’s
local clock. If this were done independently at each replica,
the states of the replicas would diverge. The library pro-
vides a mechanism [1] for replicas to agree on these non-
deterministic values, which are then passed as arguments to
theexecute procedure.

Proactive recovery periodically restarts each replica from
a correct, up-to-date checkpoint of the abstract state that is
obtained from the other replicas. Recoveries are staggered
so that less than1=3 of the replicas recover at the same time.
This allows the other replicas to continue processing client
requests during the recovery. Additionally, it should reduce
the likelihood of simultaneous failures due to aging prob-
lems because at any instant less than1=3 of the replicas
have been running for the same period of time.

Recoveries are triggered by a watchdog timer. When
a replica is recovered, it reboots after saving the replica-
tion protocol state and the concrete service state to disk.
The protocol state includes the abstract objects that were
copied by the incremental checkpointing mechanism. Then
the replica is restarted, and the conformance rep is recon-
structed using the information that was saved to disk. Next,
the library uses the hierarchical state transfer mechanism to
compare the value of the abstract state it currently stores
with the abstract state values stored by the other replicas.
This is efficient: the replica uses cryptographic hashes stored
in the state partition tree to determine which abstract objects
are out-of-date or corrupt and it only fetches the value of
these objects.

The object values fetched by the replica could be sup-
plied to put objs to update the concrete state, but the
concrete state might still be corrupt. For example, an im-
plementation may have a memory leak and simply calling
put objs will not free unreferenced memory. In fact, im-
plementations will not typically offer an interface that can
be used to fix all corrupt data structures in their concrete
state. Therefore, it is better to restart the implementation
from a clean initial concrete state and use the abstract state
to bring it up-to-date.

3. An example: File System

This section illustrates the methodology using a repli-
cated file system as an example. The file system is based on
the NFS protocol [5]. Its replicas can run different operating
systems and file system implementations.

3.1. Abstract Specification

The common abstract specification is based on the spec-
ification of the NFS protocol [5]. The abstract file service

state consists of a fixed-size array of pairs with an object and
a generation number. Each object has a unique identifier,
oid, which is obtained by concatenating its index in the ar-
ray and its generation number. The generation number is in-
cremented every time the entry is assigned to a new object.
There are four types of objects: files, whose data is a byte
array; directories, whose data is a sequence of<name, oid>
pairs ordered lexicographically; symbolic links, whose data
is a small character string; and specialnull objects, which
indicate an entry is free. All non-null objects have meta-
data, which includes the attributes in the NFSfattr struc-
ture. Each entry in the array is encoded using XDR [4]. The
object with index0 is a directory object that corresponds to
the root of the file system tree that was mounted.

The operations in the common specification are those de-
fined by the NFS protocol. There are operations to read and
write each type of non-null object. The file handles used by
the clients are theoids of the corresponding objects. To en-
sure deterministic behavior, we define a deterministic pro-
cedure to assignoids, and require that directory entries re-
turned to a client be ordered lexicographically.

The abstraction hides many details; the allocation of file
blocks, the representation of large files and directories, and
the persistent storage medium and how it is accessed. This
is desirable for simplicity, performance, and to improve re-
silience to software faults due to aging.

3.2. Conformance Wrapper

The conformance wrapper for the file service processes
NFS protocol operations and interacts with an off-the-shelf
file system implementation also using the NFS protocol as
illustrated in Figure 2. A file system exported by the repli-
cated file service is mounted on the client machine like any
regular NFS file system. Application processes run unmod-
ified and interact with the mounted file system through the
NFS client in the kernel. We rely on user level relay pro-
cesses to mediate communication between the standard NFS
client and the replicas. A relay receives NFS protocol re-
quests, calls theinvoke procedure of our replication li-
brary, and sends the result back to the NFS client. The
replication library invokes theexecute procedure imple-
mented by the conformance wrapper to run each NFS re-
quest.

The conformance rep consists of an array that corresponds
to the one in the abstract state but it does not store copies
of the objects; instead each array entry contains the gener-
ation number, the file handle assigned to the object by the
underlying NFS server, and the value of the timestamps in
the object’s abstract meta-data. Empty entries store a null
file handle. The rep also contains a map from file handles
to oids to aid in processing replies efficiently.

The wrapper processes each NFS request received from a
client as follows. It translates the file handles in the request,
which encodeoids, into the corresponding NFS server file

26

Andrew
benchmark

kernel NFS client

relay

replication
library

replica 1

unmodified NFS daemon 1

replication
library

conformance
wrapper

state
conversion

unmodified NFS daemon n

replication
library

conformance
wrapper

state
conversion

replica n

client

Figure 2. Software Architecture

handles. Then it sends the modified request to the underly-
ing NFS server. The server processes the request and returns
a reply.

The wrapper parses the reply and updates the confor-
mance rep. If the operation created a new object, the wrap-
per allocates a new entry in the array in the conformance
rep, increments the generation number, and updates the en-
try to contain the file handle assigned to the object by the
NFS server. If any object is deleted, the wrapper marks
its entry in the array free. In both cases, the reverse map
from file handles tooids is updated. The wrapper must also
update the abstract timestamps in the array entries corre-
sponding to objects that were accessed. We use the library
to agree on the timestamp value that is assigned to each op-
eration [1]. This value is one of the arguments to theexe-
cute procedure implemented by the wrapper.

Finally, the wrapper returns a modified reply to the client,
using the map to translate file handles tooids and replacing
the concrete timestamp values by the abstract ones. When
handlingreaddir calls the wrapper reads the entire directory
and sorts it lexicographically to ensure the client receives
identical replies from all replicas.

3.3. State Conversions

The abstraction function in the file service is implemented
as follows. For each file system object, it uses the file han-
dle stored in the conformance rep to invoke the NFS server
to obtain the data and meta-data for the object. Then it re-
places the concrete timestamp values by the abstract ones,
converts the file handles in directory entries tooids, and
sorts the directories lexicographically.

The inverse abstraction function in the file service works
as follows. For each file system objecto it receives, there
are three possible cases depending on the state of the entrye

that corresponds too in the conformance rep: (1)e contains
o’s generation number, (2)e is not free and does not contain
o’s generation number, (3)e is free.

In the first case, objects that changed can be updated us-

ing the file handle ine to make calls to the NFS server. This
is done differently for different types of objects. For files,
it is sufficient to issue asetattr and awrite to update
the file’s meta-data and data, and for symbolic links, it is
sufficient to update their meta-data. Updating directories is
slightly trickier. The inverse abstraction function reads the
entire directory from the NFS server, computes its current
abstract value, and compares this value witho. Nothing is
done for entries that did not change. Entries that are not
present ino or point to a different object are removed by
issuing the appropriate calls to the NFS server. Then entries
that are new or different ino are created but if the object
they refer to does not exist in the current abstract state, it is
first created using the value for the object that is supplied to
put objs.

In the second case, the NFS server is invoked to remove
the object and then the function proceeds as in case 3.

In the third case, the NFS server is invoked to create the
object (initially in a separateunlinked directory) and the ob-
ject’s data and meta-data is updated as in case 1. It is guar-
anteed that the directories that point to the object will be
processed; the object is then linked to those directories and
removed from the unlinked directory. When new objects are
created, their file handles are recorded in the conformance
wrapper’s data structures.

3.4. Proactive Recovery

NFS file handles are volatile: the same file system ob-
ject may have a different file handle after the NFS server
restarts. For proactive recovery to work efficiently, we need
a persistent identifier for objects in the concrete file system
state that can be used to compute the abstraction function
during recovery.

The NFS specification states that each object is uniquely
identified by a pair of meta-data attributes:<fsid,fileid>.
We solve the problem above by maintaining an additional
map from<fsid,fileid> pairs to the correspondingoids. This
map is saved to disk asynchronously when a checkpoint is
created and synchronously before a proactive recovery. Af-
ter rebooting, the replica that is recovering reads the map
from disk. Then it traverses the file system’s directory tree
depth first from the root. It reads each object, uses the map
to obtain itsoid, and uses the cryptographic hashes from the
state transfer protocol to check if the object is up-to-date. If
the object is out-of-date or corrupt, it is fetched from an-
other replica.

Instead of simply callingput objswith the new object
values, we intend to start an NFS server on a second empty
disk and bring it up-to-date incrementally as we obtain the
value of the abstract objects. This has the advantage of im-
proving fault-tolerance as discussed in Section 2.2. Addi-
tionally, it can improve disk locality by clustering blocks
from the same file and files that are in the same directory.
This is not done in the current prototype.

27

4. Conclusion

Software errors are a major cause of outages and they are
increasingly exploited in malicious attacks to gain control
or deny access to important services. Byzantine fault toler-
ance allows replicated systems to mask some software er-
rors but it has been expensive to deploy. We have described
a replication technique, BFTA, which uses abstraction to re-
duce the cost of deploying Byzantine fault tolerance and to
improve its ability to mask software errors.

BFTA reduces cost because it enables reuse of off-the-
shelf service implementations without modifications, and it
improves resilience to software errors by enabling oppor-
tunistic N-version programming, and software rejuvenation
through proactive recovery.

Opportunistic N-version programming runs distinct, off-
the-shelf implementations at each replica to reduce the prob-
ability of common mode failures. To apply this technique,
it is necessary to define a common abstract behavioral spec-
ification for the service and to implement appropriate con-
version functions for the state, requests, and replies of each
implementation in order to make it behave according to the
common specification. These tasks are greatly simplified by
basing the common specification on standards for the inter-
operability of software from different vendors; these stan-
dards appear to be common, e.g., ODBC [6], and NFS [5].
Opportunistic N-version programming improves on previ-
ous N-version programming techniques by avoiding the high
development, testing, and maintenance costs without com-
promising the quality of individual versions.

Additionally, we provide a mechanism to repair faulty
replicas. Proactive recovery allows the system to remain
available provided no more than1=3 of the replicas become
faulty and corrupt the abstract state (in a correlated way)
within a window of vulnerability. Abstraction may enable
more than1=3 of the replicas to be faulty because it can
hide corrupt items in concrete states of faulty replicas.

The paper described a replicated NFS file system imple-
mented using our technique. The conformance wrapper and
the state conversion functions in our prototype are simple —
they have 1105 semi-colons, which is two orders of magni-
tude less than the size of the Linux 2.2 kernel. This suggests
that they are unlikely to introduce new bugs.

We ran a scaled-up version of the Andrew benchmark [8,
2] (which generates 1 GB of data) to compare the perfor-
mance of our replicated file system and the off-the-shelf
implementation of NFS in Linux 2.2 that it wraps. Our
performance results indicate that the overhead introduced
by our technique is low; it is approximately 30% for this
benchmark with a window of vulnerability of 17 minutes.

These preliminary results suggest that BFTA can be used
in practice. As future work, it would be important to run
experiments that apply BFTA to more challenging services,
e.g., a relational database. It would also be important to

run fault injection experiments to evaluate the availability
improvements afforded by our technique.

References

[1] M. Castro and B. Liskov. Practical Byzantine Fault Toler-
ance. InProceedings of the Third Symposium on Operat-
ing Systems Design and Implementation, New Orleans, LA,
February 1999.

[2] M. Castro and B. Liskov. Proactive Recovery in a Byzantine-
Fault-Tolerant System. InProceedings of the Fourth Sympo-
sium on Operating Systems Design and Implementation, San
Diego, CA, October 2000.

[3] L. Chen and A. Avizienis. N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation. In
Fault Tolerant Computing, FTCS-8, pages 3–9, 1978.

[4] Network Working Group Request for Comments: 1014.
XDR: External Data Representation Standard, June 1987.

[5] Network Working Group Request for Comments: 1094.
NFS: Network File System Protocol Specification, March
1989.

[6] Kyle Geiger. Inside ODBC. Microsoft Press, 1995.

[7] J. Gray and D. Siewiorek. High-Availability Computer Sys-
tems.IEEE Computer, 24(9):39–48, September 1991.

[8] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and perfor-
mance in a distributed file system.ACM Transactions on
Computer Systems, 6(1):51–81, February 1988.

[9] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
Rejuvenation: Analysis, Module and Applications. InFault-
Tolerant Computing, FTCS-25, pages 381–390, Pasadena,
CA, June 1995.

[10] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the ACM,
21(7):558–565, July 1978.

[11] B. Liskov and J. Guttag.Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement
in the Presence of Faults.Journal of the ACM, 27(2):228–
234, April 1980.

[13] A. Romanovsky. Abstract Object State and Version Re-
covery in N-Version Programming. InTOOLS Europe’99,
Nancy, France, June 1999.

[14] F. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial.ACM Computing
Surveys, 22(4):299–319, December 1990.

28

Fail-Stutter Fault Tolerance

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin, Madison

Abstract

Traditional fault models present system designers with two ex-
tremes: the Byzantinefault model, which is general and there-
fore difficult to apply, and the fail-stopfault model, which is easier
to employ but does not accurately capture modern device behav-
ior. To address this gap, we introduce the concept of fail-stutter
fault tolerance, a realistic and yet tractable fault model that ac-
counts for both absolute failure and a new range of performance
failures common in modern components. Systems built under the
fail-stutter model will likely perform well, be highly reliable and
available, and be easier to manage when deployed.

1 Introduction

Dealing with failure in large-scale systems remains a chal-
lenging problem. In designing the systems that form the
backbone of Internet services, databases, and storage sys-
tems, one must account for the possibility or even likelihood
that one or more components will cease to operate correctly;
just how one handles such failures determines overall sys-
tem performance, availability, and manageability.

Traditionally, systems have been built with one of two
fault models. At one extreme, there is theByzantine fail-
ure model. As described by Lamport: “The component can
exhibit arbitrary and malicious behavior, perhaps involving
collusion with other faulty components” [25]. While these
assumptions are appropriate in certain contexts (e.g., secu-
rity), they make it difficult to reason about system behavior.

At the other extreme, a more tractable and pragmatic ap-
proach exists. Known as thefail-stop model, this more lim-
ited approach is defined by Schneider as follows: “In re-
sponse to a failure, the component changes to a state that
permits other components to detect a failure has occurred
and then stops” [33]. Thus, each component is either work-
ing or not, and when a component fails, all other compo-
nents can immediately be made aware of it.

The problem with the Byzantine model is that it is gen-
eral, and therefore difficult to apply. The problem with the
fail-stop model is that it is simple, and therefore does not
account for modern device behavior. Thus, we believe there
is a need for a new model – one that is realistic and yet still
tractable. The fail-stop model is a good starting point for a
new model, but it needs to be enhanced in order to account
for the complex behaviors of modern components.

The main reason an enhancement is in order is the in-
creasing complexity of modern systems. For example, the
latest Pentium has 42 million transistors [21], and future

hardware promises even more complexity with the advent
of “intelligent” devices [1, 27]. In software, as code bases
mature, code size increases, and along with it complexity –
the Linux kernel source alone has increased by a factor of
ten since 1994.

Increasing complexity directly affects component behav-
ior, as complex components often do not behave in simple,
predictable ways. For example, two identical disks, made
by the same manufacturer and receiving the same input
stream will not necessarily deliver the same performance.
Disks are not the only purveyor of erratic performance; as
we will discuss within this document, similar behavior has
been observed in many hardware and software components.

Systems built under the “fail-stop illusion” are prone to
poor performance when deployed, performing well when
everything is working perfectly, but failing to deliver good
performance when just a single component does not behave
as expected. Particularly vulnerable are systems that make
static uses of parallelism, usually assuming that all compo-
nents perform identically. For example, striping and other
RAID techniques [28] perform well if every disk in the
system delivers identical performance; however, if perfor-
mance of a single disk is consistently lower than the rest,
the performance of the entire storage system tracks that of
the single, slow disk [6]. Such parallel-performance as-
sumptions are common in parallel databases [16], search
engines [18], and parallel applications [12].

To account for modern device behavior, we believe there
is a need for a new model of fault behavior. The model
should take into account that components sometimes fail,
and that they also sometimes perform erratically. We term
the unexpected and low performance of a component aper-
formance fault, and introduce thefail-stutter fault model,
an extension of the fail-stop model that takes performance
faults into account.

Though the focus of the fail-stutter model is component
performance, the fail-stutter model will also help in build-
ing systems that are more manageable, reliable, and avail-
able. By allowing for plug-and-play operation, incremen-
tal growth, worry-free replacement, and workload modifi-
cation, fail-stutter fault tolerant systems decrease the need
for human intervention and increase manageability. Diver-
sity in system design is enabled, and thus reliability is im-
proved. Finally, fail-stutter fault tolerant systems deliver
consistent performance, which likely improves availability.

In this paper, we first build the case for fail-stutter fault
tolerance via an examination of the literature. We then dis-
cuss the fail-stutter model and its benefits, review related
work, and conclude.

29

2 The Erratic Behavior of Systems

In this section, we examine the literature to document the
many places where performance faults occur; note that this
list is illustrative and in no means exhaustive. In our survey,
we find that device behavior is becoming increasingly dif-
ficult to understand or predict. In many cases, even when
erratic performance is detected and investigated, no cause
is discovered, hinting at the high complexity of modern
systems. Interestingly, many performance variations come
from research papers in well-controlled laboratory settings,
often running just a single application on homogeneous
hardware; we speculate that component behavior in less-
controlled real-world environments would likely be worse.

2.1 Hardware

We begin our investigation of performance faults with those
that are caused by hardware. We focus on three important
hardware components: processors and their caches, disks,
and network switches. In each case, the increasing com-
plexity of the component over time has led to a richer set of
performance characteristics.

2.1.1 Processors and Caches

Fault Masking: In processors, fault masking is used to
increase yield, allowing a slightly flawed chip to be used;
the result is that chips with different characteristics are sold
as identical. For example, the Viking series of processors
from Sun are examined in [2], where the authors measure
the cache size of each of a set of Viking processors via
micro-benchmark. “The Single SS-51 is our base case. The
graphs reveal that the [effective size of the] first level cache
is only 4K and is direct-mapped.” The specifications sug-
gest a level-one data cache of size 16 KB, with 4-way set
associativity. However, some chips produced by TI had por-
tions of their caches turned off, whereas others, produced
at different times, did not. The study measured applica-
tion performance across the different Vikings, finding per-
formance differences of up to 40% [2].

The PA-RISC from HP [35] also uses fault-masking in
its cache. Schneider reports that the HP cache mechanism
maps out certain “bad” lines to improve yield [34].

Fault-masking is not only present in modern processors.
For example, the Vax-11/780 had a 2-way set associative
cache, and would turn off one of the sets when a failure was
detected within it. Similarly, the Vax-11/750 had a direct-
mapped cache, and would shut off the whole cache under
a fault. Finally, the Univac 1100/60 also had the ability to
shut off portions of its cache under faults [37].
Prediction and Fetch Logic: Processor prediction and
instruction fetch logic is often one of the most complex
parts of a processor. The performance characteristics of
the Sun UltraSPARC-I were studied by Kushman [24], and
he finds that the implementation of the next-field predic-
tors, fetching logic, grouping logic, and branch-prediction
logic all can lead to the unexpected run-time behavior of
programs. Simple code snippets are shown to exhibit non-
deterministic performance – a program, executed twice on

the same processor under identical conditions, has run times
that vary by up to a factor of three. Kushman discovered
four such anomalies, though the cause of two of the anoma-
lies remains unknown.
Replacement Policy: Hardware cache replacement poli-
cies also can lead to unexpected performance. In their work
on replicated fault-tolerance, Bressoud and Schneider find
that: “The TLB replacement policy on our HP 9000/720
processors was non-deterministic. An identical series of
location-references and TLB-insert operations at the pro-
cessors running the primary and backup virtual machines
could lead to different TLB contents” [10], p. 6,¶ 2. The
reason for the non-determinism is not given, nor does it ap-
pear to be known, as it surprised numerous HP engineers.

2.1.2 Disks

Fault Masking: Disks also perform some degree of fault
masking. As documented in [6], a simple bandwidth ex-
periment shows differing performance across 5400-RPM
Seagate Hawk drives. Although most of the disks deliver
5.5 MB/s on sequential reads, one such disk delivered only
5.0 MB/s. Because the lesser-performing disk had three
times the block faults than other devices, the author hypoth-
esizes that SCSI bad-block remappings, transparent to both
users and file systems, were the culprit.

Bad-block remapping is also an old technique. Early op-
erating systems for the Univac 1100 series would record
which tracks of a disk were faulty, and then avoid using
them for subsequent writes to the disk [37].
Timeouts: Disks tend to exhibit sporadic failures. A study
of a 400-disk farm over a 6-month period reveals that: “The
largest source of errors in our system are SCSI timeouts and
parity problems. SCSI timeouts and parity errors make up
49% of all errors; when network errors are removed, this
figure rises to 87% of all error instances” [38], p. 7,¶ 3. In
examining their data further, one can ascertain that a time-
out or parity error occurs roughly two times per day on av-
erage. These errors often lead to SCSI bus resets, affecting
the performance of all disks on the degraded SCSI chain.

Similarly, intermittent disk failures were encountered by
Bolosky et al. [9]. They noticed that disks in their video
file server would go off-line at random intervals for short
periods of time, apparently due to thermal recalibrations.
Geometry: Though the previous discussions focus on per-
formance fluctuationsacross devices, there is also a per-
formance differential presentwithin a single disk. As doc-
umented in [26], disks have multiple zones, with perfor-
mance across zones differing by up to a factor of two. Al-
though this seems more “static” than other examples, unless
disks are treated identically, different disks will have differ-
ent layouts and thus different performance characteristics.
Unknown Cause: Sometimes even careful research does
not uncover the cause of I/O performance problems. In their
work on external sorting, Rivera and Chien encounter disk
performance irregularities: “Each of the 64 machines in the
cluster was tested; this revealed that four of them had about
30% slower I/O performance. Therefore, we excluded them
from our subsequent experiments” [30], p. 7, last¶.

30

A study of the IBM Vesta parallel file system reveals:
“The results shown are the best measurements we obtained,
typically on an unloaded system. [...] In many cases there
was only a small (less than 10%) variance among the dif-
ferent measurements, but in some cases the variance was
significant. In these cases there was typically a cluster of
measurements that gave near-peak results, while the other
measurements were spread relatively widely down to as low
as 15-20% of peak performance” [15], p. 250,¶ 2.

2.1.3 Network Switches

Deadlock: Switches have complex internal mechanisms
that sometimes cause problematic performance behavior.
In [6], the author describes a recurring network deadlock
in a Myrinet switch. The deadlock results from the struc-
ture of the communication software; by waiting too long be-
tween packets that form a logical “message”, the deadlock-
detection hardware triggers and begins the deadlock recov-
ery process, halting all switch traffic for two seconds.
Unfairness: Switches often behave unfairly under high
load. As also seen in [6], if enough load is placed on a
Myrinet switch, certain routes receive preference; the result
is that the nodes behind disfavored links appear “slower”
to a sender, even though they are fully capable of receiving
data at link rate. In that work, the unfairness resulted in a
50% slowdown to a global adaptive data transfer.
Flow Control: Networks also often have internal flow-
control mechanisms, which can lead to unexpected perfor-
mance problems. Brewer and Kuszmaul show the effects of
a few slow receivers on the performance of all-to-all trans-
poses in the CM-5 data network [12]. In their study, once a
receiver falls behind the others, messages accumulate in the
network and cause excessive network contention, reducing
transpose performance by almost a factor of three.

2.2 Software

Sometimes unexpected performance arises not due to hard-
ware peculiars, but because of the behavior of an impor-
tant software agent. One common culprit is the operating
system, whose management decisions in supporting vari-
ous complex abstractions may lead to unexpected perfor-
mance surprises. Another manner in which a component
will seem to exhibit poor performance occurs when another
application uses it at the same time. This problem is par-
ticularly acute for memory, which swaps data to disk when
over-extended.

2.2.1 Operating Systems and Virtual Machines

Page Mapping: Chen and Bershad have shown that
virtual-memory mapping decisions can reduce application
performance by up to 50% [14]. Virtually all machines
today use physical addresses in the cache tag. Unless the
cache is small enough so that the page offset is not used in
the cache tag, the allocation of pages in memory will affect
the cache-miss rate.
File Layout: In [6], a simple experiment demonstrates how
file system layout can lead to non-identical performance

across otherwise identical disks and file systems. Sequen-
tial file read performance across aged file systems varies by
up to a factor of two, even when the file systems are other-
wise empty. However, when the file systems are recreated
afresh, sequential file read performance is identical across
all drives in the cluster.
Background Operations: In their work on a fault-tolerant,
distributed hash table, Gribbleet al. find that untimely
garbage collection causes one node to fall behind its mir-
ror in a replicated update. The result is that one machine
over-saturates and thus is the bottleneck [20]. Background
operations are common in many systems, including clean-
ers in log-structured file systems [31], and salvagers that
heuristically repair inconsistencies in databases [19].

2.2.2 Interference From Other Applications

Memory Bank Conflicts: In their work on scalar-vector
memory interference, the authors show that perturbations to
a vector reference stream can reduce memory system effi-
ciency by up to a factor of two [29].
Memory Hogs: In their recent paper, Brown and Mowry
show the effect of an out-of-core application on interactive
jobs [13]. Therein, the response time of the interactive job
is shown to be up to 40 times worse when competing with a
memory-intensive process for memory resources.
CPU Hogs: Similarly, interference to CPU resources leads
to unexpected slowdowns. From a different sorting study:
“The performance of NOW-Sort is quite sensitive to vari-
ous disturbances and requires a dedicated system to achieve
’peak’ results” [5], p. 8,¶ 1. A node with excess CPU load
reduces global sorting performance by a factor of two.

2.3 Summary

We have documented many cases where components ex-
hibit unexpected performance. As both hardware and soft-
ware components increase in complexity, they are more
likely to perform internal error correction and fault mask-
ing, have different performance characteristics depend-
ing on load and usage, and even perhaps behave non-
deterministically. Note that short-term performance fluc-
tuations that occur randomly across all components can
likely be ignored; particularly harmful are slowdowns that
are long-lived and likely to occur on a subset of compo-
nents. Those types of faults cannot be handled with tradi-
tional methods, and thus must be incorporated into a model
of component behavior.

3 Fail-Stutter Fault Tolerance

In this section, we discuss the topics that we believe are
central to the fail-stutter model. Though we have not yet
fully formalized the model, we outline a number of issues
that must be resolved in order to do so. We then cover an
example, and discuss the potential benefits of utilizing the
fail-stutter model.

31

3.1 Towards a Fail-Stutter Model

We now discuss issues that are central in developing the fail-
stutter model. We focus on three main differences from the
fail-stop model: the separation of performance faults from
correctness faults, the notification of other components of
the presence of a performance fault within the system, and
performance specifications for each component.
Separation of performance faults from correctness faults.
We believe that the fail-stutter model must distinguish two
classes of faults: absolute (or correctness) faults, and per-
formance faults. In most scenarios, we believe the appro-
priate manner in which to deal with correctness faults such
as total disk or processor failure is to utilize the fail-stop
model. Schneider considers a component faulty “once its
behavior is no longer consistent with its specification” [33].
In response to such a correctness failure, the component
changes to a state that permits other components to detect
the failure, and then the component stops operating. In ad-
dition, we believe that the fail-stutter model should incorpo-
rate the notion of aperformance failure, which, combined
with the above, completes the fail-stutter model. A compo-
nent should be considered performance-faulty if it has not
absolutely failed as defined above and when its performance
is less than that of its performance specification.

We believe this separation of performance and correct-
ness faults is crucial to the model, as there is much to
be gained by utilizing performance-faulty components. In
many cases, devices may often perform at a large fraction
of their expected rate; if many components behave this way,
treating them as absolutely failed components leads to a
large waste of system resources.

One difficulty that must be addressed occurs when a com-
ponent responds arbitrarily slowly to a request; in that case,
a performance fault can become blurred with a correctness
fault. To distinguish the two cases, the model may include a
performance threshold within the definition of a correctness
fault, i.e., if the disk request takes longer thanT seconds to
service, consider it absolutely failed. Performance faults fill
in the rest of the regime when the device is working.
Notification of other components. One major departure
from the fail-stop model is that we do not believe that other
components need be informed of all performance failures
when they occur, for the following reasons. First, erratic
performance may occur quite frequently, and thus distribut-
ing that information may be overly expensive. Further, a
performance failure from the perspective of one component
may not manifest itself to others (e.g., the failure is caused
by a bad network link). However, if a component is persis-
tently performance-faulty, it may be useful for a system to
export information about component “performance state”,
allowing agents within the system to readily learn of and
react to these performance-faulty constituents.
Performance specifications. Another difficulty that arises
in defining the fail-stutter model is arriving at a performance
specification for components of the system. Ideally, we be-
lieve the fail-stutter model should present the system de-
signer with a trade-off. At one extreme, a model of compo-
nent performance could be as simple as possible: “this disk

delivers bandwidth at 10 MB/s.” However, the simpler the
model, the more likely performance faults occur,i.e., the
more likely performance deviates from its expected level.
Thus, because different assumptions can be made, the sys-
tem designer could be allowed some flexibility, while still
drawing attention to the fact that devices may not perform
as expected. The designer must also have a good model of
how often various performance faults occur, andhow long
they last; both of these are environment and component spe-
cific, and will strongly influence how a system should be
built to react to such failures.

3.2 An Example

We now sketch how the fail-stutter model could be em-
ployed for a simple example given different assumptions
about performance faults. Specifically, we consider three
scenarios in order of increasingly realistic performance as-
sumptions. Although we omit many details necessary for
complete designs, we hope to illustrate how the fail-stutter
model may be utilized to enable more robust system con-
struction. We assume that our workload consists of writing
D data blocks in parallel to a set of2 ·N disks and that data
is encoded across the disks in a RAID-10 fashion (i.e., each
pair of disks is treated as a RAID-1 mirrored pair and data
blocks are striped across these mirrors a la RAID-0).

In the first scenario, we use only the fail-stop model, as-
suming (perhaps naively) that performance faults do not oc-
cur. Thus, absolute failures are accounted for and handled
accordingly – if an absolute failure occurs on a single disk,
it is detected and operation continues, perhaps with a recon-
struction initiated to a hot spare; if two disks in a mirror-pair
fail, operation is halted. Since performance faults are not
considered in the design, each pair (and thus each disk) is
given the same number of blocks to write:D

N . Therefore,
if a performance fault occurs on any of the pairs, the time
to write to storage is determined by the slow pair. Assum-
ing N − 1 of the disk-pairs can write atB MB/s but one
disk-pair can write at onlyb MB/s, with b < B, perceived
throughput is reduced toN · b MB/s.

In the second scenario, in addition to absolute faults, we
consider performance faults that are static in nature; that is,
we assume the performance of a mirror-pair is relatively sta-
ble over time, but may not be uniform across disks. Thus,
within our design, we compensate for this difference. One
option is to gauge the performance of each disk once at in-
stallation, and then use the ratios to stripe data proportion-
ally across the mirror-pairs; we may also try to pair disks
that perform similarly, since the rate of each mirror is de-
termined by the rate of its slowest disk. Given a single
slow disk, if the system correctly gauges performance, write
throughput increases to(N − 1) · B + b MB/s. However,
if any disk does not perform as expected over time, perfor-
mance again tracks the slow disk.

Finally, in the third scenario, we consider more general
performance faults to include those in which disks perform
at arbitrary rates over time. One design option is to contin-
ually gauge performance and to write blocks across mirror-
pairs in proportion to their current rates. We note that this

32

approach increases the amount of bookkeeping: because
these proportions may change over time, the controller must
record where each block is written. However, by increasing
complexity, we create a system that is more robust in that it
can deliver the full available bandwidth under a wide range
of performance faults.

3.3 Benefits of Fail-Stutter

Perhaps the most important consideration in introducing a
new model of component behavior is the effect it would
have if systems utilized such a model. We believe such sys-
tems are likely to be more available, reliable, and manage-
able than systems built only to tolerate fail-stop failures.
Manageability: Manageability of a fail-stutter fault tol-
erant system is likely to be better than a fail-stop system,
for the following reasons. First, fail-stutter fault tolerance
enables true “plug-and-play”; when the system administra-
tor adds a new component, the system uses whatever per-
formance it provides, without any additional involvement
from the operator – a true “no futz” system [32]. Second,
such a system can be incrementally grown [11], allowing
newer, faster components to be added; adding these faster
components to incrementally scale the system is handled
naturally, because the older components simply appear to be
performance-faulty versions of the new ones. Third, admin-
istrators no longer need to stockpile components in antici-
pation of their discontinuation. Finally, new workloads (and
the imbalances they may bring) can be introduced into the
system without fear, as those imbalances are handled by the
performance-fault tolerance mechanisms. In all cases, the
need for human intervention is reduced, increasing overall
manageability. As Van Jacobson said, “Experience shows
that anything that needs to be configured will be misconfig-
ured” [23], p. 6; by removing the need for intricate tuning,
the problems caused by misconfiguration are eradicated.
Availability: Gray and Reuter define availability as fol-
lows: “The fraction of the offered load that is processed
with acceptable response times” [19]. A system that only
utilizes the fail-stop model is likely to deliver poor perfor-
mance under even a single performance failure; if perfor-
mance does not meet the threshold, availability decreases.
In contrast, a system that takes performance failures into ac-
count is likely to deliver consistent, high performance, thus
increasing availability.
Reliability: The fail-stutter model is also likely to improve
overall system reliability in at least two ways. First, “design
diversity” is a desirable property for large-scale systems; by
including components of different makes and manufactur-
ers, problems that occur when a collection of identical com-
ponents suffer from an identical design flaw are avoided. As
Gray and Reuter state, design diversity is akin to having “a
belt and suspenders, not two belts or two suspenders” [19].
A system that handles performance faults naturally works
well with heterogeneously-performing parts. Second, reli-
ability may also be enhanced through the detection of per-
formance anomalies, as erratic performance may be an early
indicator of impending failure.

4 Related Work

Our own experience with I/O-intensive application pro-
gramming in clusters convinced us that erratic performance
is the norm in large-scale systems, and that system support
for building robust programs is needed [5]. Thus, we began
work on River, a programming environment that provides
mechanisms to enable consistent and high performance in
spite of erratic performance in underlying components, fo-
cusing mainly on disks [7]. However, River itself does
not handle absolute correctness faults in an integrated fash-
ion, relying either upon retry-after-failure or a checkpoint-
restart package. River also requires applications to be com-
pletely rewritten to enable performance robustness, which
may not be appropriate in many situations.

Some other researchers have realized the need for a
model of fault behavior that goes beyond simple fail-stop.
The earliest that we are aware of is Shasha and Turek’s work
on “slow-down” failures [36]. The authors design an al-
gorithm that runs transactions correctly in the presence of
such failures, by simply issuing new processes to do the
work elsewhere, and reconciling properly so as to avoid
work replication. However, the authors assume that such
behavior is likely only to occur due to network congestion
or processes slowed by workload interference; indeed, they
assume that a fail-stop model for disks is quite appropriate.

DeWitt and Gray label periodic performance fluctuations
in hardwareinterference [17]. They do not characterize the
nature of these problems, though they realize its potential
impact on parallel operations.

Birman’s recent work on Bimodal Multicast also ad-
dresses the issue of nodes that “stutter” in the context of
multicast-based applications [8]. Birman’s solution is to
change the semantics of multicast from absolute delivery
requirements to probabilistic ones, and thus gracefully de-
grade when nodes begin to perform poorly.

The networking literature is replete with examples of
adaptation and design for variable performance, with the
prime example of TCP [22]. We believe that similar tech-
niques will need to be employed in the development of
adaptive, fail-stutter fault-tolerant algorithms.

5 Conclusions

Too many systems are built assuming that all components
are identical, that component behavior is static and un-
changing in nature, and that each component either works
or does not. Such assumptions are dangerous, as the in-
creasing complexity of computer systems hints at a future
where even the “same” components behave differently, the
way they behave is dynamic and oft-changing, and there is
a large range of normal operation that falls between the bi-
nary extremes of working and not working. By utilizing the
fail-stutter model, systems are more likely to be manage-
able, available, and reliable, and work well when deployed
in the real world.

Many challenges remain. The fail-stutter model must be
formalized, and new models of component behavior must

33

be developed, requiring both measurement of existing sys-
tems as well as analytical development. New adaptive algo-
rithms, which can cope with this more difficult class of fail-
ures, must be designed, analyzed, implemented, and tested.
The true costs of building such a system must be discerned,
and different approaches need to be evaluated.

As a first step in this direction, we are exploring the
construction of fail-stutter-tolerant storage in the Wiscon-
sin Network Disks (WiND) project [3, 4]. Therein, we are
investigating the adaptive software techniques that we be-
lieve are central to building robust and manageable storage
systems. We encourage others to consider the fail-stutter
model in their endeavors as well.

6 Acknowledgements

We thank the following people for their comments on this
or earlier versions of this paper: David Patterson, Jim Gray,
David Culler, Joseph Hellerstein, Eric Anderson, Noah
Treuhaft, John Bent, Tim Denehy, Brian Forney, Florentina
Popovici, and Muthian Sivathanu. Also, we would like to
thank the anonymous reviewers for their many thoughtful
suggestions. This work is sponsored by NSF CCR-0092840
and NSF CCR-0098274.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks. InASPLOS VIII,

San Jose, CA, Oct. 1998.

[2] R. H. Arpaci, A. C. Dusseau, and A. M. Vahdat. To-
wards Process Management on a Network of Workstations.
http://www.cs.berkeley.edu/ remzi/258-final, May 1995.

[3] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. The Wiscon-
sin Network Disks Project.http://www.cs.wisc.edu/wind,
2000.

[4] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, J. Bent, B. Forney,
S. Muthukrishnan, F. Popovici, and O. Zaki. Manageable Storage
via Adaptation in WiND. InIEEE Int’l Symposium on Cluster Com-
puting and the Grid (CCGrid’2001), May 2001.

[5] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. Searching for the Sorting Record:
Experiences in Tuning NOW-Sort. InSPDT ’98, Aug. 1998.

[6] R. H. Arpaci-Dusseau. Performance Availability for Networks of
Workstations. PhD thesis, University of California, Berkeley, 1999.

[7] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M.
Hellerstein, D. A. Patterson, and K. Yelick. Cluster I/O with River:
Making the Fast Case Common. InIOPADS ’99, May 1999.

[8] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Bidiu, and
Y. Minsky. Bimodal multicast.TOCS, 17(2):41–88, May 1999.

[9] W. J. Bolosky, J. S. B. III, R. P. Draves, R. P. Fitzgerald, G. A. Gib-
son, M. B. Jones, S. P. Levi, N. P. Myhrvold, and R. F. Rashid. The
Tiger Video Fileserver. Technical Report 96-09, Microsoft Research,
1996.

[10] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault Toler-
ance. InSOSP 15, Dec. 1995.

[11] E. A. Brewer. The Inktomi Web Search Engine. Invited Talk: 1997
SIGMOD, May 1997.

[12] E. A. Brewer and B. C. Kuszmaul. How to Get Good Performance
from the CM-5 Data Network. InProceedings of the 1994 Interna-
tional Parallel Processing Symposium, Cancun, Mexico, April 1994.

[13] A. D. Brown and T. C. Mowry. Taming the Memory Hogs: Us-
ing Compiler-Inserted Releases to Manage Physical Memory Intelli-
gently. InOSDI 4, San Diego, CA, October 2000.

[14] J. B. Chen and B. N. Bershad. The Impact of Operating System
Structure on Memory System Performance. InProceedings of the
14th ACM Symposium on Operating Systems Principles, pages 120–
133, December 1993.

[15] P. F. Corbett and D. G. Feitelson. The Vesta parallel file system.ACM
Transactions on Computer Systems, 14(3):225–264, August 1996.

[16] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I.
Hsaio, and R. Rasmussen. The Gamma database machine project.
IEEE Transactions on Knowledge and Data Engineering, 2(1):44–
62, March 1990.

[17] D. J. DeWitt and J. Gray. Parallel database systems: The future of
high-performance database systems.Communications of the ACM,
35(6):85–98, June 1992.

[18] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-Based Scalable Network Services. InSOSP 16, pages 78–91,
Saint-Malo, France, Oct. 1997.

[19] J. Gray and A. Reuter.Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[20] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, , and D. Culler. Scal-
able, Distributed Data Structures for Internet Service Construction.
In OSDI 4, San Diego, CA, October 2000.

[21] Intel. Intel Pentium 4 Architecture Product Briefing Home Page.
http://developer.intel.com/design/Pentium4/prodbref, January 2001.

[22] V. Jacobson. Congestion avoidance and control. InProceedings of
ACM SIGCOMM ’88, pages 314–329, August 1988.

[23] V. Jacobson. How to Kill the Internet. ftp://ftp.ee.lbl.gov/talks/vj-
webflame.ps.Z, 1995.

[24] N. A. Kushman. Performance Nonmonotonocities: A Case Study of
the UltraSPARC Processor. Master’s thesis, Massachussets Institute
of Technology, Boston, MA, 1998.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, July 1982.

[26] R. V. Meter. Observing the Effects of Multi-Zone Disks. InProceed-
ings of the 1997 USENIX Conference, Jan. 1997.

[27] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. Intelligent RAM (IRAM):
Chips That Remember And Compute. In1997 IEEE International
Solid-State Circuits Conference, San Francisco, CA, February 1997.

[28] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Ar-
rays of Inexpensive Disks (RAID). InSIGMOD ’88, pages 109–116,
Chicago, IL, June 1988. ACM Press.

[29] R. Raghavan and J. Hayes. Scalar-Vector Memory Interference in
Vector Computers. InThe 1991 International Conference on Parallel
Processing, pages 180–187, St. Charles, IL, August 1991.

[30] L. Rivera and A. Chien. A High Speed Disk-to-Disk Sort on a Win-
dows NT Cluster Running HPVM. Submitted for pulication, 1999.

[31] M. Rosenblum and J. Ousterhout. The Design and Implementation
of a Log-Structured File System.ACM Transactions on Computer
Systems, 10(1):26–52, February 1992.

[32] M. Satyanarayanan. Digest of HotOS VII.
http://www.cs.rice.edu/Conferences/HotOS/digest, March 1999.

[33] F. B. Schneider. Implementing Fault-Tolerant Services Using The
State Machine Approach: A Tutorial.ACM Computing Surveys,
22(4):299–319, December 1990.

[34] F. B. Schneider. Personal Communication, February 1999.

[35] A. P. Scott, K. P. Burkhart, A. Kumar, R. M. Blumberg, and G. L.
Ranson. Four-way Superscalar PA-RISC Processors.Hewlett-
Packard Journal, 48(4):8–15, August 1997.

[36] D. Shasha and J. Turek. Beyond Fail-Stop: Wait-Free Serializability
and Resiliency in the Presence of Slow-Down Failures. Technical
Report 514, Computer Science Department, NYU, September 1990.

[37] D. P. Siewiorek and R. S. Swarz.Reliable Computer Systems: Design
and Evaluation. A K Peters, 3rd edition, 1998.

[38] N. Talagala and D. Patterson. An Analysis of Error Behaviour in
a Large Storage System. InIPPS Workshop on Fault Tolerance in
Parallel and Distributed Systems, 1999.

34

Reconsidering Internet Mobility

Alex C. Snoeren, Hari Balakrishnan, and M. Frans Kaashoek
MIT Laboratory for Computer Science

Cambridge, MA 02139
{snoeren, hari, kaashoek}@lcs.mit.edu

Abstract

Despite the popularity of mobile computing platforms, ap-
propriate system support for mobile operation is lacking
in the Internet. This paper argues this is not for lack of
deployment incentives, but because a comprehensive sys-
tem architecture that efficiently addresses the needs of mo-
bile applications does not exist. We identify five funda-
mental issues raised by mobility—location, preservation of
communication, disconnection handling, hibernation, and
reconnection—and suggest design guidelines for a system
that attempts to support Internet mobility.

In particular, we argue that a good system architecture
should (i) eliminate the dependence of higher protocol
layers upon lower-layer identifiers; (ii) work with any
application-selected naming scheme; (iii) handle (unex-
pected) network disconnections in a graceful way, expos-
ing its occurrence to applications; and (iv) provide mo-
bility services at the mobile nodes themselves, rather than
via proxies. Motivated by these principles, we propose a
session-oriented, end-to-end architecture called Migrate,
and briefly examine the set of services it should provide.

1 Introduction

The proliferation of laptops, handheld computers, cellular
phones, and other mobile computing platforms connected
to the Internet has triggered much research into system sup-
port for mobile networking over the past few years. Yet,
when viewed as a large-scale, heterogeneous, distributed
system, the Internet is notoriously lacking in any form of
general support for mobile operation.

We argue that previous work has failed to comprehen-
sively address several important issues. This paper dis-
cusses some of these issues and describes a session-
oriented architecture we are developing to preserve end-
to-end application-layer connectivity under various mobile
conditions.

Mobility raises five fundamental problems:

This research was funded by DARPA (Grant No. MDA972-99-1-0014),
NTT Corporation, Intel, and IBM. Alex C. Snoeren is supported by a Na-
tional Defense Science and Engineering Graduate (NDSEG) Fellowship.

1. Locating the mobile host or service: Before any
communication can be initiated, the desired end-point
must be located and mapped to an addressable desti-
nation.

2. Preserving communication: Once a session has
been established between end points (typically ap-
plications), communication should be robust across
changes in the network location of the end points.

3. Disconnecting gracefully: Communicating applica-
tions should be able to rapidly discern when a discon-
nection at either end, or a network partition, causes
communication to be disrupted.

4. Hibernating efficiently: If a communicating host is
unavailable for a significant period of time, the sys-
tem should suspend communications, and appropri-
ately reallocate resources.

5. Reconnecting quickly: Communicating peers should
detect the resumption of network connectivity in a
timely manner. The system should support the re-
sumption of all previously established communication
sessions without much extra effort on the part of the
applications.

Most current approaches provide varying degrees of sup-
port for the first two problems. The last three—
disconnection, hibernation, and reconnection—have re-
ceived little attention outside of the file system context [17].
We argue that a complete—and useful—solution must ad-
dress all these issues.

One need look no further than interactive terminal appli-
cations likessh or telnet, one of the Internet’s oldest
applications, for a practical example of the continuing lack
of support for these important components. A user with
an open session might pick up her laptop and disconnect
from the network. After traveling for some period of time,
she reconnects at some other network location and expects
that her session continue where it left off. Unfortunately, if
there was any activity on the session during the period of
disconnectivity, she will find the connection aborted upon
reconnection to the network. The particular details of the
example are irrelevant, but demonstrate just how lacking
current support is, even for this simple scenario.

35

Based on our own experience developing various mobile
protocols and services [1, 3, 12, 24] and documented re-
ports of several other researchers over several years [7, 11,
13, 16, 26], we identify four important guidelines that we
believe should be followed as hints in designing an appro-
priate network architecture for supporting mobile Internet
services and applications:

1. Eliminate lower-layer dependence from higher lay-
ers. A large number of problems arise because many
higher layers of the Internet architecture use iden-
tifiers from lower layers, assuming they will never
change during a connection.

2. Do not restrict the choice of naming techniques. Dy-
namic naming and location-tracking systems play an
important role in addressing mobility. In general,
whenever an end point moves, it should update a nam-
ing system with its new location—but forcing all ap-
plications to use a particular naming scheme is both
unrealistic and inappropriate.

3. Handle unexpected disconnections gracefully. We ad-
vocate treating disconnections as a common occur-
rence, and exposing them to applications as they oc-
cur.

4. Provide support at the end hosts. Proxies are attractive
due to their perceived ease of deployment. However,
it becomes markedly more difficult to ensure they are
appropriately located when hosts are mobile.

We elaborate upon these guidelines in Section 2. They
have served as a guide in our development of an end-to-
end, session-oriented system architecture, calledMigrate,
over which mobile networking applications and services
can be elegantly layered. We describe our proposed archi-
tecture in Section 3, discussing how it addresses four of the
five problems mentioned above: preserving communica-
tion, and handling disconnection, hibernation, and resump-
tion. We do not provide or enforce a particular location or
naming scheme, instead leveraging domain-specific nam-
ing services (e.g., DNS, service discovery schemes [1, 10],
etc.) for end-point location.

An attractive feature of our architecture is that it accom-
plishes these tasks without sacrificing common-case per-
formance. Migrate provides generic mechanisms for man-
aging disconnections and reconnections in each application
session, and for handling application state and context. We
briefly discuss related work in Section 4 before concluding
in Section 5.

2 Design guidelines

In this section, we elaborate on our four design guidelines
for supporting applications on mobile hosts.

2.1 Eliminate lower-layer dependence

The first step in enabling higher-layer mobility handling
is to remove inter-layer dependences. In a 1983 retrospec-
tive paper on the DoD Internet Architecture, Cerf wrote [6]:
“TCP’s [dependence] upon the network and host addresses
for part of its connection identifiers” makes “dynamic re-
connection” difficult, “a problem. . . which has plagued
network designers since the inception of the ARPANET
project in 1968.” The result is that when the underlying
network-layer (IP) address of one of the communicating
peers changes, the end-to-end transport-layer (TCP) con-
nection is unable to continue because it has bound to the
network-layer identifier, tacitly (but wrongly) assuming its
permanence for the duration of the connection.

A host of other problems crop up because of similar link-
ages. For example, the increasing proliferation of network
address translators (NATs) in the middle of the network
has caused problems for applications (like FTP) that use
network- and transport-layer identifiers as part of their in-
ternal state. These problems can be avoided by removing
any assumption of stability of lower-layer identifiers. If a
higher layer finds it necessary to use a lower-layer identi-
fier as part of its internal state, then the higher layer should
allow for it to change, and continue to function across such
changes.

Furthermore, each layer should expose relevant changes to
higher layers. In today’s Internet architecture, applications
have almost no control over their network communication
because lower layers (for the most part) do not concern
themselves with higher-layer requirements. When impor-
tant changes happen at a lower layer, for example to the
network-layer address, they are usually hidden from higher
layers. The unfortunate consequence of this is that it makes
it hard for any form of adaptation to occur.

For example, a TCP sender attempts to estimate the prop-
erties of the network path for the connection. A significant
change in the network-layer attachment point often implies
that previously discovered path properties are invalid, and
need to be rediscovered. This consequence is not limited
to classical TCP congestion management—for example, if
mobile applications are notified of changes in their envi-
ronment and given the power to effect appropriate changes,
significant improvements in both performance and usabil-
ity can be realized [17, 19]. Similar results have also been
shown in the network layer [7, 11, 28], and in the area of
transport optimization over wireless links [3, 5, 24].

2.2 Beware the Siren song of naming

Many researchers have observed that the first problem
raised by mobility, namely locating the mobile host or ser-
vice, can be addressed through a sophisticated naming sys-

36

tem, hence most proposals for managing Internet mobility
attempt to provide naming and location services as a fun-
damental part of the mobility system.1 Unfortunately, the
tight binding between naming schemes and mobility sup-
port often causes the resulting system to be inefficient or
unsuitable for various classes of applications. For exam-
ple, Mobile IP assumes that the destination of each packet
needs to beindependently located, thereby necessitating a
home agent to intercept and forward messages to a mobile
host. The utility of alternative proposals to use agile nam-
ing [1] or IP multicast [18] for mobility support hinges on
widespread deployment of their location systems.

We believe that inexorably binding mobility handling with
naming unnecessarily complicates the mobility services,
and restricts the ability to integrate advances in naming
services. On the face of it, it appears attractive that a
“good” naming scheme can provide the level of indirection
by which to handle mobility. In practice, however, it is im-
portant to recognize and separate two distinct operations.
The first is a “location” operation: The process of finding
an end point of interest based on an application-specific
name. The second is a “tracking” operation: Preserving
the peer-to-peer communication in some way. There are
two problems with using a new idealized naming scheme:
First, there are a large number of ways in which applica-
tions describe what they are looking for, which forces this
ideal naming scheme to perform the difficult task of accom-
modating them all. Experience shows that each application
is likely to end up using a naming scheme that best suits
it (e.g. INS, DNS, JINI, UPnP), rather than suffer the in-
adequacies of a universal one. Second, if this tracking is
done through the same name resolution mechanism, every
packet would invoke the resolution process, adding signifi-
cant overhead and degrading performance.

We therefore suggest that an application use whichever
naming scheme is sufficiently adept at providing the appro-
priate name-to-location binding in a timely fashion. This
service is used at the beginning of a session between peers,
or in the (unlikely) event that all peers change their net-
work locations “simultaneously.” At all other times, the
onus of preserving communication across moves rests with
the peers themselves. In the common case when only a sub-
set of the peers moves at a time, the task of reconnection is
efficiently handled by the peers themselves. We have previ-
ously described the details of such a scheme in the context
of TCP connection migration [24].

2.3 Handle unexpected disconnections

The area of Internet mobility that has received the least at-
tention is support for efficient disconnection and reconnec-

1Indeed, the authors of this paper are guilty of having taken this posi-
tion in the past.

tion. While significant work has been done in the area of
disconnected file systems [13, 17], less attention has been
paid to preserving application communication when a dis-
connection occurs, enabling it to quickly resume upon re-
connection. The key observation about disconnections is
that they are usually unexpected. Furthermore, they last for
rather unpredictable periods of time, ranging from a few
seconds to several hours (or more). Today’s network stacks
terminate a connection as soon as a network disconnection
is detected, with unfortunate consequences—the applica-
tion (and often the user) has to explicitly reinitiate connec-
tivity and application state is usually lost.

Like all other aspects of network communication, we be-
lieve the system should therefore provide standard sup-
port for unexpected disconnection, enabling applications
to gracefully manage session state, releasing system re-
sources and reallocating them when communication is re-
stored. Even if the duration of the disconnection period
is short enough to avoid significantly impacting commu-
nication or draining system resources, the disconnection
and ensuing reconnection events are often hidden by cur-
rent network stacks, leaving the higher network layers and
application to eventually discover (often with unfortunate
results) that network conditions have changed dramatically.

2.4 Provide services at the end points

A great deal of previous work in mobility management
has relied on a proxy-based architecture, providing en-
hanced services to mobile hosts by routing communica-
tions through a (typically fixed) waypoint that is not col-
located with the host [3, 8, 9, 15, 20, 26]. It is often easier
to deploy new services through a proxy, as the proxy can
provide enhanced services in a transparent fashion, inter-
operating with legacy systems. Unfortunately, in order to
provide adequate performance, it is not only necessary to
highly engineer the proxy [15], but locate the proxy appro-
priately as well.

Several researchers have proposed techniques to migrate
proxy services to the appropriate location, avoiding the
need to preconfigure locations [8, 25]. Unfortunately, all
candidate proxy locations must be appropriately preconfig-
ured to participate. Further, in the face of general mobility,
proxies (or at least their internal state) must be able to move
with the mobile host in order to remain along the path from
the host to its correspondent peers. This is a complex prob-
lem [26]; we observe that it can be completely avoided if
the support is collocated with the mobile host itself.

3 Migrate approach

We now describe the Migrate approach to mobility, which
leverages application naming services and informed trans-
port protocols to provide robust, low-overheadcommunica-

37

tion between application end points. We describe a session-
layer protocol that handles both changes in network attach-
ment point and disconnection in a seamless fashion, but is
flexible enough to allow a wide variety of applications to
maintain sufficient control for their needs.

3.1 Service model

The number of communication paradigms in use on the
Internet remains small, but the type and amount of mo-
bility support needed varies dramatically across modali-
ties [7]. In particular, the notion of a session is application-
dependent and varies widely, from a set of related connec-
tions (e.g. FTP’s data and control channels) to an individual
datagram exchange such as those often found in RPC-based
applications (e.g. a cached DNS response). As session
lengths grow longer and sessions become more complex in
terms of the system resources they consume, applications
can benefit from system support for robust communication
between application end points. However, due to the dis-
parate performance and reliability requirements of different
session-based applications, it is important that a mobility
service enables the application to dictate its requirements
through explicit choice of transport protocols and policy
defaults.

Hence we propose an optional session layer. This layer
presents a simple, unified abstraction to the application
to handle mobility: a session. Sessions exist between
application-level end points, and can survive changes in the
transport, network, and even other session layer protocol
states. It also includes basic check-pointing and resumption
facilities for periods of disconnection, enabling compre-
hensive, session-based state management for mobile-aware
applications. Unlike previous network-layer approaches,
our session layer exports the specifics of the lower layers to
the application, and provides an API to control them, if the
application is inclined to do so.

3.2 Session layer

Applications specify their notion of a session by explicitly
joining together related transport-layer connections (or des-
tinations in connectionless protocols). Once established, a
session is identified by a locally-unique token, or Session
ID, and serves as the system entity for integrated account-
ing and management. The session layer exports a unified
session abstraction to the application, managing the con-
nections as a group, adapting to changes in network attach-
ment point as needed. The selection of network end point
and transport protocol, however, remains completely under
the application’s control.

To assist in the timely detection of connectivity changes,
the session layer accepts notification from lower layers
(e.g., loss of carrier, power loss, change of address, etc.),

the application itself, or appropriately authorized external
entities that may be concurrently monitoring connection
state [2]. Since a session may span multiple protocols, con-
nections, destinations, and application processes, there may
be several sources of connectivity information. Regardless
of the source, the session manager handles notification of
disconnection and reconnection in a consistent fashion.

3.2.1 Disconnection. If a host can no longer communicate
with a session end point due to mobility, as signaled by
changes in the network layer state, transport layer failure,
or other mechanisms, it informs the application. If the ap-
plication is not prepared to handle intermittent connectivity
itself, the session layer provides appropriate management
services, depending on the transport layers in use, includ-
ing data buffering for reliable byte streams. Specifically, it
may block or buffer stream sockets, selectively drop unre-
liable datagrams, etc. Additional application and transport-
specific services can be provided, such as disabling TCP
keep-alives.

Depending on the system configuration, the session layer
may need to actively attempt to reestablish communication,
or it may be notified by network or transport layers when it
becomes available again. System policy may dictate trying
multiple network interfaces or transport protocols. In either
case, if the period of disconnection becomes appropriately
long (as determined by system and application configura-
tion), it will attempt to conserve resources by reducing the
state required in the network, transport, and session lay-
ers (with possibly negative performance implications upon
reconnection), and notify the application, enabling addi-
tional, domain-specific resource reallocation.

3.2.2 Reconnection. Upon reattachment, a mobile host
contacts each of its correspondent hosts directly, informing
them of its new location. Some transport layers may be
unable to adequately or appropriately handle the change in
network contexts. In that case, the session layer can restart
them, using the session ID to re-sync state between the end
points. In either case, the session layer informs the appli-
cation of reattachment, and resynchronizes the state of the
corresponding session layers.

The complexity of synchronization varies with the trans-
port protocols in use; a well-designed transport layer can
handle many things by itself. By using a transport-layer to-
ken, andnot a network layer binding, the persistent connec-
tion model can provide limited support for changes in at-
tachment point, often with better performance than higher-
layer approaches [21, 24]. Similarly, the performance of
even traditional transport protocols can be enhanced when
the network layer exposes the appropriate state [3, 5]. Sim-
ilarly, grouping multiple transport instances between the
same end points into sessions can provide additional per-
formance improvement [2, 22].

38

Legacy transport protocols may be completely unable to
handle changes in network addresses. In that case, the
session layer may initiate an entirely new connection, and
resynchronize them transparently at the session layer. In
the worst case, the application itself may be unable to han-
dle unexpected address changes, and provide no means of
system notification. Such applications are still supported
via IP encapsulation. The correspondent session layers es-
tablish an IP tunnel to the new end point, and continue to
send application data using the old address.

If a correspondent end point is no longer reachable (possi-
bly because the other end point also moved), the applica-
tion is instructed to perform another naming/location res-
olution operation in attempt to locate the previous corre-
spondent, returning a network end point (host, protocol,
port) to use for communication. The particular semantics
of suitable alternative end points and look-up failure are
application specific. It may be a simple matter of another
application-layer name resolution (perhaps a fresh DNS
query), or the application may which wish to perform its
own recovery in addition to or in place of reissuing the lo-
cation query.

While the amount overhead varies with the capabilities of
the available lower layer technologies, overhead is incurred
almost exclusively during periods of disconnectivity and
reconnection. This provides high performance for the com-
mon case of communication between static peers.

3.3 State management

In a spirit similar to Coda, our architecture considers dis-
connection to be a natural, transient occurrence that should
be handled gracefully by end hosts. For extended periods of
disconnection, resource allocation becomes an additional
concern. While managing application state is outside the
scope of our architecture, enabling efficient strategies is de-
cidedly not. In particular, since disconnection often occurs
without prior notice, applications may require system sup-
port to reclaim resources outside of their control.

There has been a great deal of study on application specific-
methods of dealing with disconnected or intermittent op-
eration. Most of it has focused on providing continued
service at the disconnected client, and has not addressed
the scalability of servers. If our approach becomes pop-
ular, and disconnected sessions begin to constitute a non-
negligible fraction of the connections being served, servers
will need to free resources dedicated to those stalled con-
nections, and be able to easily reallocate them later. We are
considering a variety of state management services the ses-
sion layer should implement, and briefly hypothesize about
two: migrating session state between the system and appli-
cation, and providing contextual validation of session state.

3.3.1 State migration. We believe the session abstraction
may be a useful way to compartmentalize small amounts of
connection state, reducing the amount of state applications
need to store themselves, and simplifying its management.
Furthermore this state could be tagged as being associated
with a particular communication session, and managed in
an efficient fashion together with system state [4]. Sys-
tem support may allow intelligent paging or swapping of
associated state out of core if the period of disconnection
becomes too long.

3.3.2 Context management. There is a significant amount
of context associated with a communication session, and
it may be the case that some (or all) of it will be inval-
idated by disconnection and/or reconnection. In particu-
lar, previous work has shown that context changes in the
transport layer can be leveraged to adapt application pro-
tocol state [23]. Hence any state the session layer man-
ages needs to be revalidated, possibly internally, possibly
through application-specific up-calls. Changes in context
may dictate that buffers be cleared, data be reformatted, al-
ternate transport protocols be selected, etc. This requires a
coherent contextual interface between the application and
the session layer.

4 Related work

The focus of the Migrate architecture is on preserving end-
to-end application communication across network location
changes and disconnections. Much work has been done in
the area of system support for mobility over the past few
years; this section outlines the work most directly related
to ours.

At the network-layer, several schemes have been proposed
to handle mobile routing including Mobile IP [20] and
multicast-based mobility [18]. Mobile IP uses a home
agent as to intercept and forward packets, with a route
optimization option to avoid triangle routing. The home-
agent-based approach has also been applied at the transport
layer, as in MSOCKS [15], where connection redirection
was achieved using a split-connection proxy, providing so-
called transport-layer mobility. Name resolution and mes-
sage routing were integrated to implement a “late binding”
option that tracks highly mobile services and nodes in the
Intentional Naming System [1].

Most TCP-specific solutions for preserving communica-
tion across network-layer changes [21, 24] do not handle
the problems associated with connections resuming after
substantial periods of disconnectivity. A “persistent con-
nection” scheme where the communication end-points are
location independent was proposed for TCP sockets and
DCE RPC [27], but the mapping between global endpoint
names and current physical endpoints is done through a
global clearinghouse, which notifies everyone of binding

39

updates. Session layer mobility [14] explored moving en-
tire sessions by utilizing a global naming service to provide
endpoint bindings; address changes are affected through a
TCP-specific protocol extension.

5 Conclusion

In this paper, we have defined five salient issues concerning
host mobility in the Internet. We presented a set of design
guidelines for building a system to address these issues,
distilled from a decade of research in mobile applications
and system support for mobility on the Internet. Follow-
ing these principles, we outlinedMigrate, a basic session-
based architecture to preserve end-to-end application-layer
communication in the face of mobility of the end points.
We believe the general abstractions for disconnection, hi-
bernation, and reconnection provided by the session layer
define an appropriate set of interfaces to enable more ad-
vanced system support for mobility.

References
[1] A DJIE-WINOTO, W., SCHWARTZ, E., BALAKRISHNAN ,

H., AND LILLEY, J. The design and implementation of
an intentional naming system. InProc. ACM SOSP (Dec.
1999), pp. 186–201.

[2] BALAKRISHNAN , H., RAHUL , H., AND SESHAN, S. An
integrated congestion management architecture for Internet
hosts. InProc. ACM SIGCOMM (Aug. 1999), pp. 175–187.

[3] BALAKRISHNAN , H., SESHAN, S.,AND KATZ, R. H. Im-
proving reliable transport and handoff performance in cellu-
lar wireless networks.ACM Wireless Networks 1, 4 (Dec.
1995), 469–481.

[4] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Re-
source containers: A new facility for resource management
in server systems. InProc. USENIX OSDI (Feb. 1999),
pp. 45–58.

[5] CACERES, R., AND IFTODE, L. Improving the perfor-
mance of reliable transport protocols in mobile computing
environments.IEEE JSAC 13, 5 (June 1995), 850–857.

[6] CERF, V. G., AND CAIN , E. The DoD Internet architecture
model.Computer Networks 7 (Oct. 1983), 307–318.

[7] CHESHIRE, S.,AND BAKER, M. Internet mobility 4x4. In
Proc. ACM SIGCOMM (Aug. 1996), pp. 318–329.

[8] DAHLIN , M., CHANDRA, B., GAO, L., KHOJA, A.-A.,
NAYATE , A., RAZZAQ, A., AND SEWANI, A. Using mobile
extensions to support disconnected services. Tech. rep., UT
Austin, Apr. 2000.

[9] GRITTER, M., AND CHERITON, D. An architecture for
content routing support in the internet. InProc. 3rd USITS
(Mar. 2001), pp. 37–48.

[10] GUTTMAN , E., PERKINS, C., VEIZADES, J., AND DAY,
M. Service Location Protocol, Ver. 2. RFC 2608, June
1999.

[11] INOUYE, J., BINKLEY, J., AND WALPOLE, J. Dynamic
network reconfiguration support for mobile computers. In
Proc. ACM/IEEE Mobicom (Sept. 1997), pp. 13–22.

[12] JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK, M. F.
Mobile computing with the rover toolkit.IEEE Trans. on
Computers 46, 3 (Mar. 1997), 337–352.

[13] KISTLER, J., AND SATYANARAYANAN , M. Disconnected
operation in the Coda filesystem. InProc. ACM SOSP (Oct.
1991), pp. 213–225.

[14] LANDFELDT, B., LARSSON, T., ISMAILOV, Y., AND

SENEVIRATNE, A. SLM, a framework for session layer
mobility management. InProc. IEEE ICCCN (Oct. 1999),
pp. 452–456.

[15] MALTZ , D., AND BHAGWAT, P. MSOCKS: An architecture
for transport layer mobility. InProc. IEEE Infocom (Mar.
1998), pp. 1037–1045.

[16] MILOJICIC, D., DOUGLIS, F., AND WHEELER, R. Mo-
bility: Processes, Computers, and Agents. Addison Wesley,
Reading, Massachusetts, 1999.

[17] MUMMERT, L., EBLING, M., AND SATYANARAYANAN ,
M. Exploiting weak connectivity for mobile file access. In
Proc. ACM SOSP (Dec. 1995), pp. 143–155.

[18] MYSORE, J.,AND BHARGHAVAN , V. A new multicasting-
based architecture for internet host mobility. InProc.
ACM/IEEE Mobicom (Sept. 1997), pp. 161–172.

[19] NOBLE, B., SATYANARAYANAN , M., NARAYANAN , D.,
TILTON, J. E., FLINN , J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. InProc. ACM
SOSP (Oct. 1997), pp. 276–287.

[20] PERKINS, C. E. IP mobility support. RFC 2002, Oct. 1996.

[21] QU, X., YU, J. X., AND BRENT, R. P. A mobile TCP
socket. InProc. IASTED Intl. Conf. on Software Eng. (Nov.
1997).

[22] SAVAGE, S., CARDWELL, N., AND ANDERSON, T. The
Case for Informed Transport Protocols. InProc. HotOS VII
(March 1999), pp. 58–63.

[23] SNOEREN, A. C., ANDERSEN, D. G., AND BALAKRISH -
NAN, H. Fine-grained failover using connection migration.
In Proc. 3rd USITS (Mar. 2001), pp. 221–232.

[24] SNOEREN, A. C., AND BALAKRISHNAN , H. An end-to-
end approach to host mobility. InProc. ACM/IEEE Mobi-
com (Aug. 2000), pp. 155–166.

[25] VAHDAT, A., AND DAHLIN , M. Active names: Flexible
location and transport of wide-area resources. InProc. 2nd
USITS (Oct. 1999).

[26] ZENEL, B., AND DUCHAMP, D. A general purpose proxy
filtering mechansism applied to the mobile environment. In
Proc. ACM/IEEE Mobicom (Sept. 1997), pp. 248–259.

[27] ZHANG, Y., AND DAO, S. A “persistent connection” model
for mobile and distributed systems. InProc. IEEE ICCCN
(Sept. 1995), pp. 300–307.

[28] ZHAO, X., CASTELLUCCIA, C., AND BAKER, M. Flex-
ible network support for mobile hosts.ACM MONET 6, 1
(2001).

40

Protium, an Infrastructure for Partitioned Applications
Cliff Young, Lakshman Y.N., Tom Szymanski, John Reppy, David Presotto,

Rob Pike, Girija Narlikar, Sape Mullender, and Eric Grosse
Bell Laboratories, Lucent Technologies

{cyoung,ynl,tgs,jhr,presotto,rob,girija,sape,ehg}@research.bell-labs.com

Abstract

Remote access feels different from local access. The
major issues are consistency (machines vary in GUIs,
applications, and devices) and responsiveness (the user
must wait for network and server delays). Protium attacks
these by partitioning programs into local viewers that
connect to remote services using application-specific pro-
tocols. Partitioning allows viewers to be customized to
adapt to local features and limitations. Services are
responsible for maintaining long-term state. Viewers
manage the user interface and use state to reduce commu-
nication between viewer and service, reducing latency
whenever possible.

System infrastructure sits between the viewer and ser-
vice, supporting replication, consistency, session manage-
ment, and multiple simultaneous viewers. The prototype
system includes an editor, a draw program, a PDF viewer,
a map database, a music jukebox, and windowing system
support. It runs on servers, workstations, PCs, and PDAs
under Plan 9, Linux, and Windows; services and viewers
have been written in C, Java, and Concurrent ML.

1 Introduction

In the 1970's, one could walk up to any telephone in
the world and use it as easily as one’s home telephone.
The computer revolution might have followed suit, but
the opposite holds. It is nearly impossible to use the
neighbor’s computer: data files are unavailable or not
available in a consistent place, the wrong applications are
installed, and the preferences for those applications are
personalized.

Why can't one use any computer on the planet? The
reasons are historical and economic. First, the last twenty
years of the computing industry have been about personal
computing. Mainframe and minicomputer users shared a
consistent (if sometimes unresponsive) environment in
their single, shared system. In contrast, every PC is cus-
tomized, binding large amounts of state to each PC. The
move to PCs gave users responsiveness at the cost of con-
sistency. Secondly, networked computing environments
work “well enough” within a single security domain such
as a corporate intranet or university-wide network. Such
environments do allow users to log into multiple termi-

nals, and this covers a large percentage of shared-use
cases. Third, remote access tools are “good enough”:
users are willing to dial into or tunnel to their corporate
intranet to get access, despite added latency or inconsis-
tency. Lastly, the Internet grew up only in the last decade;
before that one couldn't think of being connected to every
computer in the world. A new generation of computing
devices is upon us; each person will have many devices
and each person will expect the multiple and remote
devices to work consistently. We will have to rewrite all
of our applications for the new devices anyway; why not
rewrite them so they work better?

Our goal is to be able to use any Internet-connected
device as if it were the machine in our office. Further, we
want this access consistently and responsively. Consis-
tency is similarity of experience across devices. The user's
session must migrate from device to device. Each applica-
tion will adapt to each end device so that it exploits the
device's unique capabilities and works around the device's
limitations. Responsiveness implies that remote access is
as comfortable as a local application. Many remote access
systems have addressed one or the other of these two
goals; few address both.

Protium splits applications into two pieces. One runs
near the user; the other runs in a service provider that is
highly available, has persistent storage, and has abundant
computation cycles. We call these pieces viewers and ser-
vices, respectively, to emphasize that state is maintained
by the service. Viewers and services communicate via an
application-specific protocol; the application designer
must partition the application to maximize consistency
and responsiveness. Applications are built as if only a sin-
gle viewer-service pair existed, with certain additional
constraints. These constraints allow the Protium infra-
structure to support connection, reconnection, multiple
simultaneous viewers, state consistency and replication,
and session management.

The Protium prototype includes a text editor, a
MacDraw-style drawing program, a PDF viewer, a map
viewer with map database, a digital music jukebox, and
windowing system support. Viewers and services have
been written in C, Java, and Concurrent ML and run
under the Plan 9 Operating System, inside Java applets,
and under Linux. All of these viewers and services inter-
operate.

41

2 A Better World

We'd like to be able to work all day at the office, using
a research operating system such as Plan 9 or Linux. At
the end of the day we'd like to walk away from the office
computer, possibly with state uncommitted to stable stor-
age. On the train home, we'd like to be able to pull out a
wireless PDA or cellular phone, and have the portable
device replicate the office session. PDA-specific viewers
for each of our applications will be launched that show
the exact same state, including uncommitted changes, as
the work session back in the office. The PDA is limited,
but one could imagine reading drafts of a document or
fixing typos even on its small screen and using its limited
input capabilities. When we get home, the home computer
runs only Windows. But using a web browser and Java
applets we again replicate the session, getting Java ver-
sions of each of our applications with the same session
state as we had at the end of our train ride. In each remote
case (PDA and Java), the applications respond immedi-
ately to user input; updates spool back to the office server.

Our two consistency-related goals are session mobility
and platform independence. The example shows session
mobility where the user accessed the same state of appli-
cations using three different systems. We will not supply a
precise definition of “session” in this paper; however, an
intuitive definition would be the state of all applications
currently open on one's workstation screen. Platform
independence involves accessing the same session on a
variety of devices and operating systems: a workstation
running a workstation OS, a PDA with its proprietary OS,
and a Windows home PC with a standard browser. And to
make things difficult, we will not sacrifice responsiveness
for these consistency goals.

This example sounds like typical ubiquitous comput-
ing propaganda, but our system concretely provides them:
we have a prototype system running. We next describe the
assumptions about future technologies that underlie our
engineering choices, then go on to describe our approach
and prototype system. Before concluding, we explain why
prior approaches fail some of our requirements.

3 Assumptions

We make some assumptions about the future. On the
technical front, Moore's law continues, exponentially
improving processing power, memory sizes, device sizes,
heat dissipation, and cost. As a corollary, the world will
move to multiple devices per person. Bandwidth will
increase in the backbone network and will increase (albeit
less quickly) to portable and home devices. Wired or
wireless remote coverage will improve over the next
decade; we thus choose not to focus on disconnected
operation. However, we also assume that communications
latency will not improve much in the next decade.

While the speed of light places a fundamental lower
bound on communications, it takes light only about 130
milliseconds to go around the world. Our latency assump-

tion instead rests on the current realities in data network-
ing, where differentiated services have not yet been
deployed and switching delays are significant. Even with
a speedy core Internet, however, it seems believable that
last hop communications services would still experience
notable delays for the next decade (today, we regularly
experience 10 second round-trip times on CDPD modems
and WAP cellular phones; systems must respond within
100 milliseconds to feel instantaneous and within 1.0 sec-
ond not to disrupt the user’s flow of thought [3]). Further-
more, 130 milliseconds is very long for a computer, so
services that rely on other services still face latency
issues.

On the social front, we have two assumptions. First,
we believe that there will be a new round of operating
system wars for the PDA/cellphone market. The market
will determine which (if any) of the current contenders
(PalmOS, Windows CE, Psion, to name a few) will win.
In the meantime, we should deploy systems that work
well regardless of programming language or operating
system.

Our second social assumption is that distributed pro-
gramming is hard. If we can find ways to sweep many of
the traditional distributed programming problems under
the rug of our infrastructure, the average programmer
might be able to write a robust distributed application. A
secondary goal is that writing an application in our system
will not be much harder than writing a standalone GUI-
based application is today.

4 Partitioned Applications

Our approach draws its inspiration from two applica-
tions that work when a low-performance channel connects
the user and his data: the Sam text editor [4] and the
IMAP mail protocol [1]. Sam comes in two pieces. Sam’s
service runs near the file system where editing takes
place; Sam’s viewer runs on whatever device the user has
at hand. Viewer and service communicate using a proto-
col that keeps track of the state of both halves. IMAP
works similarly but for mail instead of editing. Both
applications divide the task into two parts: a service that is
highly available and has large compute and storage
resources, and a viewer that needs a connection to the ser-
vice and some kind of user interface but need not down-
load the entire program state. Perhaps the central question
of our project is: can we generalize from Sam and IMAP
to all applications? And can we build infrastructure that
makes this easy? We call this approach, “partitioned
applications,” because the network breaks the application
into parts.

Another way of looking at Protium is that we are “put-
ting the network into the application.” Most previous
approaches divide remote from local at an existing
abstraction layer, for example the file system, the GUI
API (The X Window System [6]), or the frame buffer.
Partitioning incorporates these prior approaches; it just
adds a new dimension of flexibility.

42

Partitioning induces rich systems issues. For example,
what manages a session? How does one connect or recon-
nect to a service? What maintains consistency, replicates
state, or provides multicasting across simultaneously
active viewers? What happens when a viewer crashes or
the viewer device is lost? Our prototype system suggests
preliminary answers to each of these questions.

5 Prototype System

Our prototype system currently supports five applica-
tions in addition to the session service/view manager.
These are a simple text editor, a MacDraw-style drawing
program, a PDF image viewer, a map program (with both
photographic images and polygonal graphics), and a
music jukebox. These represent a variety of interesting
desktop applications, so we are encouraged that we have
been able to build them with our current infrastructure.
However, for us to really claim that we are building a gen-
eral system, we need to build more applications. We are
investigating video and hope to add PDA applications
(calendar, email, address books) to our suite.

One of the most interesting research issues involves
adapting viewers to the platform on which they run. There
are at least four different kinds of platforms: big bitmaps
(desktops and laptops), small bitmaps (PDAs and cell-
phones), text, and voice. We present some preliminary
results about device-specific adaptation in the section on
session management, but this topic remains largely
untouched.

Building applications around a protocol gives us a high
degree of language and operating system independence.
Our prototype applications run under Plan 9 (all viewers
and the edit and draw services), Java (all but the PDF
viewer; map and juke services), and Linux (draw and PDF
services). The Plan 9 programs were written in C; the
Linux programs were written in Concurrent ML. Porting
remains a significant task, but this wide variety of lan-
guages and systems supports a claim to language and OS
independence.

Just rewriting applications into two pieces doesn’t
make a systems project. For Protium, the interesting
issues are in the infrastructure, and we describe two
pieces of the infrastructure here, followed by an applica-
tion example. The first piece of infrastructure, the view
multiplexer, supports multiple viewers on a single service,

while simulating a connection to a single counterpart to
each viewer or service. The second piece of infrastructure,
the session service, bundles together multiple services
into a session; it has a corresponding piece, the view man-
ager, which runs on the viewing device. After describing
the pieces of infrastructure, we will go on to an applica-
tion example, our map program.

5.1 Multiplexed Viewers

Each viewer or service is designed as if it spoke to a
single counterpart service or viewer, respectively. But we
want to be able to support multiple viewers simulta-
neously connected to a single service. The view multi-
plexer simulates a single viewer to a service. New viewers
that wish to connect to a running service do so through the
view multiplexer, so the service need not be aware that a
new viewer has connected. Figure 1 shows a view multi-
plexer interposed between a service and multiple viewers.

To do its job, the view multiplexer snoops the mes-
sages between service and viewer. Each message in the
system has a tag to help the multiplexer. Most communi-
cation is synchronous from viewer to service, in viewer-
initiated request-response pairs. Viewers can generate
read, lightweight write, and heavyweight write messages.
Services respond with either acknowledgements (ACKs)
or negative acknowledgements (NACKs); the infrastruc-
ture is allowed to NACK a message without allowing the
message to reach the service. Viewers must also be able to
handle asynchronous update messages, which are gener-
ated by the infrastructure when one viewer receives an
ACK; an update tells a viewer that some other viewer suc-
ceeded in updating the state. Since all viewers see all
ACKs, they can keep their views of the state up-to-date.
Lastly, services can asynchronously broadcast to all view-
ers; broadcast messages support streaming media. This
consistency model is similar to publisher-subscriber con-
sistency models.

In addition to multicasting ACKs (as updates) to all
viewers, the view multiplexer helps build responsive
viewers. Using a simple token-passing scheme, the view
multiplexer allows one viewer to become privileged.
Lightweight writes from the privileged viewer are imme-
diately ACKed; this allows the privileged viewer to
deliver local response time. These writes must then be
propagated to the service and the other viewers; formal

service
viewermonolithic

application

viewer

viewerservice

view multiplexing

Figure 1: A monolithic application, the same application after partitioning, and multiple

viewers connected to a single service through a view multiplexer.

43

requirements of the protocol and the service implementa-
tion guarantee that the service will acknowledge the write.
Lightweight writes should be common actions that do not
require support from the service, e.g., responding to key-
strokes or mouse events. Global search-and-replace or
commit to stable storage should be heavyweight writes.
Token management matches our intended uses, where a
single user expects immediate response from the device
he uses but can tolerate delayed updates in other devices.

5.2 Session Management

Intuitively, a session is the state of one’s desktop. The
Protium session service runs on the service side and bun-
dles together multiple services into a single session. A
device-specific view manager connects to the session ser-
vice and runs the viewers that correspond to the services
in the session. The session service and view manager
form a multiplexer/demultiplexer pair, linking multiple
viewers to multiple corresponding services. In our intro-
ductory example, the view manager launched the viewers
on the PDA and under the Java-enabled browser.

The session service and view manager behave as
another application pair, so the pipe between them can be
managed by the view multiplexer just like for any other
application. The session and view managers can also hier-
archically encapsulate and route messages for the under-
lying service/viewer pairs; however, services and viewers
are free to communicate out-of-band if the designer so
chooses. Figure 2 depicts a set of applications managed
by a session service and view manager. We can compose
view multiplexers and session/view manager pairs in arbi-
trary nesting; the two sets of multiplexers recurse.

In addition to managing the set of applications, the
view managers adapt window system events to their
devices. Moving or resizing a window on a big screen
causes a corresponding move or resize on another big
screen. Moves and resizes have no small screen analog
(because applications typically use the whole screen);
however, focus changes and iconification work similarly
on big and small screens. We have not yet implemented
the text-only or voice-based viewers, so we have no expe-
rience in this area; a text-only view manager should work
like a shell. Another open problem is adapting to differ-
ently sized big screens.

5.3 A Protium Application: Map

Some of us (Szymanski and Lakshman) are interested
in geographic data such as terrestrial maps, aerial images,
elevation data, weather information, aviation maps, and
gazetteer information; one goal is synthesizing these
views coordinated by positional information. Gigabytes
of data come from scattered sources and multiple servers.
We had built a Java geodata viewer that could navigate
and edit the data. Different types of geodata show as
selectable display layers. Different layers or different
parts of the same layer may be served by different
machines. However, all servers and the viewer have the
same abstract view of the data and hold some piece of the
data locally. This uniform view results in a simple proto-
col between the viewer and the servers.

We used the Protium infrastructure to share the geo-
data viewer, the basic idea being that multiple viewers can
share a session, moderated by a session server, that tracks
what is being viewed and tells viewers what data to get
and from where. Actual data travels out-of-band; only
control messages route through the Protium infrastruc-
ture. The session server also supports textual messaging
so that a shared viewer can be used to give driving direc-
tions to someone (with appropriate maps and messaged
instructions) at a remote location.

The map application is designed to hide latency from
the user. For example, the viewer displays street names
and addresses in a tool tip; a remote query would make
this feature too slow and too variable in latency. All geo-
graphical data is kept in a tiled format, compressed using
a method appropriate to its type, and transmitted to the
viewer upon demand or (sometimes) before. The map
viewer stores this data in a two-level cache in which the
lower level (which counteracts network latency) contains
compressed data, and the upper level (which counteracts
decompression latency) contains fully expanded data
structures needed to support user interactions. Requests to
map services are executed in batches that are satisfied in
an out-of-order fashion. This overlaps server processing
with both network transmission time and client decom-
pression time. This architecture provides a degree of
responsiveness that could not be approached with a con-
ventional browser/server structure.

session
service

view
manager

se
rv

ic
es

vi
e

w
er

s

Figure 2: Three applications (with service and viewer pieces) connected through the ses-
sion service/view manager multiplexor/demultiplexor pair.

44

As part of this exercise, we implemented a new viewer
in C under Plan 9. The Java and Plan 9 viewers differ
greatly: the Plan 9 viewer targets the small but colorful
iPAQ display and uses pen input; the Java viewer runs on
big screens and uses the real estate for a complex GUI.

The session server (excluding marshalling code) is
about 330 lines of Java. An additional 286 lines allow the
existing viewer to interoperate with the session server.
The Plan 9 viewer required 3527 lines of C of which
about 300 lines deal with communication and the rest deal
with graphics and event handling. Thus, with a small
amount of effort, we were able to convert an existing sin-
gle-user application (which was already split into service
and viewer parts) into a shared application.

6 Remote Access

The body of related work is far too vast to survey in a
position paper; remote access systems span many disci-
plines including operating systems, networking, distrib-
uted systems, and databases. This section instead
highlights major approaches to remote access and
explains why they do not meet our goals.

Most remote access systems fail one or both of our
consistency and responsiveness requirements. Rlogin and
its more secure modern descendant, ssh [7], are platform
independent but do not provide session mobility. Distrib-
uted file systems (examples abound; AFS, Coda, and
Locus/Ficus to name a few) allow one to access stable
storage wherever the network reaches but say nothing
about how to provide applications. Remote Procedural
Call packages similarly do not show how to provide
applications. Distributed object frameworks such as
CORBA and DCOM address the same problem as we do,
but suffer performance problems because their abstraction
of remote and local objects hides latency from designers
[8]. Recent work in thin-client computing and its prede-
cessor, client-server computing, give some forms of con-
sistency but force clients to wait during both network and
server latencies.

A number of systems apply the brute-force approach of
sending screen differences and raw user input information
across the network. Examples include Virtual Network
Computing (VNC) from AT&T Research [5], the SunRay
product from Sun Microsystems, Citrix System’s Win-
dows-based product, and Microsoft’s NetMeeting. All of
these systems provide bit-for-bit consistency but suffer
when network latency increases. They also do not adapt to
the constraints of local devices: viewing large virtual
screens on small physical devices is difficult, and the sys-
tem architecture prevents further device-specific adapta-
tion.

Philosophically, the Berkeley Ninja project is closest to
our approach [2]. We follow Ninja’s approach of keeping
stable storage in a service provider (Ninja calls this a
“base”) and allowing “soft” state in the viewers to be lost.
Ninja focuses on scalable services; Protium focuses on the

applications we use daily on the desktop. Protium’s infra-
structure works primarily between service and viewer.

7 Experiences

To partition an application, one must focus on the
application-specific protocol. We would like to present a
how-to guide on partitioning, but the lessons so far sound
like platitudes, including “match messages to user input”,
“separate control and data”, and “beware round trips.” In
an early version of the draw protocol, each object deleted
required a separate message. If the user selected a number
of objects and issued a delete command, some of the
deletes might fail, leaving the application in a confusing
state. The juke, map, and PDF applications have large
data streams (music, graphics/image, and image); waiting
for a large object to be transmitted can keep a small con-
trol message from taking effect. Designing protocols
without a delay simulator is dangerous: what works
acceptably on a LAN may be unusable with a 1-second
round-trip time. We hope to be able to summarize and
illustrate more such principles in the future.

Protocol designers must decide which application state
is viewer-specific and which is service-mediated. For
example, the edit application keeps scroll bar position and
text selection local to the viewer. The draw application
tries to do the same, but some operations (grouping,
ungrouping, and deleting objects) reset the selection to be
consistent across all viewers. More ambitiously, it might
be useful to be able to preview the next PDF page on
one’s remote control device while continuing to show the
current page on the video projector device, but this is not
yet supported by the PDF protocol. Some applications
have added state expressly for collaborative or remote-
control purposes: the map and PDF programs both sup-
port telestrator-style overlays, and the map program also
includes a chat room.

Writing viewers is harder than we would like. Viewers
include all of the state and complexity of a traditional
stand-alone application, augmented by the complexity of
managing a single outstanding request while being able to
accept asynchronous updates and broadcasts. Backing out
attempted changes when a NACK arrives further compli-
cates design. All of our viewer programs are multi-
threaded; this seems a higher standard than we would care
to impose on the average programmer. We are exploring
programming idioms, APIs, and library support that might
simplify viewer development.

8 Discussion and Conclusion

This system is not about the next killer application. If
anything, we are rebuilding all of our old applications to
live in a new world. This follows our biases as system
builders: we know how to build infrastructure. If this
project or one like it succeeds, we will have universal data
service, like universal telephone service. The new devices

45

require rewriting all of our old applications anyway. We
might as well get some benefit out of it.

The Protium approach makes additional demands on
application programmers. The initial designer of an appli-
cation creates an application-specific protocol, while
designers of new viewers or services must adhere to that
protocol (if our project succeeds, then perhaps standards
for application protocols will emerge). Porting an applica-
tion to a new platform involves at least porting the viewer.
Building a viewer combines both traditional GUI issues
and communicating back to the service. Services may also
need to be ported.

What is the best way for Protium to support existing
applications? It depends on the application. Programs
with clean separation between display and state integrate
easily with Protium; most programs, however, are large,
complex, and have tangled state- and display-manage-
ment code. We observe that the move to new devices such
as PDAs and phones will force such programs to be
rewritten anyway; integrating the program with Protium
as part of the rewrite will be a modest extra requirement
and will benefit the application by making it use the net-
work more effectively.

Considering applications in a partitioned context pro-
vides new opportunities to use old tricks. Persistence is a
service-only problem; the service need not worry about
geographic distribution, so known persistence techniques
apply. Viewers that are lost or lose state are easily
replaced or restored because the service is the repository
of record. The connection between service and viewer can
be a network socket; known techniques for authentication
and encryption therefore apply. Security, logging, cach-
ing, and prefetching seem like obvious features to add.
This paper concentrates on the single user; Protium also
gives limited support for collaboration and remote con-
trol. We think of these as bonuses rather than our primary
research goal; it seems a high enough goal to be able to
use any computer in the world.

Protium is the most common isotope of hydrogen, the
most common element in the universe. A protium atom
has two pieces that are closely coupled and essential to
the nature of hydrogen, but the two pieces are different
from each other. And while the two pieces are themselves
basic, the exploration of their interaction has occupied
scientists for more than a century.

9 References

[1] M. Crispin. Internet Message Access Protocol – Version
4rev1. RFC2060 (December 1996).
[2] S. D. Gribble, et al. The Ninja Architecture for Internet-
Scale Systems and Services. To appear in a Special Issue of
Computer Networks on Pervasive Computing.
[3] R. B. Miller. Response time in man-computer conversa-
tional transactions. Proc. AFIPS Fall Joint Computer Confer-
ence, 33:267–277, 1968.
[4] R. Pike. The text editor Sam. Software Practice and Expe-
rience, 17(11):813–845, 1987.

[5] T. Richardson, et al. Virtual Network Computing. IEEE

Internet Computing, 2(1): 33-38, Jan/Feb 1998.
[6] R. W. Scheifler and J. Gettys. The X window system. ACM

Transactions on Graphics, 5(2):79–106, Apr. 1986.
[7] T. Ylonen. The SSH (Secure Shell) Remote Login Protocol.
In Internet Drafts (November 1995).
[8] J. Waldo, et al. A Note on Distributed Computing. In Lec-
ture Notes in Comp.Sci. 1222, Springer, 1997.

Figure 3: Screen shots of Protium applica-
tions under Plan 9 (top), Linux/Java (middle),

and Windows/Java (bottom). Within each

screen, the applications are edit (top left),

draw (left), juke (top right), map (bottom), and

PDF (bottom right, Plan 9 only).

46

Probabilistic Modelling of Replica Divergence

Antony I. T. Rowstron, Neil Lawrence and Christopher M. Bishop
Microsoft Research Ltd.

St. George House, 1 Guildhall Street,
Cambridge, CB2 3NH, UK.

antr@microsoft.com

Abstract

It is common in distributed systems to replicate data. In
many cases this data evolves in a consistent fashion, and
this evolution can be modelled. A probabilistic modelof the
evolution allows us to estimate the divergence of the repli-
cas and can be used by the application to alter its behaviour,
for example to control synchronisation times, to determine
the propagation of writes, and to convey to the user infor-
mation about how much the data may have evolved.

In this paper, we describe how the evolution of the data
may be modelled and outline how the probabilistic model
may be utilised in various applications, concentrating on a
news database example.

1. Introduction

In distributed systems the replication of shared mutable
data has been widely studied. When mutable data is repli-
cated there is a need to consider the consistency model used
to control the level of divergence of the different replicas.

In this paper, we advocate using knowledge of how the
shared data evolves to control and manage divergence. Em-
pirical evidence shows that updates to shared data, in many
cases, follow systematic patterns. By modelling the way in
which the data has been updated in the past, we can provide
information to an application on how, the data has evolved
since the replicas were last consistent. The basis of this ap-
proach isprobabilistic modelling applied to the distribution
of operations performed on the data structure. The approach
is novel and preliminary results on a mobile news database
and a mobile email reader are encouraging.

In the next section we describe the general approach, in
Section 3 a mobile news database case study is detailed, in
Section 4 the results for a mobile email reader are presented
and then in Section 5 we describe other applications we are
currently working on.

2. The General Approach

An application using our approach is provided with prob-
abilistic models that capture how a replicated data structure
evolves in time. These probabilistic models allow the ap-
plication to estimate the number of updates that are likely
to have been performed on the data structure, or part of it,
during a specified time period, for example between the last
time a synchronisation was performed and the current time.
The application can then use this to adapt to the data struc-
tures’ evolution by, for example, controlling when synchro-
nisations should occur, alerting the user to divergence, or
controlling when updates to the shared data are propagated.
The generation of a single probabilistic model that captures
the evolution of the other replicas, is known asinference.
The application then makesdecisions based upon the infor-
mation contained within this single model. This partition of
the problem into two stages of inference and decision en-
ables our approach to be applied to a wide variety of appli-
cations. The inference stage is decomposed into the gener-
ation of models representing the evolution of the replicated
data structure, or parts of it, and the subsequent combining
of these models as requested by the application. In the For
the inference stage a general purpose tool can be used to
create the probabilistic models, and combine them, whilst
the decision stage is specific to each application.

The probabilistic models are generated by a tool, which
requires a log of descriptions of the operations performed on
the shared data structure. For each update to the data struc-
ture the log contains: information about the operation, the
part of the data structure that was affected, the time when
the operation was performed and an identifier representing
the source of the update (for example a user id). A descrip-
tion of the data structure and its different components is also
required by the tool, which allows each component of the
data structure to be modelled independently. Once a set of
probabilistic models have been created, these can be up-
dated dynamically as new updates are performed.

As a simple example of the data structure decomposition,

47

consider an address database application. Each entry within
the database is marked as either being a personal contact or
as a business contact. This data structure can be thought of
as being composed of two parts, the personal and the busi-
ness parts, and two models can be generated and provided
to the application. A model for the entire address database
can then be generated by combining the two models. A
further sub-division could exist within the database with,
perhaps, the personal database is divided into family and
friends. Separate probabilistic models can then also be gen-
erated for each of these sub-divisions and again composed.

The application is required to create the logs, provide the
information about the decomposition of the data structure,
and to perform the decisions based upon the information
provided by the models.

Probabilistic Modelling Learning of the probabilistic
models can be automated using model selection techniques,
and the models may also be changed over time as more up-
dates are made to the replicas.

A probabilistic model is a particularly powerful repre-
sentation as such models may be combined in a straight-
forward and principled manner. This means that the data
structure can be decomposed and each part modelled indi-
vidually, as can different sources of data updates. For ex-
ample, in the address database application, there could be
separate models for the secretary and the owner of the ad-
dress book, reflecting their particular patterns of updates.
Hence, when the address book is replicated for the owners
use, the probabilistic model generated can describe how the
secretarys copy evolves.

It is important to remember that the probabilistic model
is a prediction of future behaviour based on the past. The
true evolution of the replica may not be consistent with the
model. Even if the model is correct, its probabilistic na-
ture means that its individual predictions can err, even if in
general it is accurate. As a result we advocate using our ap-
proach in ways that will enhance the user experience rather
than restrict functionality. The user interface should suggest
and advise rather than constrain and command.

The System The System is composed of a tool for creat-
ing the probabilistic models, and a library for use in the ap-
plication for merging the probabilistic models. These mod-
els capture the rate at which the operations are performed,
and how that rate changes over time. Therefore, the time
at which an update to the data structure occurs is the pri-
mary information required to create the models. The other
information in the log allows multiple models to be created,
based on the part of the data structure being updated, or on
the user performing the update. In order to achieve this, the
tool pre-processes the log, creating a separate log for each
entity to be modelled. A probabilistic model is then created

for each of these sub-logs independently, and this is now
described.

There are a number of factors that effect the creation of
the models. For example, the periodicity of the data has
to be determined (e.g. hourly, daily, weekly, monthly and
so forth). The tool currently creates histogram based mod-
els. Such models may be parameterised by widths and start-
ing points for the bins. All the parameters of the model
can be learned from the information contained within the
log. It should be noted that there are many alternative
forms of probabilistic model which can be used, for ex-
ample wrapped mixtures of Gaussians and circular normals
(see [5]). Although in this paper we use histogram based
models, we are currently evaluating other approaches.

For each probabilistic model the correct parameters need
to be established, and these control the model complexity.
The main consideration in the selection of the model com-
plexity is its generalisation ability. In other words, we wish
to create a model that not only describes well the updates
upon which it is based but also one that will describe fu-
ture updates. In the address book example above, where
the events we are modelling are updates of the database,
we could create a histogram model with too many bins so
that each update occurs in a single bin. Such a model is
unlikely to provide a good predictor of the evolution of the
replica because the model complexity is too high. At the
other extreme, if we create a histogram model with only
one bin we will be predicting a uniform distribution for
the future updates, again this is likely to be a poor predic-
tor of the replica’s evolution. There is obviously a ‘happy
medium’ and this may be found throughcross-validation of
the model [1]. Cross-validation involves splitting the log
into a number parts, for example five. The first four parts
are then used to construct a model with a particular param-
eterisation and the fifth part is used to ‘validate’ the model.
This involves computation of the histogram models likeli-
hood of creating the validating data. The part that is used
for validation and one of those used for construction is then
inter-changed and the model is re-validated. This procedure
is repeated five times so that each part of the data has been
used to validate the model once giving five different scores.
The validation scores are then combined, for example by
averaging, and the final score is associated with the param-
eters used for constructing the model. A range of param-
eterisations can be tested in this manner and the one with
the highest score is then selected, and utilised to construct a
model based on all the data, which is the final model.

Another factor determined during the cross-validation
phase is the periodicity of the updates. The tool uses a
number of pre-programmed periodicities: a daily cycle, a
weekly cycle, weekdays separately generated from week-
ends, and Saturdays separately generated from Sundays
both of which are separately generated from weekends.

48

More pre-programmed periodicities can easily be added,
such as hourly or monthly based periodicities. Note that the
set of candidate models includes the uniform distribution,
and so the performance of the system should be no worse
that that of the uniform model, in the event that one of the
pre-programmed periodicities is not appropriate. Currently,
we are looking at other techniques to determine the period-
icity of the updates.

A prior distribution is used, which can either be auni-
form prior or, in some situations, there may be prior knowl-
edge about when the updates arrive. The prior distribu-
tion is combined with the model generated using Bayes’s
rule. For a histogram model this prior plays an important
role of ensuring the final histogram model is non-zero at all
points within its range, i.e. even when there are no observed
points within a bin’s range the histogram has some resid-
ual value. The residual value of the histogram is a further
cross-validated parameter. If there is no or little information
about when the updates occur, this is valuable, because the
model is initialised using the prior distribution and as more
updates are observed, the model is refined to represent more
accurately the underlying distribution of the updates. This
process can be extended to allow more recent data to be
more influential, thereby allowing the system to deal with
non-stationary situations in which the distribution is itself
evolving with time.

3. Example Mobile News Database

We now demonstrate the use of our approach in a mobile
news database application. We are seeing a proliferation of
applications that replicate information on mobile devices,
such as the service provided by AvantGo1. These allow
mobile devices to store replicas of small news databases for
access when the mobile device is disconnected.

Our mobile news database application provides, on a
mobile device, a list and summary of the current news sto-
ries. We assume that the mobile device has wireless connec-
tivity which allows it to synchronise with the master news
database. We assume a pull model, where the device initi-
ates the connection.

For this application a database of new articles is required,
and we generated one from the BBC News web site. The
BBC publishes news articles to their web site 24 hours a day
and each of the news items is classified under a category,
such as sport, business, health and so forth. For every article
appearing on the BBC News website over a three month
period we extracted the date and time of publication, and
the subject of the news article to create a news database.

We treated the news database as the replicated data struc-
ture, and used the information gathered from the website to

1http://www.avantgo.com/

create the log required to generate the probabilistic models.
We decomposed the news database into several parts, where
each subject was treated as a separate part. All writes to the
news database were considered as being performed by a sin-
gle user. The mobile news database application allowed the
user to select which parts of the news database they wished
to have replicated on the mobile device.

The probabilistic models of the news database are cre-
ated by the tool overviewed in the previous section. The
mobile news database uses the probabilistic models to gen-
erate a visual cue in the application interface to allow a user
to see the number of updates that are likely to have occurred
to each part of the news database since the last synchroni-
sation. The application also uses the probabilistic models
to control synchronisation times between the device and the
master news database. It is likely that, due to the cost of
bandwidth, as well as the limited amount of bandwidth, the
mobile devices will not be continuously connected. There-
fore, the synchronisation times have to be chosen, as this is
part of the decision stage.

Optimal synchronisation The obvious approach to
choosing when the mobile device should synchronise would
be to have a user specify the number of synchronisations
per day they were willing to pay for2, and these would oc-
cur uniformly during the day, for example once every four
hours.

Our mobile news database makes an adaptive choice of
when to synchronise. This aims to find a trade-off between
the cost of synchronisation and the average staleness of the
data, where staleness is defined as the time between an ar-
ticle appearing on the master news database and appearing
on the device.

In order to calculate the synchronisation times, it is nec-
essary to formalise the user’s requirements and calculate
how to achieve them. In the mobile news database this is
achieved either by setting the number of synchronisations
per day to achieve a particular average staleness, or by al-
lowing the user to set the number of synchronisations per
day and then scheduling the synchronisation times to min-
imise the staleness.

We express the user’s preferences in terms of acost func-
tion, which represents mathematically what the user wants.
In the news database problem, the simple cost function we
have chosen is one which represents the staleness of the
news articles. We wish to minimise the time that articles
are available in the news database, but are not available on
the mobile device. For every article the staleness is the time
from when the article was available but not in the replica on
the mobile device.

2Assuming a per synchronisation charge; other charging models are
possible and different cost functions can be created to deal with this in our
approach.

49

0

0.005

0.01

0.015

0.02

00:00 04:00 08:00 12:00 16:00 20:00 23:59
Time of day (hours:minutes)

Rate of
change
(events
per min)

Figure 1. Synchronisation time optimisation for the Business part of the news database, showing
the learned histogram model together with uniform synchronisation times (dashed lines) and the
optimised synchronisation times (solid lines).

The cost incurred from synchronising at times i may be
written

C =

NX
n=1

(si � un); (1)

given thatN articles have arrived since the last synchro-
nisation at timesu1 to uN . We wish to find a synchroni-
sation time which minimises this cost. Unfortunately we
don’t know when the updates will arrive, we can only esti-
mate the rate of arrival using our probabilistic model, so we
need to minimise theexpected cost.

Consider how the expected cost will depend on three or-
dered synchronisation timessi�1; si andsi+1:

C(si�1; si; si+1) =

Z
si

si�1

�(t)(si� t)dt+

Z
si+1

si

�(t)(si+1� t)dt;

(2)

where�(t) is a time varying function representing the esti-
mated rate at which updates are occuring at the master news
database, and is obtained from the probabilistic model. The
first term in Equation 2 is the expected cost that will be in-
curred when we synchronise at timesi. Note the inclusion
of the second term, which is the expected cost that will be
incurred when we synchronise at timesi+1. This cost also
depends onsi.

We can now minimise the expected cost with respect
to eachsi given the neighbouring synchronisations. This
may be done through an iterative algorithm where passes
are made through the proposed synchronisation times opti-
mising each one in turn until convergence is achieved.

An alternative to minimising staleness is to maintain the
same level of staleness that could be achieved using the uni-
form approach, but to achieve this using fewer synchronisa-
tions per day. This has the benefit of reducing the number
of messages required (potentially reducing the financial cost
of using the system), and has implications for saving power.

3.1. Results

Figure 1 shows some of the elements of our approach.
The histogram based probabilistic model for weekdays for
the business part of the news database is shown as boxes on
the graph, generated using the updates occurring in May and
June 2000. The tool automatically determines the periodic-
ity of the data, and for the business part of the news database
this is a weekday and weekend periodicity. Therefore, the
weekdays are mapped into one twenty-four hour period and
created a histogram to represent that twenty-four hours, and
this is shown in Figure 1 (there is a separate model for the
weekend which is not shown here). Six synchronisations
were requested per day, and the vertical solid lines in Fig-
ure 1 show the optimal synchronisation times, to minimise
the staleness. The vertical dotted lines in the lower half
of the graph identify synchronisation times as taken from a
‘uniform’ strategy that synchronises every four hours.

Table 1 presents some results for our news database ap-
plication, showing the staleness achieved when each of the
four named databases is replicated individually, and when
they are all replicated. It shows the average time in min-
utes between an article becoming available on the master
news database and appearing in the replica on the mobile
device, for articles arriving on weekdays in July 2000. The
figures show the results when six synchronisations per day
were used, with both the uniform and adaptive synchroni-
sation times. The uniform approach started at midnight, as
is shown in Figure 13. The percentage decrease in stale-
ness for adaptive over uniform is shown. In the final column
the number of synchronisations required by the adaptive ap-
proach to achieve a similar average staleness of articles as
the uniform approach is given, with the observed average
staleness shown in brackets afterwards.

3It should be noted the effect of starting the uniform synchronisation at
other times does not impact the results significantly.

50

Staleness (mins) % Decrease in staleness Number of synchronisationsClassification
Uniform Adaptive for adaptive over uniform for equivalent staleness

Business 123.3 87.9 29% 4 (130.2)
Entertainment 113.7 78.6 31% 4 (119.4)

Health 131.8 94.6 28% 5 (125.4)
UK 120.2 109.5 9% 5 (127.2)
All 122.3 105.2 14% 5 (132.9)

Table 1. Results for weekdays of the month of July 2000 using six synchronisations and comparing
uniform with optimised synchronisation times, together with the number of optimised synchronisa-
tions required to achieve comparable levels of staleness as six uniform synchronisations.

4. Example Mobile Email Client

We now demonstrate the use of our approach in a second
example, a mobile email client. A central server is being
used to store email, and the mobile email client running on
a mobile device synchronises with the central email server.
We assume that a pull model is used, so the mobile email
reader initiates the synchronisation. The mobile email client
is similar to the mobile news database, and uses the proba-
bilistic models to indicate to the user the likely divergence
between the email cached on the mobile device, and the to
control when synchronisations should occur. These are cal-
culated using a similar cost function to that used in the News
Database example.

A tool was used to create a log of when email arrived
(email folders updated) for six Microsoft Exchange users
over the months of January and February 2001, by using in-
formation held in the Exchange server. The update log for
January was used to create the probabilistic models and the
information for February was used to evaluate the perfor-
mance of the synchronisation times chosen. The probabilis-
tic models were created automatically, with the tool calcu-
lating the periodicity of the data being modelled. For the
six users, four were modelled using a weekly periodicity,
and the other two were modelled using a weekday/weekend
periodicity.

Figure 2 presents results for the optimally chosen syn-
chronisation times for the six Exchange users, showing the
mean percentage decrease in staleness versus the number
of synchronisations per day, with the error bars represent-
ing +/- one standard deviation. For the uniform synchroni-
sation, all possible synchronisation times (based on a five
minute granularity) were tried. So, for 24 synchronisations
per day, the scenarios tried included a synchronisation oc-
curred on every hour, then 5 minutes past every hour, then
10 minutes past every hour, etc. In this example, 11 sets of
synchronisation times would be calculated and the average
staleness was evaluated, and used to represent the staleness
for the uniform approach.

The number of synchronisations was varied between 1
and 24 synchronisations per day. The results show clearly

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

%
d

ec
re

as
e

in
st

al
e

ne
ss

Number of synchronisations per day

Figure 2. Reduction in staleness of email
items for between 1 and 24 synchronisations
per day for six users.

that regardless of the number of synchronisations per day
the average staleness of email is reduced.

5. Other Applications and Future Work

Web Cache Web caches have become an integral part of
the World Wide Web. Caches are embedded within web
browsers as well as throughout the general infrastructure of
the web. Their role is to replicate web pages thereby reduc-
ing latency of web page access, bandwidth usage and web
server load. The HTTP protocol [4] provides support for
web caches, allowing the life times of object received to be
explicitly set, and for fields providing explicit instructions
to caches on how to treat a particular page. A number of
schemes have been proposed to allow caches to work more
efficiently [6].

Many web sites are automatically generated using tools
that could generate logs of when the pages are updated.
These logs could then be used by our tools to generate the
probabilistic models of each page. The models are small
(approximately 100 bytes) and can be carried within the
HTTP protocol from the web server which generates the
web page to web caches and browsers. Enabled web caches
and browsers can then use these models to make decisions

51

about when a cached page is still acceptable (under user
specified parameters), and inform a user the likelihood that
the page has been updated.

Calendar The examples used so far involve data that can-
not be modified at the replica. Whilst interesting, clearly the
most exciting applications are those that allow the all repli-
cas to be modified. Therefore, we have been looking at a
calendar application, where a single user’s calendar is repli-
cated, and there are multiple people concurrently accessing
and updating the calendar (for example a manager and their
secretary).

As with the mobile news database and mobile email
reader, the calendar application can calculate synchronisa-
tion times. More interestingly, the user interface can use
the information to adapt, for example, indicate appointment
slots that are less likely to lead to conflicts when synchro-
nisation occurs. Also, potentially, the models can be used
to providejust-in-time update propagation. Imagine a sce-
nario where a secretary has access to a salesperson’s cal-
endar. The salesperson and the secretary are the only peo-
ple who make appointments and the secretary works only
weekdays. If on a Saturday the salesperson makes an ap-
pointment for the following week this need not be prop-
agated until Monday morning, when the secretary arrives.
However, if on a Tuesday morning the salesperson makes
an appointment for the next day this should be propagated
immediately because the secretary will be booking appoints
on the same day. If the same salesperson also makes an
appointment on the Tuesday morning for a month in the
future, this might not need to be propagated immediately
because, for example, the secretary never makes appoint-
ments more than a week in advance. Using the models of
how the data evolves, the write update’s propagation can be
delayed until the system thinks that by delaying any longer
the chance of conflict increases significantly. Furthermore,
the updates can be propagated in any order. Thus the advan-
tages of delaying propagation are that it may be possible
to package the updates in packets more efficiently, saving
cost and bandwidth, as well as the potential to delay until
a cheaper communication medium becomes available. We
are currently working on evaluating the feasibility ofjust-
in-time update propagation.

6. Related work

Cho et al. [3, 2] examine techniques for a web crawler
to maintain a large repository of web pages. Their work is
focused on when each of the web pages should be checked
in order to maintain a fresh and consistent repository. This
involves estimating the rate of update of web pages, which
is assumed to be constant. The main aim of their approach
is to obtain an estimate of the rate of page update given that

they haven’t observed every update of the page. Due to its
nature, a web crawler is unable to obtain a complete log of
page updates and as a result it is non-trivial to obtain an un-
biased estimate of the rate of change of the page. The model
they prescribe is too simple, however, to enable decisions on
the granularity of a day about when synchronisations should
be made.

In contrast, we assume that we have complete logs of
updates. Our models can be much richer than an estima-
tion of a constant rate and thus provide more information
for decision making. We are also making the information
available to the application, allowing it to choose when to
synchronise (picking an optimal time to synchronise rather
than just picking the order in which to synchronise elements
in the database), and also allowing the application to gener-
ally alter its behaviour based on the expected divergence.

In TACT [7] a number of metrics are proposed that al-
low the control of the replica divergence:Numerical error,
Order error andStaleness. However, these metrics control
the divergence rather than attempt to estimate its probable
divergence.

7. Conclusions

This paper has described how probabilistic models can
be used to estimate replica divergence and has given exam-
ples as to the sort of decisions that can be made based upon
these models to improve the end-user experience. We have
given a proof-of-concept demonstration of the approach in
two simple applications and have suggested further, more
complex examples to which the methods can be applied.

References

[1] C. M. Bishop.Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995.

[2] J. Cho and H. Garcia-Molina. Estimating frequency of
change. Submitted for publication., 2000.

[3] J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. InProc. 2000 ACM Int. Conf. on Man-
agement of Data (SIGMOD), May 2000.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Http version 1.1 rfc 2616.
http://www.w3.org/Protocols/Specs.html, 1999.

[5] K. V. Mardia and P. E. Jupp.Directional Statistics. John
Wiley and Sons, Chichester, West Sussex, 2nd edition, 1999.

[6] H. Yu, L. Breslau, and S. Shenker. A scalable web cache con-
sistency architecture. InProc. ACM SIGCOMM’99, Boston,
MA, USA, September 1999.

[7] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. In4th Symp. on
Operating System Design and Implementation (OSDI), Oct
2000.

52

Self-Tuned Remote Execution for Pervasive Computing

Jason Flinn, Dushyanth Narayanan and M. Satyanarayanan
School of Computer Science
Carnegie Mellon University

Abstract

Pervasive computing creates environments saturated
with computing and communication capability, yet grace-
fully integrated with human users. Remote execution has
a natural role to play in such environments, since it lets
applications simultaneously leverage the mobility of small
devices and the greater resources of large devices. In this
paper, we describe Spectra, a remote execution system de-
signed for pervasive environments.

Spectra monitors resources such as battery energy and
file cache state which are especially important for mo-
bile clients. It also dynamically balances energy use and
quality goals with traditional performance concerns to de-
cide where to locate functionality. Finally, Spectra is self-
tuning—it does not require applications to explicitly specify
intended resource usage. Instead, it monitors application
behavior, learns functions predicting their resource usage,
and uses the information to anticipate future behavior.

1 Introduction

Remote execution is an old and venerable topic in sys-
tems research. Systems such as Condor [3] and Butler [15]
have long provided the ability to exploit spare CPU cycles
on other machines. Yet, the advent of pervasive computing
has created new opportunities and challenges for remote ex-
ecution. In this paper, we discuss these issues and how we
have addressed them in the implementation of Spectra, a
remote execution system for pervasive computing.

The need for mobility leads to smaller and smaller com-
puting devices. The size limitations of these devices con-
strain their compute power, battery energy and storage
capacity. Yet, many modern applications are resource-
intensive, with demands that often outstrip device capacity.
Remote execution using wireless networks to access com-
pute servers thus fills a natural role in pervasive computing,
allowing applications to leverage both the mobility of small
devices and the greater resources of stationary devices.

Pervasive computing also creates new challenges [19].

When locating functionality, Spectra must balance the tra-
ditional goal of minimizing application latency with new
goals such as maximizing battery lifetime. It must allow
for wider variation in resources such as CPU and network
bandwidth and monitor new resources such as energy use
and cache state.

Pervasiveness causes additional complexity, and it is un-
reasonable to leave the burden of handling this complex-
ity to applications. Spectra does not require applications to
specify resource requirements for a variety of platforms and
output qualities. Instead, it isself-tuning—it monitors ap-
plication resource usage in order to predict future behavior.

2 Design considerations

The design of Spectra has been greatly influenced by the
need to address the complexities of pervasive computing.

Spectra weighs several possibly divergent goals when
deciding where to execute applications. Performance re-
mains important in mobile environments, but is no longer
the sole consideration. It is also vital to conserve energy so
as to prolong battery lifetime. Quality is another factor—a
resource-poor mobile device may only be able to provide
a low fidelity version of a data object [16] or computa-
tion [20], while a stationary machine may be able to gen-
erate a better version.

Spectra monitors environmental conditions and adjusts
the relative importance of each goal. For example, energy
use is paramount when a device’s battery is low. However,
when the battery is charged, performance considerations
may dominate. Monitoring battery state and expected time
to recharge allows Spectra to adjust the relative importance
of these goals.

Spectra monitors resources that are uniquely significant
in pervasive environments. In addition to battery energy,
file cache state is often critical. Consider a mobile client
with limited storage running a distributed file system. When
there is a choice of remote execution sites, a server with a
warmer file cache may often be preferable to one with a
faster processor.

Finally, Spectra is self-tuning. Applications need not

53

Linux Kernel

Coda
nomadic file access

Odyssey
resource monitoring, adaptation

Spectra
remote execution

Prism
task support, user intent, high-level proactivity

App1 App2 App3 • • • •

Intelligent Networking
network weather monitoring, network proactivity

other Aura runtime support

Figure 1. Aura architecture

specify their expected usage of various resources. Providing
estimates for even a single resource such as battery energy
is very difficult since energy use depends upon the hard-
ware platform and the degree of power management used.
Spectra applications need only specify operations of interest
and the input parameters to those operations. Spectra mon-
itors and logs resource usage as applications execute. From
logged data, it learns functions relating input parameters to
resource usage, allowing it to predict future application re-
source use.

3 Implementation

3.1 Spectra overview

Spectra is the remote execution component of Aura, a
new computing system being built at Carnegie Mellon Uni-
versity. Aura provides users with an invisible halo of com-
puting and information services that persists regardless of
location. As shown in Figure 1, an Aura client is composed
of many parts. The Coda file system [10] allows mobile
nodes to access shared data, even when weakly-connected
or disconnected from the network. Odyssey [16] supports
applications that vary their fidelity as resource availability
changes. Fidelity is an application-specific metric of qual-
ity expressed in multiple discrete or continuous dimensions.
For instance, dimensions of fidelity for speech recognition
are vocabulary size and acoustic model complexity.

To provide a complete solution, Spectra must address
several complex issues, including function placement, ser-
vice discovery, execution mechanism and data consistency.
Our initial prototype focuses on the first problem: decid-
ing where and how operations should be executed. It uses
existing technology to address the remaining issues. We
hope to leverage service discovery protocols which allow

attribute-value lookup [1, 23]. Similarly, while we currently
use RPC-based remote execution, Spectra could be modi-
fied to use other mechanisms such as mobile code. Finally,
Coda provides Spectra a single shared file system across
multiple machines.

Spectra consists of three main elements:
� an application interface for describing operations.
� monitors that predict resource use and availability.
� a decision engine that selects the best execution option.

3.2 Application interface

Applications use the Odyssey multi-fidelity inter-
face [14] to communicate with Spectra. The fundamental
unit of discourse is theoperation: a code component which
may profit from remote execution. Spectra targets applica-
tions which perform operations of one second or more in
duration—examples are speech recognition, rendering for
augmented reality, and document processing.

Applications first register operations with Spectra. A
registration lists possible fidelities and methods of dividing
computation between local and remote machines. It also
lists input parameters that affect operation complexity.

For example, we have modified the Janus speech recog-
nizer [24] to use Spectra. The basic operation is utterance
recognition. This operation has two fidelities: full and re-
duced. Reduced fidelity uses a smaller, more task-specific
vocabulary than full fidelity. There are three modes of di-
viding computation: recognition may be performed on the
client (local mode), on a server (remote mode) or on both
(hybrid mode). In hybrid mode, the first phase is performed
locally, yielding a greatly compressed data set which is
shipped remotely for the completion of recognition. The
single input parameter is the length of the utterance.

Prior to operation execution, an application invokes
Spectra to determine how and where the operation will ex-
ecute. The application passes in the value of the input
parameters—for example, the size of an utterance to be rec-
ognized. Spectra chooses the best fidelity level and execu-
tion mode as described in Section 3.4 and returns these val-
ues to the application. For remote operations, Spectra also
chooses the server on which the operation will be executed.

Applications execute operations by making remote pro-
cedure calls to the selected server. Direct procedure calls
can be used in the local case to optimize performance.
Applications inform Spectra when operations complete, at
which time Spectra logs resource usage. The logged data
allows Spectra to improve resource prediction over time.

3.3 Resource monitoring

Only part of the data needed by Spectra comes from
applications—the remainder is supplied by resource moni-

54

tors. Resource monitors are modular, resource-specific code
components that predict resource availability and demand.

Prior to operation execution, each monitor predicts how
much of a resource the operation will receive. Monitors
make predictions for the local machine and for any re-
mote servers on which the operation may execute. For in-
stance, the network monitor predicts bandwidth and round-
trip times between the client and each server. Spectra gath-
ers the predictions in aresource snapshot, which provides a
consistent view of resource availability for that operation.

Resource monitors observe application behavior to pre-
dict future resource demand. While an operation executes,
each monitor measures its resource usage. Upon opera-
tion completion, these values are logged, along with the
operation’s input parameters, fidelity, and method of divid-
ing computation. From this data, Spectra learns functions
which predict operation resource usage. Thus, the more an
operation is executed, the more accurately its resource us-
age is predicted.

We have built monitors for four resources: CPU, net-
work, battery, and cache state. As CPU and network are
well-understood resources, we describe these monitors only
briefly here. The CPU monitor, described in [14], predicts
availability using a smoothed estimate of recent CPU load,
weighted by the maximum speed of the processor. During
operation execution, the CPU monitor measures CPU cy-
cles consumed on local and remote machines. The network
monitor predicts available bandwidth and round-trip times
to remote machines using the algorithm in [16]. For each
operation, it measures bytes sent and received, as well as
the number of RPCs.

3.3.1 The battery monitor

The battery monitor must provide accurate, detailed infor-
mation without hindering user mobility. Previous energy
measurement approaches are thus insufficient for the task. It
is infeasible to use external measurement equipment [7, 21]
since such equipment can only be used in a laboratory set-
ting. Alternatively, one can calibrate the energy use of
events such as network transmission, and then later approx-
imate energy use by counting event occurrences [4, 13].
However, results will be inaccurate when the calibration
does not anticipate the full set of possible events, or when
events such as changes in screen brightness are invisible to
the monitor.

Our battery monitor takes advantage of the advent of
“smart” batteries: chips which report detailed information
about battery levels and power drain. The monitor predicts
availability by querying the amount of charge left in the
battery. It measures operation energy use by periodically
polling the chip to sample energy use.

The first platform on which we have implemented our

battery monitor is Compaq’s Itsy v2.2 [8], an advanced
pocket computer with a DS2437 smart battery chip [5].
Since the DS2437 reports average current drawn over a
31.25ms. period and voltage levels change little, we could
measure power by sampling current at 32 Hz. Unfortu-
nately, the DS2437’s communication protocol makes the
overhead of frequent sampling unacceptably high. The bat-
tery monitor balances overhead and accuracy by sampling at
6 Hz during operation execution. This rate accurately mea-
sures operation energy use with low (1.8%) CPU overhead.
At other times, the monitor samples at 1 Hz—a rate suffi-
cient to accurately measure battery charge and background
power drain.

3.3.2 The cache state monitor

Data access can consume significant time and energy when
items are unavailable locally. The cache state monitor esti-
mates these costs by predicting which uncached objects will
be accessed. It currently provides estimates for one impor-
tant class of items: files in the Coda file system.

During operation execution, the monitor observes ac-
cesses of Coda files. When an operation completes, the
monitor logs the name and size of each file accessed.

The cache state monitor currently uses a simple predic-
tion scheme—it assumes the likelihood of a file being ac-
cessed during an operation is similar to the percentage of
times it was accessed during recent operations of similar
type and input parameters. The access likelihood is main-
tained as a weighted average, allowing the monitor to adjust
to changes in application behavior over time. For each file
that may be accessed, the monitor queries Coda to deter-
mine if the file is cached. If it is uncached, the expected
number of bytes to fetch is equal to the file’s size multiplied
by its access likelihood. The monitor estimates the number
of bytes that an operation will fetch by summing individual
predictions for each file.

The monitor makes predictions for both local and remote
machines. It also estimates the rate at which data will be
fetched from Coda servers so that Spectra can calculate the
expected time and energy cost of fetching uncached items.

3.4 Selecting the best option

Spectra’s decision engine chooses a location and fidelity
for each operation. Its inputs are the application’s descrip-
tion of the operation and the monitors’ snapshot of resource
availability. It uses Odyssey’s multi-fidelity solver [14] to
search the space of possible fidelities, remote servers, and
methods of dividing computation. Using gradient-descent
heuristics, the solver attempts to find the best execution al-
ternative.

Spectra evaluates alternatives by their impact onuser
metrics. User metrics measure performance or quality per-

55

ceptible to the end-user—they are thus distinct from re-
sources, which are not directly observable by the user (other
than by their effect on metrics). For instance, while battery
energy and CPU cycles are resources, execution latency and
change in expected battery lifetime are user metrics.

To evaluate an alternative, Spectra first calculates a
context-independent value for each metric. It then weights
each value with animportance function that expresses the
current desirability of the metric to the user. Finally, it cal-
culates the product of the weighted metrics to compute a
single value for evaluating the alternative. This calculation
is a specific instance of the broader concept of “resource-
goodness mappings” [17]. Spectra currently considers three
user metrics in its evaluation: execution latency, battery life-
time, and application fidelity.

Spectra may use many resource predictions to calculate
a metric’s context-independent value. For example, execu-
tion latency is the sum of the predicted latencies of fetching
uncached items, network transmissions, and processing on
local and remote machines. Processing latencies are cal-
culated by dividing the predicted cycles needed for execu-
tion by the predicted amount of cycles available per second.
Network and cache latencies are calculated similarly.

Since importance functions express the current desirabil-
ity of metrics to the user, they may change over time. For
example, we use goal-directed adaptation [6] as the impor-
tance function for battery lifetime. The user specifies a du-
ration that the battery should last, and the system attempts
to ensure that the battery lasts for this duration. A feedback
parameter,c, represents how critical energy use is at the
present moment. Spectra adjusts this parameter using esti-
mates of battery charge and recent power usage reported by
the battery monitor. Given expected energy use,E, the bat-
tery importance function is(1=E)c. As an example, when
the computer operates on wall power, c is 0 and energy has
no impact in evaluating alternatives.

For execution latency, we use an application-specific im-
portance function that reflects perceptible deadlines for op-
eration completion. For example, the speech recognizer’s
importance function for latency,L, is simply 1=L. This
function has the intuitive property that a recognition that
takes twice as long is half as desirable to the user.

Fidelity is a multidimensional metric of application-
specific quality. The importance of fidelity is user-
dependent and is often expressed with utility functions that
map each user’s preferences to a single value. For the
speech recognizer, the fidelity importance function gives re-
duced fidelity the value 0.5 and full fidelity the value 1.0.

4 Preliminary evaluation

Our evaluation measured how well Spectra adapts to
changes in resource availability. As a sample application,

we used the speech recognizer described in Section 3.2.
We limited execution to two machines. The client was an

Itsy v2.2 pocket computer with a 206 MHz SA-1100 proces-
sor and 32 MB DRAM. The server was an IBM T20 laptop
with a 700 MHz PIII processor and 256 MB DRAM. Since
the Itsy lacks a PCMCIA slot (such as is available on the
Compaq iPAQ), the two machines were connected with a
serial link.

We first recognized 15 utterances so that Spectra could
learn the application’s resource requirements. We then cre-
ated several scenarios with varying resource availability and
measured how well Spectra adapted application behavior
when a new utterance was recognized. Figure 2(a) shows
measured execution latency and energy use for each possi-
ble combination of fidelity and location. For each scenario,
the option that best satisfies the evaluation criteria for the
speech application is highlighted. Figure 2(b) shows results
when Spectra chooses the alternative to execute.

In the baseline scenario both computers are unloaded and
connected to wall power. Spectra correctly chooses the hy-
brid mode and full vocabulary here. Using the reduced vo-
cabulary in hybrid mode slightly reduces execution time,
but not nearly enough to counter the reduction in fidelity.

Each remaining scenario differs from the baseline by
varying the availability of a single resource. In the battery
scenario, the client is battery-powered with an ambitious
battery lifetime goal of 10 hours. Energy use is critical, so
Spectra chooses the remote mode. As before, the small en-
ergy and latency benefits of using the reduced vocabulary
do not outweigh the decrease in fidelity.

The network scenario halves the bandwidth between the
client and server. Spectra correctly chooses hybrid execu-
tion and the full vocabulary in this scenario. The CPU sce-
nario loads the client processor. Spectra chooses remote
execution since the cost of doing the first recognition phase
locally outweighs the benefit of reduced network usage.

In the cache scenario, the server is made unavailable
and the 277 KB language model for the full vocabulary is
flushed from the client’s cache. Spectra uses the reduced
vocabulary since the cache miss makes full fidelity recogni-
tion approximately 3 times slower than the reduced case.

Though preliminary, these results are encouraging, since
Spectra chooses the best execution mode in each scenario.
Further, the overhead of using Spectra to choose an alterna-
tive is within experimental error in all cases.

5 Related work

Spectra’s uniqueness derives from its focus on pervasive
computing. It is the first remote execution system to mon-
itor battery and cache state, support self-tuning operation,
and balance performance goals with battery use and fidelity.

56

Local/Reduced Local/Full Hybrid/Reduced Hybrid/Full Remote/Reduced Remote/Full
(Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0)
Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy

Scenario (s.) (J.) (s.) (J.) (s.) (J.) (s.) (J.) (s.) (J.) (s.) (J.)

baseline 37.4(0.1) 69.2(0.5) 7.8(0.6) 8.7(0.7) 9.3(0.6) 10.3(0.3)

battery 37.4(0.0) 22.6(0.2) 69.2(0.6) 43.5(0.5) 7.3(0.2) 3.5(0.0) 8.6(0.6) 3.6(0.1) 9.2(0.4) 2.4(0.1) 10.2(0.5) 2.5(0.1)
network 37.4(0.2) 69.8(0.4) 9.2(0.1) 10.5(0.6) 22.2(3.7) 21.4(4.3) N/A

CPU 75.2(0.4) 137.6(0.6) 12.4(1.2) 12.7(0.1) 10.8(1.4) 12.0(2.7)
cache 36.6(0.2) 105.4(0.4)

(a) Time and energy cost of each possible execution alternative

Scenario Best Alternative Chosen AlternativeTime (s.) Energy (J.) Fidelity
baseline Hybrid/Full Hybrid/Full 8.7(0.8) 1.0
battery Remote/Full Remote/Full 10.6(1.2) 2.7(0.3) 1.0
network Hybrid/Full Hybrid/Full 10.7(1.1) 1.0

CPU Remote/Full Remote/Full 12.0(1.2) 1.0
cache Local/Reduced Local/Reduced 36.7(0.2) 0.5

(b) Results of using Spectra to select an alternative

This figure shows how Spectra adapts the behavior of a speech recognizer in the resource availability scenarios described in Section 4. Part
(a) shows the value of the three user metrics considered by Spectra (execution time, energy use, and fidelity) for each of the six possible
execution alternatives. The highlighted alternative is the one that best satisfies the evaluation criteria for the speech application. Part (b)
shows the results of using Spectra to select an alternative—it lists the best possible alternative, the alternative actually chosen by Spectra,
and the values of the three metrics. Energy use is only measured in the battery scenario since the client operates on wall power in all other
scenarios. Each result shown is the mean of five trials—standard deviations are shown in parentheses.

Figure 2. Spectra speech recognition results

As the field of remote execution is enormous, we restrict
our discussion of related work to the most closely related
systems. Rudenko’s RPF [18] considers both performance
and battery life when deciding whether to execute processes
remotely. Kunz’s toolkit [12] uses similar considerations
to locate mobile code. Although both monitor application
execution time and RPF also monitors battery use, neither
monitors individual resources such as network and cache
state, limiting their ability to cope with resource variation.

Kremer et al. [11] propose using compiler techniques to
select tasks that might be executed remotely to save energy.
At present, this analysis is static, and thus can not adapt
to changing resource conditions. Such compiler techniques
are complementary to Spectra, in that they could be used to
automatically select Spectra operations and insert Spectra
calls in executables.

Vahdat [22] notes issues considered in the design of
Spectra: the need for application-specific knowledge and
the difficulty of monitoring remote resources.

Several systems designed for fixed environments share
Spectra’s self-tuning nature. Coign [9] statically partitions
objects in a distributed system by logging and predicting
communication and execution costs. Abacus [2] moni-
tors network and CPU usage to migrate functionality in a
storage-area network. Condor monitors goodput [3] to mi-
grate processes in a computing cluster.

6 Conclusion

Remote execution lets pervasive applications leverage
both the mobility of small devices and the greater resources
of large devices. Our initial results with Spectra show that
this benefit can be effectively realized if the system moni-
tors pervasive resources, balances multiple goals in evalua-
tion, and supports self-tuning operation.

Yet, much work remains to be done. Our early expe-
rience with Spectra suggests that predictions often involve
tradeoffs between speed and accuracy. For example, when
estimating remote CPU availability, Spectra might use a
slightly stale cached value, or it might query the server
to obtain more accurate information. If the difference be-
tween possible alternatives is slight, as for example with
short-running operations, Spectra would do better to make a
“quick and dirty” decision. However, when alternatives dif-
fer significantly, Spectra should invest more effort to choose
the optimal alternative. This suggests to us that Spectra it-
self should be adaptive—it should balance the amount of
effort used to decide between alternatives against the possi-
ble benefit of choosing the best alternative.

Since resource logs can grow quite large for complex op-
erations, we hope to develop methods for compressing log
data without sacrificing significant semantic content. We
also plan to investigate how the importance functions used

57

in evaluation can be modified with simple user interfaces.
Finally, we wish to evaluate Spectra using more dynamic
resource scenarios.

Acknowledgements

Many people contributed to this paper. Keith Farkas, Lawrence
Brakmo, Deborah Wallach, Bill Hamburgen, and the rest of the
Itsy team at Compaq Western Research Lab provided a great deal
of software and support that aided us in porting applications to the
Itsy platform. Jan Harkes and Shafeeq Sinnamohideen assisted
with the Coda file system. Rajesh Balan, Keith Farkas, David
Petrou, and the anonymous reviewers gave us several helpful com-
ments that improved the paper.

This research was supported by the National Science Founda-
tion (NSF) under contracts CCR-9901696 and ANI-0081396, the
Defense Advanced Projects Research Agency (DARPA) and the
U.S. Navy (USN) under contract N660019928918, IBM Corpo-
ration, Nokia Corporation, Intel Corporation, and Compaq Cor-
poration. The views and conclusions contained in this document
are those of the author and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the NSF,
DARPA, USN, IBM, Nokia, Intel, Compaq, or the U.S. govern-
ment.

References

[1] Adjie-Winoto, W., Schartz, E., Balakrishnan, H., and Lil-
ley, J. The Design and Implementation of an Intentional
Naming System.17th ACM Symp. on Op. Syst. and Princ.,
pages 202–16, Kiawah Island, SC, Dec. 1999.

[2] Amiri, K., Petrou, D., Ganger, G., and Gibson, G. Dynamic
Function Placement for Data-Intensive Cluster Computing.
USENIX Annual Tech. Conf., San Diego, CA, June 2000.

[3] Basney, J. and Livny, M. Improving Goodput by Co-
scheduling CPU and Network Capacity.Intl. Journal of High
Performance Computing Applications, 13(3), Fall 1999.

[4] Bellosa, F. The Benefits of Event-Driven Energy Accounting
in Power-Sensitive Systems.9th ACM SIGOPS European
Workshop, Kolding, Denmark, Sept. 2000.

[5] Dallas Semiconductor Corp., 4401 South Beltwood Park-
way, Dallas, TX.DS2437 Smart Battery Monitor, 1999.

[6] Flinn, J. and Satyanarayanan, M. Energy-Aware Adaptation
for Mobile Applications.17th ACM Symp. on Op. Syst. and
Princ., pages 48–63, Kiawah Island, SC, Dec. 1999.

[7] Flinn, J. and Satyanarayanan, M. PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications.2nd
IEEE Workshop on Mobile Comp. Syst. and Apps., pages 2–
10, New Orleans, LA, Feb. 1999.

[8] Hamburgen, W. R., Wallach, D. A., Viredaz, M. A.,
Brakmo, L. S., Waldspurger, C. A., Bartlett, J. F., Mann, T.,
and Farkas, K. I. Itsy: Stretching the Bounds of Mobile Com-
puting. IEEE Computer, 13(3):28–35, Apr. 2001.

[9] Hunt, G. C. and Scott, M. L. The Coign Automatic Dis-
tributed Partitioning System.3rd Symposium on Operating
System Design and Implemetation, New Orleans, LA, Feb.
1999.

[10] Kistler, J. and Satyanarayanan, M. Disconnected Operation
in the Coda File System.ACM Trans. Comput. Syst., 10(1),
Feb. 1992.

[11] Kremer, U., Hicks, J., and Rehg, J. M. Compiler-Directed
Remote Task Execution for Power Management.Work-
shop on Compilers and Operating Systems for Low Power,
Philadelphia, PA, Oct. 2000.

[12] Kunz, T. and Omar, S. A Mobile Code Toolkit for Adaptive
Mobile Applications.3rd IEEE Workshop on Mobile Comp.
Syst. and Apps., pages 51–9, Monterey, CA, Dec. 2000.

[13] Lorch, J. R. and Smith, A. J. Apple Macintosh’s Energy
Consumption.IEEE Micro, 18(6):54–63, Nov./Dec. 1998.

[14] Narayanan, D., Flinn, J., and Satyanarayanan, M. Using His-
tory to Improve Mobile Application Adaptation.3rd IEEE
Workshop on Mobile Comp. Syst. and Apps., pages 30–41,
Monterey, CA, Aug. 2000.

[15] Nichols, D. Using Idle Workstations in a Shared Comput-
ing Environment.11th ACM Symp. on Op. Syst. and Princ.,
pages 5–12, Austin, TX, Nov. 1987.

[16] Noble, B. D., Satyanarayanan, M., Narayanan, D.,
Tilton, J. E., Flinn, J., and Walker, K. R. Agile Application-
Aware Adaptation for Mobility. 16th ACM Symp. on Op.
Syst. and Princ., pages 276–87, Saint-Malo, France, Oct.
1997.

[17] Petrou, D., Narayanan, D., Ganger, G., Gibson, G., and
Shriver, E. Hinting for Goodness’ Sake.8th Workshop on
Hot Topics in OS, May 2001.

[18] Rudenko, A., Reiher, P., Popek, G., and Kuenning, G.
The Remote Processing Framework for Portable Computer
Power Saving.ACM Symp. Appl. Comp., San Antonio, TX,
Feb. 1999.

[19] Satyanarayanan, M. Pervasive Computing: Vision and Chal-
lenges.To appear in IEEE Personal Communications.

[20] Satyanarayanan, M. and Narayanan, D. Multi-Fidelity Algo-
rithms for Interactive Mobile Applications.3rd Intl. Work-
shop on Discrete Alg. and Methods in Mobile Comp. and
Comm., pages 1–6, Seattle, WA, Aug. 1999.

[21] Stemm, M. and Katz, R. H. Measuring and Reducing Energy
Consumption of Network Interfaces in Hand-Held Devices.
IEICE Trans. Fundamentals of Electr., Comm. and Comp.
Sci., 80(8):1125–31, Aug. 1997.

[22] Vahdat, A., Lebeck, A., and Ellis, C. Every Joule is Precious:
The Case for Revisiting Operating System Design for Energy
Efficiency.9th ACM SIGOPS European Workshop, Kolding,
Denmark, Sept. 2000.

[23] Viezades, J., Guttman, E., Perkins, C., and Kaplan, S.Ser-
vice Location Protocol. IETF RFC 2165, June 1997.

[24] Waibel, A. Interactive Translation of Conversational Speech.
IEEE Computer, 29(7):41–8, July 1996.

58

Energy is just another resource:
Energy accounting and energy pricing in the Nemesis OS

Rolf Neugebauer∗

Department of Computing Science
University of Glasgow

Glasgow, G12 8QQ, Scotland, U.K.
neugebar@dcs.gla.ac.uk

Derek McAuley
Marconi Laboratory
10 Downing Street

Cambridge CB2 3DS, U.K.
derek.mcauley@marconi.com

Abstract

In this position paper, we argue that, with an appropri-
ate operating system structure, energy in mobile computers
can be treated and managed as just another resource. In
particular, we investigate how energy management could
be added to the Nemesis OS which provides detailed and
accurate resource accounting capabilities in order to pro-
vide Quality of Service (QoS) guarantees for all resources
to applications. We argue that, with such an operating sys-
tem, accounting of energy to individual processes can be
achieved. Furthermore, we investigate how an economic
model, proposed for congestion avoidance in computer net-
work, and recently applied to CPU resource management,
can be used as a dynamic, decentralised energy manage-
ment system, forming a collaborative environment between
operating system and applications.

1 Motivation

Recently, there has been increased research activity in
energy management in operating systems. The main moti-
vation is the increased use of mobile devices such as lap-
top computers or PDAs, but environmental issues, such as
overall power consumption and the noise generated by ac-
tive cooling also play a role. A general consensus of this
research is that applications should be involved in the man-
agement of energy, as the different modes of operation they
might offer can have a significant impact on overall power
consumption of the system (e.g., [6, 8, 24]). In this pa-
per, we argue that, with an appropriate operating system
structure, energy can be managed just like any other re-
source. Furthermore, we investigate how a decentralised

∗Rolf Neugebauer has been supported by a Marie Curie Fellowship
from the European Union, Contract-No.: ERBFMBICT972363.

resource management architecture can be used to manage
energy consumption in mobile computers.

This paper is motivated by two observations: First, re-
cent research efforts to move energy management into the
operating system, and indeed, the application domain, ex-
hibit similar problems to those we have observed while
working on the Nemesis operating system [19], an OS pro-
viding applications with Quality of Service (QoS) guaran-
tees for all physical resources. An essential prerequisite
for providing QoS guarantees (and more generally, man-
aging resource allocations to competing clients) is accu-
rate accounting of resource usage to individual applications
and users. We observed that the mechanisms, deployed
in Nemesis for accounting for the usage of traditional re-
sources (e.g., CPU, network, disks, and displays), can be
applied to accurately account for the energy consumption of
individual applications as well. In section 2 we detail how
Nemesis’ resource accounting mechanisms can be utilised
and extended to provide accounting of energy consumption.

The second observation is related to our ongoing re-
search where we apply pricing and charging mechanisms to
the area of resource management in multimedia operating
systems [22]. We view charges, indicating the current level
of resource contention, as feedback signals to processes. By
limiting the amount of credits available, processes are given
the incentive to adapt to these feedback signals in an appli-
cation specific fashion. This forms a simpledecentralised
model for resource management, capable of yielding re-
source allocations proportional to the credit allocation for
each process. In section 3 we investigate how this model,
which previously has been successfully applied to both net-
work congestion control [21, 17, 18] and CPU resource allo-
cation [22], can be applied to manage energy consumption.

This paper is rounded off by a comparison of related
work and our conclusions.

59

2 Energy Accounting

The Nemesis operating system was designed to provide
accurate accounting of all resources consumed by individ-
ual applications. In traditional operating systems a signifi-
cant amount of resources are consumed anonymously, i.e.,
unaccounted for, because a significant proportion of code is
executed in the kernel, or in shared servers, on behalf of pro-
cesses. In a multi-media operating system this may lead to
an undesired effect, termedQoS-Crosstalk [19], where one
process could influence the performance of other processes
by causing contention for shared resources. In Nemesis, this
problem has been addressed by multiplexing shared physi-
cal resources only once and at the lowest possible level, fa-
cilitating accurate accounting of resource consumption. The
resulting operating system is vertically structured [1], with
most of the functionality provided by traditional operating
systems instead being executed by the applications them-
selves, implemented as user-level shared libraries1.

An effect similar to QoS-crosstalk has been observed in
the context of energy management, most notably in [8]:
a significant amount of energy is consumed by shared re-
sources such as the networking stack, the kernel, or the
X-server, and by shared devices, such as the display, disk
or network card. We argue, that if the operating system
is already designed to accurately account for traditional re-
source usage, then it is possible to accurately account for
energy consumption as well.

2.1 Resource Accounting in Nemesis

Nemesis provides QoS guarantees, and therefore accu-
rate resource accounting, for the following traditional re-
sources: CPU [19], memory [12], I/O devices such as the
network interface [4] and disk drives [2], and framebuffer
devices [1]. Processes can make reservations of slices of
CPU which are then scheduled using an Earliest Deadline
First (EDF) based real-time scheduler. CPU resource usage
is accounted for with cycle accuracy. For memory, individ-
ual processes can request ranges of virtual memory which
are guaranteed to be backed by a specified number of phys-
ical pages. Processes are then responsible for their own
virtual memory management. Device drivers for I/O de-
vices are implemented as privileged, user-level processes
which register interrupt handlers with the system. The in-
terrupt handler typically only clears the interrupt condition,
and sends an event to the device driver process, effectively
decoupling interrupt notification from interrupt servicing.
The device driver process only implements infrequent out-

1This structure is comparable to Exokernel systems [15], though the
motivation behind the design is different. The principal motivation for the
Exokernel design was to allow applications to optimise the implementation
of various system components using application-specific knowledge.

of-band management functions and performs the single de-
multiplexing function for the hardware device (e.g., packet
filtering for network devices)2. All higher level functional-
ity, such as network stack processing, is performed at the
user level utilising (shared) libraries. Similarly, processes
own individual pixels or regions of pixels of the framebuffer
device and all higher level drawing primitives are performed
by the processes themselves. Again, protection and access
control is managed by the device driver.

As a result of this OS architecture, most activities typi-
cally performed by an operating system kernel or services
are performed by the applications themselves and virtually
all resources consumed can be accounted to individual pro-
cesses, i.e., there is no significant anonymous resource con-
sumption.

2.2 Energy Accounting to Processes

In this section we investigate how this model can be ex-
tended to provide per-process accounting of energy. Con-
sider a number of processesP (indexed byi) and a num-
ber of devices and resourcesJ (indexed byj). Each ac-
tive device consumes an amountEj of energy. As Neme-
sis provides accurate accounting information for the usage
of the resourcesJ by the processesP , the proportionx ij

of the individual resources a process is using can be deter-
mined. For example, consider a display device with process
Pi owningpi pixels. Then the proportionxiDisplay of the
display resource belonging toPi is xiDisplay = pi/

∑
i pi.

Similarly, the proportions for the network device or disk de-
vice can be determined based either on the number of bytes
transferred or on the proportions of time processes access
the device3. Using the proportions of the resources used
and the energyEj consumed by each device, the overall
energy consumption for each process can be determined:
Ei =

∑
j(Ej × xij). The system should inform each pro-

cess about their total energy consumptionE i as well as its
breakdown for each device (i.e.,Ej × xij).

2.3 Implementation Issues

Unfortunately, the energyEj each device is consuming
is difficult to determine on typical laptops or other mobile
devices. Ideally, there would be hardware support measur-
ing the power consumption, i.e., voltage and current drawn,
for each device individually. Then, the device driver could

2With appropriate hardware support, as provided, for example, by some
network cards, de-multiplexing can be mainly performed in hardware, thus
reducing the resources needed by the device driver. A software mechanism,
known ascall-privs [4, 1], also allows some of the de-multiplexing costs
to be accounted to the clients.

3For network devices, access times may be the more appropriate basis,
as processes receiving data require the device to be active without neces-
sarily transferring data.

60

frequently sample the current power consumption of the de-
vice and account the energy to its client processes accord-
ingly. However, we are not aware of any system providing
such built-in online measurement facilities.

Rather than requiring the provisioning of such facilities,
we propose a mechanism, similar to PowerMeasure [20],
to estimate energy consumption of the individual devices.
Modern laptops provide advanced power management fea-
tures through the Advanced Configuration and Power Inter-
face (ACPI) [14]. Unlike its predecessor Advanced Power
Management (APM) [13], ACPI encourages collaborative
energy management between BIOS and operating system,
leaving power management policy decisions to the OS
while providing detailed information about each device and
its possible power states through a hierarchical namespace.
The namespace contains control methods which the OS can
use to manage the devices under the control of ACPI. An
ACPI compliant BIOS also provides access to detailed in-
formation about batteries by including a variant of the Smart
Battery interface [10].

Using the Smart Battery interface, the overall current
power consumption of the system can be measured; the in-
terface exports queries on the current voltage and current
rate of discharge (either in mA or in mW). During a cal-
ibration process, individual devices can be systematically
placed into their supported power states using ACPI control
methods, and the resulting change in the system’s power
consumption can be observed. For I/O devices, especially
for disks, where state transitions can consume consider-
able amounts of energy, the power consumption during state
transitions should also be measured during the calibration
process.

From this information, energy vectors�Ej , containing the
estimated energy consumption for each device in their re-
spective power saving states and state transitions can be de-
rived. For example, the energy vector for a display would
contain energy consumption values for the different bright-
ness levels the display supports. During normal operation,
the operating systems keeps track of the state each device is
currently operating in and uses the correspondingE j value
when calculating a process’ energy consumption. The en-
ergy consumed during state transitions, such as a disk spin-
ning up, can be accounted to processes using the device in
a time window after the state transition.

Alternatively, it is also conceivable that laptop vendors
would provide detailed energy profiles for each device. This
information, similar to the one obtainable during the cali-
bration process, could be stored in the ACPI namespace.

In either case, using energy consumption values for dis-
crete device states and state transitions would only lead
to estimates of the individual processes’ energy consump-
tion. Furthermore, it has been reported [3, 7], that non
device related activities, such as cache misses, may have

a significant impact on the overall energy consumption of
the system, especially in small, hand-held devices. Should
this significantly impact the accuracy of the per process en-
ergy accounting, the calibration process could be extended
to include micro-benchmarks; process performance counter
samples could be used during accounting, similar to [3, 7].

3 Energy Management

Accounting for a process’ energy consumption forms
only the basis on which advanced energy management can
be performed. Centralised, passive energy management
policies, such as provided by most APM BIOS implemen-
tations or the DPMS extensions in X-Servers, only provide
static policies where the user can specify timeouts, after
which parts of or the entire system are put into energy sav-
ing modes. It is now widely accepted [6, 8, 24] that en-
ergy management should be performed at a higher level and
may involve applications themselves. In [8] it is impres-
sively demonstrated how a variety of applications, execut-
ing in different modes of operation, can have a significant
impact on a system’s energy consumption. The authors of
[8] therefore argue that processes should form a collabora-
tive relationship with the operating system.

In our ongoing research [22] we are applying micro-
economic ideas to the area of resource management in op-
erating systems in a similar approach to [23]. Informally,
one can assume that basic resource consumption is free if
a resource has no resource contention (fixed costs for the
provisioning of the resource should be covered by fixed
charges). However, if a resource is congested (i.e., demand
exceeds the maximum supply) then everyone responsible
for the contention should be charged, and the charges should
be proportional to the users’ individual responsibility for
the contention. Prices, capturing thisexternal congestion
cost, are known asshadow prices and provide ameaning-
ful feedback signal to applications, as they convey infor-
mation about the level of contention and the user’s respon-
sibility for it. Applications can react to these feedback sig-
nals and dynamically adapt their behaviour in an application
and resource-specific way. Adaption is encouraged by lim-
iting the amount of credits available to individual processes.
Thus, operating system and applications together form ade-
centralised resource management system, with the OS de-
termining current resource prices and applications adapting
their behaviour accordingly. In this section, we investigate
how this model can be applied to energy management to
form the “collaborative relationship between OS and appli-
cations” also advocated by others [6, 8, 24].

61

3.1 The Pricing Model

First, we briefly summarise the theoretical framework
presented in [17, 18, 22]. In general, a user or processi
of a resource (i.e., energy) attempts to maximise its utility
ui(xi) obtained from the amount of the resourcex i con-
sumed. As the user is charged some costC(·) for the re-
source usage, the user seeks to maximiseUi(xi) = ui(xi)−
C(·). A social planner, on the other hand, attempts to
achieve asocially optimal resource allocation which max-
imises the sum of all the users’ utility minus the cost of the
overall system load (externalities):

max
∑

i

ui(xi) − C(
∑

i

xi) (1)

As this desirable optimisation problem requires knowledge
of the utility functions, which are typically not explicitly
known, Kelly et al. [16] suggest decomposing the optimisa-
tion problem into a user and a system problem and demon-
strate that the decomposed system also yields the socially
optimal resource allocation.

For this decomposition, suppose that a user is charged a
rateti proportional to the amount of the resourcex i the user
receives. Then the user faces the optimisation problem:

maxUi(xi) = ui(xi) − tixi (2)

For a monotonically increasing, concave, and continously
differentiable utility function the unique solution is:

u′
i(xi) = ti

If the resource manager seeks to achieve a socially optimal
resource allocation according to equation 1, it will set the
chargeti to the shadow pricep(y) depending on the loady
of the resource giving:

ti = p(y) =
d

dy
C(y) (3)

with C(y) being the rate at which cost is incurred at overall
loady. Thus, the feedback signal in the form of the charge
xip(y) is both proportional to the user’s resource allocation
and the congestion cost it incurs.

3.2 Charging for Energy

The decomposed approach requires the resource man-
ager to be able to assess the external cost of resource con-
tention C(y). It is straightforward to identify external
costs of resource contention in communication networks
(; dropped packets) and soft real-time systems (;missed
deadlines). For battery energy we adopt thegoal directed

approach, proposed in [8]: to a user the primary meaning-
ful, energy related performance metric is the lifetime ex-
pectancy of the current battery charge. In other words, the
user should be able to specify how long the current bat-
tery charge should last, and the energy management system
should strive to achieve this goal while maximising the util-
ity provided to the user4.

Access to the Smart Battery interface allows us to deter-
mine the remaining battery capacity. Thus, with the user
specified battery life expectancy, we can calculate the max-
imum average discharge rate of the battery acceptable to
achieve the user’s goal. If the current discharge rate ex-
ceeds this average discharge rate, the system runs the risk of
not being able to meet the user’s expectation5. This can be
interpreted as energy contention and the processes respon-
sible for the excess energy consumption should be charged
proportional to their current energy consumptionE i.

More specifically, in intervals∆t the reduction of bat-
tery capacity∆E is measured (courtesy of ACPI). If∆E
exceeds the maximum amount of energyEmax the system
is allowed to use in that interval, we charge every process
i proportional to the energy∆Ei it consumed during that
interval, thustixi from equation 2 equals∆Ei/∆E. As
the battery capacity is unlikely to decrease linearly, even
under constant load,Emax needs to be recalculated period-
ically (e.g., the Odyssey prototype [8], implementing a sim-
ilar mechanism, uses adaption intervals∆t of half a sec-
ond). The model of identifying shadow prices for energy
consumption is similar to the simple “slotted time” model
discussed in [11] for network congestion prices.

Applications interpret the charges as feedback signals
and may adapt their behaviour. In [8], the authors give a
number of good examples of how applications can change
their energy demands in application specific ways. Appli-
cations can adapt in various ways, making different trade-
offs with respect to energy consumption. While the charges
indicate the amount of adaption required, the detailed en-
ergy information provided to processes (i.e., the overall en-
ergy consumptionEi and its per resource breakdownEij)
can be used to aid the adaption strategy. By limiting the
amount of credits available to individual processes, appli-
cations are encouraged to perform adaption and the user
may use different credit allocations to prioritise processes
(e.g., to stop unimportant background processes from run-
ning when energy is scarce). Our experience with applying
a similar resource management mechanism to more tradi-

4For desktop computers, the “goal” could instead be for the system not
to need active cooling. An external cost of contention can then be identi-
fied, if active cooling is required. For server systems, a system administra-
tor could set a target energy consumption and resource contention can be
identified if this target is exceeded.

5If, however, even an idle or lightly loaded system cannot meet the
user’s expectation, the user should be informed, so that the user can recon-
sider the goal or his or her activities.

62

tion resources (network [18] and CPU [22]) shows that such
a decentralised resource management can lead to resource
allocations proportional to the credit allocation. We expect
that similar results can be achieved for energy allocations.

Not all applications may be capable of adapting their en-
ergy requirements. For these applications a user has two
options. Either the user decides that the application is im-
portant enough to run, in which case enough credits should
be allocated to it to offset the maximum charging rate the
application can incur; or the user does not value the appli-
cation enough for it to be run at all. For applications, where
no source code is available, application proxies, as in Pup-
peteer [5], can be deployed to transcode input data streams
based on the feedback signals to manipulate the energy con-
sumption of such applications.

It is worth pointing out that, in addition to the appli-
cation specific energy adaption, basic policies can also be
used by the system. For example, unused devices would be
switched off by their device driver, the user could select a
brightness level for the display appropriate for the environ-
ment the user is working in, and device drivers could put
devices in low power states, potentially trading off energy
consumption and performance based on stated user prefer-
ences and by observing device activity. These policies are
orthogonal to the resource management system discussed in
this paper.

4 Related Work

The energy accounting methodology, proposed in this
paper is based on previous work by researchers investigat-
ing the detailed characteristics of energy consumption of
mobile devices. Our proposed calibration process is very
similar to the PowerMeasure tool, described in [20], which
is used to characterise the energy consumption of Apple
PowerBook laptops. The tool places each component of
the laptop in different power states and observes the change
in its instantaneous power consumption using the built-in
battery hardware. The authors show that such an approach
is feasible and that the observed values are within 0.1% to
5.6% of the externally measured power consumption. El-
lis [6] describes a similar approach to determine the power
consumption of a Palm Pilot in known power states.

The PowerScope [9] and Farkas et al. [7] utilise an exter-
nal digital multimeter to measure the power consumption,
while manipulating the target system. PowerScope then as-
sociates power samples with program counter samples to
determine an energy profile of different software compo-
nents and processes. In addition, Farkas et al. are using a
set of micro-benchmarks to determine the energy consump-
tion of the memory subsystem. A similar methodology is
described in [3], which correlates various processor perfor-
mance counter events with energy consumption.

Unlike these systems, we propose to use the power char-
acteristics, gathered by such a methodology, to account the
entire energy consumption of a system to individual pro-
cesses. By taking advantage of the structure and the re-
source accounting mechanisms provided by the Nemesis
operating system, we believe that it is possible to directly
attribute the energy consumed by the individual devices to
the processes using them.

Our proposal for the resource management has some
similarities with Odyssey [8]. In Odyssey, a central resource
manager monitors the system’s energy consumption and at-
tempts to meet a user-specified battery lifetime. To achieve
this, Odyssey periodically samples the residual energy of
the battery, predicts future energy demand, and notifies ap-
plications with an upcall if adaption is required. If more
than one application is active, a simple priority scheme de-
termines which applications are notified. In contrast, our
economic based approach provides a more expressive feed-
back mechanism than the simple upcall mechanism used
in Odyssey. Furthermore, the per process energy account-
ing provides more input into an application’s adaption deci-
sions.

The Milli Watt project [6, 24] seeks to raise the man-
agement of energy to first-class status among performance
goals for operating system design and that applications
should be involved in the management of energy. We be-
lieve, that to an extent, the approach outlined in this paper
satisfies these aims.

Recently, the application of economic models to re-
source management in computer systems has received re-
newed attention, especially as a mechanism for congestion
control and provisioning of QoS in communication net-
works. Significant contributions in this area have been made
by economists (e.g., [21]), mathematicians (e.g., [17]), and
computer scientists (e.g., [18]). In our previous work, we
have applied similar techniques to CPU resource manage-
ment [22]. In this paper, we extended this work by applying
it to energy management in mobile computers.

5 Conclusions

We have argued that energy can be treated as just an-
other resource provided that the operating system structure
is appropriate. We have used the Nemesis OS as an ex-
ample of an existing resource-centric operating system, and
proposed a mechanism which allows us to account virtually
all energy consumed by the system to individual processes.
We believe that this can be achieved by accounting the en-
ergy consumption of individual devices, as determined by
a calibration process, to the processes in proportion to their
device usage. We argued that, as with any resource man-
agement system, accurate energy accounting to processes
has to form the basis for an energy management system.

63

We have also investigated how a pricing mechanism,
previously only applied to network congestion pricing and
CPU resource management, can be applied to energy man-
agement. In such a system, the operating system charges
individual processes for their energy consumption if the
overall demand for energy exceeds the amount necessary
to achieve a user-specified goal (e.g., a specified battery
lifetime). These charges can be interpreted by applica-
tions as meaningful feedback signals, to which they can
perform application-specific adaption, leading to adecen-
tralised form of energy management.

While there are still many open implementation issues,
e.g., the accuracy of the energy accounting process or de-
tails of the implementation of the pricing mechanism, we
believe that we have made a strong case to support our claim
that energy is just another resource.

Acknowledgement

We would like to thank Huw Evans and Peter Dickman
for their helpful comments on earlier versions of this paper
and the anonymous reviewers for the detailed feedback they
provided.

References

[1] P. Barham. Devices in a Multi-Service Operating System.
PhD thesis, University of Cambridge Computer Laboratory,
Oct. 1996.

[2] P. Barham. A fresh approach to File System Quality of Ser-
vice. In Proc. of the 7th Int. Workshop on Network and
Operating Systems Support for Digital Audio and Video, St.
Louis, MO, May 1997.

[3] F. Bellosa. The Benefits of Event-Driven Energy Account-
ing in Power Sensitive Systems. InProc. of the 9th ACM
SIGOPS European Workshop, pages 37–42, Kolding, Den-
mark, Sept. 2000.

[4] R. Black, P. Barham, A. Donnelly, and N. Stratford. Pro-
tocol Implementation in a Vertically Structured Operating
System. InProc. of the 22nd Annual Conference on Local
Computer Networks, pages 179–188, Nov. 1997.

[5] E. de Lara, D. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based Adaptation for Mobile Computing. In
Proceedings of the third USENIX Symposium on Internet
Technologies and Systems (USITS), San Francisco, CA, Mar.
2001.

[6] C. Ellis. The Case for Higher-Level Power Management.
In Proc. of the 7th Workshop on Hot Topics in Operating
Systems, Rio Rico, AZ, Mar. 1999.

[7] K. Farkas, J. Flinn, G. Back, D. Grunwald, and J. Anderson.
Quantifying the Energy Consumption of a Pocket Computer
and a Java Virtual Machine. InProc. of the Int. Conference
on Measurements and Modeling of Computer Systems, Santa
Clara, CA, June 2000.

[8] J. Flinn and M. Satyanarayanan. Energy-aware adaptation
for mobile applications. InProc. of the 17th ACM SIGOPS
Symposium on Operating Systems Principles, pages 48–79,
Kiawah Island Resort, SC, Dec. 1999.

[9] J. Flinn and M. Satyanarayanan. PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications. InProc.
of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, pages 2–10, New Orleans, LA, Jan. 1999.

[10] S. I. Forum. Smart Battery System Specifications: Smart
Battery Data Specification, Dec. 1998. Rev. 1.1.

[11] R. Gibbens and F. Kelly. Resource pricing and the evolution
of congestion control.Automatica, 35(12), 1999.

[12] S. Hand. Self-Paging in the Nemesis Operating System. In
Proc. of the 3rd Symposium on Operating Systems Design
and Implementation, pages 73–86, New Orleans, LA, Feb.
1999.

[13] Intel and Microsoft.Advanced Power Management (APM)
BIOS Interface Specification, Feb. 1996. Rev. 1.2.

[14] Intel, Microsoft and Toshiba.Advanced Configuration and
Power Interface Specification (ACPI), Feb. 1999. Rev. 1.0b.

[15] F. Kaashoek, D. Engler, G. Ganger, H. Brice˜no, R. Hunt,
D. Mazières, T. Pinckney, R. Grimm, J. Jannotti, and
K. Mackenzie. Application Performance and Flexibilty on
Exokernel Systems. InProc. of the 16th ACM SIGOPS
Symposium on Operating Systems Principles, pages 52–65,
Saint-Malo, France, Oct. 1997.

[16] F. Kelly. Charging and rate control for elastic traffic.Euro-
pean Transactions on Telecommunications, 8:33–37, 1997.

[17] F. Kelly, A. Maulloo, and D. Tan. Rate control in Com-
munication Networks: Shadow Prices, Proportional Fairness
and Stability.Journal of the Operational Research Society,
49(3):237–252, Mar. 1998.

[18] P. Key, D. McAuley, P. Barham, and K. Laevens. Congestion
pricing for congestion avoidance. Technical Report MSR-
TR-99-15, Microsoft Research, Feb. 1999.

[19] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and Im-
plementation of an Operating System to Support Distributed
Multimedia Applications.IEEE Journal on Selected Areas
In Communications, 14(7):1280–1297, Sept. 1996.

[20] J. Lorch and A. Smith. Energy consumption of Apple Mac-
intosh computers.IEEE Micro, 18(6):54–63, Nov. 1998.

[21] J. MacKie-Mason and H. Varian. Pricing Congestable Net-
work Resources.IEEE Journal on Selected Areas In Com-
munications, 13(7):1141–1149, Sept. 1995.

[22] R. Neugebauer and D. McAuley. Congestion Prices as Feed-
back Signals: An Approach to QoS Management. InProc.
of the 9th ACM SIGOPS European Workshop, pages 91–96,
Kolding, Denmark, Sept. 2000.

[23] N. Stratford and R. Mortier. An Economic Approach to
Adaptive Resource Management. InProc. of the 7th Work-
shop on Hot Topics in Operating Systems, Rio Rico, AZ,
Mar. 1999.

[24] A. Vahdat, A. Lebeck, and C. Ellis. Every Joule is Precious:
The Case for Revisiting Operating System Design for En-
ergy Efficiency. InProc. of the 9th ACM SIGOPS European
Workshop, pages 31–36, Kolding, Denmark, Sept. 2000.

64

PAST: A large-scale, persistent peer-to-peer storage utility

Peter Druschel
Rice University

Houston, TX 77005-1892, USA�

druschel@cs.rice.edu

Antony Rowstron
Microsoft Research Ltd.

Cambridge, CB2 3NH, UK
antr@microsoft.com

Abstract

This paper describes PAST, a large-scale, Internet based,
global storage utility that provides high availability, per-
sistence and protects the anonymity of clients and stor-
age providers. PAST is a peer-to-peer Internet application
and is entirely self-organizing. PAST nodes serve as ac-
cess points for clients, participate in the routing of client
requests, and contribute storage to the system. Nodes are
not trusted, they may join the system at any time and may
silently leave the system without warning. Yet, the system is
able to provide strong assurances, efficient storage access,
load balancing and scalability.

Among the most interesting aspects of PAST’s design are
(1) the Pastry location and routing scheme, which reliably
and efficiently routes client requests between any pair of
PAST nodes, has good network locality properties and au-
tomatically resolves node failures and node additions; (2)
the use of randomization to ensure diversity in the set of
nodes that store a file’s replicas and to provide load bal-
ancing; and (3) the use of smartcards, which are held by
each PAST user and issued by a third party called a bro-
ker. The smartcards support a quota system that balances
supply and demand of storage in the system.

1. Introduction

There are currently many projects aimed at construct-
ing peer-to-peer applications and understanding more of
the issues and requirements of such applications and sys-
tems [1, 5, 2, 4]. Peer-to-peer systems can be character-
ized as distributed systems in which all nodes have iden-
tical capabilities and responsibilities and all communica-
tion is symmetric. We are developing PAST, an Internet
based, peer-to-peer global storage utility, which aims to pro-
vide strong persistence, high availability, scalability, and
anonymity of clients and storage providers.

�Work done while visiting Microsoft Research, Cambridge, UK.

While PAST offers persistent storage services, its ac-
cess semantics differ from that of a conventional filesys-
tem. Files stored in PAST are associated with afileId that
is quasi-uniquely associated with the file’s content, name
and owner1. This implies that files stored in PAST areim-
mutable since a modified version of a file cannot be writ-
ten with the same fileId as its original. Files can be shared
at the owner’s discretion by distributing (potentially anony-
mously) the fileId and, if necessary, a decryption key.

PAST does not support adelete operation for files. In-
stead, the owner of a file mayreclaim the storage associ-
ated with a file. While the semantics of file deletion require
that the file is removed when the operation completes, re-
claim has weaker semantics, and simply means that a user
can reuse the space, and the system no longer provides any
guarantees about the availability of the file.

The PAST system is composed of nodes, where each
node is capable of initiating and routing client requests to
insert, retrieve, or reclaim a file. Optionally, nodes may also
contribute storage to the system. The PAST nodes form a
self-organizing network. After a new node arrival or a node
failure, the system automatically restores all invariants after
exchangingO(logN) messages, whereN is the total num-
ber of nodes in the system.

Inserted files are replicated across multiple nodes to en-
sure persistence and availability. The system ensures, with
high probability, that the set of nodes over which a file is
replicated is diverse in terms of geographic location, own-
ership, administrative entity, network connectivity, rule of
law and so forth. Additional copies of popular files may be
cached in any PAST node.

An efficient routing scheme, calledPastry [10], ensures
that client requests toinsert or reclaim a file are routed to
each node that must store a replica of the file. Client re-
quests toretrieve a file are reliably routed to a node that is
“close in the network”2 to the client that issued the request,

1The fileId is based on a secure hash of the file’s content, name and
owner. Therefore, it is extremely unlikely that files that differ in content,
name, or owner have the same fileId.

2The notion of network proximity may be based on geographic loca-

65

among all live nodes that store the requested file. The num-
ber of PAST nodes traversed, as well as the number of mes-
sages exchanged while routing a client request is at most
logarithmic in the total number of PAST nodes in the sys-
tem.

A storage management scheme in PAST ensures that the
global storage utilization in the system can approach 100%,
despite widely differing file sizes and storage node capac-
ities, and the lack of centralized control [11]. In a storage
system where nodes are not trusted, a secure mechanism is
also required that ensures a balance of storage supply and
demand. In PAST, a third party (broker) issues smartcards
for all users of the system. The smartcards support a quota
system, which balances storage supply and demand and can
be used by a broker to trade storage. The broker is not di-
rectly involved in the operation of the PAST network, and
its knowledge about the system is limited to the number
of smartcards it has circulated, their quotas and expiration
dates.

Another issue in peer-to-peer systems, and particularly in
storage and file-sharing systems, is privacy and anonymity.
A provider of storage space used by others does not want
to risk prosecution for content it stores, and clients insert-
ing or retrieving a file may not wish to reveal their identity.
Anderson [3] describes the ”the Gutenberg Inheritance” and
motivates why such levels of privacy and anonymity are de-
sirable.

PAST clients and storage providers need not trust each
other, and place only limited trust in the broker. In particu-
lar, all nodes trust the broker to facilitate the operation of a
secure PAST network by assigning and protecting appropri-
ate keys for the smartcards, and by balancing storage supply
and demand via responsible use of the quota system. On the
other hand, users do not reveal to the broker (or anyone else)
their identity, the files they are retrieving, inserting or stor-
ing. Each user holds aninitially unlinkable pseudonym [7]
associated with their smartcard. The pseudonym remains
unlinkable to the user’s identity, unless the user voluntarily
reveals the binding. In addition, if desired a user may use
multiple pseudonyms (i.e., smartcards) to obscure knowl-
edge that certain operations were initiated by the same user.

In the following sections, we shall present an overview
of PAST’s design.

2. PAST architecture

Some of the key aspects of PAST’s architecture are (1)
the Pastry routing scheme, which routes client requests in
less thandlogNe steps on average within a self-configuring,
fault tolerant overlay network; (2) the use of randomiza-
tion to ensure (probabilistic) storage load balancing and di-

tion, number of network hops, bandwidth, delay, or a combination of these
and other factors.

versity of nodes that store replicas of a file, without the
need for centralized control or expensive distributed agree-
ment protocols; (3) a decentralized storage management
and caching scheme that balances the storage utilization
among the nodes as the total utilization of the system ap-
proaches 100%, and balances query load by caching copies
of popular files close to interested clients; (4) the broker,
which performs key management and ensures the integrity
of the system; and, (5) the use of smartcards, which support
a quota system to control storage supply and demand.

PAST is composed of nodes, where, in general, each
node can act as a storage node and a client. The smart-
card issued to the node provides a node identifier (nodeId),
which is a 128 bit number chosen randomly from a uniform
distribution and signed by the broker (using a public key
cryptosystem maintained by the broker).

Files that are inserted into the PAST system are each as-
signed a fileId. A fileId is 160 bits in length, and is the
secure hash (SHA-1) of the following data: a textual file
name, a secure hash of the content, and the creator’s smart-
card id. Before a file is inserted, a write certificate is gener-
ated, which contains the fileId, file expiry date, the replica-
tion factor, the creation date and a secure hash of the con-
tent. The write certificate is signed by the smartcard of the
file’s creator.

When a file is inserted in PAST, the network routes the
file to thek nodes whose node identifiers are numerically
closest to the first 128 bits of the file identifier (fileId). Each
of these nodes then stores a copy of the file. The replication
factork depends on the availability and persistence require-
ments of the file and may vary between files. A lookup re-
quest for a file is routed towards the live node with a nodeId
that is numerically closest to the requested fileId.

This procedure ensures that (1) a file remains available
as long as one of thek nodes that store the file is alive and
reachable via the Internet; (2) the set of nodes that store the
file is diverse in geographic location, administration, own-
ership, network connectivity, rule of law, etc.; and, (3) the
number of files assigned to each node is roughly balanced.
(1) follows from the properties of the PAST routing algo-
rithm described in Section 2.2. (2) and (3) follow from the
uniformly distributed random nodeId assigned to each stor-
age site and the properties of a secure hash function (uni-
form distribution of hash values, regardless of the set of
files).

2.1 Security

In discussing PAST’s security, we make the following
assumptions. We assume that it is computationally infea-
sible for an attacker to break the public-key cryptosystem
and the secure hash function used by the broker and smart-
cards. It is assumed that an attacker can control individual

66

PAST nodes, but that they cannot control the behavior of
the smartcard.

Smartcards are issued by a PAST broker. Each card holds
a nodeId, assigned and signed by the broker, a private/public
key pair unique to the smartcard, and the broker’s public
key. The smartcard’s public key is signed by the broker for
certification purposes. A smartcard generates and verifies
various certificates used during insert and reclaim opera-
tions. It also maintains client storage quotas. In the follow-
ing, we sketch the main security related functions.

Generation of nodeIds The smartcard provides a nodeId
for its associated PAST node. This nodeId is generated us-
ing a secure random number generator and signed by the
broker as part of the smartcard’s manufacture. The ran-
dom assignment of nodeIds probabilistically ensures uni-
form coverage of the space of nodeIds, and a random spread
of nodeIds across geographic locations, countries, node op-
erators, etc. Furthermore, the use of signed nodeIds pre-
vents attacks involving malicious node operators trying to
choose particular values for their nodeIds (for instance, to
control all nodes that store a particular file).

Generation of write certificates and receipts The smart-
card of a user wishing to insert a file into PAST issues a
write certificate. The certificate contains a secure hash of
the file’s contents (computed by the client node, not the
smartcard), the fileId (computed by the smartcard), a repli-
cation factor, a file expiration date, and is signed by the
smartcard. During an insert operation, the write certificate
allows each storing node to verify that (1) the user is autho-
rized to insert the file into the system, (2) the content of the
file arriving at the storing node have not been corrupted en
route from the user’s node, and (3) the fileId is valid (i.e., it
is consistent with the content arriving at the node).

Each storage node that has successfully stored a copy of
the file then issues and returns awrite receipt to the client,
which allows the client to (4) verify thatk copies of the file
have been created on nodes with adjacent nodeIds. (1) pre-
vents clients from exceeding their storage quotas, (2) ren-
ders ineffective attacks by malicious nodes involved in the
routing of an insert request that change the content, (3) pre-
vents denial-of-service attacks where malicious clients try
to exhaust storage at a subset of PAST nodes by generating
bogus fileIds with nearby values, and (4) prevents a mali-
cious node from suppressing the creation ofk diverse repli-
cas. During a retrieve operation, the write certificate is re-
turned along with the file, and allows the client to verify that
the content has not been corrupted.

Generation of reclaim certificates and receipts Prior to
issuing a reclaim operation, the user’s smartcard generates
a reclaim certificate. The certificate contains the fileId, is
signed by the smartcard and is included with the reclaim re-
quest that is routed to the nodes that store the file. When
processing a reclaim request, the smartcard of a storage

node first verifies that the signature in the reclaim certificate
matches that in the write certificate stored with the file. This
prevents users other than the owner of the file from reclaim-
ing the file’s storage. If the reclaim operation is accepted,
the smartcard of the storage node generates areclaim re-
ceipt. The receipt contains the reclaim certificate and the
amount of storage reclaimed; it is signed by the smartcard
and returned to the client.

Storage quotas The smartcard maintains storage quotas.
Each user’s smartcard is issued with a usage quota, depend-
ing on how much storage the client is allowed to use. When
a write certificate is issued, an amount corresponding to
the file size times the replication factor is debited against
the quota. When the client presents an appropriate reclaim
receipt issued by a storage node, the amount reclaimed is
credited against the client’s quota. This prevents clients
from exceeding the storage quota they have paid for. A
smartcard also specifies the amount of storage contributed
by the associated node (possibly zero). Nodes are randomly
audited to see if they can produce files they are supposed to
store, thus exposing nodes that cheat by offering less stor-
age than indicated by their smartcard.

In the following, we briefly discuss how some of the sys-
tem’s key properties are maintained.

Providing system integrity Several conditions underly
the basic integrity of a PAST system. Firstly, to maintain
load balancing among storage nodes, the nodeIds and fileIds
must be uniformly distributed. The procedure for generat-
ing and verifying nodeIds and fileIds ensures that malicious
nodes cannot bias this distribution. Secondly, there must
be a balance between the sum of all client quotas (poten-
tial demand) and the total available storage in the system
(supply). The broker ensures that balance, potentially us-
ing the monetary price of storage to regulate supply and
demand. Thirdly, individual malicious nodes must be in-
capable of persistently denying service to a client. A ran-
domized routing protocol, described in Section 2.2, ensures
that a retried operation will eventually be routed around the
malicious node.

Providing Persistence File persistence in PAST depends
primarily on three conditions. (1) Unauthorized users are
prevented from reclaiming a file’s storage, (2) the file is ini-
tially stored onk storage nodes, and (3) there is sufficient
diversity in the set of storage nodes that store a file. By is-
suing and requiring reclaim certificates, the smartcards en-
sure condition (1). (2) is enforced through the use of write
receipts and (3) is ensured by the random distribution of
nodeIds, which can’t be biased by an attacker. The choice
of a replication factork must take into account the expected
rate of transient storage node failures to ensure sufficient
availability. In the event of storage node failures that involve
loss of the stored files, the system automatically restoresk

copies of a file as part of the failure recovery process.

67

Providing data privacy and integrity Users may use en-
cryption to protect the privacy of their data, using a cryp-
tosystem of their choice. Data encryption does not involve
the smartcards. Data integrity is ensured by means of the
write certificates issued by the smartcards.
Providing anonymity A user’s smartcard signature is the
only information associating a stored file or a request with
the responsible user. The association between a smartcard
and the user’s identity is only known to the user, unless the
user voluntarily releases this information. Anonymity of
storage nodes is similarly ensured because the node’s smart-
card signature is not linkable to the identity of the node op-
erator.

Space limitations prevent us from a full discussion of
PAST’s security model. Next, we briefly reflect on the role
of smartcards in PAST. Many of the functions performed
by the smartcards in the current design could be safely per-
formed by the (untrusted) node software. Indeed, the use of
smartcards is not fundamental to PAST’s design. However,
the smartcards serve two important purposes, given today’s
technology.

First, the smartcards maintain storage quotas. Without
the trusted hardware provided by the smartcard, it is difficult
to prevent a malicious node from cheating against its quota.
Second, the smartcards are a convenient medium through
which a user can obtain necessary credentials from the bro-
ker in an anonymous fashion. A user can obtain a smartcard
with the desired quota from a retail outlet in exchange for
cash, without any risk of revealing their identity. Obtaining
the credentials on-line carries the risk of revealing the user’s
identity or leaking sensitive information to third parties.

There are disadvantages to the use of smartcards. First,
clients need to obtain a physical device and periodically re-
place it (e.g., every year) to ensure key freshness. Second,
sophisticated, resource-rich attackers could compromise a
smartcard. However, since the maximal gain is to cheat
against the storage quote for a limited time, we believe there
is insufficient incentive for a high-tech attack.

Finally, there are performance costs due to the limited
processing speed and I/O performance of smartcards. For-
tunately, read operations involve no smartcard operations.
(In fact, read-only users don’t need a smartcard). Write op-
erations require a write certificate verification and a write
confirmation generation, and we expect that a smartcard
keeps up with the speed of a single disk. Larger storage
nodes use multiple smartcards, and very large storage nodes
may require more powerful tamperproof hardware. Profes-
sionally managed storage sites also have the option of con-
tracting with a broker, thus obviating the need for trusted
hardware in exchange for a loss in anonymity.

Future Internet technologies like an anonymous payment
and micropayment infrastructure could obviate the need for
smartcards in PAST. For instance, micro-payments could be

used to balance the supply and demand of storage without
quotas, and anonymous payment transactions could make it
possible for a user to safely and anonymously obtain neces-
sary credentials from the broker. We plan to explore emerg-
ing technologies and reevaluate the use of smartcards as al-
ternatives become available.

It is to be noted that multiple PAST systems, with sep-
arate brokers, can co-exist in the Internet. In fact, we en-
vision many competing brokers, where a client can access
files in the entire system, but can only store files on storage
nodes affiliated with the client’s broker. Furthermore, it is
possible to operate isolated PAST systems that serve a mu-
tually trusting community without a broker or smartcards.
In these cases, a virtual private network (VPN) can be used
to interconnect the system’s nodes.

In the remainder of this paper, we give a brief overview
of other interesting aspects of PAST, namely its rout-
ing, self-configuration schemes, storage management and
caching schemes.

2.2 Pastry

We now briefly describe Pastry, the location and routing
scheme used by PAST. Given a fileId, Pastry routes the as-
sociated message towards the node whose nodeId is numer-
ically closest to the 128 most significant bits (msb) of the
fileId, among all live nodes. Given the invariant that a file is
stored on thek nodes whose nodeIds are numerically clos-
est to the 128 msbs of the fileId, it follows that a file can be
located unless allk nodes have failed simultaneously (i.e.,
within a recovery period).

Pastry is highly efficient, scalable, fault resilient and self-
configuring. Assuming a PAST network consisting ofN

nodes, Pastry can route to the numerically closest node to
a given fileId in less thandlog2bNe steps on average (b is
a configuration parameter with typical value 4). With con-
current node failures, eventual delivery is guaranteed unless
bl=2c nodes withadjacent nodeIds fail simultaneously (l is
a configuration parameter with typical value32).

The tables required in each PAST node have only(2 b �
1) � dlog2bNe+2l entries, where each entry maps a nodeId
to the associated node’s IP address. Moreover, after a
node failure or the arrival of a new node, the invariants
in all affected routing tables can be restored by performing
O(log2bN) remote procedure calls (RPCs). In the follow-
ing, we give a brief overview of the Pastry routing scheme.

For the purpose of routing, nodeIds and fileIds are
thought of as a sequence of digits with base2b. A node’s
routing table is organized into levels with2b�1 entries each.
The2b � 1 entries at leveln of the routing table each refer
to a node whose nodeId shares the present node’s nodeId
in the firstn digits, but whosen + 1th digit has one of the
2b � 1 possible values other than then + 1th digit in the

68

present node’s id. Note that an entry in the routing table
points to one of potentially many nodes whose nodeId have
the appropriate prefix. Among such nodes, the one closest
to the present node (according to the proximity metric) is
chosen in practice.

In addition to the routing table, each node maintains
pointers to the set ofl nodes whose nodeIds are numerically
closest to the present node’s nodeId, irrespective of prefix.
(More precisely, the set containsl=2 nodes with larger and
l=2 with smaller nodeIds). This set is called theleaf set.

In each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the fileId a prefix
that is at least one digit (orb bits) longer than the prefix that
the fileId shares with the present node’s id. If no such node
exists, the message is forwarded to a node whose nodeId
shares a prefix with the fileId as long as the current node,
but is numerically closer to the fileId than the present node’s
id. It follows from the definition of the leaf set that such a
node exists in the leaf set unlessbl=2c adjacent nodes in the
leaf set have failed simultaneously.
Locality In the following, we turn our attention to the prop-
erties of the Pastry routing scheme with respect to the net-
work proximity metric. Pastry can normally route messages
to any node indlog2bNe steps. Another question is what
distance (in terms of the proximity metric) a message is
traveling. Recall that the entries in the node routing tables
are chosen to refer to the nearest node with the appropriate
nodeId prefix. As a result, in each step a message is routed
to the nearest node with a longer prefix match (by one digit).
While this local decision process clearly can’t achieve glob-
ally shortest routes, simulations have shown the the average
distance travelled by a message is only 40% higher than the
distance of the source and destination in the underlying net-
work [10].

Moreover, since Pastry always takes the locally short-
est step towards a node that shares a longer prefix with
the fileId, messages have a tendency to first reach a node,
among thek nodes that store the requested file, that is near
the client (according to the proximity metric). One exper-
iment shows that among 5 replicated copies, Pastry is able
to find the nearest copy in 76% of all lookups and it finds
one of the two nearest copied in 92% of all lookups [10].
Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in the
presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in [10].

Briefly, an arriving node with the new nodeIdX can ini-
tialize its state by contacting a nearby nodeA (according to
the proximity metric) and askingA to route a special mes-
sage to the existing nodeZ with nodeId numerically closest
toX . X then obtains the leaf set fromZ, the neighborhood
set fromA, and theith row of the routing table from the

ith node encountered along the route fromA toZ. One can
show that using this information,X can correctly initialize
it state and notify interested nodes that need to know of its
arrival, thereby restoring all of Pastry’s invariants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a periodT , it is pre-
sumed failed. All members of the failed node’s leaf set are
then notified and they update their leaf sets to restore the
invariant. Since the leaf sets of nodes with adjacent nodeIds
overlap, this update is trivial. A recovering node contacts
the nodes in its last known leaf set, obtains their current
leafs sets, updates its own leaf set and and then notifies the
members of its new leaf set of its presence. Routing table
entries that refer to failed nodes are repaired lazily; the de-
tails are described in [10].

Fault-tolerance The routing scheme as described so far
is deterministic, and thus vulnerable to malicious or failed
nodes along the route that accept messages but do not cor-
rectly forward them. Repeated queries could thus fail each
time, since they are likely to take the same route.

To overcome this problem, the routing is actually ran-
domized. To avoid routing loops, a message must always
be forwarded to a node that shares at least as long a pre-
fix with, but is numerically closer to the destination node
in the namespace than the current node. The choice among
multiple such nodes is random. In practice, the probability
distribution is heavily biased towards the best choice to en-
sure low average route delay. In the event of a malicious
or failed node along the path, the query may have to be re-
peated several times by the client, until a route is chosen
that avoids the bad node.

2.3 Storage management and caching

The statistical assignment of files to storage nodes in
PAST approximately balances the number of files stored at
each node. However, non-uniform storage node capacities
and file sizes require more explicit storage load balancing to
permit graceful behavior under high global storage utiliza-
tion; and, non-uniform popularity of files requires caching
to minimize fetch distance and to balance the query load.

PAST employs a storage management scheme that
achieves high global storage utilization while rejecting few
file insert requests. The scheme relies only on local coor-
dination among the nodes in a leaf set, and imposes little
overhead. Experimental results show that PAST can achieve
global storage utilization in excess of 95%, while the rate of
rejected file insertions remains below 5% and failed inser-
tions are heavily biased towards large files [11].

Caching in PAST allows any node to retain an additional
copy of a file. This caching is effective in achieving query

69

load balancing, high throughput for popular files, and it re-
duces fetch distance and network traffic. PAST’s storage
management and caching are described in detail in [11].

3. Related work and conclusion

There are currently many peer-to-peer systems under de-
velopment. Among the most prominent are file sharing fa-
cilities, such as Gnutella [2], Freenet [5], and Napster [1].
These systems are intended for the large-scale sharing of
music; persistence and reliable content location are not re-
quired in this environment. PAST instead is a large-scale
storage utility that aims at combining scalability and self-
configuration with strong persistence. In this regard, it is
more closely related with projects like OceanStore [6], Far-
Site [4], FreeHaven [9], Publius [13] and Eternity [3].

Like PAST, OceanStore provides a global, persistent
storage utility on top of an untrusted, unreliable infrastruc-
ture. However, PAST focuses on providing a simple, lean
storage abstraction for persistent, immutable files with the
intention that more sophisticated storage semantics be build
on top of PAST if needed. OceanStore provides a more gen-
eral storage abstraction that supports serializable updates on
widely replicated and nomadic data.

FarSite and SFS have more traditional filesystem seman-
tics, while PAST is more targeted towards global, archival
storage. Farsite uses a distributed directory service to
locate content; this is very different from PAST’s Pas-
try scheme, which integrates content location and routing.
FreeHaven, Publius and Eternity are more focused on pro-
viding anonymity and survivability of data in the presence
of a variety of threats.

Pastry, PAST’s routing scheme, bears some similarity to
the work by Plaxton et al. [8]. The general approach of
routing using prefix matching on the fileId is used in both
systems, which can be seen as a generalization of hypercube
routing. However, in the Plaxton scheme there is a special
node associated with each file, which forms a single point
of failure. Also, Plaxton does not handle automatic node
integration and failure recovery.

Oceanstore uses a two phase approach to content loca-
tion and routing. The first stage is probabilistic, using a
generalization of Bloom filters. If that stage fails to find an
object, then a location and routing scheme called Tapestry
is used [14]. Tapestry is based on Plaxton et al. but ex-
tends that earlier work in several dimensions. Like Pastry,
Tapestry replicates objects for fault resilience and availabil-
ity and supports dynamic node addition and recovery from
node failures. However, Pastry and Tapestry differ in the
approach they take for replicating files and in the way they
achieve locality. Another closely related scheme is location
and routing scheme is Chord [12].

A prototype of PAST operates in a simulated network

environment. We have performed tests with up to 100,000
PAST nodes and several million files. Routing, self-
configuration, file storage/retrieval, caching and storage
load balancing are fully functional; early experience and
performance results are very encouraging [10, 11]. Plans for
the immediate future are to verify PAST’s security model
more formally, and to complete an implementation that can
be deployed in the Internet.

References

[1] Napster. http://www.napster.com/.
[2] The Gnutella protocol specification, 2000.

http://dss.clip2.com/GnutellaProtocol04.pdf.
[3] R. Anderson. The eternity service. InProc.

PRAGOCRYPT’96, pages 242–252. CTU Publishing House,
1996. Prague, Czech Republic.

[4] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
sibility of a serverless distributed file system deployed on an
existing set of desktop pcs. InProc. SIGMETRICS’2000,
pages 34–43, 2000.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. InWorkshop on Design Issues in Anonymity and
Unobservability, pages 311–320, July 2000. ICSI, Berkeley,
CA, USA.

[6] J. K. et al. Oceanstore: An architecture for global-scale per-
sistent store. InProc. ASPLOS’2000, November 2000.

[7] A. Pfitzmann and M. K¨ohntopp. Anonymity,
unobservability, and pseudonymity - a
proposal for terminology, Apr. 2001.
http://www.koehntopp.de/marit/pub/anon/AnonTerminologyIHW.pdf.

[8] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment.Theory of Computing Systems, 32:241–280, 1999.

[9] D. M. Roger Dingledine, Michael J. Freedman. The Free
Haven project: Distributed anonymous storage service. In
Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, July 2000.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems, Jan. 2001.http://www.research.microsoft.com/ antr/PAST/.

[11] A. Rowstron and P. Druschel. Storage man-
agement and caching in past, a large-scale, per-
sistent peer-to-peer storage utility, Mar. 2001.
http://www.research.microsoft.com/ antr/PAST/.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. Technical Report TR-819, MIT,
March 2001.

[13] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
robust, tamper-evident, censorship-resistant, web publishing
system. InProc. 9th USENIX Security Symposium, pages
59–72, August 2000.

[14] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-resilient wide-area location and
routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

70

Building Peer-to-Peer Systems
With Chord, a Distributed Lookup Service

Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger
Robert Morris, Ion Stoica�, Hari Balakrishnan

MIT Laboratory for Computer Science
ffdabek, emma, kaashoek, karger, rtm, harig@lcs.mit.edu

http://pdos.lcs.mit.edu/chord

Abstract

We argue that the core problem facing peer-to-peer sys-
tems is locating documents in a decentralized network and
propose Chord, a distributed lookup primitive. Chord pro-
vides an efficient method of locating documents while plac-
ing few constraints on the applications that use it. As proof
that Chord’s functionality is useful in the development of
peer-to-peer applications, we outline the implementation
of a peer-to-peer file sharing system based on Chord.

1 Introduction
The peer-to-peer architecture offers the promise of harness-
ing the resources of vast numbers of Internet hosts. The
primary challenge facing this architecture, we argue, is ef-
ficiently locating information distributed across these hosts
in a decentralized way. In this paper we present Chord, a
distributed lookup service that is both scalable and decen-
tralized and can be used as the basis for general purpose
peer-to-peer systems.

A review of the features included in recent peer-to-
peer systems yields a long list. These include redundant
storage, permanence, efficient data location, selection of
nearby servers, anonymity, search, authentication, and hier-
archical naming. Chord does not implement these services
directly but rather provides a flexible, high-performance
lookup primitive upon which such functionality can be ef-
ficiently layered. Our design philosophy is to separate the
lookup problem from additional functionality. By layering
additional features on top of a core lookup service, we be-
lieve overall systems will gain robustness and scalability.

In contrast, when these application-level features are an
integral part of the lookup service the cost is often lim-
ited scalability and diminished robustness. For example,
Freenet [5] [6] is designed to make it hard to detect which
hosts store a particular piece of data, but this feature pre-

�University of California, Berkeley. istoica@cs.berkeley.edu

This research was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Space and Naval Warfare Systems Center, San
Diego, under contract N66001-00-1-8933.

vents Freenet from guaranteeing the ability to retrieve data.
Chord is designed to offer the functionality necessary to

implement general-purpose systems while preserving max-
imum flexibility. Chord is an efficient distributed lookup
system based on consistent hashing [10]. It provides a
unique mapping between an identifier space and a set of
nodes. A node can be a host or a process identified by
an IP address and a port number; each node is associated
with a Chord identifer. Chord maps each identifiera to the
node with the smallest identifier greater thana. This node
is called thesuccessor of a.

By using an additional layer that translates high level
names into Chord identifiers, Chord may be used as a pow-
erful lookup service. We will outline the design of a dis-
tributed hash table (DHASH) layer and of a peer-to-peer
storage application based on the Chord primitive. Figure 1
shows the distribution of functionality in the storage appli-
cation.

Layer Function
Chord Maps identifiers to successor nodes
DHASH Associates values (blocks) with identifiers
Application Provides a file system interface

Figure 1: A layered Chord application

Chord is efficient: determining the successor of an iden-
tifier requires thatO(logN) messages be exchanged with
high probability whereN is the number of servers in the
Chord network. Adding or removing a server from the net-
work can be accomplished, with high probability, at a cost
of O(log2N) messages.

The rest of this position paper outlines the algorithms
used to implement the Chord primitive (Section 2), de-
scribes how Chord can be used to build peer-to-peer storage
systems (Section 3), summarizes the current implementa-
tion status of the system (Section 4), identifies some open
research problems (Section 5), relates Chord to other work
(Section 6), and summarizes our conclusions (Section 7).

71

7

k int. successor

1 [3,4) 5
2 [4,6) 5
3 [6,2) 7

k int. successor

1 [6,7) 7
2 [7,1) 7
3 [1,5] 2

k int. successor

1 [0,1) 2
2 [1,3) 2
3 [3,7) 5

 = Node

 0
1

2

3

4

5

6

(a) Find successor

7

k suc.

1 2
2 2
3 5

k suc.

1 7
2 7
3 2

k suc.

1 5
2 5
3 7

k suc.

1 5
2 7
3 2

 = Node

 = New Node

do do

 0
1

2

3
4

5

 6

(b) Initialize routing tables

7

k suc.

1 5
2 7
3 2

 = Node

 = New Node

3 7

k suc.

1 7
2 7
3 2

k suc.

1 2
2 2

k suc.

3

1
2 4

4

4
 0

1

2

3
4

 5

 6

(c) Update other routing tables

Figure 2: The Chord algorithm in a three-bit identifier space

2 Chord
Chord uses consistent hashing [10] to map nodes onto an
m-bit circular identifer space. In particular, each identifier
a is mapped to the node with the least identifier greater or
equal toa in the circular identifier space. This node is called
thesuccessor of a.

To implement thesuccessor function, all nodes main-
tain anm-entry routing table called thefinger table. This
table stores information about other nodes in the system;
each entry contains a node identifier and its network ad-
dress (consisting of an IP address and a port number). The
k-th entry in the finger table of noder is the smallest node
s that is greater thanr + 2k�1. Nodes is also termed the
order-k successor of noder. The number of unique entries
in the finger table isO(logN). The finger table can also be
thought of in terms ofm identifier intervals corresponding
to them entries in the table: the order-k interval of a noder
is defined as((r+2k�1) mod 2m; (r+2k) mod 2m]. Fig-
ure 2(a) shows a simple example in whichm=3 and three
nodes 2, 5, and 7 are present. The immediate successor of
node 5 is the successor of(5 + 20) mod 23 = 6 or node 7.

Each node also maintains a pointer to its immediate pre-
decessor. For symmetry, we also define the corresponding
immediate successor (identical to the first entry in the fin-
ger table). In total, each node must maintain a finger table
entry for up toO(logN) other nodes; this represents a sig-
nificant advantage over standard consistent hashing which
requires each node to track almost all other nodes.

2.1 Evaluating the successor function
Since each node maintains information about only a small
subset of the nodes in the system, evaluating the successor
function requires communication between nodes at each
step of the protocol. The search for a node moves progres-
sively closer to identifying the successor with each step.

A search for the successor off initiated at noder begins
by determining iff is betweenr and the immediate suc-
cessor ofr. If so, the search terminates and the successor
of r is returned. Otherwise,r forwards the search request

to the largest node in its finger table that precedesf ; call
this nodes. The same procedure is repeated bys until the
search terminates.

For example, assume that the system is in a stable state
(all routing tables contain correct information) and a search
is initiated at node 2 of Figure 2(a) for the successor of
identifier 6. The largest node with an identifier smaller than
6 is 5. The target of the search, 6, is in the interval defined
by 5 and its successor (7); therefore 7 is returned value.

The algorithm is outlined above inrecursive form: if a
search request requires multiple steps to complete, then

th

step is initiated by the(n�1)th node on behalf of the initia-
tor. The successor function may also be implementediter-
atively. In an iterative implementation, the initiating node
is responsible for making requests for finger table infor-
mation at each stage of the protocol. Both implementation
styles offer advantages: an iterative approach is easier to
implement and relies less on intermediary nodes, while the
recursive approach lends itself more naturally to caching
and server selection (described in Section 3).

2.2 Node insertion
When a new noder joins the network it must initialize its
finger table; existing nodes must also update their tables to
reflect the existence ofr (see Figure 2(b) and Figure 2(c)).

If the system is in a stable state, a new noder can ini-
tialize its finger table by querying an existing node for the
respective successors of the lower endpoints of thek inter-
vals inr’s table. Although we omit the details here, nodes
whose routing information is invalidated byr’s addition
can be determined usingr’s finger table and by following
predecessor pointers: these nodes are instructed byr to up-
date their tables.

2.3 Additional algorithm details
Several additional details of the Chord protocol are merely
mentioned here in the interest of brevity; a complete de-
scription of the Chord primitive is given by Stoica et
al. [17]. Removing a node from the network involves a sim-

72

void event register ((fn)(int))
ID next hop (ID j, ID k)

Figure 3: Exposing Chord layer information. The
event register function arranges forfn to be called
when a node with an ID near the registrant’s joins or leaves
the network.next hop performs one step of the evalua-
tion of the successor function and returns the intermediate
result (a finger table entry).

ilar series of steps as adding a node. Parallel joins, paral-
lel exits, and failures are handled by maintaining the in-
variant that all nodes are aware of their immediate succes-
sor and predecessor, and by allowing the remaining entries
of nodes’ finger tables to converge to the stable state over
time. Handling failures also requires that nodes storek suc-
cessors in addition to the immediate successor.

2.4 The chord library API
The Chord library is intended to be used in a layered de-
sign where it provides the base location functionality. Two
design principles facilitate the the use of Chord in a layered
architecture: minimum functionality and exposed informa-
tion. By minimizing the amount of functionality embedded
in Chord, we minimize the constraints we place on higher
levels which depend on Chord.

In our initial experiments with systems based on Chord,
we found that larger systems were constrained not because
Chord provides an inflexible feature set, but because higher
layers desired access to the internal state of Chord during
its computation.

To provide this access while still preserving the ab-
straction barrier we allow layers to register callback func-
tions for events they are interested in (see Figure 3) and
to evaluate the successor function one step at a time.
next hop(j, k) sends a message to nodej askingj
for the smallest entry in its finger table greater thank. This
allows callers to control the step-by-step execution of the
Chord lookup algorithm.

For example, theDHASH layer (described in section 3.1)
uses the callback interface to move values when nodes join
or leave the system.DHASH also evaluates the successor
function step by step to perform caching on search paths.

3 Building on Chord
To illustrate the usefulness of the Chord API we will outline
the design of layers that could be built on the basic Chord
primitive. These layers would be useful in a larger peer-to-
peer file sharing application. This application should allow
a group of cooperating users to share their network and
disk resources. Possible users of the application might be
a group of open source developers who wish to make a

err t insert(void *key, void *value)
void * lookup(void *key)

Figure 4: The DHASH API (a) Inserts value under key (b)
returns value associated with key or NULL if key does not
exist

software distribution available, but individually do not have
network resources to meet demand.

3.1 Distributed hash service

Chord is not a storage system: it associates keys with nodes
rather than with values. A useful initial extension to this
system is a distributed hash table (DHASH). The API for
this layer is shown in Figure 4.
DHASH::insert can be implemented by hashing

key to produce a 160-bit Chord identifierk, and storing
value at the successor ofk. A DHASH::lookup request
is handled analogously:key is hashed to formk and the
successor ofk is queried for the value associated withkey.
The transfer of value data to and from nodes is accom-
plished by an additional RPC interface which is separate
from that exported by Chord.

Values introduce a complication: when nodes leave or
join the system, the successor node of a given key may
change. To preserve the invariant that values are stored at
the successor of their associated keys,DHASHmonitors the
arrival and departure of nodes using the callback interface
provided by Chord and moves values appropriately. For ex-
ample, if the value associated with key 7 is stored on node
10 and node 9 joins the system, that value will be trans-
ferred to node 9.

Because it is based on Chord,DHASH inherits Chord’s
desirable properties: performing a lookup operation re-
quiresO(logN) RPCs to be issued and does not require
any centralized control. TheDHASH layer imposes an ad-
ditional cost of transferringO(1

N
) of the keys in the system

each time a node joins or leaves the system.

3.2 Achieving reliability

TheDHASH layer can also exploit the properties of Chord
to achieve greater reliability and performance. To ensure
that lookup operations succeed in the face of unexpected
node failures,DHASH stores the value associated with a
given key not only at the immediate successor of that key,
but also at the nextr successors. The parameterr may be
varied to achieve the desired level of redundant storage.

The tight coupling betweenDHASH’s approach to repli-
cation and Chord’s (both use knowledge of a node’s imme-
diate successors) is typical of the interaction we hope to see
between Chord and higher layers.

73

3.3 Improving performance
To improveDHASH lookup performance, we exploit a prop-
erty of the Chord lookup algorithm: the paths that searches
for a given successor (from different initiating nodes) take
through the Chord ring are likely to intersect. These in-
tersections are more likely to occur near the target of the
search where each step of the search algorithm makes a
smaller ‘hop’ through the identifier space and provide an
opportunity to cache data. On every successful lookup op-
eration of a pair(k; v), the target value,v, is cached at each
node in the path of nodes traversed to determine the succes-
sor ofk (this path is returned by Chord’s successor func-
tion).

Subsequent lookup operations evaluate the successor
function step by step using the providednext hop
method and query each intermediate node forv; the search
is terminated early if one of these nodes is able to return a
previously cachedv.

As a result, values are “smeared” around the Chord ring
near corresponding successor nodes. Because the act of
retrieving a document caches it, popular documents are
cached more widely than unpopular documents; this is a
desirable side-effect of the cache design. Caching reduces
the path length required to fetch a value and therefore the
number of messages per operation: such a reduction is im-
portant given that we expect that latency of communication
between nodes to be a serious performance bottleneck fac-
ing this system.

3.4 Denial of service
The highly distributed nature of Chord helps it resist many
but not all denial of service attacks. For instance, Chord is
resistant to attacks that take out some network links since
nodes nearby in identifier space are unlikely to have any
network locality. Additional steps are taken to preclude
other attacks.

A Chord-based storage system could be attacked by in-
serting such a large volume of useless data into the system
that legitimate documents are flushed from storage. By ob-
serving that the density of nodes nearby any given node
provides an estimate of the number of nodes in the system
we can partially defend against this attack by limiting the
number of blocks any one node can store in the system.
We make a local decision to fix a block quota based on the
number of nodes in the system, effectively enforcing a fixed
quota for each user on the whole system.

Nodes that could pick their own identifiers could effec-
tively delete a piece of data from the system by positioning
themselves as the data’s successor and then failing to store
it when asked to. This attack can be prevented by requir-
ing that node identifiers correspond to a hash of a node’s IP
address, a fact which can be verified by other nodes in the
system.

Malicious nodes could fail to execute the Chord pro-
tocol properly resulting in arbitrarily incorrect behavior.
A single misbehaving node can be detected by verifying
its responses with those of other, presumably cooperative,
nodes. For instance, if a nodel reports that its successor is
s, we can querys for its predecessor which should bel. A
group of such nodes could cooperate to make a collection
of nodes appear to be a self-consistent Chord network while
excluding legitimate nodes. We have no decentralized so-
lution to this problem and rely instead on the legitimacy of
the initial ‘bootstrap’ node to avoid this attack.

3.5 Designing a storage system: balancing load
In using Chord as the core of a peer-to-peer storage system
we are faced with the problem of efficiently distributing
load among nodes despite wide variations in the popularity
of documents. In building this system we must consider
how to map documents to nodes and at what granularity
to store documents.

One might consider using DHASH directly as a peer-
to-peer storage system. In this design, the contents of a
document are directly inserted into the DHASH system
keyed by the hash of either the contents of the document
or, perhaps, a human readable name. If one document be-
comes highly popular, however, the burden of delivering
that document will not be distributed. The caching scheme
described in Section 3.3 helps for small documents, but is
not practical for very large documents.

An alternate approach uses DHASH as a layer of indi-
rection: DHASH maps document identifiers to a list of IP
addresses where that document was available. In this de-
sign DHASH functions analogously to the DNS system but
does not depend on a special set of root servers as DNS
does. Once an IP address is selected, documents are re-
trieved using some other transfer protocol (HTTP, SSL,
SFS etc.).

Maintaining a dynamically updated list of potential
servers for any document solves the problem of popular
documents by distributing load among all of the servers in
the list. However, this design requires that optimizations
such as caching and redundant storage be implemented
twice: once in the Chord stack and again in the transfer
protocol. We desire a tighter coupling between the solution
to the popular document problem and mechanisms of the
Chord protocol.

This coupling can be achieved by using Chord to map
pieces of documents (blocks), rather than whole docu-
ments, to servers. In this scheme, files are broken into
blocks and each block is inserted into theDHASH layer us-
ing the cryptographic hash of the block’s contents as a key.
A piece of meta-data, equivalent to an inode in a traditional
file system, is also inserted into the system to provide a sin-
gle name for the file. The equivalence to a file system can
be extending to include directories as well; in our prototype

74

implementation, names map to a directory of documents
which is mapped into the user’s local namespace when ac-
cessed.

This approach aggressively spreads a single large doc-
ument across many servers, thus distributing the load of
serving it. It also inherits the reliability and performance
enhancements of theDHASH layer with little or no addi-
tional effort. One might note that documents smaller than
the block size are still served by a single node: we count on
our caching scheme to distribute these documents and the
load of serving them if they become popular.

The major drawback of this scheme derives from the
same property that made it desirable: because we spread
a single document across many servers, for each document
we fetch we must pay the cost of severalDHASH lookups
(and thus several evaluations of the successor function). A
naive implementation might requireS�L�logN

B
seconds to

fetch anS byte document whereN is the number of servers
in the network,B is the block size andL is the average la-
tency of the network. We hope to hide most of this latency
through aggressive prefetching of data and by selecting a
server from the redundant set which is near (in the network)
the requesting node.

3.6 Authenticity
A Chord-based file system could achieve authenticity guar-
antees through the mechanisms of the SFS read-only
server [9]. In SFSRO, file system blocks are named by
the cryptographic hash of their contents, an inherently un-
forgeable identifier. To name file systems we adopt self-
certifying pathnames [14]: The block containing the root
inode of a file system is named by the public key of the
publisher and signed by that public key. TheDHASH layer
can verify that the root inode is correctly signed by the key
under which it is inserted. This prevents unauthorized up-
dates to a file system. Naming file systems by public key
does not produce easily human readable file names; this is
not a serious shortcoming, however, in a hypertext environ-
ment, or one that is indexed or provides symbolic links.

4 Status
The system described is under development. The Chord
protocol has been designed, implemented, and tested1. Re-
sults of testing with up to 1,000 nodes on the Berkeley
Millennium Cluster demonstrate that Chord’s performance
scales well with the size of the system. We have also im-
plemented the DHASH layer and a file system; in the same
testing environment and on a geographically diverse net-
work both demonstrated good load balancing properties.

5 Open problems
A number of open problems face applications built on the
Chord framework.

1The delete operation has not been implemented yet

Our design deliberately separates questions of
anonymity and deniability from the location primi-
tive. These properties are difficult to add to the Chord
system given the strong mapping between a document and
the node which is responsible for serving that document.
We speculate than overlaying a mix-network [4] on Chord
might allow for anonymous publishing and reading.

Collecting an index of all documents stored in Chord is
a straightforward operation: an indexer might visit every
node in the Chord system by following successor pointers.
Storing an index and servicing queries without resort to a
central authority remains an open question, however. Alter-
natively we could provide a Chord to WWW gateway and
rely on existing WWW indexing services.

Directing requests to servers nearby in the network
topology is important to reducing the latency of requests.
To do so requires measuring the performance of servers
in the system. However, because Chord aggressively dis-
tributes documents to unrelated servers, in a large network
we are not likely to visit the same server multiple times; this
makes maintaining server performance metrics difficult.

6 Related work

There has been previous work in the area of decentral-
ized location systems. Chord is based on consistent hash-
ing [10]; its routing information may be thought of as a one-
dimensional analogue of the GRID [12] location system.
OceanStore [11] uses a distributed data location system de-
scribed by Plaxton et al. [7], which is more complicated
than Chord but offers proximity guarantees. CAN uses a
d-dimensional Cartesian coordinate space to implement a
distributed hash table data structure [16]. CAN operations
are easy to implement, but an aditional maintenance pro-
tocol is required to periodically remap the identifier space
onto nodes. The Chord algorithm is also very similar to the
location algorithm in PAST [15].

Anonymous storage systems such as Freenet [5], Pub-
lius [13] and the Free Haven Project [8] use encryption,
probabilistic routing, or secret-sharing schemes to guaran-
tee clients and publishers anonymity. This anonymity guar-
antee often leads to design compromises that limit reliabil-
ity and performance. Chord separates problems like these
from the design of routing and file transfer protocols.

Napster [2], Gnutella [1], and Ohaha [3] provide a non-
anonymous file sharing service similar to that of the shar-
ing application presented here. Chord’s location algorithm
is more efficient than Gnutella’s broadcast based routing;
the decentralized nature of Chord eliminates a single point
of failure present in Napster. The Ohaha system [3] uses
a consistent hashing-like algorithm for ID mapping, and a
Freenet-style method of document retrieval; it shares some
of the weaknesses of Freenet.

75

7 Conclusions
The performance and reliability of existing peer-to-peer
systems have been limited by inflexible architectures that
attempt to find one solution for many problems. By us-
ing the Chord primitive to separate the problem of location
from the problems of data distribution, authentication and
anonymity, peer-to-peer systems are able to decide where
to compromise and as a result offer better performance, re-
liability and authenticity.

References
[1] Gnutella website. http://gnutella.wego.com.

[2] Napster. http://www.napster.com.

[3] Ohaha. http://www.ohaha.com/design.html.

[4] David Chaum. Untraceable electronic mail, return addresses
and digital pseudonyms.Communications of the A.C.M.,
24(2):84–88, 1981.

[5] Ian Clarke. A distributed decentralised information storage
and retrieval system. Master’s thesis, University of Edin-
burgh, 1999.

[6] Ian Clarke, Oscar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. InProceed-
ings of the Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, California, June 2000.
http://freenet.sourceforge.net.

[7] C.Plaxton, R. Rajaraman, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In
Proceedings of the ACM SPAA, pages 311–320, Newport,
Rhode Island, June 1997.

[8] Roger Dingledine, David Molnar, and Michael J. Freedman.
The Free Haven project: Distributed anonymous storage ser-
vice. In Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, July 2000.

[9] Kevin Fu, M. Frans Kaashoek, and David Mazi`eres. Fast
and secure distributed read-only file system. InProceedings
of the 4th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2000), pages 181–196, San
Diego, California, October 2000.

[10] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. InProceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 654–663, May
1997.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao. Oceanstore: An architecture
for global-scale persistent storage. InProceeedings of the
Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2000), Boston, MA, November 2000.

[12] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R.
Karger, and Robert Morris. A scalable location service
for geographic ad hoc routing. InProceedings of the 6th
ACM International Conference on Mobile Computing and
Networking (MobiCom ’00), pages 120–130, Boston, Mas-
sachusetts, August 2000.

[13] Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor.
Publius: A robust, tamper-evident, censorship-resistant, web
publishing system. InProc. 9th USENIX Security Sympo-
sium, pages 59–72, August 2000.

[14] David Mazières, Michael Kaminsky, M. Frans Kaashoek,
and Emmett Witchel. Separating key management from file
system security. InProceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP ’99), pages
124–139, Kiawah Island, South Carolina, December 1999.

[15] Antony Rowstron Peter Druschel. Past: Persistent and
anonymous storage in a peer-to-peer networking environ-
ment. InProceedings of the 8th Conference on Hot Topics
in Operating Systems (HotOS 2001), May 2001.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content-addressable
network. InProc. ACM SIGCOMM 2001, August 2001.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In
Proc. ACM SIGCOMM 2001, August 2001. An early
version appeared as LCS TR-819 available athttp://
www.pdos.lcs.mit.edu/chord/papers.

76

Herald: Achieving a Global Event Notification Service

Luis Felipe Cabrera, Michael B. Jones, Marvin Theimer
Microsoft Research, Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

USA

{cabrera, mbj, theimer}@microsoft.com
http://research.microsoft.com/~mbj/, http://research.microsoft.com/~theimer/

Abstract
This paper presents the design philosophy and initial

design decisions of Herald: a highly scalable global event
notification system that is being designed and built at
Microsoft Research. Herald is a distributed system de-
signed to transparently scale in all respects, including
numbers of subscribers and publishers, numbers of event
subscription points, and event delivery rates. Event deliv-
ery can occur within a single machine, within a local
network or Intranet, and throughout the Internet.

Herald tries to take into account the lessons learned
from the successes of both the Internet and the Web. Most
notably, Herald is being designed, like the Internet, to
operate correctly in the presence of numerous broken and
disconnected components. The Herald service will be
constructed as a set of protocols governing a federation
of machines within cooperating but mutually suspicious
domains of trust. Like the Web, Herald will try to avoid,
to the extent possible, the maintenance of globally con-
sistent state and will make failures part of the client-
visible interface.

1. Introduction
The function of event notification systems is to de-

liver information sent by event publishers to clients who
have subscribed to that information. Event notification is a
primary capability for building distributed applications. It
underlies such now-popular applications as “instant mes-
senger” systems, “friends on line”, stock price tracking,
and many others [7, 3, 13, 16, 10, 15].

Until recently, most event notification systems were
intended to be used as part of specific applications or in
localized settings, such as a single machine, a building, or
a campus. With the advent of generalized eCommerce
frameworks, interest has developed in the provision of
global event notification systems that can interconnect
dynamically changing sets of clients and services, as well
as to enable the construction of Internet-scale distributed
applications. Such global event notification systems will
need to scale to millions and eventually billions of users.

To date, general event notification middleware im-
plementations are only able to scale to relatively small
numbers of clients. For instance, Talarian, one of the

more-scalable systems, according to published documen-
tation, only claims that its “SmartSockets system was de-
signed to scale to thousands of users (or processes)” [14,
p. 17].

While scalability to millions of users has been dem-
onstrated by centralized systems, such as the MSN and
AOL Instant Messenger systems, we do not believe that a
truly global general-purpose system can be achieved by
means of such centralized solutions, if for no other reason
than that there are already multiple competing systems in
use. We believe that the only realistic approach to pro-
viding a global event notification system is via a federated
approach, in which multiple, mutually suspicious parties
existing in different domains of trust interoperate with
each other.

A federated approach, in turn, implies that the defin-
ing aspect of the design will be the interaction protocols
between federated peers rather than the specific architec-
tures of client and server nodes. In particular, one can
imagine scenarios where one node in the federation is
someone’s private PC, serving primarily its owner’s
needs, and another node is a mega-service, such as the
MSN Instant Messenger service, which serves millions of
subscribers within its confines.

The primary goal of the Herald project is to explore
the scalability issues involved with building a global event
notification system. The rest of this paper describes our
design criteria and philosophy in Section 2, provides an
overview of our initial design decisions in Section 3, dis-
cusses some of the research issues we are exploring in
Section 4, presents related work in Section 5, and con-
cludes in Section 6.

2. Goals, Non-Goals, and Design Strategy
The topic of event notification systems is a broad one,

covering everything from basic message delivery issues to
questions about the semantic richness of client subscrip-
tion interests. Our focus is on the scalability of the basic
message delivery and distributed state management capa-
bilities that must underlie any distributed event notifica-
tion system. We assume, at least until proven otherwise,
that an event notification system can be decomposed into
a highly-scalable base layer that has relatively simple se-

77

mantics and multiple higher-level layers whose primary
purposes are to provide richer semantics and functionality.

Consequently, we are starting with a very basic event
notification model, as illustrated in Figure 1. In Herald,
the termEvent refers to a set of data items provided at a
particular point in time by apublisher for a set ofsub-
scribers. Each subscriber receives a private copy of the
data items by means of anotification message. Herald
does not interpret the contents of the event data.

A Rendezvous Point is a Herald abstraction to which
event publications are sent and to which clients subscribe
in order to request that they be notified when events are
published to the Rendezvous Point. An illustrative se-
quence of operations is: (1) a Herald client creates a new
Rendezvous Point, (2) a client subscribes to the Rendez-
vous Point, (3) another client publishes an event to the
Rendezvous Point, (4) Herald sends the subscriber the
event received from the publisher in step 3.

This model remains the same in both the local and the
distributed case. Figure 1 could be entirely upon a single
machine, each of the communicating entities could be on
separate machines, or each of them could even have dis-
tributed implementations, with presence on multiple ma-
chines.

2.1 Herald Design Criteria
Even with this simple model, there are still a variety

of design criteria we consider important to try to meet:
• Heterogeneous Federation: Herald will be con-

structed as a federation of machines within cooperat-
ing but mutually suspicious domains of trust. We
think it important to allow the coexistence of both
small and large domains, containing both impover-
ished small device nodes and large mega-services.

• Scalability: The implementation should scale along
all dimensions, including numbers of subscribers and
publishers, numbers of event subscription points,
rates of event delivery, and number of federated do-
mains.

• Resilience: Herald should operate correctly in the
presence of numerous broken and disconnected com-
ponents. It should also be able to survive the presence
of malicious or corrupted participants.

• Self-Administration: The system itself should make
decisions about where data will be placed and how in-
formation should be propagated from publishers to
subscribers. Herald should dynamically adapt to
changing load patterns and resource availability, re-
quiring no manual tuning or system administration.

• Timeliness: Events should be delivered to connected
clients in a timely enough manner to support human-
to-human interactions.

• Support for Disconnection: Herald should support
event delivery to clients that are sometimes discon-
nected, queuing events for disconnected clients until
they reconnect.

• Partitioned operation: In the presence of network
partitions, publishers and subscribers within each
partition should be able to continue communicating,
with events being delivered to subscribers in previ-
ously separated partitions upon reconnection.

• Security: It should be possible to restrict the use of
each Herald operation via access control to authenti-
cated authorized parties.

2.2 Herald Non-Goals
As important as deciding what a systemwill do is de-

ciding what itwill not do. Until the need is proven, Herald
will avoid placing separable functionality into its base
model. Excluded functionality includes:
• Naming: Services for naming and locating Rendez-

vous Points are not part of Herald. Instead, client
programs are free to choose any appropriate methods
for determining which Rendezvous Points to use and
how to locate one or more specific Herald nodes
hosting those Rendezvous Points. Of course, Herald
will need to export means by which one or more ex-
ternal name services can learn about the existence of
Rendezvous Points, and interact with them.

• Filtering: Herald will not allow subscribers to re-
quest delivery of only some of the events sent to a
Rendezvous Point. A service that filters events, for
instance, by leveraging existing regular expression or
query language tools, such as SQL or Quilt engines,
and only delivering those matching some specified
criteria, could be built as a separate service, but will
not be directly supported by Herald.

• Complex Subscription Queries: Herald has no no-
tion of supporting notification to clients interested in
complex event conditions. Instead, we assume that
complex subscription queries can be built by deploy-
ing agent processes that subscribe to the relevant
Rendezvous Points for simple events and then publish

Figure 1: Herald Event Notification Model

Creator

Publisher Subscriber

1: Create Rendezvous Point

2: Subscribe3: Publish 4: Notify

Rendezvous
Point

Herald Service

78

an event to a Rendezvous Point corresponding to the
complex event when the relevant conditions over the
simple event inputs become true.

• In-Order Delivery: Because Herald allows delivery
during network partitions—a normal condition for a
globally scaled system—different subscribers may
observe events being delivered in different orders.

2.3 Applying the Lessons of the Internet and the
Web
Distributed systems seem to fall into one of two cate-

gories—those that become more brittle with the addition
of each new component and those that become more re-
silient. All too many systems are built assuming that com-
ponent failure or corruption is unusual and therefore a
special case—often poorly handled. The result is brittle
behavior as the number of components in the system be-
comes large. In contrast, the Internet was designed as-
suming many of its components would be down at any
given time. Therefore its core algorithms had to be toler-
ant of this normal state of affairs. As an old adage states:
“The best way to build a reliable system is out of pre-
sumed-to-be-broken parts.” We believe this to be a crucial
design methodology for building any large system.

Another design methodology of great interest to us is
derived from the Web, wherein failures are basically
thrown up to users to be handled, be they dangling URL
references or failed retrieval requests. Stated somewhat
flippantly: “If it’s broken then don’t bother trying to fix
it.” This minimalist approach allows the basic Web op-
erations to be very simple—and hence scalable—making
it easy for arbitrary clients and servers to participate, even
if they reside on resource-impoverished hardware.

Applied to Herald, these two design methodologies
have led us to the following decisions:
• Herald peers treat each other with mutual suspicion

and do not depend on the correct behavior of any
given, single peer. Rather, they depend on replication
and the presence of sufficiently many well-behaved
peers to achieve their distributed systems goals.

• All distributed state is maintained in a weakly con-
sistent soft-state manner and is aged, so that every-
thing will eventually be reclaimed unless explicitly
refreshed by clients. We plan to explore the implica-
tions of making clients responsible for dealing with
weakly consistent semantics and with refreshing the
distributed state that is pertinent to them.

• All distributed state is incomplete and is often inac-
curate. We plan to explore how far the use of partial,
sometimes inaccurate information can take us. This is
in contrast to employing more accurate, but also more
expensive, approaches to distributed state manage-
ment.
Another area of Internet experience that we plan to

exploit is the use of overlay networks for content delivery

[5, 6]. The success of these systems implies that overlay
networks are an effective means for distributing content to
large numbers of interested parties. We plan to explore the
use of dynamically generated overlay networks among
Herald nodes to distribute events from publishers to sub-
scribers.

3. Design Overview
This section describes the basic mechanisms that we

are planning to use to build Herald. These include repli-
cation, overlay networks, ageing of soft state via time
contracts, limited event histories, and use of administra-
tive Rendezvous Points for maintenance of system meta-
state. While none of these are new in isolation, we believe
that their combination in the manner employed by Herald
is both novel, and useful for building a scalable event no-
tification system with the desired properties. We hypothe-
size that these mechanisms will enable us to build the rest
of Herald as a set of distributed policy modules.

3.1 Replication for Scaling
When a Rendezvous Point starts causing too much

traffic at a particular machine, Herald’s response is to
move some or all of the work for that Rendezvous Point to
another machine, when possible. Figure 2 shows a possi-
ble state of three Herald server machines at locations L1,
L2, and L3, that maintain state about two Rendezvous
Points, RP1 and RP2. Subscriptions to the Rendezvous
Points are shown as Subn and publishers to the Rendez-
vous Points are shown as Pubn.

The implementation of RP1 has been distributed
among all three server locations. The Herald design al-
lows potential clients (both publishers and subscribers) to
interact with any of the replicas of a Rendezvous Point for
any operations, since the replicas are intended to be func-
tionally equivalent. However, we expect that clients will
typically interact with the same replica repeatedly, unless
directed to change locations.

3.2 Replication for Fault-Tolerance
Individual replicas do not contain state about all cli-

ents. In Figure 2, for instance, Sub5’s subscription is re-
corded only by RP1@L3 and Pub2’s right to publish is
recorded only by RP2@L1. This means that event notifi-
cations to these subscriptions would be disrupted should
the Herald servers on these machines (or the machines
themselves) become unavailable.

For some applications this is perfectly acceptable,
while for others additional replication of state will be nec-
essary. For example, both RP1@L1 and RP1@L2 record
knowledge of Sub2’s subscription to RP1, providing a
degree of fault-tolerance that allows it to continue receiv-
ing notifications should one of those servers become un-
available.

Since RP1 has a replica on each machine, it is toler-
ant of faults caused by network partitions. Suppose L3

79

became partitioned from L1 and L2. In this case, Pub1
could continue publishing events to Sub1, Sub2, and Sub4
and Pub3 could continue publishing to Sub5. Upon recon-
nection, these events would be sent across the partition to
the subscribers that hadn’t yet seen them.

Finally, note that since it isn’t (yet) replicated, should
Herald@L1 go down, then RP2 will cease to function, in
contrast to RP1, which will continue to function at loca-
tions L2 and L3.

3.3 Overlay Distribution Networks
Delivery of an event notification message to many

different subscribers must avoid repeated transmission of
the same message over a given network link if it is to be
scalable. Herald implements event notification by means
of multicast-style overlay distribution networks.

The distribution network for a given Rendezvous
Point consists of all the Herald servers that maintain state
about publishers and/or subscribers of the Rendezvous
Point. Unicast communications are used to forward event
notification messages among these Herald servers in much
the same way that content delivery networks do among
their interior nodes. However, unlike most content deliv-
ery networks, Herald expects to allow multiple geographi-
cally distributed publishers. Delivery of an event notifica-
tion message to the subscribers known to a Herald server
is done with either unicast or local reliable multicast
communications, depending on which is available and
more efficient.

In order to implement fault tolerant subscriptions,
subsets of the Herald servers implementing a Rendezvous
Point will need to coordinate with each other so as to
avoid delivering redundant event notifications to sub-
scribers. Because state can be replicated or migrated be-
tween servers, the distribution network for a Rendezvous

Point can grow or shrink dynamically in response to
changing system state.

3.4 Time Contracts
When distributed state is being maintained on behalf

of a remote party, we associate a time contract with the
state, whose duration is specified by the remote party on
whose behalf the state is being maintained. If that party
does not explicitly refresh the time contract, the data asso-
ciated with it is reclaimed. Thus, knowledge of and state
about subscribers, publishers, Rendezvous Point replicas,
and even the existence of Rendezvous Points themselves,
is maintained in a soft-state manner and disappears when
not explicitly refreshed.

Soft state may, however, be maintained in a persistent
manner by Herald servers in order to survive machine
crashes and reboots. Such soft state will persist at a server
until it is reclaimed at the expiration of its associated time
contract.

3.5 Event History
Herald allows subscribers to request that a history of

published events be kept in case they have been discon-
nected. Subscribers can indicate how much history they
want kept and Herald servers are free to either accept or
reject requests.

History support imposes a storage burden upon Her-
ald servers, which we bound in two ways. First, the crea-
tor of a Rendezvous Point can inform Herald of the
maximum amount of history storage that may be allocated
at creation time. As with subscriptions, servers are free to
reject creation requests requiring more storage than their
policies or resources allow.

Second, because clients and servers both maintain
only ageing soft state about one another, event history

Figure 2: Replicated Rendezvous Point RP1 and Fault-Tolerant Subscription Sub2

RP1@L1

RP2@L1

Herald@L1

RP1@L2

Herald@L2

RP1@L3

Herald@L3

Pub1

Sub2

Pub2

Sub1

Sub4

Sub5

Pub3
Sub3

80

information kept for dead or long-unreachable subscribers
will eventually be reclaimed.

While we recognize that some clients might need only
a synopsis or summary of the event history upon recon-
nection, we leave any such filtering to a layer that can be
built over the basic Herald system, in keeping with our
Internet-style philosophy of providing primitives on which
other services are built. Of course, if the last event sent
will suffice for a summary, Herald directly supports that.

3.6 Administrative Rendezvous Points
One consequence of name services being outside

Herald is that when Herald changes the locations at which
a Rendezvous Point is hosted, it will need to inform the
relevant name servers of the changes. In general, there
may be a variety of parties that are interested in learning
about changes occurring to Rendezvous Points and the
replicas that implement them.

Herald notifies interested parties about changes to a
Rendezvous Point by means of anadministrative Rendez-
vous Point that is associated with it. By this means we
plan to employ a single, uniform mechanism for all client-
server and server-server notifications.

Administrative Rendezvous Points do not themselves
have other Administrative Rendezvous Points associated
with them. Information about their status is communicated
via themselves.

4. Research Issues
In order to successfully build Herald using the

mechanisms described above, we will have to tackle a
number of research issues. We list a few of the most nota-
ble ones below.

The primary research problem we face will be to de-
velop effective policies for deciding when and how much
Rendezvous Point state information to move or replicate
between servers, and to which servers. These policies will
need to take into account load balancing and fault-
tolerance concerns, as well as network topology consid-
erations, for both message delivery and avoidance of un-
wanted partitioning situations. Some of the specific topics
we expect to address are:
• determining when to dynamically add or delete serv-

ers from the list of those maintaining a given Rendez-
vous Point,

• dynamic placement of Rendezvous Point state—espe-
cially event histories—to minimize the effects of po-
tential network partitions,

• dynamically reconfiguring distributed Rendezvous
Point state in response to global system state changes,

• dealing with “sudden fame”, where an Internet-based
application’s popularity may increase by several or-
ders of magnitude literally overnight, implying that
our algorithms must stand up to rapid changes in
load.

Since we plan to rely heavily on partial, weakly con-
sistent, sometimes inaccurate, distributed state informa-
tion, a key challenge will be to explore how well one can
manage a global service with such state. Equally impor-
tant will be to understand what the cost of disseminating
information in this fashion is.

It is an open question exactly how scalable a reliable
multicast-style delivery system can be, especially when
multiple geographically dispersed event publishers are
allowed and when the aggregate behavior of large num-
bers of dynamically changing Rendezvous Points is con-
sidered. In addition, Herald requires that event notifica-
tions continue to be delivered to reachable parties during
partitions of the system and be delivered “after the fact” to
subscribers who have been “disconnected” from one or
more event publication sources. To our knowledge, op-
eration of delivery systems under these circumstances has
not yet been studied in any detail.

Herald’s model of a federated world in which foreign
servers are not necessarily trustworthy implies that infor-
mation exchange between servers may need to be secured
by means such as Byzantine communication protocols or
statistical methods that rely on obtaining redundant infor-
mation from multiple sources. Event notification messages
may need to be secured by means such as digital signa-
tures and “message chains”, as described, for example, in
[12].

Another scaling issue is how to deal with access con-
trol for large numbers of clients to a Rendezvous Point.
For example, consider the problem of allowing all 280
million U.S. citizens access to a particular Rendezvous
Point, but no one else in the world.

Finally, Herald pushes a number of things often pro-
vided by event notification systems, such as event order-
ing and filtering, to higher layers. It is an open question
how well that will work in practice.

5. Related Work
The Netnews distribution system [8] has a number of

attributes in common with Herald. Both must operate at
Internet scale. Both propagate information through a
sparsely connected graph of distribution servers. The big-
gest difference is that for Netnews, human beings design
and maintain the interconnection topology, whereas for
Herald, a primary research goal is to have the system
automatically generate and maintain the interconnection
topology. The time scales are quite different as well. Net-
news propagates over time scales of hours to weeks,
whereas Herald events are intended to be delivered nearly
instantaneously to connected clients.

A number of peer-to-peer computing systems, such as
Gnutella [2], have emerged recently. Like Herald, they are
intended to be entirely self-organizing, utilizing resources
on federated client computers to collectively provide a
global service. A difference between these services and

81

Herald is that the former typically use non-scalable algo-
rithms, including broadcasts. Unlike Herald, with the ex-
ception of Farsite [1], these services also typically ignore
security issues and are ill prepared to handle malicious
participants.

Using overlay networks for routing content over the
underlying Internet has proven to be an effective method-
ology. Examples include the MBONE [11] for multicast,
the 6BONE [4] for IPv6 traffic, plus content distribution
networks such as Overcast [6] and Inktomi’s broadcast
overlay network [5]. They have demonstrated the same
load-reducing benefits for information dissemination to
large numbers of clients needed for Herald. However,
most work has focused on single-sender dissemination
networks. Furthermore, they have not investigated
mechanisms and appropriate semantics for continued op-
eration during partitions.

The OceanStore [9] project is building a global-scale
storage system using many of the same principles and
techniques planned for Herald. Both systems are built
using unreliable servers, and provide reliability through
replication and caching. Both intend to be self-monitoring
and self-tuning.

6. Conclusions
Global event notification is emerging as a key tech-

nology underlying numerous distributed applications.
With the requirements imposed by use of these applica-
tions at Internet scale, the need for a highly scalable event
notification system is clear.

We have presented the requirements and design over-
view for Herald, a new event notification system designed
to fill this need. We are currently implementing the
mechanisms described in this paper and are planning to
then experiment with a variety of different algorithms and
policies to explore the research issues we have identified.

Acknowledgments
The authors would like to thank Yi-Min Wang, Dan

Ling, Jim Kajiya, and Rich Draves for their useful feed-
back on the design of Herald.

References
[1] Bill Bolosky, John Douceur, David Ely, and Marvin

Theimer. Evaluation of Desktop PCs as Candidates for a
Serverless Distributed File System. InProceedings of Sig-
metrics 2000, Santa Clara, CA, pp. 34-43, ACM, June
2000.

[2] Gnutella: To the Bandwidth Barrier and Beyond.
Clip2.com, November 6th, 2000.
http://www.gnutellahosts.com/gnutella.html.

[3] David Garlan and David Notkin. Formalizing Design
Spaces: Implicit Invocation Mechanisms. InProceedings of
Fourth International Symposium of VDM Europe: Formal
Software Development Methods, Noordwijkerhout, Neth-
erlands, pp. 31-44, October, 1991. Also appears as
Springer-VerlagLecture Notes in Computer Science 551.

[4] Ivano Guardini, Paolo Fasano, and Guglielmo Girardi.IPv6
operational experience within the 6bone. January 2000.
http://carmen.cselt.it/papers/inet2000/index.htm.

[5] The Inktomi Overlay Solution for Streaming Media Broad-
casts. Technical Report, Inktomi, 2000.
http://www.inktomi.com/products/media/docs/whtpapr.pdf.

[6] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, Jr. Overcast: Reliable
Multicasting with an Overlay Network. InProceedings of
the Fourth Symposium on Operating Systems Design and
Implementation, San Diego, CA, pp. 197-212. USENIX
Association, October 2000.

[7] Astrid M. Julienne and Brian Holtz.ToolTalk and Open
Protocols: Inter-Application Communication. Prentice
Hall, 1994.

[8] Brian Kantor and Phil Lapsley.Network News Transfer
Protocol (NNTP). Network Working Group Request for
Comments 977 (RFC 977), February 1986.
http://www.ietf.org/rfc/rfc0977.txt.

[9] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao. OceanStore: An Architecture
for Global-Scale Persistent Storage. InProceedings of the
Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems,
Cambridge, MA, November 2000.

[10] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen.
The Information Bus – An Architecture for Extensible Dis-
tributed Systems. InProceedings of the 13th ACM Sympo-
sium on Operating Systems Principles, Asheville, NC, pp.
58-68, December1993.

[11] Kevin Savetz, Neil Randall, and Yves Lepage.MBONE:
Multicasting Tomorrow’s Internet. IDG, 1996.
http://www.savetz.com/mbone/.

[12] Mike J. Spreitzer, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, and Douglas B. Terry. Dealing with Server
Corruption in Weakly Consistent, Replicated Data Systems,
In Wireless Networks, ACM/Baltzer, 5(5), 1999, pp. 357-
371. A shorter version appears inProceedings of the Third
Conference on Mobile Computing and Networking,
ACM/IEEE, Budapest, Hungary, September 1997.

[13] Rob Strom, Guruduth Banavar, Tushar Chandra, Marc
Kaplan, Kevan Miller, Bodhi Mukherjee, Daniel Sturman,
and Michael Ward. Gryphon: An Information Flow Based
Approach to Message Brokering. InProceedings of Inter-
national Symposium on Software Reliability Engineering
’98, Fat Abstract, 1998.

[14] Talarian Inc. Talarian: Everything You Need To Know
About Middleware. http://www.talarian.com/industry/
middleware/whitepaper.pdf.

[15] TIBCO Inc. Rendezvous Information Bus.
http://www.rv.tibco.com/datasheet.html,2001.

[16] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie,
Mike Young, Bill Peet. Concordia: An Infrastructure for
Collaborating Mobile Agents. InProceedings of the First
International Workshop on Mobile Agents, April, 1997.

82

HeRMES: High-Performance Reliable MRAM-Enabled Storage

Abstract

Magnetic RAM (MRAM) is a new memory technology with
access and cost characteristics comparable to those of
conventional dynamic RAM (DRAM) and the non-volatil-
ity of magnetic media such as disk. Simply replacing
DRAM with MRAM will make main memory non-volatile,
but it will not improve file system performance. However,
effective use of MRAM in a file system has the potential to
significantly improve performance over existing file sys-
tems. The HeRMES file system will use MRAM to dramati-
cally improve file system performance by using it as a
permanent store for both file system data and metadata. In
particular, metadata operations, which make up over 50%
of all file system requests [14], are nearly free in HeRMES
because they do not require any disk accesses. Data
requests will also be faster, both because of increased
metadata request speed and because using MRAM as a
non-volatile cache will allow HeRMES to better optimize
data placement on disk. Though MRAM capacity is too
small to replace disk entirely, HeRMES will use MRAM to
provide high-speed access to relatively small units of data
and metadata, leaving most file data stored on disk.

1. Introduction

Current file systems are optimized for the assumption
that the only stable storage in the system is a block-ori-
ented, high-latency device such as a disk. As a result,
existing file systems use data structures and algorithms
that transfer data in large units and take great pains to
ensure that the file system’s image on disk remains inter-
nally consistent. If the file system includes any non-vola-
tile memory (NVRAM), there is usually a limited amount
used as a temporary storage area to facilitate staging data
to disk.

Magnetic RAM (MRAM) [4] is a new memory tech-
nology, currently in development, with the speed, density,
and cost of DRAM and the non-volatility of disk. We are
investigating the use of MRAM in the HeRMES (

H

igh-

performanc

e

,

R

eliable,

M

RAM-

E

nabled

S

torage) file sys-
tem to dramatically improve file system performance by
storing metadata and some data in MRAM. Since MRAM
will have cost comparable to that of DRAM, it cannot
totally replace disk or other types of secondary storage
such as MEMS [9]. Rather, we are researching the most
effective ways to use limited amounts of MRAM in a file
system.

An MRAM-based file system such as HeRMES has
several major advantages over existing file systems in both
performance and reliability. As we discuss in this paper,
using MRAM in the file system can reduce the cost of
metadata operations to nearly zero, leaving them limited
solely by CPU speed. It also increases the speed of file
reads and writes both by reducing metadata overhead and
by allowing the file system to better lay out data on disk by
buffering writes longer in safe MRAM. File system reli-
ability is also greatly improved. Simplifying metadata
structures results in less complex and more reliable soft-
ware. Keeping metadata in MRAM also allows HeRMES
to run consistency checks on the file system in the back-
ground during normal operation, allowing errors to be
caught early, before they spread.

2. HeRMES design

The HeRMES file system is built from the ground up
using two assumptions that differ from current file sys-
tems: metadata accesses need not be in large contiguous
blocks, and metadata accesses take microseconds (at most)
rather than milliseconds. These assumptions differ from
those underlying disk-based file systems, which require
milliseconds to access blocks of data.

2.1. Metadata management

HeRMES maintains all of its metadata in MRAM,
avoiding the need to access the disk for metadata requests.
The ability of MRAM to handle single-word reads and
writes further benefits HeRMES by allowing it to use

Ethan L. Miller

elm@cs.ucsc.edu

Scott A. Brandt

sbrandt@cs.ucsc.edu

Darrell D. E. Long

darrell@cs.ucsc.edu
Computer Science Department

University of California, Santa Cruz

83

much simpler data structures. For example, the B+-trees
used in XFS [16] make efficient use of large blocks at the
expense of file system complexity. HeRMES, on the other
hand, can use simpler data structures such as binary trees
and hash tables with in-memory semantics because it does
not need to allocate and reference structures in large
blocks.

Keeping all metadata in MRAM could be prohibitive
for traditional file systems, which can require up to a
1–2% overhead for metadata; 600 MB of DRAM for a
60 GB disk may be too expensive, with memory costs
exceeding those of disk. HeRMES, in contrast, will make
extensive use of compression and variable-sized alloca-
tions to drastically reduce needed space, avoiding this
problem. For example, an inode in Unix might require 128
bytes; there would be little benefit to reducing its size on
disk because retrieval time is dominated by access latency
which would not be reduced for smaller objects. It might
be possible to save small amounts of DRAM at the
expense of transforming the inode when transferring it
between disk and memory, but using information from
other inodes to do the compression would be difficult.
HeRMES, however, can use commonalities between
inodes to reduce required space. For example, each file’s
inode can contain a pointer to an access control list; since
many of a user’s files have identical permissions, their
inodes can share a single list. File index pointers can also
benefit from compression and variable-sized memory-
style allocation. Many file systems use extents to compress
index lists; by storing lists of extents in variable-sized
blocks of MRAM, HeRMES can eliminate wasted space.

One potential problem with keeping metadata in
MRAM is that it may be

too

 easy to modify data struc-
tures, potentially causing file system inconsistency. Wild
references in the file system (or elsewhere in the operating
system) could overwrite valid metadata in MRAM, cor-
rupting the file system. HeRMES will avoid this problems
using techniques similar to those in Rio [12]. By keeping
file system MRAM protected except when explicitly nec-
essary, HeRMES will ensure that only desired changes are
made to MRAM. The process of switching a page from
read-only to read-write in the page table is fast, and will
not significantly slow down HeRMES MRAM operations,
particularly since it is only necessary when metadata is
modified.

2.2. MRAM write buffer

Like most file systems, HeRMES will buffer writes in
memory for several reasons: allowing a process to con-
tinue without waiting for a write to go to disk, reordering
writes to minimize disk latency, and waiting in the hope
that a file will be deleted. Unlike many file systems, how-

ever, writes with HeRMES are safe once they are written
to MRAM. This allows HeRMES to postpone writes as
long as desired without fear of data loss due to a system
crash.

The write buffer in HeRMES is similar to that in sys-
tems with NVRAM, with two important differences:
MRAM is considerably faster than NVRAM, and meta-
data updates accompanying a write are done immediately
in MRAM. Writes to MRAM are considerably faster than
writes to flash RAM, which can require more than two
milliseconds. MRAM’s faster write time reduces the win-
dow of vulnerability during which data can be lost from a
system failure.

Because MRAM is a long-term stable store, data writ-
ten there can be kept as long as necessary. This allows
HeRMES to optimize data placement on disk, reducing
time wasted to disk access latency. Existing file systems
do this as well, but they run the risk of data loss if they
hold data in the write buffer too long. Many systems with
“non-volatile” RAM actually use battery-backed RAM,
which can lose data because of dead batteries in addition
to the usual dangers of storing data in RAM.

2.3. MRAM file storage

MRAM may also be useful for disk reads, particularly
if there is a relatively large amount of MRAM in the sys-
tem. Disk latencies are currently around 5–10 ms; in that
time, a disk can transfer 64–128 KB of data. The file sys-
tem can keep the first few blocks of each file in MRAM,
transferring the data out of MRAM while the disk seek is
completed. Combining this technique with file access pre-
diction and clustering on secondary storage [1] will further
improve performance by reserving the scarce MRAM
resource for “live” data. As probe-based storage [9]
becomes available, this technique will become more effec-
tive because the latency to data on secondary storage will
be lower, reducing the amount of file data that must be
buffered in MRAM and increasing the number of files for
which such buffering is possible.

As with write buffering, caching file headers (or entire
files, if they are small) is not a new technique. However,
MRAM makes this technique more attractive because it
allows the structures to survive power loss and system
reboot, enabling the file system to build such a cache over
time without the need to preserve it on disk or reload it
after a system restart.

3. Performance

HeRMES can significantly outperform existing file sys-
tems for several reasons. First, metadata operations in
HeRMES are nearly free because they only require mem-

84

ory-type accesses. Table 1 shows several common file sys-
tem request types [14], noting the disk operations needed
to satisfy each one. Existing file systems cache metadata in
DRAM, updating the original on disk when changes occur.
Though they can eliminate many (but not all) disk reads by
caching, metadata writes must go through to disk to ensure
consistency, and writes often have a partial order enforced
on them to maintain file system consistency [13]. HeR-
MES, on the other hand, handles disk requests in the
shaded columns entirely in MRAM, leaving only file data
reads and writes to use the disk. This results in dramati-
cally faster metadata operations, requiring microseconds
rather than milliseconds to complete. Moreover, data
writes can be safely buffered in MRAM indefinitely, as
described in Section 2.2, further decreasing latency from
user write to “safe” commit of the data.

Because HeRMES metadata operations are limited only
by CPU speed, the file system can satisfy them in the time
it takes to execute the metadata operation in the CPU. For
existing file systems, 20,000 – 40,000 operations are suffi-
cient to execute a file system request; this is 40 to 80

µ

s on
a modern processor, allowing a single processor file server
to handle about 25,000 metadata operations per second;
HeRMES will likely be able to do more operations per
second because it can use simpler data structures (and thus
fewer instructions to manipulate them) and has no need to
spend instructions on managing disk I/O. If a file server
provides, on average, one 4 KB file block for every two
metadata operations, such a server could sustain 50 MB
per second using a single commodity CPU.

The simple MRAM-resident data structures in HeR-
MES can provide added speed in another way: reduced
lock contention. Disk-based file systems must use fine-
grained locking to ensure high levels of concurrency in the
face of relatively long metadata operations. In particular,
operations that require reading data from disk can hold
locks for milliseconds, potentially causing contention for
locks. HeRMES, in contrast, can complete metadata reads
or updates in less than 100 microseconds. This time is
shorter than the scheduling quantum on many systems,
and is thus less likely to result in high levels of lock con-
tention. The contention problem is exacerbated on sym-

metric multiprocessor systems; again, HeRMES can use
relatively course-grained locking and still maintain low
levels of lock contention.

4. Reliability

File system reliability is, for many users, more impor-
tant than performance: getting the correct data later is bet-
ter than getting erroneous data now. HeRMES can provide
high performance, as seen in Section 3, without sacrificing
reliability. Moreover, HeRMES will be more reliable than
existing file systems for several reasons, including lower
software complexity and the ability to continuously check
the system for consistency.

4.1. Reducing software complexity

By using relatively simple structures in MRAM, HeR-
MES reduces software complexity, making file system
software more reliable. Simple data structures are well-
understood and less prone to programming errors, reduc-
ing the likelihood that a bug will be hidden in thousands of
lines of complex code. Because MRAM is so much faster
than disk, there will be less temptation for programmers to
take shortcuts that save a few microseconds, making it less
likely that such a shortcut will malfunction.

The lower number of locks needed in HeRMES also
increase software reliability. With metadata operations
locking up structures for around 50

µ

s, there is no need for
thousands of locks in the file system. On a uniprocessor
system, in fact, a single lock for the entire metadata struc-
ture is sufficient because operations are CPU-bound and
thus gain minimal benefit from interleaved requests. Even
in multiprocessor file servers, a relatively small number of
locks—at most one per file (for metadata), one for disk
allocation, and one for memory allocation—will be suffi-
cient to guarantee that processors are not waiting on file
system locks. The net result is a lower probability of dead-
lock as well as less chance that data will be improperly
modified.

4.2. Metadata checking

HeRMES will also take an active approach to protect-
ing file system consistency by continuously checking the
metadata structures while the system is running. A back-
ground process checking 2,000 files per second can fully
check a system with ten million files in less than 90 min-
utes, yet it demands less than 10% of the system’s
resources to do so.

Checking the file system’s metadata while the system is
operating increases reliability in several ways. First, it is
often easier to write a program that

detects

 an error than it

Table 1. Disk I/O needed for file system requests.

Request

Type of disk requests needed

Global
metadata

File
metadata

File
index

File
data

File stat (50%) – read – –

File read (20%)
– read

write
read read

File write (5%)
read
write

read
write

read
write

read
write

85

is to write a file system that doesn’t produce errors in the
first place. Merely detecting the error may be sufficient to
attempt correcting it, or at least to prevent it from spread-
ing to the rest of the file system. Second, most existing file
systems

never

 have their metadata checked. They rely on
logging [10] and other techniques to recover quickly from
a crash, but they do not examine metadata written during
normal operation. This is necessary because a full check of
the metadata on a large file system with ten million files
might take hours, if not days, and would consume most of
the disk bandwidth during that time. Third, extremely
large file systems are now encountering a new problem:
disk unreliability due to firmware errors and undetectable
bit errors is becoming a concern. A bit error rate of 10

-12

becomes a problem when file systems store a terabyte of
data because bit errors may go unnoticed for days. Rather
than do continuous checks, though current file systems
must assume that their code does not contain any bugs and
that the underlying media is reliable, assumptions that are
increasingly less likely as file systems grow larger and
more complex.

4.3. Backing up metadata

MRAM, like any other part of a computer, will be sub-
ject to component failure. Because MRAM is the only
place metadata is stored, HeRMES must guard against
MRAM failure. It does so by logging metadata changes to
a location other than that holding the MRAM. This can be
done in several ways. The first option is to write metadata
changes to disk. This is very similar to logging, but does
not involve the same ordering issues that metadata updates
in conventional systems suffer. The second option is to
keep the metadata log in a different bank of MRAM than
that holding the original metadata. If MRAM can be
removed from a computer, placed in a new one, and its
contents read, this solution is sufficient to back up meta-
data at very little cost.

In either case, metadata update logging requires very
little space. The majority of metadata updates are times-
tamp modifications, which can be recorded in a few bytes.
More complex modifications take more space; however,
MRAM can buffer changes and flush them to disk several
times per minute. Using this mechanism means that total
MRAM failure (chip failure) can lose small amounts of
data, but that consistency is not affected. It is important to
remember that chip failure is not a common source of
computer failure, and that chip failure affects

all

 file sys-
tems that use memory for caching and buffering.

5. Related work

Our work builds on many areas of file system research,
but research into non-volatile RAM (NVRAM) systems
and schemes to reduce latency for disk accesses, particu-
larly metadata, is most relevant.

Douglis [6] and Wu [17] proposed the use of NVRAM
to hold an entire file system. This approach is acceptable
for relatively small file systems, but MRAM (like
NVRAM) is too expensive to replace disk for general pur-
pose file systems. Additionally, the flash RAM used in
these systems does not support single word writes; instead,
it requires 1–2 ms (or more) to write a relatively large
block of data. This prevents fine-grained modification of
data in non-volatile memory. In eNVy [17], copy-on-write
and buffering were used to get around the long erase
latency of flash RAM; this approach required extensive
garbage collection similar to that used in log-structured
file systems [3,15].

NVRAM has long been used for recovery and file sys-
tem reliability [2], again with the restrictions of small size
and coarse-grained write access. In such systems,
NVRAM is used as a non-volatile cache for disk, but data
“lives” on disk. This design improves file system reliabil-
ity by reducing the window of vulnerability for written
data and improves performance by relaxing metadata write
constraints. However, it does not allow the rich metadata
structures possible when metadata is permanently resident
in MRAM, and writes must still be sent to disk, requiring
disk seeks and consuming disk bandwidth.

Techniques for reducing disk latency and improving
reliability for metadata include writing data to the nearest
free disk blocks [7,11], logging [10], and soft
updates [13]. All of these techniques reduce access latency
for writes, but none reduces the

number

 of blocks that
must be written. Additionally, these techniques use little
beyond caching to speed up metadata read access. Another
technique, combining metadata with file data [8], allows
data and metadata for small files to be read and written in a
single contiguous request. However, this technique was
only tried with relatively small files.

6. Current research

Our research into using MRAM for file systems, specif-
ically HeRMES, has just begun. In this paper, we
described several ways in which MRAM can be used to
improve file system performance, but many questions
remain. For example, what happens if MRAM is limited?
If insufficient MRAM is available for all of the metadata,
how can HeRMES efficiently transform in-memory struc-
tures to on-disk structures for infrequently used files?
What is the correct tradeoff between using MRAM for

86

metadata, write buffering, and other uses such as caching
the first few blocks of a file to reduce access latency?

We are also exploring issues related to using MRAM
across a distributed file system. Clearly, some form of
sharing, perhaps similar to cooperative caching [5], will be
necessary to fully utilize MRAM in such a system. How-
ever, there will be differences as well—the access latency
across a network, while lower than that of disk, is consid-
erably higher than that of MRAM.

We are just at the beginning of research into using the
new technology of MRAM in file systems, and there are
many avenues of research that we will pursue.

7. Conclusions

Magnetic RAM will be available commercially within
a few years; it is crucially important that file system
designers incorporate it into file systems and use it effec-
tively. We have shown how magnetic RAM can be used to
dramatically improve file system performance and reliabil-
ity. Our file system, HeRMES, will keep metadata in
MRAM, allowing nearly free metadata operations limited
only by CPU speed. Because MRAM is non-volatile, there
is never a need to flush metadata to disk, also improving
file system data bandwidth by freeing disk from the need
to handle frequent metadata accesses.

File system reliability also benefits from the use of
MRAM. The simpler metadata structures possible using
MRAM will reduce file system complexity, and thus
increase software reliability. Background metadata consis-
tency checking, likewise, will increase the chance than an
error will be found, increasing file system reliability by
snuffing out errors as soon as they happen. It is this combi-
nation of performance and reliability that makes MRAM
attractive as a technology for incorporation into file sys-
tems.

References

[1] A. Amer and D. Long, “Noah: Low-cost file access predic-
tion through pairs,”

20th IEEE International Performance,
Computing, and Communications Conference (IPCCC
2001)

, pp. 27–33, 2001.

[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Selt-
zer, “Non-volatile memory for fast, reliable file systems,”

5th Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS)

, pp. 10–22,
1992.

[3] T. Blackwell, J. Harris, and M. Seltzer, “Heuristic cleaning
algorithms in log-structured file systems,”

Proceedings of
the 1995 USENIX Technical Conference

, pages 277–288,
January 1995.

[4] H. Boeve, C. Bruynseraede, J. Das, K. Dessein, G. Borghs,
J. De Boeck, R. Sousa, L. Melo, and P. Freitas, “Technol-
ogy assessment for the implementation of magnetoresistive
elements with semiconductor components in magnetic ran-
dom access memory (MRAM) architectures,”

IEEE Trans.
on Magnetics

35

(5), pp. 2820–2825, 1999.

[5] M. Dahlin, R. Wang, T. Anderson, and D. Patterson,
“Cooperative caching: using remote client memory to
improve file system performance,”

Proceedings of the 1st
Symposium on Operating Systems Design and Implementa-
tion (OSDI)

, pages 267–280, 1994.

[6] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and
J. A. Tauber, “Storage alternatives for mobile computers,”

Proceedings of the 1st Symposium on Operating Systems
Design and Implementation (OSDI)

, pp. 25–37, 1994.

[7] R. English and A. Stepanov, “Loge: a self-organizing disk
controller,”

Winter 1992 USENIX Technical Conference

,
pp. 237–252, 1992.

[8] G. Ganger and M. Kaashoek, “Embedded inodes and
explicit groupings: exploiting disk bandwidth for small
files,”

1997 USENIX Technical Conference

, pp. 1–17,
1997.

[9] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle, “Operat-
ing system management of MEMS-based storage devices,”

4th Symp. on Operating Systems Design and Implementa-
tion (OSDI)

, pp. 227–242, 2000.

[10] R. Hagmann, “Reimplementing the Cedar File System
using logging and group commit,”

11th ACM Symposium
on Operating Systems Principles,

pp. 155–162, 1987.

[11] D. Hitz, J. Lau, and M. Malcom, “File system design for an
NFS file server appliance,”

Winter 1994 USENIX Confer-
ence

, 1994.

[12] D. Lowell and P. Chen, “Free transactions with Rio Vista,”

16th ACM Symposium on Operating Systems Principles

,
pp. 92–101, 1997.

[13] M. McKusick and G. Ganger, “Soft updates: a technique
for eliminating most synchronous writes in the Fast File-
system,”

FREENIX Track: 1999 USENIX Technical Con-
ference

, pp. 1–18, 1999.

[14] D. Roselli, J. Lorch, and T. Anderson, “A comparison of
file system workloads,”

2000 USENIX Technical Confer-
ence

, pp. 41–54, 2000.

[15] M. Rosenblum and J. K. Ousterhout, “The design and
implementation of a log-structured file system,”

ACM
Transactions on Computer Systems

10

(1), pages 26–52,
1992.

[16] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishim-
oto, and G. Peck, “Scalability in the XFS file system,”

Pro-
ceedings of the 1996 USENIX Conference

, pages 1–14,
1996.

[17] M. Wu and W. Zwaenepoel, “eNVy: a non-volatile, main
memory storage system,”

6th Conf. on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS)

, pp. 86–97, 1994.

87

Better Security via Smarter Devices

Gregory R. Ganger and David F. Nagle
Carnegie Mellon University

E-mail:fganger,bassoong@ece.cmu.edu

Abstract

This white paper promotes a new approach to network
security in which each individual device erects its own se-
curity perimeter and defends its own critical resources (e.g.,
network link or storage media). Together with conventional
border defenses, such self-securing devicescould provide a
flexible infrastructure for dynamic prevention, detection, di-
agnosis, isolation, and repair of successful breaches in bor-
ders and device security perimeters. We overview the self-
securing devices approach and the siege warfare analogy
that inspired it. We also describe several examples of how
different devices might be extended with embedded security
functionality and outline some challenges of designing and
managing self-securing devices.

1. Overview

From all indications, assured OS security seems to be an
impossible goal. Worse, conventional security architectures
are brittle by design, because a small number of border pro-
tections (e.g., firewalls and/or host OSs) are used to protect
a large number of resources and services. For example, an
attacker who compromises a machine’s OS gains complete
control over all resources of that machine. Thus, such an
intruder gains the ability to transmit anything onto the net-
work, modify anything on the disk, and examine all input
device signals (e.g., typing patterns and video feeds). Like-
wise, an attacker who circumvents firewall-based protection
has free reign within the “protected” environment.

Having shared border protections for large sets of re-
sources creates three fundamental difficulties: (1) the many
interfaces and functionalities for the many resources (e.g.,
consider most multi-purpose OSs) make correct implemen-
tation and administration extremely difficult; the practical
implications are daily security alerts for popular OSs (e.g.,
Windows NT and Linux) and network applications (e.g.,
e-mail and web); (2) the ability of successful attackers to
freely manipulate everything beyond the border protection
greatly complicates most phases of security management,

including intrusion detection, isolation, diagnosis, and re-
covery; (3) having a central point of security checks creates
performance, fault-tolerance, and flexibility limitations for
large-scale environments.

This position paper promotes an alternative architec-
ture in which individual system components erect their
own security perimeters and protect their resources (e.g.,
network, storage, or video feed) from intruder tampering.
This “self-securing devices” architecture distributes secu-
rity functionality amongstphysically distinct components,
avoiding much of the fragility and unmanageability inher-
ent in today’s border-based security. Specifically, this ar-
chitecture addresses the three fundamental difficulties by:
(1) simplifying each security perimeter (e.g., consider NIC
or disk interfaces), (2) reducing the power that an intruder
gains from compromising just one of the perimeters, and (3)
distributing security enforcement checks among the many
components of the system.

Conventional application-executing CPUs will still run
application programs, but they won’t dictate which packets
are transferred onto network wires and they won’t dictate
which disk blocks are overwritten. Instead, self-securing
NICs will provide firewall and proxy server functionality
for a given host, as well as throttling or labelling its out-
bound traffic when necessary. Likewise, self-securing stor-
age devices will protect their data from compromised client
systems, and self-securing graphics cards will display warn-
ing messages even when the window manager is compro-
mised. In a system of self-securing devices, compromising
the OS of an application-executing CPU won’t give a ma-
licious party complete control over all system resources —
to gain complete power, an intruder must also compromise
the disk’s OS, the network card’s OS, etc.

Augmenting current border protections with self-
securing devices promises much greater flexibility for se-
curity administrators. By having each device erect an inde-
pendent security perimeter, the network environment gains
many outposts from which to act when under attack. De-
vices not only protect their own resources, but they can ob-
serve, log, and react to the actions of other nearby devices.
Infiltration of one security perimeter will compromise only

88

Biometric
Sensor

Host OS

Main
Memory

Networking

Storage

Host OS

Network
Interface

Card
Network

Link

Main
Memory

Networking

(a) Conventional OS-based Security (b) OS + Self-Securing Devices

Storage Ctlr

Storage
Device

Biometric
Sensor

Figure 1. Two security approaches for a computer system. On the left, (a) shows the conventional
approach, which is based on a single perimeter around the set of system resources. On the right,
(b) shows our new approach, which augments the conventional security perimeter with perimeters
around each self-securing device. These additional perimeters offer additional protection and flexi-
bility for defense against attackers. Firewall-enforced network security fits a similar picture, with the
new architecture providing numerous new security perimeters within each system on the internal
network.

a small fraction of the environment, allowing other devices
to dynamically identify the problem, alert still-secured de-
vices about the compromised components, raise the security
levels of the environment, and so forth.

Self-securing devices will require more computational
resources in each device. However, with rapidly shrink-
ing hardware costs, growing software development costs,
and astronomical security costs, it makes no sense to not
be throwing hardware at security problems. A main chal-
lenge for we OS folks is to figure out how to best parti-
tion (and replicate) functionality across self-securing com-
ponents in order to enhance security and robustness. A
corollary challenge is to re-marshall the distributed func-
tionality to achieve acceptable levels of performance and
manageability. After describing our inspiration for this ar-
chitecture (medieval siege warfare), this position paper out-
lines some of our thoughts on these challenges.

2. Siege Warfare in the Internet Age

Despite enormous effort and investment, it has proven
nearly impossible to prevent computer security breaches.
To protect our critical information infrastructures, we need
defensive strategies that can survive determined and suc-
cessful attacks, allowing security managers to dynamically
detect, diagnose, and recover from breaches in security
perimeters. Borrowing from lessons learned in pre-gun war-
fare, we propose a new network security architecture anal-
ogous to medieval defense constructs.

Current security mechanisms are based largely on singu-
lar border protections. This roughly corresponds to defense

practices during Roman times, when defenders erected
walls around their camps and homes to provide protective
cover during attacks. Once inside the walls, however, at-
tackers faced few obstacles to gaining access to all parts
of the enclosed area. Likewise, a cracker who successfully
compromises a firewall or OS has complete access to the re-
sources protected by these border defenses—no additional
obstacles are faced.1 Of course, border defenses were a
large improvement over open camps, but they proved dif-
ficult to maintain against determined attackers — border
protections can be worn down over time and defenders of
large encampments are often spread thin at the outer wall.

As the size and sophistication of attacking forces grew,
so did the sophistication of defensive structures. The most
impressive such structures, constructed to withstand deter-
mined sieges in medieval times, used multiple tiers of de-
fenses. Further, tiers were not strictly hierarchical in na-
ture — rather, some structures could be defended indepen-
dently of others. This major advancement in defense ca-
pabilities provided defenders with significant flexibility in
defense strategy, the ability to observe attacker activities,
and the ability to force attackers to deal with multiple inde-
pendent defensive forces.

1This is not quite correct in the case of a firewall protecting a set of
hosts that each run a multi-program OS, such as Linux. Such an environ-
ment is more like a town of many houses surrounded by a guarded wall.
Each house affords some protection beyond that provided by the guarded
wall, but not as much in practice as might be hoped. In particular, most
people in such an environment will simply open the door when they hear a
knock, assuming that the wall keeps out attackers. Worse, in the computer
environment, homogeneity among systems results in a single set of keys
(attacks) that give access to any house in the town.

89

.
(a) a siege-ready computer system (b) 2 siege-ready intranets

Figure 2. The self-securing device architecture illustrated via the siege warfare constructs that in-
spired it. On the left, (a) shows a siege-ready system with layered and independent tiers of defense
enabled by device-embedded security perimeters. On the right, (b) shows two small intranets of such
systems, separated by firewall-guarded entry points. Also note the self-securing routers/switches
connecting the machines within each intranet.

Applying the same ideas to computer and network secu-
rity, border protections (i.e., firewalls and host OSs) can be
augmented with security perimeters erected at many points
within the borders. Enabled by low-cost computation (e.g.,
embedded processors, ASICs), security functionality can be
embedded in most device microcontrollers, yielding “better
security via smarter devices.” We refer to devices with em-
bedded security functionality asself-securing devices.

Self-securing devices can significantly increase network
security and manageability, enabling capabilities that are
difficult or impossible to implement in current systems. For
example, independent device-embedded security perimeters
guarantee that a penetrated boundary does not compromise
the entire system. Uncompromised components continue
their security functions even when other system compo-
nents are compromised. Further, when attackers penetrate
one boundary and then attempt to penetrate another, un-
compromised components can observe and react to the in-
truder’s attack; from behind their intact security perimeters,
they can send alerts to the security administrator, actively
quarantine or immobilize the attacker, and wall-off or mi-
grate critical data and resources. Pragmatically, each self-
securing device’s security perimeter is simpler because of
specialization, which should make correct implementations

more likely. Further, distributing security checks among
many devices reduces their performance impact and allows
more checks to be made.

By augmenting conventional border protections with
self-securing devices, this new security architecture
promises substantial increases in both network security and
security manageability. As with medieval fortresses, well-
defended systems conforming to this architecture could sur-
vive protracted sieges by organized attackers.

3. Device-embedded security examples

To make our new security architecture more concrete,
this section gives several examples of how different devices
might be extended with embedded security functionality. In
each case, there are difficulties and research questions to be
explored; here, we focus mainly on conveying the potential.

Network interface cards (NICs): The role of NICs in
computer systems is to move packets between the system’s
components and the network. Thus, the natural security ex-
tension is to enforce security policies on packets forwarded
in each direction [2]. Like a firewall, a self-securing NIC
does this by examining packet headers and simply not for-
warding unacceptable packets into or out of the computer

90

system. A self-securing NIC can also act as a machine-
specific gateway proxy, achieving the corresponding protec-
tions without scalability or identification problems; by per-
forming such functions at each system’s NIC, one avoids
the bottleneck imposed by current centralized approaches.
NIC-based firewalls and proxies can also protect systems
from insider attacks as well as Internet attacks, since only
the one host system is inside the NIC’s boundary. Further,
self-securing NICs offer a powerful control to network ad-
ministrators: the ability to throttle or tag network traffic at
its sources. So, for example, a host whose security status
is questionable could have its network access blocked or
limited. Security administrators manage and configure self-
securing NICs over the network, since they must obviously
be connected directly to it — this allows an administrator to
use the NIC to protect the network from its host system. By
embedding this traffic management functionality inside the
NIC, one enjoys its benefits even when the host OS or other
machines inside the LAN border are compromised.

Storage devices: The role of storage devices in com-
puter systems is to persistently store data. Thus, the natu-
ral security extension is to protect stored data from attack-
ers, preventing undetectable tampering and permanent dele-
tion [6]. A self-securing storage device does this by manag-
ing storage space from behind its security perimeter, keep-
ing an audit log of all requests, and keeping previous ver-
sions of data modified by attackers. Since a storage device
cannot distinguish compromised user accounts from legit-
imate users, the latter requires keeping all versions of all
data. Finite capacities will limit how long such compre-
hensive versioning can be maintained, but 100% per year
storage capacity growth will allow modern disks to keep
several weeks of all versions. If intrusion detection mech-
anisms reveal an intrusion within this multi-weekdetection
window, security administrators will have this valuable au-
dit and version information for diagnosis and recovery. This
information will simplify diagnosis, as well as detection, by
not allowing system audit logs to be doctored, exploit tools
to be deleted, or back doors to be hidden — the common
steps taken by intruders to disguise their presence. This in-
formation will simplify recovery by allowing rapid restora-
tion of pre-intrusion versions and incremental examination
of intermediate versions for legitimate updates. By embed-
ding this data protection functionality inside the storage de-
vice, one enjoys its benefits even when the network, user
accounts, or host OSs are compromised.

Biometric sensors: The role of biometric sensors in
computer systems is to provide input to biometric-enhanced
authentication processes, which promise to distinguish be-
tween users based on measurements of their physical fea-
tures. Thus, the natural security extension is to ensure the
authenticity of the information provided to these processes.
A self-securing sensor can do this by timestamping and dig-

itally signing its sensor information. Such evidence of when
and where readings were taken is needed because, unlike
passwords, biometrics are not secrets [4]. For example,
anyone can lift fingerprints from a laptop with the right
tools or download facial images from a web page. Thus,
the evidence is needed to prevent straightforward forgery
and replay attacks. Powerful self-securing sensors may also
be able to increase security and privacy by performing the
identity verification step from within their security perime-
ter and only exposing the results (with the evidence). By
embedding mechanisms for demonstrating authenticity and
timeliness inside sensor devices, one can verify sensor in-
formation (even over a network) even when intruders gain
the ability to offer their own “sensor” data.

Graphical displays: The role of graphical displays
in computer systems is to visually present information to
users. Thus, a natural security extension would be to en-
sure that critical information is displayed. A self-securing
display could do this by allowing high-privilege entities to
display data that cannot be overwritten or blocked by less-
privileged entities. So, for example, a security administrator
could display a warning message when there is a problem
in the system (e.g., a suspected trojan horse or a new e-mail
virus that must not be opened). By embedding this screen
control inside the display device, one gains the ability to
ensure information visibility even when an intruder gains
control over the window manager.

Routers and switches: The role of routers and switches
in a network environment is to forward packets from one
link to an appropriate next link. Thus, one natural secu-
rity extension for such devices is to provide firewall and
proxy functionality; many current routers provide exactly
this. Some routers/switches also enhance security by iso-
lating separate virtual LANs (VLANs). More dynamic de-
fensive actions could provide even more defensive flexibil-
ity and strength. For example, the ability to dynamically
change VLAN configurations would give security admin-
istrators the ability to create protected command and con-
trol channels in times of crisis or to quarantine areas sus-
pected of compromise. When under attack, self-securing
routers/switches could also initiate transparent replication
of data services, greatly reducing the impact of denial-of-
service attacks. Further, essential data sites could be repli-
cated on-the-fly to “safe locations” (e.g., write-once storage
devices) or immediately isolated via VLANs to ensure secu-
rity. Self-securing routers/switches can also take an active
role in intrusion detection and tracking, by monitoring and
mining network traffic. When an attack is suspected, alerts
can be sent to administrators and to other self-securing de-
vices to increase security protections. By embedding traf-
fic monitoring and isolation functionality in self-securing
routers/switches, one can enjoy its benefits even when fire-
walls and systems on the internal network are compromised.

91

Application-only CPUs: Though not strictly devices,
most future host systems are likely to have multiple CPUs.
They already have multiple functions, including OS-level
resource management and various application-level tasks.
Rather than trying to correctly implement and use a sand-
box to safely host iffy code, we again suggest using physi-
cal boundaries — that is, run untrusted code on a separate
application-only CPU that has no kernel (in the traditional
sense) and no kernel-like capabilities. An application-
only CPU should be physically locked away from its vir-
tual memory mappings and device communication. The
mappings, permissions, and external communication should
be controlled by separatemanagement CPUs, with which
the application-only CPU communicates via a well-defined
protocol. With such an organization, the safety of the hosted
code becomes less critical, and the boundaries between it
and more trusted components become more explicit.

4. Newly-enabled dynamic actions

Many new dynamic network security actions are enabled
by the more numerous and heterogenous security perime-
ters inherent to the self-securing device architecture. To il-
lustrate the potential, this section describes a few such ac-
tions:

Network DefCon Levels: Often, there is a trade-off be-
tween security and performance. For example, the more de-
tailed and numerous the firewall rules, the greater the over-
head introduced. Likewise, the more detailed the event log-
ging, the greater the overhead. One use of the many new
security perimeters is to support dynamic increases of secu-
rity level based on network-wide status. For example, if an
attack can be detected after only a small number of perime-
ters are compromised, the security levels at all other self-
securing devices can be dynamically raised. As suggested
above, this might take the form of more detailed firewalling
at NICs, logging of network traffic to storage, and dynamic
partitioning of the network into distinct VLANs.

Email Virus Stomping: One commonly observed secu-
rity problem is the rapidly-disseminated e-mail virus. Even
after detecting the existence of a new virus, it often takes a
significant amount of time to root it out of systems. Iron-
ically, the common approach to spreading the word about
such a virus is via an e-mail message (e.g., “don’t open
unexpected e-mail that says ‘here is the document you
wanted’”). By the time a user reads this message, it is often
too late. An alternative, enabled by self-securing NICs, is
for the system administrator to immediately send a new rule
to all NICs: check all in-bound and out-bound e-mail for the
new virus’s patterns. This would immediately stop further
spread of the virus within the intranet, as well as quickly
identifying many of the infected systems.

Traffic Throttling at the Source: As the previous ex-
ample suggests, self-securing NICs allow network traffic to
be throttled at its sources. Thus, a system that is deemed
“bad” could have its network traffic slowed or cut off com-
pletely. Also, such malicious network activity as “SYN
bombs” and IP address spoofing can be detected, termi-
nated at its source, and even automatically repaired by the
source’s NIC (e.g., sending RST packets to clear SYN bomb
connections).

Biometric Identity Verification: A more exotic use of
self-securing devices is auxiliary identity checks on users.
For example, imagine that an authenticated user does some-
thing that triggers an intrusion detection alarm. There are
many possible explanations, one of which is that someone
else is using the real user’s session (e.g., while the real user
is away at lunch). To check for this, a network security
administrator could silently consult a nearby (or attached)
self-securing video camera and perform face or iris recog-
nition. Many other biometrics could also be used. The in-
trusion detection system could even trigger this check au-
tomatically and terminate the corresponding system’s net-
work and storage access, if the user is deemed to be an im-
poster.

Migration of Critical Data from Compromised Sys-
tems: If a system is compromised, one important action is
trying to save and retain access to its user data. In our new
architecture, this can be done by having the self-securing
storage device (appropriately and authoritatively directed)
encrypt and send the relevant contents over the network via
the self-securing NIC. The self-securing router can forward
the data to one or more alternate locations and route sub-
sequent accesses to the data appropriately. In fact, differ-
ent user bases could be routed to distinct replicas. With
emerging device-to-device I/O interconnects, the storage-
to-network transfer can be done with no host OS involve-
ment at all, leaving the successful intruder with no way to
stop it. Going back to the first example, another use of this
support would be to frequently transfer the audit logs from
various self-securing devices to on-line intrusion detection
systems during perceived siege situations.

Displaying Trojan-defeating Messages: In perhaps the
simplest example, a security administrator could direct a
self-securing graphics card to override system directives
and display a warning message. Such support would be par-
ticularly useful when users need to be warned to discontinue
(or not start) using a system suspected of housing Trojan
horses. Again, device-to-device communication allows this
to happen over the network without host OS interference.

5. Research challenges

This change in network security architecture raises two
major research questions, each with a number of sub-

92

questions. First, “what should each device do behind its
security perimeter?” Answering this question will require
exploration of cost, performance, and flexibility trade-offs,
as well as exploring what is possible with the limited in-
formation available at any given device. Section 3 outlines
potential functionalities for a number of devices. Second,
“how does one effectively manage a large collection of in-
dependent security perimeters?” Answering this question
will require exploration of tools and techniques for marshal-
ing sets of self-securing devices, monitoring their current
state, and dynamically updating their policies in the face
of changes to and attacks upon the network environment’s
state.

The second question raises several complex sub-
questions that must be answered in order to realize dynamic
and robust network security environments from large col-
lections of distinct security perimeters. The clearest sub-
questions center on administrative control over the various
devices, where security and convenience must be balanced.
Research is also needed into how to reason about global
network security given the set of local insights provided by
distinct host systems and self-securing devices. Many other
sub-questions exist, including those related to local policy
configuration, robust reconfiguration, coordinated intrusion
diagnosis, and avoidance of internally-imposed denial-of-
service.

6. Related Work

Several researchers have used the siege warfare analogy
to promote more comprehensive information security de-
fenses [1, 3, 5]. Usually, the associated proposals are only
loosely connected to the analogy, simply referring to the
strengths (e.g., many parts), weaknesses (e.g., traitors), or
eventual replacement of siege defenses. We use the anal-
ogy to inspire a specific defense strategy: use of physically-
distinct barriers that monitor one another, defend collec-
tively, and must be penetrated independently.

The concept of using physical separation of functionality
for security is also not new. Perhaps the simplest examples
are physically-secured machines with no network connec-
tions. Perhaps the best examples are firewalls and proxies,
which enforce rules on network traffic entering and leaving
an intranet via hardware specifically dedicated to this pur-
pose. Here, we propose using physical component bound-
aries as the core of a security architecture rather than as a
bandaid on inherently insecure network environments. The
references below identify and discuss more related work.

7 Summary

This white paper promotes a new security architecture
in which traditional boundary protections are coupled with

security functionality embedded into self-securing devices.
The resulting collection of independent security perimeters
could provide a flexible infrastructure for dynamic preven-
tion, detection, diagnosis, isolation, and repair of success-
ful intrusions. Although many research challenges arise, we
believe that the new architecture has great potential.

References

[1] Bill Cheswick. Security Lessons From All Over. Keynote
Address, USENIX Security Symposium, 1998.

[2] David Friedman and David F. Nagle.Building Scalable
Firewalls with Intelligent Network Interface Cards. CMU-
CS-00-173. Technical Report, Carnegie Mellon Univeristy
School of Computer Science, December 2000.

[3] Jr. John L. Woodward. Information Assurance Through
Defense in Depth. U.S. Department of Defense brochure,
February 2000.

[4] Andrew J. Klosterman and Gregory R. Ganger.Secure Con-
tinuous Biometric-Enhanced Authentication. CMU-CS-00-
134. Technical Report, Carnegie Mellon Univeristy School
of Computer Science, May 2000.

[5] Gary McGraw and Greg Morrisett. Attacking Malicious
Code: A Report to the Infosec Research Council.IEEE Soft-
ware, pages 33–41, September/October 2000.

[6] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,
Craig A. N. Soules, and Gregory R. Ganger. Self-securing
storage: protecting data in compromised systems.Sympo-
sium on Operating Systems Design and Implementation (San
Diego, CA, 23–25 October 2000), pages 165–180. USENIX
Association, 2000.

93

Research Issues in No-Futz Computing

David A. Holland, William Josephson,
Kostas Magoutis, Margo I. Seltzer, Christopher A. Stein

Harvard University
Ada Lim

University of New South Wales

Abstract
At the 1999 Workshop on Hot Topics in Operating Systems
(HotOS VII), the attendees reached consensus that the most
important issue facing the OS research community was
“No-Futz” computing; eliminating the ongoing “futzing”
that characterizes most systems today. To date, little research
has been accomplished in this area. Our goal in writing this
paper is to focus the research community on the challenges
we face if we are to design systems that are truly futz-free, or
even low-futz.

1 Introduction
The high cost of system administration is well known.

In addition to the official costs (such as salaries for system
administrators), countless additional dollars are wasted as
individual users tinker with the systems on their desktops.
The goal of “no-futz” computing is to slash these costs and
reduce the day-to-day frustration that futzing causes users
and administrators.

We define “futz” to mean “tinkering or fiddling experi-
mentally with something.” That is, futzing refers specifically
to making changes to the state of the system, while observ-
ing the resulting behavior in order to determine how these
relate and what combination of state values is needed to
achieve the desired behavior. When we refer to “no-futz”
computing, we mean that futzing should be allowed, but
should never be required. We interpret “low-futz” in this way
as well.

It should be noted that reducing futz is not the same as
making a system easy to use. It is also not the same as hiding
or reducing complexity: it is aboutmanaging complexity and
managing difficulty. Computer systems involve intrinsically
complex and difficult things. These are not going to go away.
The goal is to make it as easy as possible to cope with that
complexity and difficulty.

Systems can be easy to use but still require unnecessary
futzing: TCP/IP configuration on older Macintoshes was
easy to adjust, but was difficult to set properly. One can also
imagine a (purely hypothetical) system that hides all its com-
plexity: it appears to need almost no futzing at all, until it
breaks. Then, extensive futzing is required, to figure out
what happened.

The goal of No-Futz computing is to eliminate the futz-
ing due to poor design or poor presentation, not to try to find
a silver bullet for software complexity; no-futz computing
attacks areas that are needlessly complicated, not those that

are inherently complicated.
Let’s begin with an example of a good, hi-tech, low-futz

device, and understand its basic characteristics. While read-
ing the rest of this section, keep in mind the computer sys-
tems you use regularly (particularly the ones you dislike) and
how they differ from the example.

Our Xerox 256ST copier is a no-futz device. It performs
just about every function imaginable for a copier: it collates,
staples, copies between different sizes of paper, will copy
single-sided originals to double-sided copies and vice versa,
etc., and it even sits on the network and accepts print jobs
like a printer. However, it demands no futzing. It has instruc-
tions printed on the case that describe how to accomplish
common tasks. Its user interface makes it impossible to ask it
to do something it cannot. It keeps track of its operating
state, continuously monitoring itself, and communicates in a
simple fashion with its operators. When there is a problem it
can diagnose, it displays a clear message on its console. (For
example, “Paper tray 2 is empty.”) When it detects a problem
it cannot diagnose, it begins a question-and-answer dialog
with the operator to diagnose the problem and determine an
appropriate course of action - and then, in most cases, it
guides the operator through that course of action. The ques-
tions it asks are simple, and can be answered by a novice,
such as “Did paper come out when you tried to copy?” The
key factors that make this device no-futz are:

• Ease of use: The user documentation and user
interface are organized in terms of the user’s tasks, not
in terms of the system’s internal characteristics.

• It is unusual to encounter a situation where it is not
clear what to do next, even in the presence of various
failures.

• Self-diagnostics: When a failure occurs, the copier
diagnoses it and offers instructions for fixing things.

• Simple, clear communication: It never asks the user a
question that the user cannot answer.

What makes this such an interesting example is that only
a decade ago, photocopiers required much futzing, mostly by
expert servicemen, and were extremely frustrating for all
concerned. Since then, not only have copiers become vastly
faster and more powerful, but both the use and maintenance
of them has become vastly easier. Today’s copiers have
one-tenth the components of their predecessors, significantly
more functionality, and dramatically reduced futzing [6].
How can we make similar strides forward in computing?

That which works for a photocopier may not be suffi-

94

cient for computers: the copier is a relatively straightforward
device with well-defined function and state, whereas gen-
eral-purpose computer systems have a wide variety of func-
tions, have essentially infinitely mutable state, and are
subjected to complicated and often ill-understood intercon-
nections both within themselves and with other computers.

In the rest of this paper, we first discuss some current
approaches to futz reduction, arguing that these do not attack
the problem directly and have negative side-effects. We then
discuss how futz arises in computer systems and describe
what we believe is the key to a real solution: understanding
and managing system state. Then we outline some directions
for future research, discuss briefly some existing related work,
and conclude.

2 Current Approaches to Futz Reduction
The cost and frustration associated with futzing has led to

three common approaches to futz reduction: (1) limiting the
scope of functionality, (2) homogeneity, and (3) centraliza-
tion. These approaches are not mutually exclusive and are fre-
quently used together.

The copier described above is an example of the first
approach: it is a special-purpose device. Relative to a gen-
eral-purpose computer, its functionality is quite limited. In
this context, it has addressed the futz problem quite well.
Since futzing involves state changes, special purpose systems,
which have relatively limited state spaces, can offer corre-
spondingly reduced futz. Other low-futz, limited scope
devices include dedicated file servers (e.g., Network Appli-
ance’s filers) and special purpose web or mail servers (e.g.,
Sun’s Cobalt servers) among others.

Homogeneity is the second approach to futz avoidance.
This approach is most often seen in large installations. In
order to reduce total installation-wide futzing, a single stan-
dard machine configuration is deployed everywhere. If there
is a problem, any machine can be replaced with any other
machine. Systems can be reinstalled quickly from a master
copy. Maintenance requirements are reduced drastically. Cus-
tom management tools need only interact with one kind of
system, and are thus much cheaper to build. The administra-
tors see the same problems over and over again and can pre-
pare solutions in advance; nobody besides the administrators
needs to futz with anything.

This approach can reduce global futz drastically; how-
ever, it does not address the underlying problem: the amount
of futzing required by a single machine is constant. Further-
more, it has other flaws: first, it is inherently incompatible
with letting users control their computers. While this is fine or
even desirable in some environments (e.g., the terminals bank
tellers use), it is unacceptable in others (e.g., research labs).
Second, it is a security risk. The same homogeneity that
makes system administration easier also makes break-ins and
virus propagation easier: if you can get into one system, you
can get into all of them the same way [1]. Third, most organi-
zations grow incrementally. Adding new computers to a col-

lection of identical existing ones is difficult: the new ones are
rarely truly identical, which inevitably cuts into the economy
of scale.

The third approach to futz reduction is centralization.
Centralization moves state and its accompanying require-
ments for futzing, away from the systems with which people
interact directly and into places where it is more conveniently
managed. This gives administrators tight and efficient control
over each system. This makes it more convenient for system
administrators to futz and lets system administrators do more
of the futzing and users less of it. While this does reduce cost,
there is no actual reduction in total futz. For that, another
approach is required.

These three approaches are capable of reducing the futz
of, or at least the cost of maintenance for, computer systems
and networks. However, all of them are limiting and/or have
negative consequences. This is a result of attempting to
reduce the total futzable state, instead of the futz problem
directly. We advocate the direct attack.

3 The Source of Futz
One definition of “futz” is in terms of state manipulation.

Thus, the more state there is to manipulate, the more futzing a
system allows. Mandatory futzing arises when it is not clear
by inspection or documentation what manipulations are
required or when the supposedly correct manipulations fail to
produce the correct result. At this point, one must experiment
(or call for help).

If one can manipulate the system state without resorting
to experimentation, futzing has not occurred. For instance,
seasoned Unix administrators do not have to futz to add
accounts to their systems. But beginners generally do. And
even seasoned administrators usually have to futz to get print-
ing to work.

Note that the degree of futz depends on the level of
expertise of the user. A premise of no-futz computing, how-
ever, is that one should not have to be an expert, or the cost of
being an expert should be quite low. Unix systems are already
quite low-futz for hard-core experts, but it takes years and
years of apprenticeship to reach that level. Reducing futz for a
select few is not a solution, so we need to examine sources of
futz as they appear to a casual user.

The mutable state of a computer system can be broken
down into the following categories (this may not be a com-
plete list):

• Derived state: State automatically derived or generated
from other state.

• Policy state: Configuration state that reflects policy of a
site or user.

• Autoconfig data: Data to be served in some manner by
the system in order to enable autoconfiguration for
other systems. For example, /etc/bootptab.

• Cached state: Cached results from autoconfiguration
protocols.

95

• Manual config state: Configuration state that reflects
the setup of the operating environment or hardware, and
needs to be set manually.

• OS file state: files (programs or data) that are part of
the operating system, as well as their organizational
meta-data.

• Application file state: files (programs or data) that are
part of installed applications, as well as their
organizational meta-data.

• User file state: user files and their organizational
meta-data. For example, a secretary’s word processor
files, or web pages.

• Application context: persistent saved application state
that is not user data. For instance, many environments
try to automatically recreate on startup where you were
when you left the last time.

• System context: persistent OS state that is not in any of
the above categories. For example, file system
meta-data.

• Cryptographic keys.

Policy state is a source of futz: the system acts on its pol-
icy settings, and if it acts incorrectly, somebody needs to
tinker with the settings until it behaves properly. Unfortu-
nately, policy state cannot be avoided in a general-purpose
computer system: policy decisions need to be made by
humans and the computer needs to know what they were. One
can reduce futz in this area by cutting back the amount of
state, and building special-purpose systems, but that inher-
ently reduces the amount of functionality as well. Reducing
futz in this area without cutting back functionality is feasible
as we outline in the next section.

Autoconfig data is another source of futz. This category
reflects futz that has been “centralized away” from other sys-
tems. It is not necessarily the case that all autoconfig mecha-
nisms require a server to serve data, but many of the existing
ones do. It is not unreasonable to suppose that development of
more sophisticated autoconfiguration can reduce or eliminate
most of the state and thus the futz in this category.

Cached state is not normally a source of futz. Cached
results can be purged or updated as necessary without any
manual intervention. Similarly, derived state is a solved prob-
lem: if it goes out of date, it needs only to be regenerated. The
Unix make utility is already routinely used for this.

Manual config state is a tremendous source of futz in
most systems today. Worse, it is the most difficult kind of futz
possible: unlike policy state, where various alternatives work
but may not be desired, most of the questions answered by
manual config state have only one or two right answers and
plenty of wrong answers, and wrong answers generally render
the system or components of it completely inoperative. Ulti-
mately, this is the category of futz that is most seriously in
need of reduction. Fortunately, it is possible to accomplish
this: to the extent that there are right answers, in almost all
cases, with sufficient engineering of components, those right
answers can be probed or determined from context. For

instance, the only reason we need video card and monitor
information in /etc/XF86Config is that on PC-based systems it
is not possible in many cases to safely or reliably interrogate
the hardware to find out what it is. In a hypothetical world
where you could query this hardware, which is easy to imag-
ine, this major source of futz could be abolished.

OS file state and application file state are an area in which
many current systems fall down: it is quite easy, in general, to
install new application software that breaks the system, or to
update the system and thereby break applications. It is also
possible to delete or rename important files inadvertently (or
lose in a power failure) thereby breaking the system. At
present, recovering from these problems is generally quite dif-
ficult. In this area, for most people, futzing at all tends to
equate to reinstallation.

Reducing this category of futz requires taking more care
in analyzing the dependencies among software components,
and improving the mechanisms with which software compo-
nents are bound to one another at runtime. We need several
things: automated analysis of runtime dependencies (a hard
problem), better systems for preventing accidental version
skew, and mechanisms for cross-checking that can be per-
formed at runtime to allow failures to occur gracefully. Rein-
stallation as a failure recovery mechanism is unacceptable.

User file state is inevitably a source of futz as things
become disorganized and users mislay their data. We see no
immediate prospects of cutting back on the futzing this
requires, although developing a good model for how applica-
tions should choose default save directories and the like
would be a good start. Content indexing techniques may be of
help as well.

Application context is normally automatically main-
tained, and only becomes a source of futz when it becomes
corrupted or saves an undesired application state. This prob-
lem is easily solved: check it for consistency when loaded, be
able to withstand it being deleted, and store it in a known
location so users can delete it if they so desire. In many cases,
simply not keeping such context is an adequate solution.

System context is essentially the same, except that it is
sometimes not possible (or meaningful) to erase it and start
over. It is much more important to check it for consistency
and repair any problems. With some engineering, failures that
require expert attention to repair can be made quite rare, as
they generally are with most Unix implementations of fsck.

Cryptographic keys are listed separately because they
have their own unique requirements for management, and
because they are mandatory for the use of secure autoconfigu-
ration protocols. In our experience, these are not large sources
of futz. Furthermore, a lot of attention has already been paid
to key management in the security literature.

All the above assumes that a user is changing state in
order to make some kind of desired configuration change,
either as ongoing maintenance or at system installation time.
There are two other cases in which one needs to interact in
intimate detail with the state of a system: to diagnose and

96

repair a system failure and to monitor the system for signs of
upcoming failure.

Properly speaking, as we have defined futzing, diagnosis
is not futzing; rather than experimentally adjusting state to
achieve a result, diagnosis properly involves analyzing exist-
ing state. Sometimes, however, one needs to experiment to
interpret the existing state. And additionally, a common
method for recovering from a system failure is to futz until the
obvious signs of the failure have disappeared and the system
appears to be working again. (Rebooting is a drastic example
of this technique, and it works because much system state is
not persistent across reboot.)

The reason this method works is that many system prob-
lems involve the failure of supposedly automatic state man-
agement mechanisms; tweaking the state tickles the state
management mechanism, and with some luck it will start
functioning again. The reason it is common is that actual
diagnosis by inspection usually amounts to debugging and
requires an extremely high level of expertise.

If the system can diagnose problems itself, like our copier
can, this futzing becomes unnecessary. Even if it can only
diagnose a small number of the most common problems, a
good deal of mandatory futzing can be eliminated. Self-diag-
nosis in software systems is an important research area. We
believe a good deal of progress is possible.

Monitoring for signs of upcoming failure, including mon-
itoring for security problems, does not, itself, involve futzing.
However, failure to perform monitoring can lead to huge
amounts of futzing later on - recovering from a server dying
can easily take as much futzing as installing a new one,
whether the death took place because of hardware failure or
because of hackers. Therefore, automatic monitoring is also
crucial to building true no-futz systems. This is another
important research area.

Ultimately, all of these things - monitoring, diagnosis,
and configuration - involve interaction with the system state.
We believe that research and engineering in the areas outlined
above can tame a good proportion of the typical system state
space. However, policy state, cryptographic keys, and proba-
bly some leftover bits of state in the other categories, are not
going away. More is required; we need to be able to manage
this state.

4 Futz and State Management
The less state a system has, the easier it is to organize and

present to users in a coherent manner.
As outlined in the previous section, one can design out

some state and automate the handling of a lot more. This will
take care of a good deal of futz. However, a great deal of state
remains, and it requires editing, and undoubtedly, futzing.
One cannot eliminate the editing. But one may be able to
eliminate the futzing.

The leftover state consists mostly of policy state, manual
config state, and autoconfig state. This state can be thought of
as a list of configuration questions and their answers. The ulti-

mate goal is to allow a user to type in answers to these ques-
tions, or change the answers to suit changed circumstances,
without needing much training or specialized knowledge.

It should now be clear that question formulation is crucial
— not just their wording, although that is significant, but what
questions are asked, how interconnected they are with each
other, how they’re grouped, etc.

What this means is that, once all the easier issues are
addressed, the organization of the state space of the system is
the most significant factor determining how much futzing the
system will demand.

It is crucial to analyze this state space in detail and deter-
mine how to best decompose it into a set of variables (and
thus questions). In the best such decomposition, the variables
will be as simple and as orthogonal to each other as possible.
It will be clear what answering each question entails and who,
in any of several typical environments, ought to decide the
answer. Then the questions need to be written in such a man-
ner that the people who typically fill these roles can, in fact,
answer the questions without needing an excessive amount of
training, and the software needs to be written so that questions
will not be posed to the wrong people.

For example, in almost all cases, the person sitting at the
computer should be the one to choose the desktop back-
ground. However, it is not necessarily the case that this person
should be asked “What is the IP address of your web proxy?”
— this question may need to be posed, but if so it should be
posed in a context where it is clear that the answer is the local
network administrator’s responsibility.

We believe this is the key. It is not an easy problem; in the
absence of any useful decomposition theorems for state
spaces or state machines, it must be solved by manual inspec-
tion and ad-hoc heuristic analysis. Worse, one has to address
the complete state space of the entire system at once; if one
leaves some state out of the analysis and tacks it on later, it is
almost guaranteed to be a poor fit.

At first glance this might seem to mean that all applica-
tion software must be designed into the system. This is not the
case. However, whatis necessary is for the sorts of state appli-
cations may need to use to be anticipated; that is, one needs an
abstract model of what an application is and does. Such a
model should be reasonably general without going overboard:
applications that fail to fit will still work, but may require
increased amounts of futzing. Allowing for these applications
in the general design might result in even more futzing in the
common case. There will be a trade-off, and that trade-off will
need to be explored.

5 Research Directions in No-Futz Computing
If the systems community is to ever build no-futz sys-

tems, we must embark on a research program that addresses
the key issues in no-futz computing. This section defines
those areas.

The first step on the path to no-futz computing is deter-
mining how to measure a system’s futz. We wholeheartedly

97

endorse the term “FutzMark” coined at the last HotOS and
challenge researchers to define it.

We believe the central issue in no-futz computing is state
management. We must reduce system state to a manageable
level, isolate each state variable so that it is orthogonal to
other state variables, and make it impossible to specify invalid
states. Where possible, we should replace state with dynamic
discovery. Where possible, we should devise ways to turn
static state into dynamically discoverable state (e.g., autoconf
data, manual config state). Achieving orthogonality is perhaps
the most difficult aspect of this task, but also the most essen-
tial. Without orthogonality, the problems of management and
testing grow factorially. If we can achieve orthogonality, it
becomes a manageable linear problem.

In lieu of total orthogonality, we need better mechanisms
to identify inconsistent state and remedy it. We need to iden-
tify (or avoid) version skew among software components and
do more extensive runtime cross checking and analysis.

Coping with failure requires a great deal of futzing; thus
we need to achieve cleaner failure models. In the fault-toler-
ance community, “failstop” behavior (ceasing operation as
soon as a fault occurs) is considered desirable so that failing
systems do not corrupt state or data. In the context of no-futz,
failstop behavior could permit the precise identification of
failure causes. If systems can diagnose their own failures, it’s
conceivable that they can then direct users to perform recov-
ery, as our copier does. In general, we need to make progress
in the areas of self-diagnosis and automatic monitoring.

Finally, there are areas outside of systems research where
progress is necessary. In particular, improvements in user
interfaces and data presentation will reduce futz. Collabora-
tive interfaces, which act as intermediaries between users and
their machines that enable them to work together, hold great
potential if applied to no-futz computing. Security manage-
ment is sometimes considered outside the realm of systems,
but insecurity is a major contributor to current futz and
improvement is needed. Improvements in content indexing
will reduce the futz associated with user data management.

6 Related Work
There have been a number of efforts to reduce futz in

computer systems. In a distributed setting, Sun’s Sunray [4],
as well as Microsoft’s Zero Administration initiative and the
associated IntelliMirror [7] product, are projects to centralize
futzing.

The Sunray system’s desktop machines are simple, state-
less I/O devices with no administration needs. Sunray relies
on modern off-the-shelf interconnection technology and a
simple display update protocol (SLIM) to support good inter-
active performance. In addition to eliminating client adminis-
tration, the Sunray model offers client mobility. Client session
state is entirely stored on the server and can be associated
with a smart card that can be inserted in any Sunray client
connected to the same server. Sunrays are anonymous com-

modities. However, this does not eliminate the administration
cost. Sunray servers are complicated systems and not easy to
administer: once, in our department, one of the junior system
administrators broke all the Sunrays for three days just by try-
ing to install a new utility on the Sunray server.

Microsoft’s Zero Administration initiative is an effort to
reduce the administration needs of Windows installations and
thus the cost of ownership. Central to Zero Administration is
the IntelliMirror product, which helps an administrator (a)
manage user data, (b) install and maintain software through-
out an organization, and (c) manage user settings. Manage-
ment of user data requires knowledge of properties and
locations of users’ files so that the data is available both
online and offline from any computer. Manual installation,
configuration, upgrades, repair and removal of software
across an organization requires large management effort.
IntelliMirror automates this: it offers remote OS installation, a
service allowing a computer connected on a LAN to request
installation of a fresh copy of the Windows OS, appropriately
configured with applications for that user and that computer.

Sun’s Jini [5] for Java is an example of a system that tries
to eliminate administration in a decentralized (“federated”)
manner. Jini provides a distributed infrastructure for services
to register with the network and clients to find and use them.

7 Conclusion
Leading systems researchers identified no-futz comput-

ing as an important research area two years ago [3], but to the
best of our knowledge, there has been no significant research
activity in this area. We believe one reason is that the problem
is enormously complex and may not be solvable within the
constraints of legacy systems. Regardless, until we identify
the important research questions, no progress can be made. In
this paper, we have identified some, if not all, of the important
areas in which research must be conducted if we are ever to
“solve” the problem of high-futz systems.

8 References
[1] Forrest, S., Somayaji, A., and Ackley, D., “Building diverse

computer systems,”In Sixth Workshop on Hot Topics in
Operating Systems, 1997.

[2] Dan Plastina, “Microsoft Zero Administration Windows”,
invited talk given at the 11th USENIX Systems Administra-
tion Conference (LISA ‘97), October 26-31, 1997, San
Diego, California, USA

[3] Satyanarayanan, M., “Digest of Proceedings”, Seventh
IEEE Workshop on Hot Topics in Operating Systems,
March 29-30 1999, Rio Rico, AZ, USA.

[4] Schmidt, B. et al., “The interactive performance of SLIM: a
stateless, thin-client architecture”, in Proceedings of the
17th SOSP, December 1999, Kiawah Island, SC, USA.

[5] Waldo, J., “The Jini Architecture for Network-centric Com-
puting” Communications of the ACM, pp 76-82, July 1999.

[6] Conversation with Xerox Technical Representative. January
18, 2001.

[7] http://www.microsoft.com/WINDOWS2000/library/howit-
works/management/intellimirror.asp as of April 23, 2001.

98

Don’t Trust Your File Server

David Mazìeres and Dennis Shasha
NYU Department of Computer Science

{dm,shasha}@cs.nyu.edu

Abstract

All too often, decisions about whom to trust in com-
puter systems are driven by the needs of system manage-
ment rather than data security. In particular, data storage
is often entrusted to people who have no role in creating or
using the data—through outsourcing of data management,
hiring of outside consultants to administer servers, or even
collocation servers in physically insecure machine rooms to
gain better network connectivity.

This paper outlines the design of SUNDR, a network
file system designed to run on untrusted servers. SUNDR
servers can safely be managed by people who have no per-
mission to read or write data stored in the file system. Thus,
people can base their trust decisions on who needs to use
data and their administrative decisions on how best to man-
age the data. Moreover, with SUNDR, attackers will no
longer be able to wreak havoc by compromising servers
and tampering with data. They will need to compromise
clients while legitimate users are logged on. Since clients
do not need to accept incoming network connections, they
can more easily be firewalled and protected from compro-
mise than servers.

1 Motivation and significance

People are increasingly reliant on outside organizations
to manage their data. From data warehouses that store a
company’s crucial data to consultants performing system
administrative duties like backups, more and more data is
being left in the hands of people who have no role in creat-
ing or using the data. Unfortunately, those who manage data
also have the ability to read it or even change it in subtle,
difficult to detect ways. Thus, organizations end up placing
a great deal of trust in outsiders. Worse yet, the decision to
trust outsiders is often driven as much by system manage-
ment needs as by concern for data security.

This research was supported in part by National Science Foundation Career
award CCR–0093361.

At the same time, another trend is developing: people
increasingly need to share information with a population of
users that cannot be confined by firewalls. Web servers out-
side of firewalls distribute software and information to the
general population. People collocate servers in foreign ma-
chine rooms to get better network connectivity. Such out-
side servers have proven quite vulnerable to attack. While
many attacks merely involve defacing web pages to prove
a machine has been penetrated, the consequences of a com-
promise could be much more serious—for instance when a
server distributes software many people download and run.

To address these problems, we are building SUNDR—
the secure untrusted data repository. SUNDR is a novel
distributed data storage system in which the functions of
data storage and management can be performed by some-
one who has no ability to read or modify the data. On client
machines, SUNDR behaves like an ordinary network file
system, providing reasonable performance and semantics.
However, the client cryptographically protects and verifies
all data it exchanges with the server. An attacker with com-
plete control of a SUNDR server can accomplish little more
than a simple and very noticeable denial of service attack.
For any attack to go undetected, the perpetrator would need
to compromise a client while an authorized user is logged
in.

SUNDR will be the first general-purpose network file
system to provide strong data integrity guarantees without
trusting the server. Previous work has shown how to protect
data secrecy on untrusted servers, or how to protect the in-
tegrity of data that is read and written by the same person. In
practice, however, many files on a system are readable but
not writable by ordinary users. Thus, to replace an existing,
general-purpose file system with one that eliminates trust
in the server, one must support read-only access to shared
data.

SUNDR’s design exploits the fact that on modern pro-
cessors, digital signatures have become cheap enough to
compute on every file close. Whenever a client commits a
change to the file server, the client effectively digitally signs
the entire contents of the file system (though in an efficient,
incremental way).

99

SUNDR will not only protect data integrity, but also
make assurances about the recentness of data. Ensuring that
users see each others’ updates to a file system is a challeng-
ing problem when the server is untrusted and the users may
not simultaneously be on-line. SUNDR introduces a new
notion of data consistency calledrelative freshness: Two
SUNDR users will either see all of each others changes to
a file system or none. If two users can communicate with
each other (for instance, if they are on the same local Eth-
ernet when accessing a remote SUNDR server), they will
be guaranteed traditional close-to-open consistency. Other-
wise, if the server violates consistency, the users can never
again see each others’ updates to the file system, thus max-
imizing the chances of their detecting the attack.

SUNDR’s security model makes remote data storage
useful where it previously was impractical. However, re-
mote network bandwidth is typically lower than LAN band-
width. SUNDR will therefore employ large client caches
and exploit commonality between files to reduce network
traffic. Thus, one can easily “outsource” file service to or-
ganizations across the network without heavily penalizing
performance, but while also achieving several benefits. The
local organization will no longer need to worry about back-
ups (no harm is done if the local cache is lost). Moreover,
when several sites share a file system over the wide area
network, they will see considerably better performance than
with traditional file systems. Finally, because SUNDR does
not trust servers, it will allow cooperative caching amongst
mutually distrustful clients, and will allow client caches to
be used in the reconstruction of server state in the event of
a failure.

2 Related work

While a number of file systems have used cryptographic
storage in the past, none has provided strong integrity guar-
antees in the face of a compromised server. The swal-
low [13] distributed file system used client-side cryptogra-
phy to enforce access control. Clients encrypted files be-
fore writing them to the server. Any client could read any
file, but could only decrypt the file given the appropriate
key. Unfortunately, one could not grant read-only access to
a file. An attacker with read access could, by controlling
the network or file server, substitute arbitrary data for any
version of a file.

CFS [2] allows users to keep directories of files that get
transparently encrypted before being written to disk. CFS
does not allow sharing of files between users, nor does it
guarantee freshness or integrity of data. It is intended for
users to protect their most sensitive files from prying eyes,
not as a general-purpose file system. Cepheus [5] adds in-
tegrity and file sharing to a CFS-like file system, but trusts
the server for the integrity of read-shared data.

The Byzantine fault-tolerant file system, BFS [3], uses
replication to ensure the integrity of a network file system.
As long as more than2/3 of a server’s replicas are uncom-
promised, any data read from the file system will have been
written by a legitimate user. SUNDR, in contrast, will not
require any replication or place any trust in machines other
than a user’s client. However, SUNDR and BFS provide
different freshness guarantees.

The proposed OceanStore file system [1] names file ob-
jects with secure “GUID” handles. For archival objects,
which are immutable over all time, the GUID is simply a
collision-resistant cryptographic hash of a file’s contents,
allowing clients to verify the contents directly from the
GUID. For mutable objects, the GUID is the hash of a pub-
lic key and username. Data returned as part of the file must
be digitally signed by the private key corresponding to the
GUID. File names are mapped to GUIDs using SDSI [14]
(effectively using SDSI as a file system).

We actually built a file system (the old read-only file sys-
tem, described in [10]) in which files are individually signed
like mutable OceanStore objects. We subsequently rejected
the design for several reasons, however, the most important
of which was security. There is no way to guarantee the
freshness of files when they are individually signed. If a file
was signed a year ago, is that because an attacker wants us
to accept a year-old version, or has the user user simply not
resigned the file in the past year? To address this problem
SUNDR signs file systems rather than individual files, and
it introduces the notion of relative freshness.

SUNDR uses hash trees, introduced in [12], to verify a
file block’s integrity without touching the entire file system.
Duchamp [4], BFS[3], SFSRO [6] and TDB [9] have all
made use of hash trees for comparing data or checking the
integrity of part of a larger collection of data.

The CODA file system [7] saves network bandwidth
by operating in a disconnected mode, saving changes lo-
cally and later reconciling the changes over a fast network
link. SUNDR, too, must save bandwidth for people to use
servers over the wide area network. However, SUNDR is
designed for constant, lower-bandwidth connectivity (e.g.,
a T1), rather than an intermittent high-bandwidth connec-
tion. Like CODA, SUNDR reduces read bandwidth with a
large client-site cache. In addition, SUNDR exploits com-
monality between files to compress data exchanged between
clients and servers. The approach is similar to one used by
the rsync [16] file transfer utility.

3 Design

SUNDR has several design goals. The server must not
see any private file data in the clear. Clients should never be
tricked into believing a file contains data that wasn’t written
there by an authorized user. Furthermore, SUNDR should

100

provide an easy way to recover if a server is indeed compro-
mised. Finally, SUNDR should provide the best guarantees
it can on the freshness of data.

Unfortunately, because SUNDR assumes so little about
security, there are two attacks it cannot protect against. An
attacker can destroy data, wiping or even physically de-
stroying a disk. We call this asmashing attack. Second,
if users only ever communicate with each other through the
file system, an attacker can clone the server, show each user
a separate copy, and prevent each user from finding out that
the other has updated the file system. We call this afork-
ing attack. These vulnerabilities inherently result from let-
ting attackers control a file server. Fortunately, SUNDR can
make the attacks easy to detect and recover from.

3.1 Architectural overview

SUNDR will use a two-level architecture reminiscent of
Frangipani [15] on Petal [8]. At the lowest level is the
SUNDR block server, a network server that stores chunks
of data for users. The block server neither understands nor
interprets the blocks it is stores for users. This, in large
part, is what lets the block server be managed by someone
who does not have access to the file system itself. How-
ever, the maintainer of the block server can still perform
traditional administrative tasks such as making backups and
adding more disk space.

The actual file system in SUNDR is built on top of
the block server and is implemented entirely by clients.
A SUNDR file system is effectively a collection of hash
trees—one per user—mapping per-user inode numbers to
the contents of files. The nodes of the hash trees are stored
at the block server. Given the root directory and the proper
decryption keys, a client can, using the block server, fetch
and verify the contents of any file in the system.

Every SUNDR file system has a public key, known to all
clients accessing the server. SUNDR will use the SFS [11]
file naming scheme, which embeds file system public keys
in the file namespace. Thus, users can employ any of SFS’s
key management techniques to obtain a file server’s public
key. Unlike the current SFS file system, however, a SUNDR
server will not know its own private key. The private key
will be known only to those with superuser privileges on
the file system.

Each user of a SUNDR file system also has a public key.
Users’ public keys serve two purposes. They authenticate
users to the block server, to prevent an unauthorized person
from consuming space or deleting blocks still in use. They
are also used to digitally sign any changes to the file sys-
tem, so that other clients can verify the updated contents.
The superuser’s public key is the one embedded in the file
namespace.

Each SUNDR block server also has a public key, called

the server key, used for authentication of the server to
clients. It may seem odd to authenticate a block server that
is supposedly untrusted anyway. However, SUNDR does
not guarantee that servers will not misbehave. It only guar-
antees that bad behavior will be detected, and facilitates re-
covery. The operator of a block server can then be held
accountable, and any damage repaired from backups and
client caches. The server key’s role is therefore to assure
clients they are communicating with a responsible server.
Other parties cannot impersonate the server, so users can
squarely pin the blame on the operator if anything goes
wrong.

3.2 The SUNDR block server

Both for efficiency and because it is not trusted to op-
erate on high-level file constructs, the SUNDR server im-
plements a simple block protocol. The server stores two
types of state: user metadata, and file system blocks. The
user metadata consists of a table of user public keys and a
signedversion structure for each user, described further in
Section 3.3. The superuser’s public key is the public key
of the file system (the one embedded in the file system’s
pathname on clients). Note that the term “user” here really
designates a user or a group in the traditional UNIX sense.
A group is just a SUNDR user with a zero-sized quota (so
it cannot allocate space) and a private key known to several
people.

The main function of the block server is to store and
serve blocks of data that clients can interpret as a file sys-
tem. The server indexes blocks of data by their crypto-
graphic hashes. A client can store a block at the server and
later request the contents of the block by its cryptographic
hash. For each block stored, the block server also records
a list of users “requiring” the block, and a reference count
for each user. When no one requires a block any more, the
server garbage collects it and recycles the disk space. Users
may have a quota limiting the amount of data they can re-
quire a server to store.

Clients and servers communicate over an authenticated
link. They negotiate a session key using the server key and
the user’s public key, and authenticate requests and replies
using the session key for a symmetric message authentica-
tion code (MAC). Thus, the server knows that a request to
store or delete a block really comes from a particular user,
and the user knows that an acknowledgment of a store re-
quest comes from a server that knows the private half of the
appropriate server key.

While the client can send the server an entire block to
store, it can also send a description of the block based on
existing blocks stored by the server—for instance, to store
a new block that is identical to an existing block but for a
20 byte region, or to create a new block by appending the

101

beginning of one block to the end of another. This protocol
makes it particularly bandwidth efficient to update all the
blocks in a hash tree stored at the server, as a client can
simply transmit a new leaf node along with a bunch of small
deltas to the parent blocks.

3.3 The SUNDR file system

The SUNDR file system is implemented by clients on
top of the block server. The fundamental data structure in
the file system is thevirtual inode, shown in Figure 3.3,
with which one can efficiently retrieve and verify any por-
tion of a file. The virtual inode contains a file’s metadata
and the size and cryptographic hashes of its blocks. If the
file is not world-readable, the metadata also includes an in-
dex into a table of symmetric encryptions keys to designate
the key with which file contents has been encrypted. The
table entry can only be decrypted by users with the appro-
priate private keys. For large files, the inode also contains
the hash of anindirect block, which in turn contains hashes
and sizes of file blocks. The inode further contains the size
of all data pointed to by the indirect block. For larger files,
an inode can point to double-, triple-, or even quadruple-
indirect blocks.

For every user there is an ordered list, known as thei-
table, mapping 64-bit per-user inode numbers to the cryp-
tographic hashes of virtual inodes. The i-table is broken
into blocks, converted to a hash tree, and each node stored
at the block server. The hash of the tree’s root is known as
the user’si-handle. The data pointed to by a directory inode
is a list of〈file name, user, inode number〉 triples, sorted by
file name.

Each user’s version structure consists of that user’s i-
handle a set of〈user, version〉 pairs, one for each user of
the system. The entire version structure is digitally signed
using the user’s private key. Thus, given a user’s signed
version structure, a client can obtain the file contents of any
inode number by repeatedly requesting blocks by their cryp-
tographic hash. Inode number 2 in the superuser’s i-table
has special significance. It is the root directory of the file
system.

To update the file system, a client first uploads new
blocks to the file server (sending only deltas for blocks in
which only a hash has changed). It then brings the user’s
version structure up to date, putting in the new i-handle and
updating version numbers, signing the new structure and
sending it to the server. Finally, the client decrements the
reference count on any blocks no longer needed.

3.4 Consistency protocol

The goal of SUNDR’s consistency protocol is to make it
as easy as possible to detect if the server has not faithfully

provided a consistent view of the file system to all clients.
The SUNDR server is responsible for assigning an order
to all file open and close operations (excluding closes of
unmodified files). The order assigned by the server must
preserve the order of each individual client’s operations.

Each user of a SUNDR file system has a version number,
incremented each time the user updates the file system. The
basic principle behind the SUNDR consistency protocol is
that each user signs not only his own i-handle and version
number, but also what he believes to be the version num-
bers of all other users. Thus, each user’s version structure
contains a version number for every other user as well.

When a useru opens a file, the client incrementsu’s
own version numberv and signs anupdate certificate with
the user’s private key,{UPDATE, v + 1}K−1

u
. When a

client closes one or more modified files (more in the case
of directory operations such as rename), the update cer-
tificate contains the inode numbers of the modified files,
{UPDATE, v + 1, I1, . . .}K−1

u
. The client sends the update

certificate to the server. The server assigns the operation a
place in the order of operations, and sends back any new
signed version structures the client has not yet seen. It also
sends back other users’ update certificates if they are more
recent that those users’ version structures.

Definition 1 If x and y are two version structures, we say
that x ≥ y iff for all users u, 〈u, vx〉 ∈ x and 〈u, vy〉 ∈ y
implies vx ≥ vy.

The client uses the signed messages it receives to update
its own version structures. For each version structures′

that the client sees, it verifies that eithers ≥ s′ or s′ ≥ s.
If not, the client declares that a forking attack has occurred.
If no attack is detected, the client signs the updated version
structure and uploads it to the server.

When a client is determining each user’s latest version
number, it considers both signed version structures and up-
date certificates forwarded by the server. The client accepts
an update certificate so long as the file declared modified
in the certificate is not the one being opened. Otherwise, it
must wait for the version structure (thereby also obtaining
the file owner’s new i-handle, and ultimately the new file
contents).

Definition 2 User u1 has close-to-open consistency with
respect to u2 iff:

1. There exists a partial order, happens before, on all
open and close operations such that any two opera-
tions by the same user are ordered, and any close of a
file is ordered with respect to all opens and other closes
of that same file.

2. When u1 opens file F , and the last close of F to happen
before the open was performed by u2, u1 will see the
contents written by u2.

102

metadata

Indirect Block

B0 B1 B7 B8

H

...

H

H

File Data Blocks

· · ·Virtual Inode

H(B0), size

H(H(B7), . . .), size

H(B1), size

H(B8), size

H(B7), size

...

Figure 1. The SUNDR virtual inode structure

Application savings
dvips 84%
g++ 59%

ar 97%

Figure 2. Redundancy in files written by var-
ious programs after small changes in the
source.

Definition 3 A file system provides relative freshness iff,
whenever user u1 sees the effects of an open or close oper-
ation O by u2, then at least until u2 performed O, u1 had
close-to-open consistency with respect to u2.

The SUNDR consistency protocol guarantees relative
freshness (proof omitted). Given this property, when the
clients of two users can communicate on-line, they can
achieve close-to-open consistency with respect to each
other. The clients need only keep each other up to date
about their users’ latest version numbers. When each of
two users does not know if the other will be on-line, a cor-
rupt SUNDR server can mount a forking attack. However,
once such an attack has occurred, the server can never again
show either user another update by the other. The corrupt
server can therefore partition the set of users and give each
partition its own clone of the file system, but when parti-
tioned users have any out-of-band communication—for in-
stance one user in person telling the other to look at a new
file—the forking attack will be detected.

3.5 Low-bandwidth protocol

The SUNDR block protocol lets clients use delta-
compression to avoid sending an entire metadata block to
the server when the new block is identical to an old one
but for a small hash value. The same protocol can be used

to achieve dramatic compression of file blocks sent to the
server under many realistic workloads. The most obvious
workload is that of a text editor. When one edits and saves
a large file, the editor generally creates and writes a new file
substantially similar to the old one.

Many other workloads generate substantially redundant
file system traffic, however. To give a sense for this, Fig-
ure 2 lists the savings in bandwidth one could obtain from
using delta-compression on three typical workloads. The
dvips workload consisted of generating a postscript file for
this paper twice, with some minor edits in between. 84%
(by space) of the write calls made by dvips the second time
around were for 8KB blocks that already existed in the first
output file (albeit at different offsets). The g++ workload
consisted of recompiling and linking a 1.3MB C++ program
after adding a debugging print statement. 59% of the writes
could have saved using delta compression between the two
versions. ar consisted of regenerating a 3.9MB C++ library
after modifying one of the source files. 97% of the writes
could have been saved.

SUNDR can use the rsync algorithm [16] to reduce band-
width when one file is very similar to another. However, that
still leaves the problem of actually pairing up old files with
new ones. In some cases this is easy. For example, dvips
just truncates the old file and writes out the new one. Since
allocating and freeing of blocks in SUNDR is controlled by
the client and decoupled from the file system’s structure,
the client can, space permitting, temporarily delay remov-
ing truncated or deleted files from the server and its local
cache in order to use them for delta compression. In other
cases, however, the relation between old and new files may
be less obvious. The emacs text editor, for instance, saves
a file by creating and writing out new file with a different
name, forcing that file’s contents to be committed to disk,
and only then renaming the new file to replace the old.

Fortunately, the SUNDR client can index its local file

103

cache. Using Rabin fingerprints, the client can efficiently
compute a running checksum of every (overlapping) 8K
block in a file. The client can then index cached files by
their n lowest valued checksums for some smalln. Many
of these checksums will likely appear in a new version of
the file to be written out to the server. Thus, the client can
pick a file against which to run the rsync algorithm by look-
ing up a small number of fingerprints in its index.

The encryption of blocks slightly complicates delta com-
pression. SUNDR will encrypt data with a block cipher us-
ing the combination OFB/ECB mode of [2], but each block
stored at the server will have a randomly chosen IV pre-
fixed to the block. When updating internal nodes of the file
system, this encryption scheme allows a 20 byte hash in an
encrypted block to be updated by changing only 32 bytes of
ciphertext.

The situation is more complicated on leaf nodes, when
the client is attempting to apply differences between two
files in its local cache to an encrypted version of the file on
the server. It is for this reason that the SUNDR virtual in-
ode structure permits variable size data blocks and contains
the sizes of those blocks. The client can preserve intact any
blocks from the old file that are present in the new file, and
glue those blocks together with odd-sized fragments. Per-
forming write compression in this way will automatically
give other clients the same factor in read compression, as
it will maximize the number of the new file’s blocks that
already exist in their local caches.

4 Summary

The SUNDR file system securely stores data on un-
trusted servers. Thus, people can base trust decisions on
who needs to use data and administrative decisions on how
best to manage the data. While some attacks simply cannot
be prevented—for instance physical destruction of the hard
disk—SUNDR makes it easy to detect and recover from
such problems. For instance, after restoring a server from
backup, recent changes can securely be merged in from the
caches of untrusted clients. SUNDR also introduces the no-
tion of relative freshness—the guarantee that users will see
all of each other’s changes or none. While weaker than tra-
ditional file system consistency guarantees, relative fresh-
ness easily lets clients verify tighter consistency guarantees
through client-to-client communication.

References

[1] D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, W. Weimer,
C. Wells, B. Zhao, and J. Kubiatowicz. Oceanstore: An
exteremely wide-area storage system. InProceedings of the
9th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2000. (to
appear).

[2] M. Blaze. A cryptographic file system for unix. In1st ACM
Conference on Communications and Computing Security,
pages 9–16, November 1993.

[3] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, pages 173–186, February 1999.

[4] D. Duchamp. A toolkit approach to partially disconnected
operation. InProceedings of the 1997 USENIX, pages 305–
318. USENIX, Jan. 1997.

[5] K. Fu. Group sharing and random access in cryptographic
storage file systems. Master’s thesis, Massachusetts Institute
of Technology, May 1999.

[6] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. InProceedings of the 4th
Symposium on Operating Systems Design and Implementa-
tion, 2000.

[7] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the coda file system.ACM Transactions on Computer
Systems, 10(1):3–25, 1992.

[8] E. K. Lee and C. Thekkath. Petal: Distributed virtual disks.
In Proceedings of the 7th International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, pages 84–92. ACM, October 1996.

[9] U. Maheshwari and R. Vingralek. How to build a trusted
database system on untrusted storage. InProceedings of
the 4th Symposium on Operating Systems Design and Im-
plementation, 2000. (to appear).

[10] D. Mazières. Security and decentralized control in the SFS
distributed file system. Master’s thesis, Massachusetts Insti-
tute of Technology, August 1997.

[11] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In
Proceedings of the 17th ACM Symposium on Operating Sys-
tems Principles, pages 124–139, Kiawa Island, SC, 1999.
ACM.

[12] R. C. Merkle. A digital signature based on a conventional
encryption function. In C. Pomerance, editor,Advances in
Cryptology—CRYPTO ’87, number 293 in Lecture Notes in
Computer Science, pages 369–378, Berlin, 1987. Springer-
Verlag.

[13] D. Reed and L. Svobodova. Swallow: A distributed data
storage system for a local network. In A. West and P. Jan-
son, editors,Local Networks for Computer Communica-
tions, pages 355–373. North-Holland Publ., Amsterdam,
1981.

[14] R. L. Rivest and B. Lampson. SDSI—a simple distributed
security infrastructure. Working document fromhttp://
theory.lcs.mit.edu/~cis/sdsi.html.

[15] C. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scal-
able distributed file system. InProceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 224–
237, Saint-Malo, France, 1997. ACM.

[16] A. Tridgell and P. Mackerras. The rsync algorithm. Tech-
nical Report TR-CS-96-05, Australian National University,
1997.

104

Active Protocols for Agile, Censor-Resistant Networks

Robert Ricci Jay Lepreau

University of Utah

fricci,lepreaug@cs.utah.edu http://www.cs.utah.edu/flux/

January 22, 2001

Abstract
In this paper we argue thatcontent distribution in the

face of censorship is a compelling and feasible applica-
tion of active networking. In the face of a determined
and powerful adversary, every fixed protocol can become
known and subsequently monitored, blocked, or its mem-
ber nodes identified and attacked.Rapid and diverse pro-
tocol change is key to allowing information to continue to
flow. Typically, decentralized protocol evolution is also
an important aspect in providing censor-resistance.

A programmable overlay network can provide these
two features. We have prototyped such an extension to
Freenet, a storage and retrieval system whose goals in-
clude censor resistance and anonymity for information
publishers and consumers.

1 Introduction
The ability to communicate effectively—even in the

face of censorship attempts by a hostile party, such as a
repressive government—is important to maintaining the
values held by many societies. As The New York Times
reported [17], just last week a corrupt head of state was
toppled from power, “due in no small part” to 100,000
people responding to a “blizzard” of wireless text mes-
sages summoning them to demonstrations. But what if
the government had deployed a powerful jamming signal,
or simply taken over the cell phone company?

The fundamental rationale for active network-
ing [16]—allowing the network itself to be pro-
grammable or extensible by less than completely trusted
users—is to ease the deployment of new protocols
throughout the network infrastructure. Active network-
ing’s flexibility is its only real virtue, since any one
protocol can be more efficient, more robust, and have
fewer troubling side effects if it is part of the fixed
network infrastructure. Thus it has proven difficult to
demonstrate even a single compelling application of
active networking, as it is really thespace of applications
that is compelling.

Rob Ricci, a fulltime undergraduate student, is the primary author.
Jay Lepreau is the contact author.

Many active networking publications discuss the ben-
efits of facilitating deployment of new protocols over ex-
isting networking infrastructure. Overlay networks such
as Freenet [6, 7] that aim to provide a censorship-resistant
document publishing mechanism seem a good fit for such
a protocol update system: once in place, it is possible
that hostile governments, ISPs, or network administrators
might attempt to monitor or block Freenet links. One way
to make this task more difficult is to diversify the proto-
cols by which two peer nodes can communicate. Ideally,
rather than expanding the size of the set of protocols spo-
ken from one to a small finite number, the size of the pro-
tocol set would be theoretically unbounded, to prevent an
attacker from learning every member of the set.

The keys to making this strategy successful are to allow
and encourage the deployment of new hop-by-hop proto-
cols at any time, even after the system is in wide use, and
to allow any user of the system to introduce new proto-
cols. The system should be able to evolve rapidly to react
to changes in its environment. There should be no cen-
tral source of new protocols to become vulnerable. Any
member of the network should be able to decide upon
a new protocol to use, and “teach” its neighbors to use
the new protocol when communicating with it. Thus, any
node is able quickly to take action if it deems that a proto-
col change is desirable. Such adaptive, evasive protocols
may—and probably will—be inefficient, but above some
threshold, that is not a significant concern. Like other
projects (e.g., Oceanstore) we explicitly choose to exploit
the ever-growing supply of network bandwidth and pro-
cessing power for benefits other than speed.

If the publishing system’s core is implemented in
Java [1] or similar typesafe language, or if the core can
interface with such typesafe code, then such evolution
can be implemented by using mobile bytecode that imple-
ments a new node-to-node protocol. When a node wishes
to change the protocol spoken with one of its peers (either
because of suspected attack, or as a matter of course), it
can send the peer bytecode that implements the new pro-
tocol. We call this passed bytecode a Protocol Object. In
our experiment, we call the result of extending Freenet
with Protocol Objects, “Agile Freenet.”

105

2 Related Work
Outside of active networks, mobile code has often been

used to support heterogeneous environments and plat-
forms (pervasive computing [12] and Sun’s Jini), data
transcoding and proxies [15], moving computation to
data (Mobile Agents), or towards more abundant compu-
tational or I/O resources (e.g., applets in Web browsers).

In the wireless realm there is a long history of elec-
tronic response to jamming, either accidental or purpose-
ful, often using spread-spectrum techniques. Software ra-
dios [3] and other more traditional approaches provide
adaptive physical-layer protocols. All of these wireless
efforts emphasize improved performance by seeking less-
used parts of the spectrum, or by using spectrum in a
more sophisticated manner. Ad-hoc networks, whether
mobile or not, apply adaptive protocols in a more exten-
sive manner [14], and although they must sometimes con-
sider issues of trust, have so far also focused on efficiency
and performance.

“Radioactive networks” [4], in which active network-
ing is proposed as a way to extend a software radio in-
frastructure, comes closest to the ideas in this paper. The
authors’ goals are primarily the traditional goals of adap-
tive wireless protocols: better performance through better
use of spectrum and energy. However, they do mention
security as a potential benefit, and suggest a software ra-
dio system that can vary its spectrum spreading codes to
avoid jamming.

It is interesting that the first known active network,
Linkoping Technical Institute’s Softnet [21], also in-
volved radio, though in a different manner. Softnet, in
1983, implemented a programmable packet radio net-
work, building upon a special Forth environment. It al-
lowed users to extend the network with their own services
and protocols above the physical layer.

In terms of censor-resistance, a user-programmable
collection of wireless nodes would have strengths that
a wired network does not possess. In the latter, typi-
cal users are almost entirely vulnerable to their sole ISP.
Wireless nodes, particularly if they have software-defined
waveforms and a multitude of accessible peer nodes, pro-
vide a large set of diverse paths to the broader network.

In our content-distribution application area, there are
an increasing number of censor-resistant and anonymous
publishing efforts, some of which are outlined in the next
section. To our knowledge, none of them use active
code.

3 Censor-resistant Publishing Networks
Freenet employs a variety of techniques aimed at cre-

ating a censorship-free, anonymous environment. Cen-
tral to Freenet’s strategy is the distribution of data across
a large number of independently-administered nodes.

Freenet is decentralized; requests are propagated through
a series of peer-to-peer links. When a file is transferred,
the file is cached by all nodes on the route between
the requesting node and the node where a copy of the
file is found. Frequently requested files are thus repli-
cated at many points on the network, making the removal
or censorship of files infeasible. A peer forwarding a
Freenet message from one of its peers is indistinguish-
able from a peer originating the message, providing a
degree of anonymity for the suppliers and requesters of
data. Freenet is only as good, however, as the network it
is built upon; underlying networks hostile to Freenet can
potentially block or monitor its connections, preventing
Freenet from fulfilling its goals. Agile protocols, there-
fore, can provide many potential benefits.

Other systems incorporate similar ideas in different
contexts. Gnutella [11] provides a file sharing and
search system that is decentralized across widely dis-
persed nodes, but does not maintain endpoint anonymity.
Publius [19] offers anonymity for publishers, and plausi-
ble deniability for servers. The FreeHaven [8] design—
so far unimplemented and known to be inefficient—has
similar goals to Freenet, but uses a wider variety of tech-
niques to offer stronger guarantees of anonymity and doc-
ument persistence.

In all of the above systems, monitoring can reveal in-
formation, even if it cannot directly discover the con-
tents of a message, or identify its endpoints [5]. Large
quantities of cover traffic, many participating nodes, and
widespread routine use by others of end-to-end encryp-
tion are required for many of the publishing networks to
function effectively. Recognizing that a given data stream
belongs to one of these networks is not necessarily diffi-
cult, and can give an attacker information on the usage,
behaviors or identities of network users. In addition, once
such communications are recognized, they can be selec-
tively blocked. Using agile protocols for communication
can make this task much more difficult for an attacker.

4 Agile Protocols
The Case for Agile Protocols

An agile protocol, as we define it, is a protocol whose
details can be changed arbitrarily and quickly while the
system is running. The most flexible way to do this is
through mobile code.

If the goal of Agile Freenet were simply toobscure
Freenet connections, then it would probably be sufficient
simply to encrypt them, headers and all. It is desirable,
however, to be able todisguise Freenet connections as
well, by communicating over a protocol that is similar
in appearance to some well-known application-level pro-
tocol, such as HTTP, SMTP, etc. Statically including
some set of these protocols in each release of the software

106

would be a solution, but would give a potential attacker
a small set of protocols to understand. Additionally, this
would create problems with peer nodes running different
versions of the software, as they would all be under sepa-
rate administrative control. Instead, by allowing nodes to
exchange protocol implementations, we make the set of
protocols spoken on the network dynamic, regardless of
the version of the software nodes are running, and making
an attacker’s job very difficult.

New Protocol Objects could implement steganography
[13], proxying through third parties, tunneling through
firewalls and proxy servers, and other techniques to make
them difficult to monitor and block. Most importantly,
using agile protocols allows us to take advantage of such
technologies and others yet to be discoveredas soon
as they are developed. Users can write Protocol Ob-
jects to suit their own network situation (for example,
if they are behind a firewall that allows only certain
ports through, or wish to tunnel their connections through
some unusual proxy service) and distribute it easily to
their Freenet peers and other users without having to go
through any central or even local authority. In response to
a determined adversary, new protocols might be written
and deployed daily or hourly, all on a decentralized and
demand-driven basis.

Issue: Level of Programmability
Allowing any user to introduce new protocols into a

censor-resistant network presents clear threats. The cen-
sors themselves will certainly have the means and mo-
tivation to introduce malicious protocols. We cannot,
therefore, allow arbitrary programmability, but must re-
strict the API available to the active code. There is an
obvious and permanent tension between constraining the
active code and allowing it space to diversify. In addi-
tion, it is useful to draw a distinction between the over-
all architecture of a content-distribution network, i.e., its
global invariants and central algorithms, and the details
of its hop–by–hop communication protocol. It is clearly
safer to allow programmability of the latter than the for-
mer. Wetherall’s retrospective on active networking [20]
reaches an analogous conclusion: under complete pro-
grammability, it is feasible to assure the safety of individ-
ual nodes, but not of the overall network.

Comparison to Traditional Active Networking
The issues that confront agile protocols in general, and

Agile Freenet in particular, differ in some ways from the
problems that traditionally have been the target of active
networking research.

First, new protocols need not be spoken along an entire
data path, only on individual point-to-point links. In fact,
it is desirable to have a very diverse set of different pro-
tocols spoken, in order to make the system as dynamic

as possible. A given file transfer could be accomplished
with as many different Protocol Objects as there are links
in the route it takes. This eliminates the necessity for
a more complicated “capsule” system like ANTS [20],
which ensures that each hop on a given route has the
proper (and identical) code to run a given protocol.

Second, file sharing overlay networks such as Freenet
tend to be systems where data being searched for is ex-
tremely likely to be available from many sources. This
lessens the importance of a single point-to-point link, as,
even if an individual link goes down or misbehaves, data
is likely to be available through some other route. Addi-
tionally, such networks involve some user interaction, so
some classes of problems can be addressed by the users.
Thus, we do not require strong guarantees about the cor-
rectness or efficiency of each Protocol Object.

5 Agile Freenet
5.1 Basics
Identification: Identifying protocol objects can be
done simply by computing a cryptographic hash of the
protocol bytecode—this eliminates any need for a cen-
tralized naming scheme, and allows hosts to distinguish
between Protocol Objects that they already have, inde-
pendent of any identifier they may be given. When a
node wishes to change the protocol it is speaking on a
point-to-point link with a peer, it sends its peer a message
containing this hash. If the peer does not have the byte-
code matching the hash, it can request that the originating
node send it. A similar but more complicated method is
employed in the ANTS toolkit.

Bootstrapping: Bootstrapping an agile protocol can be
problematic—when a node wishes to contact a new po-
tential peer, it must be assured that there is a common pro-
tocol that both it and its peer speak. This problem, how-
ever, is shared by the base Freenet system itself—joining
the network requires learning the network addresses and
ports of potential peers through some out-of-band mech-
anism. These mechanisms could be extended to encom-
pass more information—users wishing to join the Agile
Freenet could obtain files from their prospective peers
containing network address, port numbers, public keys
(whose purpose will be discussed later), and one or more
Protocol Objects that are in use by that node.

5.2 Potential Dangers
Protocol Objects help to thwart listeners or attackers

in some ways, but also have the potential to be a tool
for them. Here, we outline potential dangers. The next
section addresses solutions.

Compromise of Local Information: A malicious
Protocol Object inserted into Agile Freenet could attempt

107

to discover information about nodes that it is spread to,
such as the files in their cache and their list of peer nodes.
Discovery of such information could lead to the compro-
mise of some of Freenet’s core goals, such as anonymity.

Disclosure to an outside source: A malicious Proto-
col Object could contact a third party and disclose ad-
dresses of nodes, keys being searched for, data being
transferred, etc.

Failure: Protocol Objects could fail, either mali-
ciously or through poor programming. This failure could
be total or intermittent.

Selective Failure: This is a more insidious instance of
failure, in which a Protocol Object fails only for certain
requests or data transfers, to prevent them from serving
requests for certain files, or certain types of data.

Corruption: Protocol Objects could corrupt the data
passing through them to disrupt the integrity of the in-
formation stored in Agile Freenet, or to somehow “tag”
transfers for tracing.

Resource Usage: A malicious or poorly written Pro-
tocol Object could consume excessive system resources,
degrading its performance

5.3 Combating the Dangers
Given the dangers outlined above, it is easy to see

that some precautions will be necessary when adopting
our Agile Protocol. Here, we outline ways of protecting
the core Freenet system from malicious or poorly written
Protocol Objects.

Namespace Isolation: With current Java Virtual Ma-
chines, it is possible to limit which classes a given object
can resolve references to, through ClassLoader objects.
This can be used to restrict access to parts of the Freenet
node, system classes, etc, that are not necessary for a Pro-
tocol Object to use, and prevent compromise of local in-
formation.

Network Isolation: Using the namespace isolation
technique discussed above, we can force Protocol Ob-
jects to use a network API that we define, which can per-
form checks to insure that a Protocol Object is not making
unauthorized network access or contacting a third party.

Rating of Protocol Objects: To combat Protocol Ob-
ject failure, each node can maintain a rating system for
each Protocol Object it uses, evaluating each one’s effec-
tiveness based on factors like success rate for searches,
dropped connections, and detected corruption (discussed
below.) It can then decide not to use Protocol Objects
that have too low of a rating. Note that this may make
perfectly good Protocol objects look bad—the peers they
are used with may not have much data cached, may be
unstable, etc. This is acceptable—the primary goal is to
prevent the spread of “bad” Protocol Objects.

Data Encryption: Selective failure and corruption
can be solved by encrypting data before passing it to

the Protocol Object, using a key unknown to it. In this
way, we can prevent Protocol Objects from discriminat-
ing based on the data being transferred, as they do not
have the ability to read it. Also, we can send separately-
encrypted checksums or digital signatures to verify that
the data has not been corrupted.

Resource Management: Agile Freenet can be run
in a Java Virtual Machine that supports resource man-
agement between different Java “applications,” using fea-
tures such as those available in KaffeOS [2] or Janos [18].
However, just as in Web browsers running untrusted Java
code, simpler mechanisms should suffice for initial de-
ployment. E.g., existing OS mechanisms can limit the
JVM to a fixed share of memory and cpu, and the node
user or administrator can be notified if a limit is consis-
tently reached.

5.4 Encryption
Encryption is useful at several different points in Agile

Freenet. First, as already discussed, it can prevent Proto-
col Objects from discovering what data they are transmit-
ting or receiving, and can ensure that data transferred has
not been tampered with or otherwise altered.

Second, if two peer nodes wish to exchange a new Pro-
tocol Object, this transfer should be encrypted, even if the
“normal” data they are sending is not. If switching proto-
cols is done because of a suspicion that communications
are being monitored, then transferring a new Protocol
Object unencrypted would give the listener the bytecode
necessary to continue listening when the new protocol is
used, or at least a means to determine which protocol is
being used. Encrypting Protocol Objects as they are be-
ing transferred denies a listener this advantage.

5.5 Experience
We have implemented the basic framework described

in this paper by modifying the current Freenet implemen-
tation [10] to incorporate Protocol Objects. Since our ex-
tensions to Freenet were different than those envisioned
by its developers, we found it moderately difficult to ex-
tend. However, once the framework was in place, we
were pleased with the resulting extensible system.

Our prototype sends the bytecode for Protocol Objects
over the network and loads it into a restricted Java execu-
tion environment using standard Java ClassLoader mech-
anisms; sensitive Freenet and system APIs are hidden.
We implemented three different Protocol Objects. One
implements the standard Freenet protocol, another mim-
ics HTTP syntax to facilitate tunneling through HTTP,1

and a third implements TCP “port-hopping.” Nodes can,

1We will soon demonstrate HTTP tunneling via passage through a
stock Web proxy. Doing so awaits our extending Freenet internals in a
minor way, so that “in-bound” connections can fake the Web’s “client-
side-initiates” behavior.

108

at the behest of their peers, change Protocol Objects at
any Freenet “message” (file) boundary.2 This diversity
is on a per-peer basis, allowing a node to speak an arbi-
trarily different protocol, on a different port, at different
times, to each of its peers.

The prototype was developed and tested on our scal-
able Network Emulation facility [9]. We plan to continue
development of our prototype as a test platform for re-
search on agile protocols.

6 Conclusion

Censor-resistant content distribution networks provide
a compelling application of active networking technol-
ogy. Agile protocols seem likely to improve significantly
such networks’ resistance to monitoring and blocking,
without an unduly large increase in the potential dam-
age from malicious protocols. We have demonstrated,
in the Freenet system, that such an extension is feasible.
What remains as future work is evaluating the extent of
improvement, increasing the range of protocol variants,
and ultimately deploying and evaluating agile protocols
in the live Freenet. It should be easy to interest students
in such a contest between publishers and censors.

References

[1] K. Arnold and J. Gosling.The Java Programming Lan-
guage. The Java Series. Addison-Wesley, second edition,
1998.

[2] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, Resource Management, and Sharing
in Java. InProc. of the Fourth Symposium on Operat-
ing Systems Design and Implementation, pages 333–346,
San Diego, CA, Oct. 2000. USENIX Association.

[3] V. Bose, M. Ismert, M. Welborn, and J. Guttag. Virtual
Radios. IEEE Journal on Selected Areas in Communica-
tions, 17(4), Apr. 1999.

[4] V. Bose, D. Wetherall, and J. Guttag. Next Century Chal-
lenges: RadioActive Networks. InProc. of the Fifth An-
nual ACM/IEEE Internation Conference on Mobile Com-
puting and Networking, pages 242–248, Aug. 1999.

[5] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms.Communications of the ACM,
4(2), February 1982.

[6] I. Clarke. A Distributed Decentralized Information
Storage And Retrieval System. Master’s thesis, Uni-
versity of Edinburgh, 1999. Available at http://-
freenet.sourceforge.net/freenet.pdf.

2We are extending Freenet to allow changing connection attributes at
any byte boundary. These attributes include ports (including spreading
a single connection over many ports) and peer host (to allow “bouncing”
through another host).

[7] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet:
A Distributed Anonymous Information Storage and Re-
trieval System. Berkeley, California, July 2000. Inter-
national Computer Science Institute. Revised December
18 2000. Available at http://freenet.sourceforge.net/icsi-
revised.ps.

[8] R. Dingledine, M. J. Freedman, and D. Molnar. The Free
Haven Project: Distributed Anonymous Storage Service.
Berkeley, California, July 2000. International Computer
Science Institute. Revised December 17 2000. Available
at http://www.freehaven.net/doc/berk/freehaven-berk.ps.

[9] Flux Research Group, University of Utah. Network
Testbed and Emulation Facility Web Site. http://-
www.emulab.net/ and http://www.cs.utah.edu/flux/-
testbed/.

[10] The Freenet Project. http://freenet.sourceforge.net/.

[11] The Gnutella Project. http://gnutella.wego.com/.

[12] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. A
System Architecture for Pervasive Computing. InProc. of
the Ninth ACM SIGOPS European Workshop, pages 177–
182, Kolding, Denmark, Sept. 2000.

[13] N. Johnson and S. Jajodia. Exploring Steganography: See-
ing the Unseen.IEEE Computer, 31(2):26–34, 1998.

[14] J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive Pro-
tocols for Information Dissemination in Wireless Sensor
Networks. InProc. of the Fifth Annual ACM/IEEE Inter-
nation Conference on Mobile Computing and Networking,
Aug. 1999.

[15] Steven D. Gribble et al. The Ninja Architecture for Ro-
bust Internet-Scale Systems and Services.Computer Net-
works, 2001. To appear in a special issue on Pervasive
Computing. Available at http://ninja.cs.berkeley.edu/dist/-
papers/ninja.ps.gz .

[16] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture.Computer Communication Review,
26(2), Apr. 1996.

[17] The New York Times. Text Messaging is a Blizzard That
Could Snarl Manila.New York Times. January 20, 2001.

[18] P. Tullmann, M. Hibler, and J. Lepreau. Janos: A Java-
oriented OS for Active Network Nodes. InIEEE Journal
on Selected Areas in Communications, Active and Pro-
grammable Networks, 2001. To appear.

[19] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
Robust, Tamper-evident, Censorship-resistant, Web Pub-
lishing System. InProc. 9th USENIX Security Sympo-
sium, pages 59–72, August 2000.

[20] D. J. Wetherall. Active network vision and reality: lessons
from a capsule-based system. InProc. of the 17th ACM
Symposium on Operating Systems Principles, pages 64–
79, Kiawah Island, SC, Dec. 1999.

[21] J. Zander and R. Forchheimer. Softnet – An approach to
high level packet communication. InProc. Second ARRL
Amateur Radio Computer Networking Conference (AM-
RAD), San Francisco, CA, Mar. 1983.

109

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel

George Candea Armando Fox
Stanford University

fcandea,foxg@cs.stanford.edu

Abstract

Even after decades of software engineering research, complex
computer systems still fail, primarily due to nondeterministic
bugs that are typically resolved by rebooting. Conceding that
Heisenbugs will remain a fact of life, we propose a systematic
investigation of restarts as “high availability medicine.” In this
paper we show how recursive restartability (RR) — the ability of
a system to gracefully tolerate restarts at multiple levels — im-
proves fault tolerance, reduces time-to-repair, and enables sys-
tem designers to build flexible, highly available software infras-
tructures. Using several examples of widely deployed software
systems, we identify properties that are required of RR systems
and outline an agenda for turning the recursive restartability phi-
losophy into a practical software structuring tool. Finally, we de-
scribe infrastructural support for RR systems, along with initial
ideas on how to analyze and benchmark such systems.

1 Introduction

Despite decades of research and practice in software engineer-
ing, latent and pseudo-nondeterministic bugs in complex soft-
ware systems persist; as complexity increases, they multiply fur-
ther, making it difficult to achieve high availability. It is common
for such bugs to cause a system to crash, deadlock, spin in an
infinite loop, livelock, or to develop such severe state corruption
(memory leaks, dangling pointers, damaged heap) that the only
high-confidence way of continuing is to restart the process or re-
boot the system.

The rebooting “technique” has been around as long as com-
puters themselves, and remains a fact of life for substantially
all nontrivial systems today. Rebooting can be applied at vari-
ous levels: Deadlock resolution in commercial database systems
is typically implemented by killing and restarting a deadlocked
thread in hopes of avoiding a repeat deadlock [15]. Major Inter-
net portals routinely kill and restart their web server processes
after waiting for them to quiesce, in order to deal with known
memory leaks that build up quickly under heavy load. A major
search engine periodically performs rolling reboots of all nodes
in their search engine cluster [3]. Although rebooting is often
only a crude “sledgehammer” for maintaining system availabil-
ity, its use is motivated by two common properties:

1. Restarting works around Heisenbugs. Most software
bugs in production quality software are Heisenbugs [27, 8,
17, 2]. They are difficult to reproduce, or depend on the
timing of external events, and often there is no other way
to work around them but by rebooting. Even if the source
of such bugs can be tracked down, it may be more cost-
effective to simply live with them, as long as they occur
sufficiently infrequently and rebooting allows the system to
work within acceptable parameters. The time to find and
deploy a permanent fix can sometimes be intolerably long.
For example, the Patriot missile defense system, used dur-
ing the Gulf War, had a bug in its control software that could
be circumvented only by rebooting every 8 hours. Delays in
sending a fix or the reboot workaround to the field led to 28
dead and 98 wounded American soldiers [34].

2. Restarting can reclaim stale resources and clean up cor-
rupt state. This returns the system to a known, well-tested
state, albeit with possible loss of data integrity. Corrupt or
stale state, such as a mangled heap, can lead to some of
the nastiest bugs, causing extensive periods of downtime.
Even if a buggy process cannot be trusted to clean up its
own resources, entities with hierarchically higher supervi-
sory roles (e.g., the operating system) can cleanly reclaim
any resources used by the process and restart it.

Rebooting is not usually considered a graceful way to keep a
system running – most systems are not designed to tolerate unan-
nounced restarts, hence experiencing extensive and costly down-
time when rebooted, as well as potential data loss. Case in point:
UNIX systems that are abruptly halted without callingsync().

The Gartner Group [31] estimates that 40% of unplanned
downtime in business environments is due to application failures;
20% is due to hardware faults, of which 80% are transient [8, 25],
hence resolvable through reboot. Starting from this observation,
we argue that in anappropriately designed system, we canim-
prove overall system availability through a combination of re-
actively restarting failed components (revival) and prophylacti-
cally restarting functioning components (rejuvenation) to prevent
state degradation that may lead to unscheduled downtime. Cor-
respondingly, we present initial thoughts on how to design for
recursive restartability, and outline a research agenda for system-
atic investigation of this area.

110

The paper is organized as follows: In section 2, we explain
how the property of being recursively restartable can improve a
system’s overall availability. In section 3, we present examples of
existing restartable and non-restartable systems. Section 4 iden-
tifies some required properties for recursively restartable systems
and proposes an initial design framework. Finally, in section 5,
we outline a research agenda for converting our observations into
structured design rules and software tools for building and eval-
uating recursively restartable systems. Many of the basic ideas
we leverage have appeared in the literature, but have not been
systematically exploited as a collection of guidelines; we will
highlight related work in the context of each idea.

2 Recursive Restartability Can Improve
Availability

“Recursive restartability” (RR) is the ability of a system to toler-
ate restarts at multiple levels. An example would be a software
infrastructure that can gracefully tolerate full reboots, subsystem
restarts, and component restarts. An alternate definition is pro-
vided by the following recursive construction: the simplest, base-
case RR system is a restartable software component; a general
RR system is a composition of RR systems that obeys the guide-
lines of section 4. In the present section we describe properties
of recursively restartable systems that lead to high availability.

RR improves fault tolerance. The unannounced restart of a
software component is seen by all other components as a tempo-
rary failure; systems that are designed to tolerate such restarts are
inherently tolerant to all transient non-Byzantine failures. Since
most manifest software bugs and hardware problems are short
lived [25, 27, 8], a strategy of failure-triggered, reactive compo-
nent restarts will mask most faults from the outside world, thus
making the system as a whole more fault tolerant.

RR can make restarts cheap. The fine granularity of recur-
sive restartability allows for a bounded portion of the system to be
restarted upon failure, hence reducing the impact on other com-
ponents. This way, the system’s global time-to-repair is mini-
mized (e.g., full reboots are replaced with partial restarts), which
increases availability. Similarly, RR allows for components and
subsystems to be independently rejuvenated on a rolling basis;
such incremental rejuvenation, unlike full application reboots,
makes software rejuvenation [21] affordable for a wide range of
24� 7 systems.

RR provides a confidence continuum for restarts. The com-
ponents of a recursively restartable system are tied together in
an abstract “restartability tree,” in which (a) siblings are well
isolated from each other by the use of simple, high-confidence
machinery, and (b) a parent can unilaterally start, stop, or re-
claim the resources of any of its children, using the same kind
of machinery. For example, in a cluster-based network service,
the root of the tree would be an administrator, each child of the
root would be a node’s OS, each grandchild a process on a node,

and each great-grandchild a kernel-level process thread. This
tree captures the tradeoff that, the closer to the root a restart oc-
curs, the more expensive the ensuing downtime, but the higher
the confidence that transient failures will be resolved. In the
above example, processes are fault-isolated from each other by
the hardware-supported virtual memory system, which is gener-
ally a high-confidence field-tested mechanism. The same mech-
anism also allows parents to reclaim process resources cleanly.
Nodes are fault-isolated by virtue of their independent hardware.
When a bug manifests, we can use a cost-of-downtime/benefit-
of-certainty tradeoff to decide whether to restart threads, pro-
cesses, nodes, or the entire cluster.

RR enables flexible availability tradeoffs. The proposed re-
juvenation/revival regimen can conveniently be tailored to best
suit the application and administrators: it can be simple (reboot
periodically) or sophisticated (differentiated restart treatment for
each subsystem/component). Identical systems can have differ-
ent revival and rejuvenation policies, depending on the appli-
cation’s requirements and the environment they are in. Sched-
uled non-uniform rejuvenation can transform unplanned down-
time into planned, shorter downtime, and it gives the ability
to more often rejuvenate those components that are critical or
more prone to failure. For example, a recent history of revival
restarts and load characteristics can be used to automatically de-
cide how often each component requires rejuvenation. Simpler,
coarse-grained solutions have already been proposed by Huang
et al. [21] and are used by IBM’s xSeries servers [22].

3 Existing Systems

Very few systems today can be classified as being recursively
restartable. Many systems do not tolerate restarts at all, and we
provide some examples in this section. Others, though not nec-
essarily designed by following an existing set of RR principles,
fortuitously exhibit RR-friendly properties. Our long term goal
is to derive a canon of design rules, including tradeoffs and pro-
gramming model semantics, so that future efforts will be more
systematic and deliberate.

3.1 Poorly Restartable Systems

In software systems not designed for restartability, the transient
failure of one or more components often ends up being treated
as a permanent failure. Depending on the system’s design,
the results can be anywhere from inconvenient to catastrophic.
NFS [30] exhibits a flavor of this problem in its implementa-
tion of locking: a crash in the lock subsystem can result in an
inconsistent lock state between a client and the server, which
sometimes requires manual intervention by an administrator to
repair. The result is that many applications requiring file locks
test whether they are running on top of NFS and, if so, perform
their own locking using the local filesystem, thereby defeating
the NFS lock daemon’s purpose.

111

As a more serious example, in July 1998, the USS Yorktown
battleship lost control of its propulsion system due to a string
of events started by a data overflow. Had the overall system
been recursively restartable, its components could have been in-
dependently restored, avoiding the need to have the entire missile
cruiser towed back to port [10].

Many UNIX applications use the/tmp directory for tempo-
rary files. Should/tmp become unavailable (e.g., due to a disk
upgrade), programs will typically hang in the I/O system calls.
Consequently, these monolithic, tightly coupled applications be-
come crippled and cannot be restarted without losing all the work
in progress.

Tightly coupled operating systems belong in this category as
well. For example, Windows NT depends on the presence of cer-
tain system libraries (DLLs); accidentally deleting one of them
can cause the entire system to hang, requiring a full reboot and
the loss of all applications’ work in progress. In the ideal case,
an administrator would be able to replace the DLL and restart
the dependent component, allowing the system to continue run-
ning. If the failed component was, say, the user interface on a
machine running a web server, RR would allow availability of
the web service to be unaffected. The ability to treat operating
system services as separate components can avoid these failures,
as evidenced by true microkernels [1, 24].

3.2 Restartability Winners

The classic replicated Internet server configuration hasn in-
stances of a server for a population ofu users, with each server
being able to handle in excess ofu=n users. In such systems,
node reboots result simply in a transient1=n throughput loss.
Moreover, read-only databases can be striped across these in-
stances such that each node contributes a fixed fraction ofDQ

(data/query� queries/unit time) [4]. Independent node reboots
or transient node failures result solely in decreased data/query,
while keeping overall queries/unit time constant. Such a design
makes “rolling rejuvenation” very affordable [3].

At major Internet portals, it is not uncommon for newly hired
engineers to write production code for the system after little more
than one week on the job. Simplicity is stressed above all else,
and code is often written under the explicit assumption that it
will necessarily be killed and restarted frequently. This affords
programmers such luxuries as never callingfree() in their C
code, thereby avoiding an entire class of pernicious bugs.

Finally, NASA’s Mars Pathfinder illustrates the value of
coarse-grained reactive restarts. Shortly after landing on Mars,
the spacecraft identified that one of its processes failed to com-
plete execution on time, so the control software decided to restart
all the hardware and software [28]. Despite the fact that the soft-
ware was imperfect — it was later found that the hang had been
caused by a hard-to-reproduce priority-inversion deadlock — the
watchdog timers and restartable control system saved the mission
and helped it exceed its intended lifetime by a factor of three.

4 The Restart Scalpel: Toward Structured
Recursive Restartability

In proposing RR, we are inspired by the effect of introducing
ACID (atomic, consistent, isolated, durable) transactions [16]
as a building block many years ago. Not only did transactions
greatly simplify the design of data management systems, but they
also provided a clean framework within which to reason about the
error behavior of such systems. Our goal is for recursive restarta-
bility to offer the same class of benefits for systems where ACID
semantics are not required or are expensive to engineer, given the
system’s availability or performance goals. In particular, we ad-
dress systems in which weaker-than-ACID requirements can be
exploited for tradeoffs that improve availability or simplicity of
construction.

In this section we make some observations about the properties
of RR-friendly systems, and propose guidelines for how RR sub-
systems can be assembled into more complex RR systems. The
overarching theme is that of designing applications as loosely
coupled distributed systems, even if they are not distributed in
nature.

Accepting No for an answer. Software components should be
designed such that they can deny service for any request or call.
Then, if an underlying component can sayNo, applications must
be designed to takeNo for an answer and decide how to proceed:
give up, wait and retry, reduce fidelity, etc. Such components can
then gracefully tolerate the temporary unavailability of their peer,
as evidenced in the cluster-based distributed hash table described
by Gribble et al. [19]. Dealing withNo answers in the callers, as
opposed to trying to cope with them in the server, closely follows
the end-to-end argument [29]. Moreover, Lampson observes that
such error handling is absolutely necessary for a reliable system
anyway [23].

Subsystems should make their interface guarantees suffi-
ciently weak, so they can occasionally restart with no ad-
vance warning, yet not cause their callers to hang/crash.

Using reconstructable soft state with announce/listen pro-
tocols. Soft state and announce/listen have been extensively used
at the network level [37, 9] as well as the application level [12].
Announce/listen makes the default assumption that a component
is unavailable unless it says otherwise; soft state can provide
information that will carry a system through a transient failure
of the authoritative data source for that state. The use of an-
nounce/listen with soft state allows restarts and “cold starts” to
be treated as one and the same, using the same code path. More-
over, complex recovery code is no longer required, thus reducing
the potential for latent bugs and speeding up recovery.

Unfortunately, sometimes soft state systems cannot react
quickly enough to deliver service within their specified time
frame. Use of soft state implies tolerance of some state incon-
sistency, and sometimes the state may never stabilize. For exam-

112

ple, in a soft-state load balancer for a prototype scalable network
server [14], the instability manifested as alternating saturation
and idleness of workers. This was due to load balancing decisions
based on worker load data that was too old. Mitzenmacher [26]
derives a quantitative analytical model to capture the costs and
benefits of using such stale information, and his model’s predic-
tions coincide with behavior observed in practice. This type of
problem can be addressed by increasing refresh frequency, albeit
with additional bandwidth and processing overhead.

State shared among subsystems should be mostly soft.
The extent of soft state depends on (a) the application’s
convergence and response-latency requirements and (b)
the refresh frequency supported by the inter-component
communication substrate (which is a function not only of
“raw” bandwidth and latency but also of “goodput”).

Automatically trading precision or consistency for avail-
ability. Online aggregation [20], harvest/yield tradeoffs [13],
and distributed databases such as Bayou [33] are examples of dy-
namic or adaptive trading of some property, usually either consis-
tency or precision, for availability. Recently, TACT [36] showed
how such tradeoffs could be brought to bear on systems em-
ploying replication for high availability, by using a framework
in which consistency degradation is measured in application-
specific units. The ability to make such tradeoffs dynamically
and automatically during transient failures makes a system much
more amenable to RR.

Inter-component “glue” protocols should allow compo-
nents to make dynamic decisions on trading consis-
tency/precision for availability, based on both application-
specific consistency/precision measures, and a consis-
tency/precision utility function (e.g., “a perfectly consis-
tent answer is twice as good as one missing the last two
updates,” or “a 100% precise answer is twice as good as a
90% precise answer”).

Structuring applications around fine grain workloads. A
primary example of fine grain workload requirements comes
from HTTP: the Web’s architecture has challenged application
architects to design mechanisms for state maintenance and ses-
sion identification, some more elegant than others. The result is
that the Web as a whole exhibits the desirable property that in-
dividual server processes can be quiesced rapidly, since HTTP
connections are typically short-lived, and servers are extremely
loosely bound to their clients, given that the protocol itself is
stateless. This makes them highly restartable and leads directly
to the simple replication and failover techniques found in large
cluster-based Internet services.

“Glue” protocols should enforce fine grain interactions
between subsytems. They should provide hooks for com-
puting the cost of a subsystem’s restart based on the ex-
pected duration of its current task and its children’s tasks.

Using orthogonal composition axes. Independent subsys-
tems that do not require an understanding of each other’s func-
tionality are said to be mutually orthogonal. Compositions
of orthogonal subsystems exhibit high tolerance to component
restarts, allowing the system as a whole to continue function-
ing (perhaps with reduced utility) in spite of temporary failures.
There is a strong connection between good modular structure
and the ability to exploit orthogonal mechanisms; systems that
exploit them well seem to go even further: their control flows
are completely decoupled, influencing each other only indirectly
through explicit message passing. Examples of orthogonal mech-
anisms include deadlock resolution in databases [15], software-
based fault isolation [35], as well as heartbeats and watchdogs
used by process peers that monitor each others’ liveness [14, 7].

Split functionality along orthogonal axes. Each corre-
sponding subsystem should be centered around an inde-
pendent locus of control, and interact with other subsys-
tems via events posted using an asynchronous mechanism.

5 Research Agenda and Evaluation

After refining the above design guidelines, evaluation of a RR
research agenda will consist of answering at least three major
categories of questions:
� What classes of applications are amenable to RR? What
model would capture the behavior of these applications and
allow them to be compared directly?
� How do we quantify the improvements in availability and the
possible losses in performance, consistency or other function-
ality that may result from the application of RR?
� What software infrastructure and tools are necessary to exe-
cute the proposed automatic revival/rejuvenation policy?

5.1 Building RR Systems

Some existing applications, most notably Internet services, are
already incorporating a subset of these techniques (usually in an
ad hoc fashion) and are primary candidates for systematic RR.
Similarly, many geographically dispersed systems can benefit if
they tolerate weakened consistency, due to the potential lack of
reliability in their communication medium. We suspect the spec-
trum of applications that are amenable to RR is much wider, but
still needs to be explored.

Loosely coupled architectures often exhibit emergent proper-
ties that can lead to instability (e.g., noticed in Internet rout-

113

ing [11]) and investigating them is important for RR. There is
also a natural tension between the cost of restructuring a system
for RR and the cost (in downtime) of restarting it. Fine mod-
ule granularity improves the system’s ability to tolerate partial
restarts, but requires the implementation of a larger number of
internal, asynchronous interfaces. The paradigm shift required of
system developers could make RR too expensive in practice and,
when affordable, may lead to buggier software. In some cases
RR is simply not feasible, such as for systems with inherent tight
coupling (e.g., real-time closed-loop feedback control systems).

Finally, the key to wide adoption of recursive restartability are
tools that can aid the software architect in deciding when to use
a RR structure and how to apply the RR guidelines.

5.2 Quantifying Availability and the Effects
of Recursive Restartability

A major contribution of the transaction concept was the emer-
gence of a model, TP systems, that allowed different imple-
mentations of data management systems to be directly compared
(e.g., using TPC benchmarks [18]). We are seeking an analogous
model that characterizes applications possessing RR properties,
and that can serve in quantifying availability.

Availability benchmarking has been of interest only for the
past decade [32, 5]. It is considerably more difficult than per-
formance benchmarking, because a fault model is required in ad-
dition to a workload, and certain aspects, such as software aging,
cannot even be captured reliably. Performance benchmark re-
sults that ignore availability measurements, such as “our system
obtained 300,000 tpmC”, are dishonest — a fast system that is
hung or crashed is simply an infinitely slow system. The con-
verse holds for avalability benchmarks as well, so we seek a uni-
fied approach to the measurement of RR systems.

Given an application amenable to RR, a model, and a suit-
able benchmark, we must quantify the improvement in availabil-
ity and the decrease in functionality (reduced precision, weaker
consistency, etc.) when specific RR rules are applied. We expect
that work such as TACT [36] and Mitzenmacher’s models for
usefulness of stale information [26] will provide a starting point
for quantitative validation of RR.

We will identify application classes that, compared to their cur-
rent implementations, are more tolerant of our guidelines (e.g.,
trading precision for availability). We will restructure the appli-
cations incrementally, while maintaining their semantics largely
intact. Availability will be evaluated at different stages: (1) initial
application; (2) recursively restartable version of the application;
(3) RR version using our execution infrastructure (described be-
low), with revival restarts; (4) RR version using the execution
infrastructure with both revival and rejuvenation restarts.

5.3 RR Infrastructure Support

Recursively restartable systems rely on a generic execution in-
frastructure (EI) which is charged with instantiating the restarta-
bility tree mentioned in section 2, monitoring each individual
component and/or subsystem, and prompting restarts when nec-
essary. In existing restartable systems, the EI homologue is usu-
ally application-specific and built into the system itself.

The execution infrastructure relies on a combination of pe-
riodic application-specific probes and end-to-end checks (such
as verifying the response to a well-known query) to determine
whether a component is making progress or not. In most cases,
application-specific probes are implemented by the components
themselves via callbacks. When the EI detects an anomaly, it ad-
vises the faulty component that it should clean up any pending
state because it is about to be restarted by its immediate ancestor
in the restartability tree. An analogy would be UNIX daemons
that understand the “kill -TERM; sleep 5; kill -9”
idiom. If restarting does not eliminate the anomaly, a restart at a
higher level of the hierarchy is attempted, similar to the return up
a recursive call structure.

Note how the availability problem itself becomes recursive:
we now need a highly available infrastructure that cares for the
RR system. Medusa [6], our EI prototype, is functionally much
simpler than most applications, making it possible to design and
implement it with care. Medusa is built out of simple, highly
restartable segments that run on different hosts, use multicast
heartbeats to keep track of each other and their activity, and self-
reinstantiate to replace dead segments.

6 Conclusion

In this paper we took the view that transient failures will continue
plaguing the software infrastructures we depend on, and thus re-
boots are here to stay. We proposed turning the reboot from a
demonic concept into a reliable partner in the fight against sys-
tem downtime, given that it is a time-tested, effective technique
for circumventing Heisenbugs.

We defined recursively restartable (RR) systems as being those
systems that tolerate successive restarts at multiple levels. Such
systems possess a number of valuable properties that by them-
selves improve availability. For instance, a RR system’s fine
granularity permits partial restarts to be used as a form of
bounded healing, reducing the overall time-to-repair, and hence
increasing availability. On top of these desirable intrinsic proper-
ties, we can employ an automated, recursive policy of component
revival/rejuvenation to further reduce downtime.

Building RR systems in a systematic way requires a frame-
work consisting of well-understood design rules. A first attempt
at formulating such a framework was presented here, advocat-
ing the paradigm of building applications as distributed systems,
even if they are not distributed in nature. We set forth a research
agenda aimed at validating these proposals and verifying that re-

114

cursive restartability can be an effective supplement to existing
high availability mechanisms. With recursive restartability, we
hope to add a useful item to every system architect’s toolbox.

7 Acknowledgments

We thank Peter Chen, David Cheriton, Jim Gray, Steve Gribble,
Butler Lampson, David Lowell, Udi Manber, Dejan Milojicic,
Milyn Moy, and Stanford’s Mosquitonet and SWIG groups for
helpful and stimulating comments on the ideas presented here.

References

[1] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub, R. F.
R. A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. InProceedings of the USENIX Summer
Conference, pages 93–113, 1986.

[2] E. Adams. Optimizing preventative service of software products.
IBM J. Res. Dev., 28(1):2–14, 1984.

[3] E. Brewer. Personal communication. 2000.

[4] E. Brewer. Lessons from giant-scale services (draft). Submitted
for publication, 2001.

[5] A. Brown and D. A. Patterson. Towards availability benchmarks:
A case study of software RAID systems. InProceedings of the
USENIX Annual Technical Conference, San Diego, CA, June 2000.

[6] G. Candea. Medusa: A platform for highly available execution.
CS244C (Distributed Systems) course project, Stanford University,
http://stanford.edu/˜candea/papers/medusa,
June 2000.

[7] Y. Chawathe and E. A. Brewer. System support for scalable and
fault tolerant internet service. InIFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing
(Middleware ’98), Lake District, UK, Sep 1998.

[8] T. C. Chou. Beyond fault tolerance.IEEE Computer, 30(4):31–36,
1997.

[9] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei,
P. Sharma, and A. Helmy. Protocol independent multicast (PIM),
sparse mode protocol: Specification, March 1996. Internet Draft.

[10] A. DiGiorgio. The smart ship is not enough.Naval Institute Pro-
ceedings, 124(6), June 1998.

[11] S. Floyd and V. Jacobson. The synchronization of periodic routing
messages.IEEE/ACM Transactions on Networking, 2(2):122–136,
Apr. 1994.

[12] S. Floyd, V. Jacobson, C. Liu, and S. McCanne. A Reliable Multi-
cast Framework for Light-Weight Sessions and Application Level
Framing. InACM SIGCOMM ’95, pages 342–356, Boston, MA,
Aug 1995.

[13] A. Fox and E. A. Brewer. ACID confronts its discontents: Harvest,
yield, and scalable tolerant systems. InSeventh Workshop on Hot
Topics In Operating Systems (HotOS-VII), Rio Rico, AZ, March
1999.

[14] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-Based Scalable Network Services. InProceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP-
16), St.-Malo, France, October 1997.

[15] J. Gray. Notes on data base operating systems. In R. Bayer, R. M.
Graham, J. H. Saltzer, and G. Seegm¨uller, editors,Operating Sys-
tems, An Advanced Course, volume 60, pages 393–481. Springer,
1978.

[16] J. Gray. The transaction concept: Virtues and limitations. InPro-
ceedings of VLDB, Cannes, France, September 1981.

[17] J. Gray. Why do computers stop and what can be done about
it? In Proc. Symposium on Reliability in Distributed Software and
Database Systems, pages 3–12, 1986.

[18] J. Gray.The Benchmark Handbook for Database and Transaction
Processing Systems. Morgan Kaufman, 2 edition, 1993.

[19] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scal-
able, distributed data structures for internet service construction.
In Proc. Fourth Symposium on Operating Systems Design and Im-
plementation (OSDI 2000), San Diego, CA, October 2000.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggrega-
tion. In ACM–SIGMOD International Conference on Management
of Data, Tucson, AZ, May 1997.

[21] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. InInternational
Symposium on Fault-Tolerant Computing, pages 381–390, 1995.

[22] International Business Machines. IBM director software rejuvena-
tion. White paper, Jan. 2001.

[23] B. W. Lampson. Hints for computer systems design.ACM Oper-
ating Systems Review, 15(5):33–48, 1983.

[24] J. Liedtke. Toward real microkernels.Communications of the
ACM, 39(9):70–77, 1996.

[25] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increas-
ing relevance of memory hardware errors. a case for recoverable
programming models. InACM SIGOPS European Workshop ”Be-
yond the PC: New Challenges for the Operating System”, Kolding,
Denmark, Sept. 2000.

[26] M. Mitzenmacher. How useful is old information? InPrinciples
of Distributed Computing (PODC) 97, pages 83–91, 1997.

[27] B. Murphy and N. Davies. System reliability and availability
drivers of Tru64 UNIX. InProceedings of the 29th International
Symposium on Fault-Tolerant Computing, Madison, WI, February
1999. IEEE Computer Society. Tutorial.

[28] G. Reeves. What really happened on Mars? RISKS-19.49, Jan.
1998.

[29] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4):277–288,
Nov. 1984.

[30] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and implementation of the Sun network filesystem. In
Proceedings of the USENIX Summer Conference, pages 119–130,
Portland, OR, 1985.

[31] D. Scott. Making smart investments to reduce unplanned down-
time. Tactical Guidelines Research Note TG-07-4033, Gartner
Group, Stamford, CT, 1999.

[32] D. P. Siewiorek, J. J. Hudak, B.-H. Suh, and Z. Segall. Develop-
ment of a benchmark to measure system robustness. InProceed-
ings of the International Symposium on Fault-Tolerant Computing,
pages 88–97, 1993.

[33] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly consis-
tent replicated data. InProceedings of the International Confer-
ence on Parallel and Distributed Information Systems, pages 140–
149, Austin, TX, Sept. 1994.

[34] U.S. General Accounting Office. Patriot missile defense: Software
problem led to system failure at Dhahran, Saudi Arabia. Technical
Report GAO/IMTEC-92-26, 1992.

[35] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
Software-Based Fault Isolation. InProceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP-14), 1993.

[36] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. InProceedings of the
Fourth Symposium on Operating Systems Design and Implementa-
tion, Oct. 2000.

[37] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource Reservation Protocol.IEEE Network,
7(5), Sept. 1993.

115

Abstract
This position paper argues that the operating system and
applications currently running on a real machine should
relocate into a virtual machine. This structure enables ser-
vices to be added below the operating system and to do so
without trusting or modifying the operating system or
applications. To demonstrate the usefulness of this struc-
ture, we describe three services that take advantage of it:
secure logging, intrusion prevention and detection, and
environment migration.

1. Introduction

First proposed and used in the 1960s, virtual machines
are experiencing a revival in the commercial and research
communities. Recent commercial products such as
VMware and VirtualPC faithfully emulate complete x86-
based computers. These products are widely used (e.g.
VMware has more than 500,000 registered users) for pur-
poses such as running Windows applications on Linux and
testing software compatibility on different operating sys-
tems. At least two recent research projects also use virtual
machines: Disco uses virtual machines to run multiple
commodity operating systems on large-scale multiproces-
sors [4]; Hypervisor uses virtual machines to replicate the
execution of one computer onto a backup [3].

Our position is that the operating system and applica-
tions that currently run directly on real machines should
relocate into a virtual machine running on a real machine
(Figure 1). The only programs that run directly on the real
machine would be the host operating system, the virtual
machine monitor, programs that provide local administra-
tion, and additional services enabled by this virtual-
machine-centric structure. Most network services would
run in the virtual machine; the real machine would merely
forward network packets for the virtual machine.

This virtual-machine-centric model allows us to pro-
vide servicesbelow most code running on the computer,
similar to providing services in the hardware of a real

machine. Because these services are implemented in a
layer of software (the virtual machine monitor or the host
operating system), they can be provided more easily and
flexibly than they could if they were implemented by mod-
ifying the hardware. In particular, we can provide services
below the guest operating system without trusting or mod-
ifying it. We believe providing services at this layer is
especially useful for enhancing security and mobility.

This position paper describes the general benefits and
challenges that arise from running most applications in a
virtual machine, then describes some example services
and alternative ways to provide those services.

2. Benefits

Providing services by modifying a virtual machine has
similar benefits to providing services by modifying a real
machine. These services run separately from all processes
in the virtual machine, including the guest operating sys-
tem. This separation benefits security and portability.
Security is enhanced because the services do not have to
trust the guest operating system; they have only to trust the
virtual machine monitor, which is considerably smaller
and simpler. Trusting the virtual machine monitor is akin
to trusting a real processor; both expose a narrow interface
(the instruction set architecture). In contrast, services in an
operating system are more vulnerable to malicious and
random faults, because operating systems are larger and
more prone to security and reliability holes. Separating the
services from the guest operating system also enhances
portability. We can implement the services without need-
ing to change the operating system, so they can work
across multiple operating system vendors and versions.

While providing services in a virtual machine gains
similar benefits to providing services in a real machine,
virtual machines have some advantages over the physical
machines they emulate. First, a virtual machine can be
modified more easily than a physical machine, because the
virtual machine monitor that creates the virtual machine

When Virtual Is Better Than Real

Peter M. Chen and Brian D. Noble
Department of Electrical Engineering and Computer Science

University of Michigan
pmchen@umich.edu, bnoble@umich.edu

116

abstraction is a layer of software. Second, it is much easier
to manipulate the state of a virtual machine than the state
of a physical machine. The state of the virtual machine can
be saved, cloned, encrypted, moved, or restored, none of
which is easy to do with physical machines. Third, a vir-
tual machine has a very fast connection to another comput-
ing system, that is, the host machine on which the virtual
machine monitor is running. In contrast, physical
machines are separated by physical networks, which are
slower than the memory bus that connects a virtual
machine with its host.

3. Challenges

Providing services at the virtual-machine level holds
two challenges. The first is performance. Running all
applications above the virtual machine hurts performance
due to virtualization overhead. For example, system calls
in a virtual machine must be trapped by the virtual
machine monitor and re-directed to the guest operating
system. Hardware operations issued by the guest must be
trapped by the virtual machine monitor, translated, and re-
issued. Some overhead is unavoidable in a virtual
machine; the services enabled by that machine must out-
weigh this performance cost. Virtualizing an x86-based
machine incurs additional overheads because x86 proces-
sors don’t trap on some instructions that must be virtual-
ized (e.g. reads of certain system registers). One way to
implement a virtual machine in the presence of these
“non-virtualizable” instructions is to re-write the binaries
at run time to force these instructions to trap [13], but this
incurs significant overhead.

The second challenge of virtual-machine services is the
semantic gap between the virtual machine and the service.
Services in the virtual machine operate below the abstrac-
tions provided by the guest operating system and applica-
tions. This can make it difficult to provide services. For
example, it is difficult to provide a service that checks file

system integrity without knowledge of on-disk structures.
Some services do not need any operating system abstrac-
tions; secure logging (Section 4.1) is an example of such a
service. For services that require higher-level information,
one must re-create this information in some form. Full
semantic information requires re-implementing guest OS
abstractions in or below the virtual machine. However,
there are several abstractions—virtual address spaces,
threads of control, network protocols, and file system for-
mats—that are shared across many operating systems. By
observing manipulations of virtualized hardware, one can
reconstruct thesegeneric abstractions, enabling services
that require semantic information.

4. Example services

In this section, we describe three services that can be
provided at the virtual-machine level. Others have used
virtual machines for many other purposes, such as prevent-
ing one server from monopolizing machine resources,
education, easing the development of privileged software,
and software development for different operating systems
[10].

4.1. Secure logging

Most operating systems log interesting events as part of
their security strategy. For example, a system might keep a
record of login attempts and received/sent mail. System
administrators use the logged information for a variety of
purposes. For example, the log may help administrators
understand how a network intruder gained access to the
system, or it may help administrators know what damage
the intruder inflicted after he gained access. Unfortunately,
the logging used in current systems has two important
shortcomings: integrity and completeness. First, an
attacker can easily turn off logging after he takes over the
system; thus the contents of the log cannot be trusted after

Figure 1: Virtual-machine structure. In this model, most applications that currently run on real machines re-
locate into a virtual machine running on the host machine. The virtual machine monitor and local administrative
programs run directly on the host machine. In VMware, the virtual machine monitor issues I/O through the host
operating system, so services that manipulate I/O events can be implemented in the host operating system [2].

host machine

host operating system + proposed servicesvirtual machine monitor + proposed services

guest operating system

guest
application

guest
application local

administrative
tool

guest
application

117

the point of compromise. Second, it is difficult to antici-
pate what information may be needed during the post-
attack analysis; thus the log may lack information needed
to discern how the intruder gained access or what actions
he took after gaining access.

Virtual machines provide an opportunity to correct both
shortcomings of current logging. To improve the integrity
of logging, we can move the logging software out of the
operating system and into the virtual machine monitor.
The virtual machine monitor is much smaller and simpler
than the guest operating system and hence is less vulnera-
ble to attack. By moving the logging software into the vir-
tual machine monitor, we move it out of the domain that
an intruder can control. Even if the intruder gains root
access or completely replaces the guest operating system,
he cannot affect the logging software or the logged data.
Logged data can be written quickly to the host file system,
taking advantage of the fast connection between the virtual
machine monitor and the host computer.

To improve the completeness of logging, we propose
logging enough data to replay the complete execution of
the virtual machine [3]. The information needed to accom-
plish a faithful replay is limited to a checkpoint with
which to initialize the replaying virtual machine, plus the
non-deterministic events that affected the original execu-
tion of the virtual machine since the time of the saved
checkpoint. These non-deterministic events fall into two
categories: external input and time. External input refers to
data sent by a non-logged entity, such as a human user or
an external computer (e.g. a web server). Time refers to
the exact point in the execution stream at which an event
takes place. For example, to replay the interleaving pattern
between threads, we must log which instruction is pre-
empted by a timer interrupt [17] (we assume the virtual
machine monitor is not running on a multi-processor).
Note that most instructions executed by the virtual
machine do not need to be logged; only the relatively
infrequent non-deterministic events need to be logged.

Using the virtual machine monitor to perform secure
logging raises a number of research questions. The first
question regards the volume of log data needed to support
replay. We believe that the volume of data that needs to be
logged will not be prohibitive. Local non-deterministic
events, such as thread scheduling events and user inputs,
are all small. Data from disk reads can be large, but these
are deterministic (though the time of the disk interrupts are
non-deterministic). The largest producer of log data is
likely to be incoming network packets. We can reduce the
volume of logged network data greatly by using message-
logging techniques developed in the fault-tolerance com-
munity. For example, there is no need to log message data
received from computers that are themselves being logged,
because these computers can be replayed to reproduce the

sent message data [11]. If all computers on the same local
network cooperate during logging and replay, then only
messages received from external sites need to be logged.
For an important class of servers (e.g. web servers), the
volume of data received in messages is relatively small
(HTTP GET and POST requests). Last, as disk prices con-
tinue to plummet, more computers (especially servers
worthy of being logged) will be able to devote many
gigabytes to store log data [20].

A second research direction is designing tools to ana-
lyze the behavior of a virtual machine during replay. Writ-
ing useful analysis tools in this domain is challenging
because of the semantic gap between virtual machine
events and the corresponding operating system actions.
The analysis tool may have to duplicate some operating
system functionality to distill the log into useful informa-
tion. For example, the analysis tool may need to under-
stand the on-disk file system format to translate the disk
transfers seen by the virtual machine monitor into file-sys-
tem transfers issued by the operating system. Translating
virtual machine events into operating system events
becomes especially challenging (and perhaps impossible)
if the intruder modifies the operating system. One family
of analysis tools we hope to develop trace the flow of
information in the system, so that administrators can ask
questions like “What network connections caused the
password file to change?”.

4.2. Intrusion prevention and detection

Another important component to a security strategy is
detecting and thwarting intruders. Ideally, these systems
prevent intrusions by identifying intruders as they attack
the system [9]. These systems also try todetect intrusions
after the fact by monitoring the events and state of the
computer for signs that a computer has been compromised
[8, 12]. Virtual machines offer the potential for improving
both intrusion prevention and intrusion detection.

Intrusion preventers work by monitoring events that
enter or occur on the system, such as incoming network
packets. Signature-based preventers match these input
events against a database of known attacks; anomaly-
based preventers look for input events that differ from the
norm. Both these types of intrusion preventers have flaws,
however. Signature-based systems can only thwart attacks
that have occurred in the past, been analyzed, and been
integrated into the attack database. Anomaly-based sys-
tems can raise too many false alarms and may be suscepti-
ble to re-training attacks.

A more trustworthy method of recognizing an attack is
to simply run the input event on the real system and seeing
how the system responds. Of course, running suspicious
events on the real system risks compromising the system.

118

However, we can safely conduct this type of test on aclone
of the real system. Virtual machines make it easy to clone
a running system, and an intrusion preventer can use this
clone to test how a suspicious input event would affect the
real system. The clone can be run as a hot standby by
keeping it synchronized with the real system (using pri-
mary-backup techniques), or it can be created on the fly in
response to suspicious events. In either case, clones admit
more powerful intrusion preventers by looking at the
response of the system to the input event rather than look-
ing only at the input event. Because clones are isolated
from the real system, they also allow an intrusion preven-
ter to run potentially destructive tests to verify the sys-
tem’s health. For example, an intrusion preventer could
forward a suspicious packet to a clone and see if it crashes
any running processes. Or it could process suspicious
input on the clone, then see if the clone still responds to
shutdown commands.

A potential obstacle to using clone-based intrusion pre-
vention is the effect of clone creation or maintenance on
the processing of innocent events. To avoid blocking the
processing of innocent events, an intrusion preventer
would ideally run the clone in the background. Allowing
innocent events to go forward while evaluating suspicious
events implies that these events have loose ordering con-
straints. For example, a clone-based preventer could be
used to test e-mail messages for viruses, because ordering
constraints between e-mail messages are very loose.

Intrusion detectors try to detect the actions of intruders
after they have compromised a system. Signs of an
intruder might include bursts of outgoing network packets
(perhaps indicating a compromised computer launching a
denial-of-service attack), modified system files [12], or
abnormal system-call patterns from utility programs [8].
As with system logging, these intrusion detectors fall short
in integrity or completeness. Host-based intrusion detec-
tors (such as those that monitor system calls) may be
turned off by intruders after they compromise the system,
so they are primarily useful only for detecting the act of an
intruder breaking into a system. If an intruder evades
detection at the time of entry, he can often disarm a host-
based intrusion detector to avoid detection in the future.
Network-based intrusion detectors can provide better
integrity by being separate from the host operating system
(e.g. in a standalone network router), but they suffer from
a lack of completeness. Network intrusion detectors can
see only network packets; they cannot see the myriad other
events occurring in a computer system, such as disk traffic,
keyboard events, memory usage, and CPU usage.

Implementing post-intrusion detection at the level of a
virtual machine offers the potential for providing both
integrity and completeness. Like a network-based intru-
sion detector, virtual-machine-based intrusion detectors

are separate from the guest operating system and applica-
tions. Unlike network intrusion detectors, however, vir-
tual-machine intrusion detectors can see all events
occurring in the virtual machine they monitor. Virtual-
machine intrusion detectors can use this additional infor-
mation to implement new detection policies. For example,
it could detect if the virtual machine reads certain disk
blocks (e.g. containing passwords), then issues a burst of
CPU activity (e.g. cracking the passwords). Or it could
detect if the virtual machine has intense CPU activity with
no corresponding keyboard activity.

As with secure logging, a key challenge in post-intru-
sion detection in a virtual machine is how to bridge the
semantic gap between virtual machine events and operat-
ing system events. This challenge is similar to that encoun-
tered by network-based intrusion detectors, which must
parse the contents of IP packets.

4.3. Environment migration

Process migration has been a topic of interest from the
early days of distributed computing. Migration allows one
to package a running computation—either a process or
collection of processes—and move it to a different physi-
cal machine. Using migration, a user’s computations can
move as he does, taking advantage of hardware that is
more convenient to the user’s current location.

The earliest systems, including Butler [15], Condor
[14], and Sprite [6], focused on load sharing across
machines rather than supporting mobile users. These load-
sharing systems typically left residual dependencies on the
source machine for transparency, and considered an indi-
vidual process as the unit of migration. This view differs
from that of mobile users, who consider the unit of migra-
tion to be the collection of all applications running on their
current machine.

Recently, migration systems have begun to address the
needs of mobile users. Examples of systems supporting
mobility include the Teleporting system [16] and SLIM
[18]. These systems migrate the user interface of a
machine, leaving the entire set of applications to run on
their host machine. In the limit, the display device can be a
stateless, thin client. This approach provides a better
match to the expectations of a migrating user, and need not
deal with residual dependencies. However, these systems
are intolerant of even moderate latency between the inter-
face device and the cycle server, and thus support only a
limited form of user mobility.

Migration based on virtual machines solves these prob-
lems. Since the entire (virtual) machine moves, there are
no residual dependencies. A user’s environment is moved
en masse, which matches a user’s expectations. By taking
advantage of the narrow interface provided by the virtual

119

machine, very simple migration code can relocate a guest
operating system and its applications.

There are several challenges that must be overcome to
provide migration at the virtual-machine level. The first is
that a machine has substantial state that must move with it.
It would be infeasible to move this state synchronously on
migration. Fortunately, most of this state is not needed
immediately, and much may never be needed at all. We
can predict which state is needed soon by taking advantage
of temporal locality in disk and memory accesses. This
prediction is complicated by the guest operating system’s
virtual memory abstraction, because the physical
addresses seen by a virtual machine monitor are related
only indirectly to accesses issued by applications. We can
reconstruct information about virtual to physical mappings
by observing manipulation of virtualized hardware ele-
ments such as the TLB.

After identifying the state likely to be needed soon, we
need a mechanism to support migration of that state to the
new virtual machine. If migration times are exposed, one
can take advantage of efficient, wide-area consistency con-
trol schemes, such as that provided by Fluid Replication
[5]. Fluid Replication provides safety, visibility, and per-
formance across the wide area identical to that offered by
local-area file systems such as NFS. It depends on typical
file system access patterns, in particular a low incidence of
concurrent data sharing. Machine migration, with coarse-
grained, sequential sharing, fits this pattern well, allowing
for migration without undue performance penalty.

To provide the most benefit, we must also support
migration between physical machines that are not entirely
identical. This is difficult because most virtual machine
monitors improve performance by accessing some hard-
ware components directly (e.g. the video frame buffer).
This direct access complicates matters for the guest oper-
ating system when migrating between machines with dif-
ferent components. There are two approaches to solving
this kind of problem. The first is to further virtualize the
component, at a performance cost. The second is to mod-
ify the guest operating system to adapt to the new compo-
nent on the fly. The right alternative depends on the
resource in question, the performance penalty of virtual-
ization, and the complexity of dynamic adaptation.

Migration is only one of several services that leverage
the easy packaging, storage, and shipment of virtual
machines. Clone-based intrusion detection is one example.
One can also extend services that apply to individual
resources across an entire virtual machine. For example,
cryptographic file systems protect only file data; once an
application reads sensitive data, it cannot be made secure.
However, suspending a virtual machine to disk when its

user is away provides process-level protection using only
the virtual machine services plus file system mechanisms.

5. Alternative structures

Each of the above services can be implemented in other
ways. One alternative is to include these services in the
operating system. This structure makes it easier for the
service to access information in terms of operating system
abstractions. For example, an intrusion detector at the
operating system level may be able to detect when one
user modifies files owned by another user. A virtual
machine service, in contrast, operates below the notions of
users and files and would have to reconstruct these
abstractions. In addition, including these services in the
operating system reduces the number of layers and re-
directions, which will likely improve performance relative
to a virtual machine.

However, including services in the operating system
has some disadvantages. First, such services are limited to
a single operating system (and perhaps a single operating
system version), whereas virtual-machine services can
support multiple operating systems. For example, a secure
logging service in a virtual machine can replay any operat-
ing system. Second, for security services such as secure
logging and intrusion detection, including the service in
the operating system depends critically on the integrity of
the operating system. Because operating systems are typi-
cally large, complex, and monolithic, they usually contain
security and reliability vulnerabilities. For example, the
Linux 2.2.16 kernel contained at least 7 security holes [1].
In particular, secure logging is challenging to provide in
the operating system, because an intruder may try to crash
the system to prevent the log tail from being written to sta-
ble storage.

Some of the disadvantages of including services in the
operating system can be mitigated by re-structuring the
operating system into multiple protection domains [19]
and placing security-related services in the most-privi-
leged ring. This approach is similar to kernels that include
only the minimum set of services [7]. However, this
approach requires re-writing the entire operating system,
and frequent crossings between multiple protection
domains degrade performance.

A different approach is to add services to a language-
specific virtual machine such as Java. Language-specific
virtual machines potentially have more information than
the operating system, which may be helpful for some ser-
vices. However, these services would be available only for
applications written in the target language. For the system-
wide services described above, the entire system would
have be written in the target language.

120

6. Conclusions

Running an operating system and most applications
inside a virtual machine enables a system designer to add
services below the guest operating system. This structure
enables services to be provided without trusting or modi-
fying the guest operating system or the applications. We
have described three services that take advantage of this
structure: secure logging, intrusion prevention and detec-
tion, and environment migration.

Adding services via a virtual machine is analogous to
adding network services via a firewall. Both virtual
machines and firewalls intercept actions at a universal,
low-level interface, and both must overcome performance
and semantic-gap problems. Just as network firewalls have
proven useful for adding network services, we believe vir-
tual machines will prove useful for adding services for the
entire computer.

7. References

[1] Linux Kernel Version 2.2.16 Security Fixes, 2000.
http://www.linuxsecurity.com/adviso-
ries/slackware_advisory-481.html.

[2] VMware Virtual Machine Technology. Technical report,
VMware, Inc., September 2000.

[3] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-
Based Fault-Tolerance. InProceedings of the 1995 Sympo-
sium on Operating Systems Principles, pages 1–11, Decem-
ber 1995.

[4] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel
Rosenblum. Disco: Running Commodity Operating Systems
on Scalable Multiprocessors.ACM Transactions on Comput-
er Systems, 15(4):412–447, November 1997.

[5] Landon P. Cox and Brian D. Noble. Fluid Replication. In
Proceedings of the 2001 International Conference on Distrib-
uted Computing Systems, April 2001.

[6] Fred Douglis and John Ousterhout. Transparent Process Mi-
gration: Design Alternatives and the Sprite Implementation.
Software Practice and Experience, 21(7), July 1991.

[7] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole
Jr. Exokernel: an operating system architecture for applica-
tion-level resource management. InProceedings of the 1995
Symposium on Operating Systems Principles, pages 251–266,
December 1995.

[8] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff. A sense of self for Unix processes. In
Proceedings of 1996 IEEE Symposium on Computer Security
and Privacy, 1996.

[9] Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A Secure Environment for Untrusted Helper Appli-
cations. InProceedings of the 1996 USENIX Technical Con-
ference, July 1996.

[10] Robert P. Goldberg. Survey of Virtual Machine Research.
IEEE Computer, pages 34–45, June 1974.

[11] David B. Johnson and Willy Zwaenepoel. Sender-Based
Message Logging. InProceedings of the 1987 International
Symposium on Fault-Tolerant Computing, pages 14–19, July
1987.

[12] Gene H. Kim and Eugene H. Spafford. The design and im-
plementation of Tripwire: a file system integrity checker. In
Proceedings of 1994 ACM Conference on Computer and
Communications Security, November 1994.

[13] Kevin Lawton. Running multiple operating systems concur-
rently on an IA32 PC using virtualization techniques, 1999.
http://plex86.org/research/paper.txt.

[14] M. J. Litzkow. Remote UNIX: turning idle workstations into
cycle servers. InProceedings of the Summer 1987 USENIX
Technical Conference, pages 381–384, June 1987.

[15] D. A. Nichols. Using idle workstations in a shared comput-
ing environment. InProceedings of the 1987 Symposium on
Operating System Principles, pages 5–12, November 1987.

[16] T. Richardson, F. Bennet, G. Mapp, and A. Hopper. Tele-
porting in an X window system environment.IEEE Personal
Communications, 1(3):6–12, 1994.

[17] Mark Russinovich and Bryce Cogswell. Replay for concur-
rent non-deterministic shared-memory applications. InPro-
ceedings of the 1996 Conference on Programming Language
Design and Implementation (PLDI), pages 258–266, May
1996.

[18] Brian K. Schmidt, Monica S. Lam, and J. Duane Northcutt.
The interactive performance of SLIM: a stateless, thin-client
architecture. InProceedings of the 1999 Symposium on Oper-
ating Systems Principles, pages 32–47, December 1999.

[19] Michael D. Schroeder and Jerome H. Saltzer. A hardware ar-
chitecture for implementing protection rings.Communica-
tions of the ACM, 15(3):157–170, March 1972.

[20] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,
Craig A.N. Soules, and Gregory R. Ganger. Self-securing
storage: Protecting data in compromised systems. InProceed-
ings of the 2000 Symposium on Operating Systems Design
and Implementation (OSDI), October 2000.

121

Virtualization Considered Harmful:
OS Design Directions for Well-Conditioned Services

Matt Welsh and David Culler

Computer Science Division
University of California, Berkeley

{mdw,culler}@cs.berkeley.edu

Abstract
We argue that existing OS designs are ill-suited for the

needs of Internet service applications. These applications
demand massive concurrency (supporting a large number
of requests per second) and must be well-conditioned to
load (avoiding degradation of performance and predictabil-
ity when demand exceeds capacity). The transparency and
virtualization provided by existing operating systems leads
to limited concurrency and lack of control over resource us-
age. We claim that Internet services would be far better
supported by operating systems by reconsidering the role of
resource virtualization. We propose a new design for server
applications, the staged event-driven architecture(SEDA).
In SEDA, applications are constructed as a set of event-
driven stagesseparated by queues. We present the SEDA
architecture and its consequences for operating system de-
sign.

1. Introduction

The design of existing operating systems is primarily de-
rived from a heritage of multiprogramming: allowing mul-
tiple applications, each with distinct resource demands, to
safely and efficiently share a single set of resources. As
such, existing OSs strive to virtualize hardware resources,
and do so in a way which is transparent to applications. Ap-
plications are rarely, if ever, given the opportunity to par-
ticipate in system-wide resource management decisions, or
given indication of resource availability in order to adapt
their behavior to changing conditions. Virtualization funda-
mentally hides the fact that resources are limited and shared.

Internet services are a relatively new application domain
which presents unique challenges for OS design. In contrast
to the batch-processing and interactive workloads for which
existing operating systems have been designed, Internet ser-
vices support a large number of concurrent operations and
exhibit enormous variations in load. The number of concur-
rent sessions and hits per day to Internet sites translates into
an even higher number of I/O and network requests, placing
great demands on underlying resources. Microsoft’s web
sites receive over 300 million hits with 4.1 million users a

day; Yahoo has over 900 million page views daily. The peak
load experienced by a service may be many times that of the
average, and services must deal gracefully with unexpected
increases in demand.

A number of systems have attempted to remedy the prob-
lems with OS virtualization by exposing more control to
applications. Scheduler activations [1], application-specific
handlers [29], and operating systems such as SPIN [3], Ex-
okernel [12], and Nemesis [17] are attempts to augment lim-
ited operating system interfaces by giving applications the
ability to specialize the policy decisions made by the ker-
nel. However, the design of these systems is still based on
the multiprogramming mindset, as the focus continues to be
on safe and efficient resource virtualization.

We argue that the design of most existing operating sys-
tems fails to address the needs of Internet services. Our
key premise is that supporting concurrency for a few tens of
users is fundamentally different than for many thousands of
service requests. This paper proposes a new architecture for
services, which we call thestaged event-driven architecture
(SEDA). SEDA departs from the traditional multiprogram-
ming approach provided by existing OSs, decomposing ap-
plications into a set ofstages connected by explicitevent
queues. This design avoids the high overhead associated
with thread-based concurrency, and allows applications to
be well-conditioned to load by making informed decisions
based on the inspection of pending requests. To mitigate
the effects of resource virtualization, SEDA employs a set
of dynamic controllers which manage the resource alloca-
tion and scheduling of applications.

In this paper, we discuss the shortcomings of existing OS
designs for Internet services, and present the SEDA archi-
tecture, arguing that it is the right way to construct these
applications. In addition, we present a set of OS design
directions for Internet services. We argue that server op-
erating systems should eliminate the abstraction of trans-
parent resource virtualization, a shift which enables support
for high concurrency, fine-grained scheduling, scalable I/O,
and application-controlled resource management.

122

2. Why Internet Services and Existing OS
Designs Don’t Match

This section highlights four main reasons that existing
OS designs fail to mesh well with the needs of Internet
services: inefficient concurrency mechanisms, lack of scal-
able I/O interfaces, transparent resource management, and
coarse-grained control over scheduling.

2.1. Existing OS Design Issues

Concurrency limitations: Internet services must effi-
ciently multiplex many computational and I/O flows over
a limited set of resources. Given the extreme degree of
concurrency required, services are often willing to sac-
rifice transparent virtualization in order to obtain higher
performance. However, contemporary operating systems
typically support concurrency using the process or thread
model: each process/thread embodies a virtual machine
with its own CPU, memory, disk, and network, and the
O/S multiplexes these virtual machines over hardware. Pro-
viding this abstraction entails a high overhead in terms of
context switch time and memory footprint, thereby limit-
ing concurrency. A number of studies have shown the scal-
ability limitations of thread-based concurrency models [6,
11, 21, 32], even in the context of so-called “lightweight”
threads.

I/O Scalability limitations: The I/O interfaces exported
by existing OSs are generally designed to provide max-
imum transparency to applications, often at the cost of
scalability and predictability. Most I/O interfaces employ
blocking semantics, in which the calling thread is sus-
pended during a pending I/O operation. Obtaining high
concurrency requires a large number of threads, result-
ing in high overhead. Traditional I/O interfaces also tend
to degrade in performance as the number of simultaneous
I/O flows increases [2, 23]. In addition, data copies on
the I/O path (themselves an artifact of virtualization) have
long been known to be a performance limitation in network
stacks [24, 27, 28].

Transparent resource management: Internet services
must be in control of resource usage in order to make in-
formed decisions affecting performance. Virtualization im-
plies that the OS will attempt to satisfy any application re-
quest regardless of cost (e.g., a request to allocate a page of
virtual memory which requires other pages to be swapped
out to disk). However, services do not have the luxury of
paying an arbitrary penalty for processing such requests un-
der heavy resource contention. Most operating systems hide
the performance aspects of their interfaces; for instance,
the existence of (or control over) the underlying file system
buffer cache is typically not exposed to applications. Stone-
braker [26] cites this aspect of OS design as a problem for
database implementations as well.

Coarse-grained scheduling: The thread-based concur-
rency model yields a coarse degree of control over resource

management and scheduling decisions. While it is possible
to control the prioritization or runnable status of an indi-
vidual thread, this is often too blunt of a tool to implement
effective load conditioning policies. Instead, it is desirable
to control the flow of requests through a particular resource.

As an example consider the page cache for a Web server.
To maximize throughput and minimize latency, the server
might prioritize requests for cache hits over cache misses;
this is a decision which is being made at the level of the
cache by inspecting the stream of pending requests. Such
a policy would be difficult (although not impossible) to im-
plement by changing the scheduling parameters for a pool
of threads each representing a different request in the server
pipeline. The problem is that this model only provides con-
trol over scheduling of individual threads, rather than over
the ordering of requests for a particular resource.

2.2. Traditional Event-Driven Programming

The limitations of existing OS designs have led many de-
velopers to favor an event-driven programming approach, in
which each concurrent request in the system is modeled as
a finite state machine. A single thread (or small number
of threads) is responsible for scheduling each state machine
based on events originating from the OS or within the ap-
plication itself, such as I/O readiness and completion notifi-
cations.

Event-driven systems are generally built from scratch
for particular applications, and depend on mechanisms not
well-supported by most operating systems. Because the
underlying OS is structured to provide thread-based con-
currency using blocking I/O, event-driven applications are
at a disadvantage to obtain the desired behavior over this
imperfect interface. Consequently, obtaining high perfor-
mance requires that the application designer carefully man-
age event and thread scheduling, memory allocation, and
I/O streams [4, 9, 10, 21]. This “monolithic” event-driven
design is also difficult to modularize, as the code imple-
menting each state is directly linked with others in the flow
of execution.

Nonblocking I/O is provided by most OSs, but these
interfaces typically do not scale well as the number of
I/O flows grows very large [2, 14, 18]. Much prior work
has investigated scalable I/O primitives for servers [2, 5,
13, 16, 22, 23, 25], but these solutions are often an af-
terthought lashed onto a process-based model, and do not
always perform well. To demonstrate this fact, we have
measured the performance of the nonblocking socket inter-
face in Linux using the/dev/poll [23] event-delivery
mechanism, which is known to scale better than the stan-
dard UNIX select() andpoll() interfaces [14]. As Figure 1
shows, the performance of the nonblocking socket layer de-
grades when a large number of connections are established;
despite the use of an efficient event-delivery mechanism,
the underlying network stack does not scale as the number
of connections grows large.

123

0

20

40

60

80

100

120

140

160

180

200

1 4 16 64 256 1024 4096 16384

B
an

dw
id

th
, M

bi
t/s

ec

Number of connections

(Can’t run beyond 400 connections)

Using nonblocking sockets and /dev/poll
Using blocking sockets and threads

Figure 1: Linux socket layer performance: This graph shows
the aggregate bandwidth through a server making use of either
asynchronous or blocking socket interfaces. Each client opens a
connection to the server and issues bursts of 1000 8 KB packets;
the server responds with a single 32-byte ACK for each burst. All
machines are 4-way Pentium III systems running Linux 2.2.14 in-
terconnected by Gigabit Ethernet. Two implementations of the
server are shown: one makes use of nonblocking sockets along
with the /dev/poll mechanism for event delivery, and the other
emulates asynchronous behavior over blocking sockets by using
threads. The latter implementation allocates one thread per socket
for reading packets, and uses a fixed-size thread pool of 120
threads for writing packets. The threaded implementation could
not support more than 400 simultaneous connections due to thread
limitations under Linux, while the nonblocking implementation de-
grades somewhat due to lack of scalability in the network stack.

3. The Staged Event-Driven Architecture

In this section we propose a structured approach to event-
driven programming that addresses some of the challenges
of implementing Internet services over commodity operat-
ing systems. This approach, thestaged event-driven archi-
tecture (SEDA) [30], is designed to manage the high con-
currency and load conditioning demands of these applica-
tions.

3.1. SEDA Design

As discussed in the previous section, the use of event-
driven programming can be used to overcome some (but
not all) of the shortcomings of conventional OS inter-
faces. SEDA refines the monolithic event-driven approach
by structuring applications in a way which enables load con-
ditioning, increases code modularity, and facilitates debug-
ging.

SEDA makes use of a set of design patterns, first de-
scribed in [32], which break the control flow of an event-
driven system into a series ofstages separated byqueues.
Each task in the system is processed by a sequence of stages
each representing some set of states in the traditional event-
driven design. SEDA relies upon asynchronous I/O prim-

Event Handler

Thread Pool

Outgoing
Events

Event Queue

Controller

Figure 2:A SEDA Stage: A stage consists of an incoming event
queue, a thread pool, and an application-supplied event handler.
The stage’s operation is managed by the controller, which adjusts
resource allocations and scheduling.

itives that expose I/O completion and readiness events di-
rectly to applications by placing those events onto the queue
for the appropriate stage.

A stage is a self-contained application component con-
sisting of anevent handler, an incoming event queue, and
a thread pool, as shown in Figure 2. Each stage is man-
aged by acontroller which affects scheduling and resource
allocation. Threads operate by pulling events off of the
stage’s incoming event queue and invoking the application-
supplied event handler. The event handler processes each
task, and dispatches zero or more tasks by enqueuing them
on the event queues of other stages. Figure 3 depicts a sim-
ple HTTP server implementation using the SEDA design.

Event handlers do not have direct control over queue op-
erations and threads. By separating core application logic
from thread management and scheduling, the stage’s con-
troller is able to manage the execution of the event handler
to implement various resource-management policies. For
example, the number of threads in the stage’s thread pool is
adjusted dynamically by the controller, based on an obser-
vation of the event queue and thread behavior. Details are
beyond the scope of this paper; more information is pro-
vided in [30].

3.2. SEDA Benefits

The SEDA design yields a number of benefits which di-
rectly address the needs of Internet services:

High concurrency: As with the traditional event-driven
design, SEDA makes use of a small number of threads to
process stages, avoiding the performance overhead of us-
ing a large number of threads for managing concurrency.
The use of asynchronous I/O facilitates high concurrency by
eliminating the need for multiple threads to overlap pending
I/O requests.

In SEDA, the number of threads can be chosen at a
per-stage level, rather than for the application as a whole;
this approach avoids wasting threads on stages which do
not need them. For example, UNIX filesystems can usu-
ally handle a fixed number (between 40 and 50) concurrent
read/write requests before becoming saturated [6]. In this
case there is no benefit to devoting more than this number

124

accept
connection

connection

parse
packet

read
packet

packet HTTP request receive
packet

HTTP request

static response

check
cache

send
response

cache hit

cache miss handle
miss

file request file
I/O

packet write
socket

file data

Figure 3:Staged event-driven (SEDA) HTTP server: The application is decomposed into a set of stagesseparated by queues. Edges
represent the flow of events between stages. Each stage can be independently managed, and stages can be run in sequence or in parallel,
or a combination of the two. The use of event queues allows each stage to be individually load-conditioned, for example, by thresholding
its event queue.

of threads to a stage which performs filesystem access. To
shield the application programmer from the complexity of
managing thread pools, the stage’s controller is responsi-
ble for determining the number of threads executing within
each stage.

Application-specific load conditioning: The use of ex-
plicit event queues allows applications to implement load
conditioning policies based on the observation of pend-
ing events. Backpressure can be implemented by having
a queue reject new entries (e.g., by raising an error condi-
tion) when it becomes full. This is important as it allows
excess load to be rejected by the system, rather than buffer-
ing an arbitrary amount of work. Alternately, a stage can
drop, filter, or reorder incoming events in its queue to im-
plement other policies, such as event prioritization. During
overload, a stage may prioritize requests requiring few re-
sources over those which involve expensive computation or
I/O. These policies can be tailored to the specific applica-
tion, rather than imposed by the system in a generic way.

Code modularity and debugging support: The SEDA
design allows stages to be developed and maintained inde-
pendently. A SEDA-based application consists of a network
of interconnected stages; each stage can be implemented as
a separate code module in isolation from other stages. The
operation of two stages is composed by inserting a queue
between them, thereby allowing events to pass from one
to the other. This is in contrast to the “monolithic” event-
driven design, in which the states of the request-processing
state machine are often highly interdependent.

Few tools exist for understanding and debugging a com-
plex event-driven system, as stack traces do not represent
the control flow for the processing of a particular request.
SEDA facilitates debugging and performance analysis, as
the decomposition of application code into stages and ex-
plicit event delivery mechanisms provide a means for direct
inspection of application behavior. For example, a debug-
ging tool can trace the flow of events through the system and
visualize the interactions between stages. Our prototype of
SEDA is capable of generating a graph depicting the set of
application stages and their relationship.

4. Operating System Design Directions

While SEDA aids the construction of highly-concurrent
applications over conventional OS interfaces, these inter-
faces still present a number of design challenges for Internet
services. In particular, we argue that the goal of transpar-
ent resource virtualization is undesirable in this context, and
that server operating systems should eliminate this abstrac-
tion in favor of an approach which gives applications more
control over resource usage. This fundamental shift in ide-
ology makes it possible to implement a number of features
which support Internet services:

Concurrency and scheduling: Because SEDA uses a
small number of threads for driving the execution of stages,
much of the scalability limitation of threads is avoided. Ide-
ally, the code for each stage should never block, requiring
just one thread per CPU. However, for this approach to be
feasible every OS interface must be nonblocking. This is
unproblematic for I/O, but may be more challenging for
other interfaces, such as demand paging or memory syn-
chronization. The goal of a SEDA-oriented operating sys-
tem is not to eliminate threads altogether, but rather to sup-
port interfaces which allows their use to be minimized.

A SEDA-based OS should allow applications to specify
their own thread scheduling policy. For example, during
overload the application may wish to give priority to stages
which consume fewer resources. Another policy would be
to delay the scheduling of a stage until it has accumulated
enough work to amortize the startup cost of that work, such
as aggregating multiple disk accesses and performing them
all at once. The SEDA approach can simplify the mech-
anism used to implement application-specific scheduling,
since the concerns raised by “safe” scheduling in a multi-
programmed environment can be avoided. Specifically, the
system can trust the algorithm provided by the application,
and need not support multiple competing applications with
their own scheduling policies.

Scalable I/O: SEDA’s design should make it easier to
construct scalable I/O interfaces, since the goal is to sup-
port a large number of I/O streams through a single appli-

125

cation, rather than to fairly multiplex I/O resources across
multiple applications. A SEDA-oriented asynchronous I/O
layer would closely follow the internal implementation of
contemporary filesystems and network stacks, but do away
with the complexity of safe virtualization of the I/O inter-
face. For example, rather than exporting a high-level socket
layer, the OS could expose the event-driven nature of the
network stack directly to applications. This approach also
facilitates the implementation of zero-copy I/O, a mecha-
nism which is difficult to virtualize for a number of reasons,
such as safe sharing of pinned network buffers [31].

Application-controlled resource management: A
SEDA-based operating system need not be designed to al-
low multiple applications to transparently share resources.
Internet services are highly specialized and are not designed
to share the machine with other applications: it is plainly
undesirable for, say, a Web server to run on the same
machine as a database engine (not to mention a scientific
computation or a word processor!). While the OS may
enforce protection (to prevent one stage from corrupting the
state of the kernel or another stage), the system should not
virtualize resources in a way which masks their availability
from applications.

For instance, rather than hiding a file system buffer cache
within the OS, a SEDA-based system should expose a low-
level disk interface and allow applications to implement
their own caching mechanism. In this way, SEDA fol-
lows the philosophy of systems such as Exokernel [12],
which promotes the implementation of OS components as
libraries under application control. Likewise, a SEDA-
based OS should expose a virtual memory interface which
makes physical memory availability explicit; this approach
is similar to that of application-controlled paging [7, 8].

5. Related Work

The SEDA design was derived from approaches to man-
aging high concurrency and unpredictable load in a vari-
ety of systems. The Flash web server [21] and the Harvest
web cache [4] are based on an asynchronous, event-driven
model which closely resembles the SEDA architecture. In
Flash, each component of the web server responds to par-
ticular events, such as socket connections or filesystem ac-
cess requests. The main server process is responsible for
continually dispatching events to each of these components.
This design typifies the “monolithic” event-driven architec-
ture described earlier. Because certain I/O operations (in
this case, filesystem accesses) do not have asynchronous in-
terfaces, the main server process handles these events by
dispatching them tohelper processes via IPC.

StagedServer [15] is a platform which bears some re-
semblance to SEDA, in which application components are
decomposed into stages separated by queues. In this case,
the goal is to maximize processor cache locality by care-
fully scheduling threads and events within the application.
By aggregating the execution of multiple similar events

within a queue, locality is enhanced leading to greater per-
formance.

The Click modular packet router [19] and the Scout op-
erating system [20] use a software architecture similar to
that of SEDA; packet processing stages are implemented by
separate code modules with their own private state. Click
modules communicate using either queues or function calls,
while Scout modules are composed into apath which is
used to implement vertical resource management and in-
tegrated layer processing. Click and Scout are optimized
to improve per-packet latency, allowing a single thread to
call directly through multiple stages. In SEDA, threads are
isolated to their own stage for reasons of safety and load
conditioning.

Extensible operating systems such as Exokernel [12] and
SPIN [3] share our desire to expose greater resource con-
trol to applications. However, these systems have primarily
focused on safe application-specific resource virtualization,
rather than support for extreme concurrency and load. For
instance, Exokernel’s I/O primitives are blocking, necessi-
tating a thread-based approach to concurrency. Our pro-
posal is in some sense more radical than extensible operat-
ing systems: we claim that the right approach to support-
ing scalable servers is to eliminate resource virtualization,
rather than to augment it with application-specific function-
ality.

6. Conclusion

We argue that traditional OS designs, intended primar-
ily for safe and efficient multiprogramming, do not mesh
well with the needs of highly-concurrent server applica-
tions. The large body of work that has addressed aspects
of this problem suggests that the ubiquitous process model,
along with the attendant requirement of transparent resource
virtualization, is fundamentally wrong for these applica-
tions. Rather, we propose thestaged event-driven architec-
ture, which decomposes applications into stages connected
by explicit event queues. This model enables high concur-
rency and fine-grained load conditioning, two essential re-
quirements for Internet services.

We have implemented a prototype of a SEDA-based sys-
tem, described in [30]. Space limitations prevent us from
providing details here, although our experience with the
SEDA prototype (implemented in Java on top of UNIX in-
terfaces) has demonstrated the viability of this design for
implementing scalable Internet service applications over
commodity OSs. Still, Internet services necessitate a fun-
damental shift in operating system design ideology. We be-
lieve that the time has come to reevaluate OS architecture in
support of this new class of applications.

References

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Sched-
uler Activations: Effective Kernel Support for the User-Level
Management of Parallelism.ACM Transactions on Com-
puter Systems, 10(1):53–79, February 1992.

126

[2] G. Banga, J. C. Mogul, and P. Druschel. A scalable and ex-
plicit event delivery mechanism for UNIX. InProceedings of
the USENIX 1999 Annual Technical Conference, Monterey,
CA, June 1999.

[3] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility,
safety and performance in the SPIN operating system. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tem Principles (SOSP-15), 1995.

[4] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical Internet object
cache. InProceedings of the 1996 Usenix Annual Technical
Conference, pages 153–163, January 1996.

[5] P. Druschel and L. Peterson. Fbufs: A high bandwidth cross-
domain transfer facility. InProceedings of the 14th ACM
Symposium on Operating System Principles, 1993.

[6] S. D. Gribble. A Design Framework and a Scalable Stor-
age Platform to Simplify Internet Service Construction. PhD
thesis, UC Berkeley, September 2000.

[7] S. M. Hand. Self-paging in the Nemesis operating system.
In Proceedings of OSDI ’99, February 1999.

[8] K. Harty and D. Cheriton. Application controlled physi-
cal memory using external page cache management, October
1992.

[9] J. C. Hu, I. Pyarali, and D. C. Schmidt. High performance
Web servers on Windows NT: Design and performance. In
Proceedings of the USENIX Windows NT Workshop 1997,
August 1997.

[10] J. C. Hu, I. Pyarali, and D. C. Schmidt. Applying the Proac-
tor pattern to high-performance Web servers. InProceed-
ings of the 10th International Conference on Parallel and
Distributed Computing and Systems, October 1998.

[11] S. Inohara, K. Kato, and T. Masuda. ‘Unstable Threads’ ker-
nel interface for minimizing the overhead of thread switch-
ing. In Proceedings of the 7th IEEE International Parallel
Processing Symposium, pages 149–155, April 1993.

[12] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazìeres, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on Exokernel systems. InProceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97), Octo-
ber 1997.

[13] M. F. Kaashoek, D. R. Engler, G. R. Ganger, and D. A. Wal-
lach. Server operating systems. InProceedings of the 1996
SIGOPS European Workshop, September 1996.

[14] D. Kegel. The C10K problem.http://www.kegel.
com/c10k.html.

[15] J. Larus. Enhancing server performance with Staged-
Server. http://www.research.microsoft.com/
˜larus/Talks/StagedServer.ppt, October 2000.

[16] J. Lemon. FreeBSD kernel event queue patch.http://
www.flugsvamp.com/˜jlemon/fbsd/.

[17] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications.IEEE Journal on Selected Areas in
Communications, 14:1280–1297, September 1996.

[18] J. Mogul. Operating systems support for busy internet ser-
vices. InProceedings of the Fifth Workshop on Hot Topics in
Operating Systems (HotOS-V), May 1995.

[19] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
Click modular router. InProceedings of the 17th ACM Sym-
posium on Operating Systems Principles (SOSP ’99), pages
217–231, Kiawah Island, South Carolina, December 1999.

[20] D. Mosberger and L. Peterson. Making paths explicit in the
Scout operating system. InProceedings of OSDI ’96, Octo-
ber 1996.

[21] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An effi-
cient and portable Web server. InProceedings of the 1999
Annual Usenix Technical Conference, June 1999.

[22] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A uni-
fied I/O buffering and caching system. InProceedings of
the 3rd Usenix Symposium on Operating Systems Design and
Implementation (OSDI’99), February 1999.

[23] N. Provos and C. Lever. Scalable network I/O in
Linux. Technical Report CITI-TR-00-4, University of
Michigan Center for Information Technology Integra-
tion, May 2000. http://www.citi.umich.edu/
techreports/reports/citi-tr-00-4.ps.gz.

[24] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-
performance local area communication with fast sockets. In
Proceedings of the USENIX 1997 Annual Technical Confer-
ence, 1997.

[25] M. Russinovich. Inside I/O Completion Ports.http://
www.sysinternals.com/comport.htm.

[26] M. Stonebraker. Operating system support for database man-
agement.Communications of the ACM, 24(7):412–418, July
1981.

[27] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
user-level network interface for parallel and distributed com-
puting. In Proceedings of the 15th Annual Symposium on
Operating System Principles, December 1995.

[28] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A mechanism for integrating
communication and computation. InProceedings of the 19th
Annual International Symposium on Computer Architecture,
pages 256–266, May 1992.

[29] D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ASHs:
Application-specific handlers for high-performance messag-
ing. In Proceedings of the ACM SIGCOMM ’96 Conference:
Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 40–52, Stanford, Califor-
nia, August 1996.

[30] M. Welsh. The Staged Event-Driven Architecture for
highly concurrent server applications. Ph.D. Qual-
ifying Examination Proposal, UC Berkeley, Decem-
ber 2000. http://www.cs.berkeley.edu/˜mdw/
papers/quals-seda.pdf.

[31] M. Welsh, A. Basu, and T. von Eicken. Incorporating mem-
ory management into user-level network interfaces. InPro-
ceedings of Hot Interconnects V, August 1997.

[32] M. Welsh, S. D. Gribble, E. A. Brewer, and D. Culler. A de-
sign framework for highly concurrent systems. Technical Re-
port UCB/CSD-00-1108, U.C. Berkeley Computer Science
Division, April 2000.

127

Systems Directions for Pervasive Computing

Robert Grimm, Janet Davis, Ben Hendrickson, Eric Lemar, Adam MacBeth,
Steven Swanson, Tom Anderson, Brian Bershad, Gaetano Borriello,

Steven Gribble, David Wetherall
University of Washington
one@cs.washington.edu

Abstract

Pervasive computing, with its focus on users and their tasks
rather than on computing devices and technology, provides
an attractive vision for the future of computing. But, while
hardware and networking infrastructure to realize this vi-
sion are becoming a reality, precious few applications run
in this infrastructure. We believe that this lack of applica-
tions stems largely from the fact that it is currently too hard
to design, build, and deploy applications in the pervasive
computing space.

In this paper, we argue that existing approaches to dis-
tributed computing are flawed along three axes when ap-
plied to pervasive computing; we sketch out alternatives
that are better suited for this space. First, application data
and functionality need to be kept separate, so that they can
evolve gracefully in a global computing infrastructure. Sec-
ond, applications need to be able to acquire any resource
they need at any time, so that they can continuously pro-
vide their services in a highly dynamic environment. Third,
pervasive computing requires a common system platform,
allowing applications to be run across the range of devices
and to be automatically distributed and installed.

1. Introduction

Pervasive computing [10, 26] promises a computing infras-
tructure that seamlessly and ubiquitously aids users in ac-
complishing their tasks and that renders the actual com-
puting devices and technology largely invisible. The basic
idea behind pervasive computing is to deploy a wide va-
riety of smart devices throughout our working and living
spaces. These devices coordinate with each other to provide
users with universal and immediate access to information
and support users in completing their tasks. The hardware
devices and networking infrastructure necessary to realize
this vision are increasingly becoming a reality, yet precious
few applications run in this infrastructure. Notable excep-

tions are email for communication and the World Wide Web
as a medium for electronic publishing and as a client inter-
face to multi-tier applications.

This lack of applications is directly related to the fact that
it is difficult to design, build, and deploy applications in a
pervasive computing environment. The pervasive comput-
ing space has been mapped as a combination of mobile and
stationary devices that draw on powerful services embedded
in the network to achieve users’ tasks [9]. The result is a gi-
ant, ad-hoc distributed system, with tens of thousands of de-
vices and services coming and going. Consequently, the key
challenge for developers is to build applications that con-
tinue to provide useful services, even if devices are roaming
across the infrastructure and if the network provides only
limited services, or none at all.

As part of our research into pervasive computing, we
are buildingone.world , a system architecture for pervasive
computing [14]. Based on our experiences with this archi-
tecture, we believe that existing distributed computing tech-
nologies are ill-suited to meet this challenge. This is not to
say that discovery services [1, 2, 8] or application-aware
adaptation [19] are not useful in a pervasive computing en-
vironment. On the contrary, we consider them clearly ben-
eficial for pervasive computing applications. However, they
are not sufficient to successfully design, build, and deploy
applications in the pervasive computing space.

Moreover, we argue that current approaches to building
distributed applications are deeply flawed along three axes,
which — to express their depth — we call fault lines. In
the rest of this paper, we explore the three fault lines in de-
tail; they are summarized in Table 1. First, Section 2 makes
our case against distributed objects and outlines a more ap-
propriate approach to integrating application data and func-
tionality. Next, Section 3 discusses the need to write appli-
cations that continuously adapt in a highly dynamic envi-
ronment. Finally, Section 4 argues for a common pervasive
computing platform that spans the different classes of de-
vices. We conclude this paper in Section 5.

128

Problem Cause Proposed Solution

Objects do not scale well across
large, wide-area distributed sys-
tems

Encapsulation of data and function-
ality within a single abstraction

Keep data and functionality sepa-
rate

Availability of application services
is limited or intermittent

Transparency in a highly dynamic
environment

Programming for change: Applica-
tions need to be able to acquire any
resource they need at any time

Programming and distributing ap-
plications is increasingly unman-
ageable

Heterogeneity of devices and sys-
tem platforms

Common system platform with an
integrated API and a single binary
format

Table 1. Overview of the three fault lines discussed in this paper, listing the problem, cause, and
proposed solution for each fault line.

2. Data and Functionality

The first fault line concerns the relationship between data
and functionality and how they are represented. Several dis-
tributed systems, such as Legion [16] or Globe [25], are tar-
geted at a global computing environment and have explored
the use of objects as the unifying abstraction for both data
and functionality. We are skeptical about this use of objects
for distributed computing for two reasons.

First, objects as an encapsulation mechanism are based
on two assumptions: (1) Implementation and data layout
change more frequently than an object’s interface, and (2)
it is indeed possible to design interfaces that accommo-
date different implementations and hold up as a system
evolves. However, these assumptions do not hold for a
global distributed computing environment. Increasingly,
common data formats, such as HTML or PNG, are specified
by industry groups or standard bodies, notably the World
Wide Web Consortium, and evolve at a relatively slow pace.
In contrast, application vendors compete on functionality,
leading to considerable differences in application interfaces
and implementations and a much faster pace of innovation.

Second, it is preferable to store and communicate data
instead of objects, as it is generally easier to access passive
data rather than active objects. In particular, safe access to
active objects in a distributed system raises important is-
sues, notably system security and resource control, that are
less difficult to address when accessing passive data. This
is clearly reflected in today’s Internet: Access to regular
HTML or PDF documents works well, while active content
results in an ever continuing string of security breaches [17].
Based on these two realizations, we argue that data and
functionality should be kept separate rather than being en-
capsulated within objects.

At the same time, data and functionality depend on each
other, especially when considering data storage and mo-
bile code. On one hand, data management systems al-

ready rely on mobile code for their services. For exam-
ple, Bayou propagates updates as procedures and not sim-
ply as data [23]. The Oracle8i database not only supports
SQL stored procedures, but also includes a fully featured
Java virtual machine [11]. On the other hand, mobile code
systems have seen limited success in the absence of a stan-
dard data model and the corresponding data management
solutions. For example, while many projects have explored
mobile agents [18], they have not been widely adopted, in
part because they lack storage management. Java, which
was originally marketed as a mobile code platform for the
Internet, has been most successful in the enterprise, where
access to databases is universal [21].

The result is considerable tension between integrating
data and functionality too tightly — in the form of objects
— and not integrating them tightly enough.one.world re-
solves this tension by keeping data and functionality sep-
arate and by introducing a new, higher-level abstraction to
group the two. In our architecture, data is represented by tu-
ples, which essentially are records with named and option-
ally typed fields, while functionality is provided by compo-
nents, which implement units of functionaly. Environments
serve as the new unifying abstraction: They are contain-
ers for stored tuples, components, and other environments,
providing a combination of the roles served by file system
directories and nested processes [5, 12, 24] in more tradi-
tional operating systems. Environments make it possible to
group data and functionality when necessary. At the same
time, they allow for data and functionality to evolve sepa-
rately and for applications to store and exchange just data,
thus avoiding the two problems associated with objects dis-
cussed above.

To summarize, we are arguing that data and functionality
need to be supported equally well in large distributed sys-
tems, yet also need to be kept separate. We are not arguing
that object-oriented programming is not useful.one.world is
implemented mostly in Java and makes liberal use of object-

129

oriented language features such as inheritance to provide its
functionality.1 At the same time, our architecture clearly
separates data and functionality, using tuples to represent
data and components to express functionality.

3. Programming for Change

The second fault line is caused by transparent access to re-
mote resources. By building on distributed file systems or
remote procedure call packages, many existing distributed
systems mask remote resources as local resources. This
transparency certainly simplifies application development.
From the programmer’s viewpoint, accessing a remote re-
source is as simple as a local operation. However, this
comes at a cost in failure resilience and service availability.
Network connections and remote servers may fail. Some
services may not be available at all in a given environ-
ment. As a result, if a remote service is inaccessible or un-
available, distributed applications cannot provide their ser-
vices, because they were written without the expectation of
change.

We believe that this transparency is misleading in a per-
vasive computing environment, because it encourages a pro-
gramming style in which a failure or the unavailability of a
resource is viewed as an extreme case. But in an environ-
ment where tens of thousands of devices and services come
and go, the unavailability of some resource may be the com-
mon (or at least frequent) case. We are thus advocating a
programming style that forces applications to explicitly ac-
quire all resources, be they local or remote, and to be pre-
pared to reacquire them or equivalent resources at any time.

In one.world , applications need to explicitly bind all
resources they use, including storage and communication
channels. Leases are used to control such bindings and,
by forcing applications to periodically renew them, provide
timeouts for inaccesible or unavailable resources. While
leases have been used in other distributed systems, such as
Jini [2], to control access to remote resources, we take them
one step further by requiring thatall resources be explic-
itly bound and leased. Furthermore, resource discovery in
one.world can use late binding, which effectively binds re-
sources on every use and thus reduces applications’ expo-
sure to failures or changes in the environment [1].

This style of programming for change imposes a strict
discipline on applications and their developers. Yet, pro-
gramming for change also presents an opportunity by en-
abling system services that make it easier to build applica-
tions. one.world provides support for saving and restoring
application checkpoints and for migrating applications and

1Though, for several features, including the implementation of tuples,
mixin-based inheritance [4] and multiple dispatch as provided by Multi-
Java [7] would have provided a better match than Java’s single inheritance
and single dispatching of methods.

their data between nodes. Checkpointing and migration are
useful primitives for building failure resilient applications
and for improving performance in a distributed system. Fur-
thermore, migration is attractive for applications that follow
a user as she moves through the physical world.

Checkpointing and migration affect an environment and
its contents, including all nested environments. Checkpoint-
ing captures the execution state of all components in an
environment tree and saves that state in form of a tuple,
making it possible to later restore the saved state. Migra-
tion moves an environment tree, including all components
and stored tuples, from one device to another. Since ap-
plications already need to be able to dynamically acquire
resources they need, both checkpointing and migration es-
chew transparency and are limited to the resources con-
tained in the environment tree being checkpointed or mi-
grated. As a result, their implementation inone.world can
avoid the complexities typically associated with full pro-
cess checkpointing and migration [18], and migration in the
wide area becomes practical.

To summarize, the main idea behind programming for
change is to force developers to build applications that bet-
ter cope with a highly dynamic environment, while also pro-
viding primitives that make it easier to implement applica-
tions.

4. The Need for a Common Platform

The third fault line is rooted in the considerable and inher-
ent heterogeneity of devices in a pervasive computing en-
vironment. Computing devices already cover a wide range
of platforms, computing power, storage capacity, form fac-
tors, and user interfaces. We expect this heterogeneity to
increase over time rather than decrease, as new classes of
devices such as pads or car computers become widely used.

Today, applications are typically developed for specific
classes of devices or system platforms, leading to separate
versions of the same application for handhelds, desktops,
or cluster-based servers. Furthermore, applications typi-
cally need to be distributed and installed separately for each
class of devices and processor family. As heterogeneity
increases, developing applications that run across all plat-
forms will become exceedingly difficult. As the number of
devices grows, explicitly distributing and installing appli-
cations for each class of devices and processor family will
become unmanageable, especially in the face of migration
across the wide area.

We thus argue for a single application programming in-
terface (API) and a single binary distribution format, includ-
ing a single instruction set, that can be implemented across
the range of devices in a pervasive computing environment.
A single, common API makes it possible to develop appli-
cations once, and a single, common binary format enables

130

the automatic distribution and installation of applications. It
is important to note that Java does not provide this common
platform. While the Java virtual machine is attractive as
a virtual execution platform (and used for this purpose by
one.world), Java as an application platform does not meet
the needs of the pervasive computing space. In particular,
Java’s platform libraries are rather large, loosely integrated,
and often targeted at conventional computers. Furthermore,
Java, by itself, fails to separate data and functionality and
does not encourage programming for change, as discussed
in Sections 2 and 3 respectively.

Given current hardware trends and advances in virtual
execution platforms, such as the Java virtual machine or
Microsoft’s common language runtime [22], we can rea-
sonably expect that most devices can implement such a per-
vasive computing platform. Devices that do not have the
capacity to implement the full platform, such as small sen-
sors [15], can still interact with it by using proxies or em-
ulating the platform’s networking protocols. Furthermore,
legacy applications can be integrated by communicating
through standard networking protocols, such as HTTP or
SOAP [3], and by exchanging data in standard formats, such
as XML.

A pervasive computing platform that runs across a wide
range of devices does impose a least common denominator
on the core APIs. Applications can only assume the services
defined by the core APIs; they must implement their basic
functionality within this framework. At the same time, a
common platform does not prevent individual devices from
exposing additional services to applications. It simply de-
mands that additional services be treated as optional and
dynamically discovered by applications.

As part of our research onone.world , we are exploring
how to scale a common platform across the range of de-
vices. Taking a cue from other research projects [6, 13, 15,
20], which have successfully used asynchronous events at
very different points of the device space, our architecture
also relies on asynchronous events to express control flow.
All system interfaces are asynchronous, and application
components interact by exchanging asynchronous events.
The hope behind this design decision is that it will consider-
ably aid with the scalability of the architecture.one.world ’s
implementation currently runs on Windows and Linux com-
puters, and a port to Compaq’s iPAQ handheld computer is
under way.

5. Outlook

In this paper, we have argued that current approaches to dis-
tributed computing are ill-suited for the pervasive comput-
ing space and have identified three fault lines of existing dis-
tributed systems. First, while object-oriented programming
continues to provide an attractive paradigm for application

development, data and functionality should be kept separate
for pervasive computing applications as they typically need
to evolve independently. Second, applications need to be
explicitly programmed to gracefully handle change. While
this style of programming imposes a strict discipline on ap-
plication developers, it also enables system services, such
as checkpointing and migration, previously not available in
distributed systems of this scale. Third, pervasive comput-
ing requires a common system platform, so that applications
can run across (almost) all devices in this infrastructure and
can be automatically distributed and installed.

We are exploring how to address these fault lines with
one.world , a system architecture for pervasive computing.
In an effort to better understand the needs of application
developers, we have taught an undergraduate course that
leveragesone.world as the basis for students’ projects. We
are also building pervasive applications within our archi-
tecture and are collaborating with other researchers in the
department to implement additional infrastructure services
on top of it. Further information onone.world , including
a source distribution, is available athttp://one.cs.
washington.edu/.

Acknowledgments

We thank David Notkin for helping us to refine our obser-
vations and Brendon Macmillan as well as the anonymous
reviewers for their comments on an earlier version of this
paper.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional naming
system. InProceedings of the 17th ACM Symposium on Op-
erating Systems Principles, pages 186–201, Kiawah Island
Resort, South Carolina, Dec. 1999.

[2] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison-Wesley, 1999.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Sim-
ple object access protocol (SOAP) 1.1. W3C note, World
Wide Web Consortium, Cambridge, Massachusetts, May
2000.

[4] G. Bracha and W. Cook. Mixin-based inheritance. InPro-
ceedings of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications ’90, pages
303–311, Ottawa, Canada, Oct. 1990.

[5] P. Brinch Hansen. The nucleus of a multiprogramming sys-
tem. Communications of the ACM, 13(4):238–241, 250,
Apr. 1970.

[6] P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Borriello.
ipChinook: An integrated IP-based design framework for
distributed embedded systems. InProceedings of the 36th

131

ACM/IEEE Design Automation Conference, pages 44–49,
New Orleans, Louisiana, June 1999.

[7] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. InProceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications ’00, pages 130–145, Minneapolis, Minnesota,
Oct. 2000.

[8] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and
R. H. Katz. An architecture for a secure service discovery
service. InProceedings of the 5th ACM/IEEE International
Conference on Mobile Computing and Networking, pages
24–35, Seattle, Washington, Aug. 1999.

[9] M. L. Dertouzos. The future of computing.Scientific Amer-
ican, 281(2):52–55, Aug. 1999.

[10] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next
century challenges: Data-centric networking for invisible
computing. InProceedings of the 5th ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking,
pages 256–262, Seattle, Washington, Aug. 1999.

[11] S. Feuerstein.Guide to Oracle8i Features. O’Reilly, Oct.
1999.

[12] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, pages 137–151, Seat-
tle, Washington, Oct. 1996.

[13] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service con-
struction. InProceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation, pages 319–
332, San Diego, California, Oct. 2000.

[14] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. A
system architecture for pervasive computing. InProceedings
of the 9th ACM SIGOPS European Workshop, pages 177–
182, Kolding, Denmark, Sept. 2000.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. InProceedings of the 9th ACM International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 93–104, Cambridge, Mas-
sachusetts, Nov. 2000.

[16] M. Lewis and A. Grimshaw. The core Legion object model.
In Proceedings of the Fifth IEEE International Symposium
on High Performance Distributed Computing, pages 551–
561, Syracuse, New York, Aug. 1996.

[17] G. McGraw and E. W. Felten.Securing Java: Getting Down
to Business with Mobile Code. Wiley Computer Publishing,
John Wiley & Sons, 1999.

[18] D. Miloji c̆ić, F. Douglis, and R. Wheeler, editors.Mobility—
Processes, Computers, and Agents. ACM Press. Addison-
Wesley, Feb. 1999.

[19] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, pages 276–287,
Saint-Malo, France, Oct. 1997.

[20] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. InProceedings of the

1999 USENIX Annual Technical Conference, pages 199–
212, Monterey, California, June 1999.

[21] A. Radding. Java emerges as server-side standard.Informa-
tionWeek, (987):121–128, May 22, 2000.

[22] J. Richter. Microsoft .NET framework delivers the platform
for an integrated, service-oriented web.MSDN Magazine,
15(9):60–69, Sept. 2000.

[23] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles, pages 172–183, Copper Mountain Resort,
Colorado, Dec. 1995.

[24] P. Tullmann and J. Lepreau. Nested Java processes: OS
structure for mobile code. InProceedings of the 8th ACM
SIGOPS European Workshop, pages 111–117, Sintra, Por-
tugal, Sept. 1998.

[25] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
wide-area distributed system.IEEE Concurrency, 7(1):70–
78, 1999.

[26] M. Weiser. The computer for the twenty-first century.Sci-
entific American, 265(3):94–104, Sept. 1991.

132

The Case for Resilient Overlay Networks

David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris
MIT Laboratory for Computer Science

Cambridge, MA 02139
fdga, hari, kaashoek, rtmg@lcs.mit.edu
http://nms.lcs.mit.edu/ron/

Abstract

This paper makes the case for Resilient Overlay Networks
(RONs), an application-level routing and packet forwarding
service that gives end-hosts and applications the ability to
take advantage of network paths that traditional Internet rout-
ing cannot make use of, thereby improving their end-to-end
reliability and performance. Using RON, nodes participat-
ing in a distributed Internet application configure themselves
into an overlay network and cooperatively forward packets
for each other. Each RON node monitors the quality of the
links in the underlying Internet and propagates this informa-
tion to the other nodes; this enables a RON to detect and
react to path failures within several seconds rather than sev-
eral minutes, and allows it to select application-specific paths
based on performance. We argue that RON has the potential
to substantially improve the resilience of distributed Internet
applications to path outages and sustained overload.

1 Introduction

Today’s wide-area Internet routing architecture organizes the
Internet into autonomous systems (ASes) that peer with each
other and exchange information using the Border Gateway
Protocol (BGP), Version 4 [10]. This approach scales well
to a large number of connected networks, but this scalabil-
ity comes at the cost of the increased vulnerability to link or
router failures. Various recent studies have found that path
failures are common and that the convergence time after a
problem is detected is usually on the order of several min-
utes [5], and that path outages, routing anomalies, and active
denial-of-service attacks cause significant disruptions in end-
to-end communication [1, 8]. This reduces the reliability of
end-to-end communication over Internet paths and therefore
adversely affects the reliability of distributed Internet appli-
cations and services.

We proposeResilient Overlay Networks (RONs) as an ar-
chitecture to improve the reliability of distributed applica-
tions on the Internet. Each application creates a RON from its
participating nodes. These nodes are typically spread across

This research was sponsored by Defense Advanced Research Projects
Agency (DARPA) and the Space and Naval Warfare Systems Center San
Diego under contract N66001-00-1-8933.

multiple ASes, and see different routes through the Inter-
net. RON nodes cooperate with each other to forward data
on behalf of any pair of communicating nodes in the RON,
thus forming anoverlay network. Because ASes are indepen-
dently administered and configured, underlying path failures
between communicating nodes usually occur independently.
Thus, if the underlying topology has physical path redun-
dancy, it is often possible for a RON to find paths between
RON nodes even if Internet routing protocols such as BGP
(that are optimized for scalability) cannot find them.

Nodes in a RON self-configure into the overlay by exchang-
ing information across the underlying Internet paths. Each
RON node has “virtual links” to all other RON nodes, which
it uses to maintain connectivity and exploit the underly-
ing IP network’s redundancy. When a RON node receives
a packet destined for another, it looks for the destination
in an application-specific forwarding table, encapsulates the
packet in a RON packet, and ships it to the next RON node. In
this way, the packet moves across the overlay via a sequence
of RON nodes until it reaches the intended destination.

To find and use alternate paths, a RON monitors the health of
the underlying Internet paths between its nodes, dynamically
selecting paths that avoid faulty or overloaded areas. The
goal is to ensure continued communication between RON
nodes despite failures due to outages, operational errors, or
attacks in the underlying network. RON nodes infer the qual-
ity of virtual links using active probing and passive observa-
tion of traffic, and exchange this information using a routing
protocol. Each node can use a variety of performance met-
rics, such as packet loss rate, path latency, or available band-
width to select an appropriate application-specific path. This
approach has potential because each RON is small in size
(less than fifty nodes), which allows aggressive path moni-
toring and maintenance.

A RON ensures that as long as there isan available path
in the underlying Internet between two RON nodes, the
RON application can communicate robustly even in the face
of problems with the “direct” (BGP-chosen) path between
them. The limited size of each independent RON is not a se-
rious limitation for many applications and services. A video
conferencing program may link against a RON library, form-
ing a routing overlay between the participants in the con-

133

ArosNet

"The Internet"

Utah

MA Cable Modem

MIT

Figure 1:A common (mis)conception of Internet inter-
connections.

ference. Alternatively, a RON-based application-aware IP
packet forwarder may be located at points-of-presence in dif-
ferent ASes, forming an “Overlay ISP” that improves the re-
liability of Internet connectivity for its customers.

This paper presents the case for developing distributed ap-
plications using RON (Section 2), outlines an approach by
which RONs may be architected (Section 3), relates RON
to previous work (Section 4), and concludes with a research
agenda for future work (Section 5).

2 The Case for RONs

A common, but incorrect, view of the topology of the Inter-
net is that institutions and companies connect to “The Great
Internet Cloud.” Figure 1 illustrates an example of four sites,
MIT, Utah, ArosNet, andMediaOne, connected to the In-
ternet cloud. In this view, the Internet is very robust, rapidly
routing packets around failures and traffic overload, and pro-
viding near-perfect service.

Unfortunately, this ideal view of the Internet cloud is far
from reality. The Internet Service Providers (ISPs) consti-
tuting the Internet exchange routing information using BGP,
which is designed to scale well at the expense of main-
taining detailed information about alternate paths between
networks. To avoid frequent route changes that may prop-
agate through many other ASes, frequent route announce-
ments and withdrawals are damped; furthermore, conver-
gence times on route changes take many minutes [5] with
currently deployed BGP implementations. Last but not least,
there are numerous financial, political, and policy considera-
tions that influence the routes announced via BGP.

ISPs typically provide two types of connectivity: “transit”
and “peering.” If the ISP providestransit for a customerA,
it tells other ISPs that they may reachA through the ISP. If
an ISP has apeering relationship withA, it keeps this knowl-
edge to itself; the ISP and its customers can reachA via this
link, but the rest of the Internet may not. Peering relation-
ships are often free, because they enable the more efficient
exchange of packets without placing the burden of hauling
packets on either partner, but globally announced transit re-

155Mbps / 60ms

BBNQwest

UUNET AT&T

MediaOne

6Mbps

130
Mbps

Private
Peering

45Mbps

5ms

1Mbps, 3ms

Cable Modem

Private
Peering

3Mbps
6ms

ArosNet

Utah

155

MIT
vBNS / Internet 2

Figure 2:The details of Internet interconnections. Dot-
ted links are private and are not announced globally.

lationships almost always involve some form of settlement.

Figure 2 redraws Figure 1 to reflect reality. MIT is connected
to the Internet via BBN, and to Internet2. It has a private
peering link to MediaOne in Cambridge (MA), so students
can quickly connect to their MIT machines from home. Utah
is connected to the Internet via Qwest, to Internet2, and to
a local ISP, ArosNet, via a private peering link. ArosNet
is connected to the Internet via UUNET, and MediaOne is
connected to the Internet via AT&T. In this example, several
desirable paths are unavailable globally: the private peering
links for financial reasons (the parties have no apparent in-
centive to provide transit for each other) and the Internet2
connections because it is a research network.

These interconnections show two reasons BGP is unable
to ensure “best”—or sometimes even “good”—routes, and
route around problems even when different physical paths
are available. The first reason, explained above, is a conse-
quence of the economics and administration of peering rela-
tionships. The second relates to scalability.

For communication costs to scale well, BGP must simplify
routing data enormously; for computational scalability, its
decision metrics must be both simple and stable. BGP pri-
marily uses its own hop-counting mechanism to determine
routes and it exports a single “best” route for forwarding
packets. This causes three important problems: first, as noted
in the Detour study [11], BGP may make suboptimal routing
decisions. Second, BGP does not consider path performance
when making routing decisions, and so cannot route around
a path outage caused by traffic overload. The result is that
path outages can lead to significant disruptions in commu-
nication [1]. Third, BGP may take several minutes to stabi-
lize in the event of a route change or link failure [5]. The
result is that today’s Internet is easily vulnerable to router
faults, link failures, configuration or operational errors, and
malice—hardly a week goes by without some serious prob-

134

MIT to Utah MIT to ArosNet

Utah to ArosNet

(Very low loss, except for three
small bumps)

Time (30 minute blocks)

Time (30 minute blocks)

%
 P

ac
ke

t L
os

s
R

at
e

0
60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 14

0

20

40

60

80

100

0 20 40 60 80 100 120 14

20

Internet loss rate
RON loss rate

0

100

80

60

40

20

40

Figure 3:The upper right figure shows the loss rate with
and without RON between MIT and ArosNet. RON
was able to improve the loss rate considerably by rout-
ing through Utah. The upper left figure shows the MIT
to Utah loss rate, and the lower right shows the Utah
to ArosNet loss rate.

lem affecting one or more backbone service providers [6].

Many of the restrictions of peering can be overcome. An
organization that has Internet service in multiple ASes can
run an application that is distributed across nodes located
in the ASses, and use a RON to provide routing between
these nodes. By explicitly constraining the size of any given
RON to be small (under, say, 50 nodes), the aggressive ex-
ploration of alternate paths and performance-based path se-
lection can be accomplished. Thus, RON’s routing and path
selection schemes emphasize failure detection and recovery
over scalability, improving both reliability and performance
of the RON application.

To obtain a preliminary understanding of the benefits of us-
ing RON, we evaluated the effects of indirect RON-based
packet forwarding between the four sites mentioned in our
examples: The University of Utah, MIT, ArosNet, and a Me-
diaOne cable modem in Cambridge, MA. The interconnec-
tions between these nodes are as shown in Figure 2. In this
topology, RON is able to provide both reliability and perfor-
mance benefits for some of the communicating pairs.

2.1 Reliability

Figure 3 shows the 30-minute average packet loss rates be-
tween MIT and ArosNet. In these samples, the loss rate be-
tween MIT and ArosNet ranged up to 30%, but RON was
able to correct this loss rate to well below 10% by routing
data through Utah (and occasionally through the cable mo-
dem site). This shows that situations of non-transitive Inter-
net routing do occur in practice, and can be leveraged by
a RON to improve the reliability of end-to-end application
communication.

60

80

100

120

140

160

180

60 80 100 120 140 160 180

La
te

nc
y

vi
a

R
O

N

Latency directly over the Internet

Direct vs. RON
y=x

Figure 4:RON vs. direct samples. The samples are tem-
porally correlated; the latency via RON is plotted on
the Y axis, and the latency via the Internet is on the X
axis. 0.5% of the outlying samples (215 / 51395) are not
shown for readability. The dataset represents 62 hours
of probes taken roughly 4 seconds apart.

2.2 Performance

We took measurements between the four sites using
tcping, a TCP-based ping utility that we created. We
sent onetcping flow over the direct Internet and another
through the lowest-latency indirect path as estimated by the
results of recenttcping probes. If the direct IP path had
lower latency that the best indirect path, then the direct one
was used since that is what RON would do as well.

Figure 4 shows the latency results between MIT and Aros-
Net, gathered over 62 hours between January 8 and January
11 2001. In 92% of the samples, the latency of the pack-
ets sent over a RON-like path was better than the Internet
latency. The average latency over the measurement period
decreased from 97ms to 68ms; indirect hops through both
MediaOne and Utah were used, and some packets were sent
directly. The benefit in this case arose partly from using the
high-speed Internet2 connection, but more from avoiding the
exchange between MediaOne and Qwest, which frequently
went through Seattle!

2.3 Case Summary

These observations argue for a framework that allows small
numbers of nodes to form an overlay that can take advan-
tage of these improved paths. By pushing control towards
the endpoints, or even directly to the application, the RON
architecture achieves four significant advantages. (1) More
efficient end-system detection and correction of faults in the
underlying routes, even when the underlying network layer
incorrectly thinks all is well. (2) Better reliability for applica-
tions, since each RON can have an independent, application-
specific definition of what constitutes a fault. (3) Better per-
formance, since a RON’s limited size allows it to use more

135

Traffic Forwarding

Utah

ArosNet

Cable Modem

MIT

Probes

����

����

����

����

Figure 5: The general approach used in the RON
system. Nodes send probes to determine the net-
work characteristics between each other. Using their
knowledge of the network, they potentially route traffic
through other nodes. In this example, traffic from Utah
to the Cable Modem site is sent indirectly via MIT.

aggressive path computation algorithms than the Internet. (4)
Application-specific path selection, since RON applications
can define their own routing metrics.

3 Approach

The RON approach is conceptually simple. Figure 5 out-
lines this approach: The RON software sendsprobes between
RON nodes to determine the network characteristics between
them. Application-layerRON routers share this information
with the other RON nodes, and decide on next hops for pack-
ets. When appropriate, the traffic between two RON nodes is
sent indirectly through other RON nodes, instead of going
directly over the Internet.

We designed the RON software as libraries, usable by un-
privileged user programs. The components of the RON soft-
ware provide the mechanisms necessary for application-
layer indirect routing. RON needs (1) methods tomeasure
the properties of the paths between nodes andaggregate this
information; (2) an algorithm toroute based on this informa-
tion; and (3) a mechanism tosend data via the overlay. We
describe each of these components below.

3.1 Monitoring Path Quality

RON nodes measure path quality using a combination of ac-
tive probing by sending packets across virtual links, and pas-

sive measurement of the results achieved by data transfers
over the virtual links. Because our goal is to provide better
service than the default paths, we must measure links that
may not be in use by data transmissions, necessitating the
use of active probes. Passive measurements, however, can
provide more information with less bandwidth cost by using
traffic that must already flow over the network. This is why
we use both forms of monitoring.

Measurements may either besystem-defined, e.g., “the la-
tency between two hosts,” or they may beapplication-
defined, e.g., “the time to download this object from a mirror
site,” similar to the approach taken in SPAND [12]. The de-
signers of an overlay network cannot be omniscient about
the desires and metrics that are important to future users; a
well-designed system must provide both a rich set of system-
defined metrics for ease of use, and the ability to import and
route based on application-defined metrics to accommodate
unforeseen applications.

It is impractical to send days of detailed performance his-
tory to all other participants in the network so that they can
decide on the best path over which to transfer data. Further-
more, a reliable system must handle participating nodes that
crash, reboot, or rejoin the RON. Measurement data, partic-
ularly network probe data, is often extremely noisy and must
be smoothed before it is of use to clients. The RON system
must therefore have a mechanism forsummarizing the per-
formance data it collects, before transmitting it across wide-
area network paths to other RON nodes.

Hosts on the same LAN will frequently experience similar
network conditions when communicating with other hosts.
To reduce the impact of network probe traffic and increase
the base of information available to the routing system, hosts
on the same LAN should be able to share information about
the performance of remote paths and sites. From these re-
quirements, we conclude that the RON system should sup-
port a sharedperformance database that local hosts can use
to share and aggregate performance data. To avoid introduc-
ing more points of failure into the system, both the perfor-
mance database and its clients must treat the data stored in it
assoft state. Clients must not fail if information they want is
not in the database. The correct functioning of the database
must not depend on the presence of information about par-
ticular clients or remote networks.

3.2 Routing and Forwarding

Indirect hops through the network require additional band-
width, time, and computation. We believe that we can
achieve the major benefits of an overlay using only a few in-
direct hops. Our design currently calls for computing paths
only with single indirect hops. To send packets indirectly, the
RON architecture should use UDP, not IP or some new pro-
tocol, to permit implementation as an unprivileged process.
The small size of each RON allows us to exchange topol-

136

ogy and performance information using a link-state routing
protocol.

Intermediate forwarding nodes should not require
application-specific knowledge about the packets they
handle. We take the idea offlow labels from IPv6 [7] and
MPLS [4]: The RON endpoints should tag their flows with
an appropriate routing hint (“Minimize latency”) and with
a flow identifier, permitting downstream routers to handle
the packets without needing to understand the protocols
contained in the encapsulated packets. For instance, a video
conferencing application may send its audio and video data
as logically separate streams of data, but may want them to
be routed along the same path to keep them synchronized.
By pushing flow labeling as close to the application as
possible, these decisions can be made at the right place.
Early flow labeling also reduces the load on the intermediate
nodes, by simplifying their routing lookups.

3.3 Sending Data

The basic RON data transmission API is simple: The con-
duit that provides the input and output for the RON must
provide a function to call when there is data to be delivered,
and must either notify the RON forwarder explicitlyor pro-
vide aselect-like mechanism for notifying the forwarder
when data is available for insertion into the RON. Both of
these alternatives are appropriate for use in the libraries im-
plementing the RON functionality; the needs of the applica-
tion should determine which is used.

3.4 Applications and Extensions

The components of RON described thus far are necessary for
a basic user-level packet forwarding system, but applications
that integrate more tightly with the routing and forwarding
decisions are capable of more complex behavior. We discuss
a few usage scenarios below, considering how they interact
with the base RON functionality.

RONs can be deployed on a per-application basis, but they
may also be deployed at a border router. There, they can
be used to link entire networks with Overlay Virtual Private
Networks. An Overlay ISP might even buy bandwidth from
a number of conventional ISPs, paying them according to a
Service-Level Agreement, and selling “value-added” robust
networking services to its own customers.

When used to encapsulate network-level traffic, RONs can
be combined with Network Address Translation (NAT) to
permit the tunneling of traffic from remote sites not enabled
with overlay functionality. For example, consider the net-
work from Figure 2. A RON node located in the EECS de-
partment at MIT could be used by the other sites to proxy
HTTP requests towww.mit.edu, accelerating Web brows-
ing for off-site collaborators. Traffic would flow through the
overlay to the MIT RON node, from which an HTTP request
would be sent to the Web server. The HTTP response would

be sent to the MIT RON node, and from there, relayed to the
requesting host over the overlay.

Another use of RONs is to implement multi-path forwarding
of flows. TCP performs poorly when subject to the large jitter
and packet reordering that is often imposed by splitting one
flow between multiple paths, but sendingdifferent TCP flows
between the same two hosts (or two networks) poses few
problems. The flow labeling component of a RON provides
the first handle necessary to achieve this goal, and a routing
component that performs flow assignment would provide the
other part.

When a cooperating RON system either controls the majority
of the available bandwidth on its links, or is given quality of
service (QoS) guarantees on individual links of the network
within a single ISP, it may be possible to then use the over-
lay network to provide global QoS guarantees to individual
flows that traverse the overlay1.

3.5 Routing Policies and Deployment

As with any overlay or tunneling technique, RONs create the
possibility of misuse, violation of Acceptable Use Policies
(AUPs), or violation of BGP transit policies. At the same
time, RONs also provide more flexible routing that canen-
hance the ability of organizations to implement sophisticated
policy routing, which is the ability to make routing decisions
based upon thesource or type of traffic, not just its destina-
tion address. This is an old idea [2], but its use in backbone
routers have been scarce because of the increased CPU load
it frequently imposes.

RONs interact with network policies in two ways. Because
RONs are deployed only between small groups of cooperat-
ing entities who have already purchased the Internet band-
width they use, they cannot be used to find “back-doors”
into networks without the permission of an authorized user
of those networks. The upholding of an organization’s AUP
is primarily due to cooperation of its employees, and this re-
mains unchanged with the deployment of RONs.

More importantly, the smaller nature of RONs running atop
powerful desktop computers can be used to implement pol-
icy routing on a per-application basis. One of our goals is
the creation of a policy-routing aware forwarder with which
administrators can easily implement policies that dictate. For
instance, one policy is that only RON traffic from a particular
research group may be tunneled over Internet2; traffic from
the commercial POPs must traverse the commercial Internet.

3.6 Status

We have implemented a basic RON system to demonstrate
the feasibility of our end-host based approach and are con-
tinuing to refine our design and implementation. We are de-
ploying our prototype at a few nodes across the Internet and

1This possibility was suggested by Ion Stoica.

137

are measuring outages, loss rates, latency, and throughput to
quantify the benefits of RON. We have built one RON ap-
plication, an IP forwarder that interconnects with other such
clients to provide an Overlay ISP service.

4 Related Work

The Detour study made several observations of suboptimal
Internet routing [11]. Their study of traceroute-based mea-
surements and post-analysis of Paxson’s [8, 9] data shows
that alternate paths may have superior latency or loss rates.
These studies used traceroutes scheduled from a central
server, which may undercount network outages when the
scheduler is disconnected. Our research builds on their anal-
ysis by elucidating an approach for an architecture to exploit
these properties. The Detour framework [3] is an in-kernel
packet encapsulation and routing architecture designed to
support alternate-hop IP packet routing for improved per-
formance. In contrast, RON advocates tighter integration of
the application and the overlay, which permits “pure appli-
cation” overlays and allows the use of application-defined
quality metrics and routing decisions. Furthermore, the main
objective of RON is reliability, not performance.

Content Delivery Networks (CDNs) use overlay techniques
and caching to improve the performance of specific applica-
tions, such as HTTP and streaming video. The functionality
provided by the RON libraries may ease the development of
future CDNs by providing some basic routing components.

The X-Bone is designed to speed the deployment of IP-based
overlay networks [13]. It provides a GUI for automated con-
figuration of IP addresses and DNS names, simple overlay
routing configurations, and remote maintenance of the over-
lays via secure HTTP. The X-Bone does not yet support
fault-tolerant operation or metric-based route optimization.
Its management functions are complementary to our work.

5 Summary and Research Agenda

This paper made the case for developing reliable distributed
Internet services and applications using Resilient Overlay
Networks (RONs), an application-level routing and packet
forwarding system. A RON improves the end-to-end reliabil-
ity of Internet communication by taking advantage of alter-
nate paths and enabling application-controlled path selection
in a way that traditional BGP-based Internet routing cannot.

While measurements collected by us and others suggest that
RONs might work well in practice, several key research
questions need to be addressed. Some of these are:

1. How many intermediate hops? We hypothesize that, in
practice, it is sufficient to consider paths that include at most
one intermediate RON node to obtain the benefits of im-
proved reliability and performance. If this is true, it will sim-
plify RON’s path selection mechanisms and allow the imple-
mentation of a variety of application-controlled metrics.

2. How do we choose routes? Route selection involves sum-
marizing link metrics, combining them into a path metric,
and applying hysteresis to come up with an estimate of the
route quality. How do we best perform these actions for dif-
ferent link metrics? How do we filter out bad measurements,
and perform good predictions? How do we combine link
metrics (such as loss and latency) to meet application needs?

3. How frequently do we probe? The frequency of probing
trades off responsiveness and bandwidth consumption. The
speed with which failed routes can be detected will deter-
mine how well RONs will improve end-to-end reliability.

4. What routing policies can RON express? RONs may allow
more expressive routing policies than current approaches, in
part because of their application-specific architecture.

5. How do RONs interact? What happens if RONs become
wildly popular in the Internet? How do independent RONs
sharing network links interact with one another and would
the resulting network be stable? Understanding these inter-
actions is a long-term goal of our future research.

References
[1] CHANDRA, B., DAHLIN , M., GAO, L., AND NAYATE , A.

End-to-end WAN Service Availability. InProc. 3rd USITS
(San Francisco, CA, 2001), pp. 97–108.

[2] CLARK , D. Policy Routing in Internet Protocols. Internet
Engineering Task Force, May 1989. RFC 1102.

[3] COLLINS, A. The Detour Framework for Packet Rerouting.
Master’s thesis, University of Washington, Oct. 1998.

[4] DAVIE , B., AND REKHTER, Y. MPLS: Technology and Ap-
plications. Academic Press, San Diego, CA, 2000.

[5] L ABOVITZ , C., AHUJA, A., BOSE, A., AND JAHANIAN , F.
Delayed internet routing convergence. InProc. ACM SIG-
COMM ’00 (Stockholm, Sweden, 2000), pp. 175–187.

[6] The North American Network Operators’ Group (NANOG)
mailing list archive. http://www.cctec.com/
maillists/nanog/index.html, Nov. 1999.

[7] PARTRIDGE, C. Using the Flow Label Field in IPv6. Internet
Engineering Task Force, 1995. RFC 1809.

[8] PAXSON, V. End-to-End Routing Behavior in the Internet. In
Proc. ACM SIGCOMM ’96 (Stanford, CA, Aug. 1996).

[9] PAXSON, V. End-to-End Internet Packet Dynamics. InProc.
ACM SIGCOMM ’97 (Cannes, France, Sept. 1997).

[10] REKHTER, Y., AND LI, T. A Border Gateway Protocol 4
(BGP-4). Internet Engineering Task Force, 1995. RFC 1771.

[11] SAVAGE, S., COLLINS, A., HOFFMAN, E., SNELL, J.,AND

ANDERSON, T. The end-to-end effects of Internet path selec-
tion. In Proc. ACM SIGCOMM ’99 (1999), pp. 289–299.

[12] SESHAN, S., STEMM, M., AND KATZ, R. H. SPAND:
Shared Passive Network Performance Discovery. InProc. 1st
USITS (Monterey, CA, December 1997).

[13] TOUCH, J., AND HOTZ, S. The X-Bone. InProc. Third
Global Internet Mini-Conference in conjunction with Globe-
com ’98 (Sydney, Australia, Nov. 1998).

138

Position Summary: Toward a rigorous data type model for HTTP

Jeffrey C. Mogul (Jeffrey.Mogul@Compaq.com)
Compaq Computer Corp. Western Research Lab., 250 University Ave., Palo Alto, CA 94301

Abstract

The HTTP protocol depends on a structure of several
data types, such as messages and resources. The current ad
hoc data type model has served to support a huge variety
of HTTP-based applications, but its weaknesses have been
exposed in attempts to formalize and (especially) to extend
the protocol. These weaknesses particularly affect the se-
mantics of caching within the HTTP distributed system.

1. Introduction
HTTP is a network protocol, but it is also the basis of

a large and complex distributed system, with the possibil-
ity of caches at many points. An unambiguous and extens-
ible specification of HTTP caching has proved difficult, be-
cause HTTP lacks a clear and consistent data type model for
the primitive structures of the protocol itself. This is partly
a consequence of a conceptual faultline between “protocol
designers” and “distributed system designers,” and a failure
to meld the expertise of both camps.

2. Problems with the current data model
Every HTTP request operates on aresource and results

in aresponse. HTTP adopted the MIME termentity, defined
as “The information transferred as the payload [headers and
body] of a request or response ...” HTTP/1.1 addedentity
tags, used in cache validation. The server may attach an
entity tag to a response; a client can then validate the cor-
responding cache entry by including this entity tag in its re-
request to the server If it matches the current entity tag, the
server can respond with a “Not Modified” message instead
of sending the entire entity.

What is the data type of the result of a simple HTTP GET
operation? Is it an entity? The attempted analogy between
MIME messages and HTTP data types treats the message as
the central concern, which is true for MIME (an email pro-
tocol that transfers messages) but not for HTTP (a protocol
for remote operations on resources). Also, HTTP allows the
transmission of subranges of the bytes of a result, or of just
the metainformation without the associated body, so the res-
ult might span several HTTP-layer messages. Therefore, an
HTTP “entity” is merely an ephemeral, and perhaps partial,
representation of one aspect of a resource.

So while HTTP has reasonably well-defined terms and
concepts for resources and messages, it has no clearly
defined term to describe the result of applying an opera-
tion to a resource. This might seem like a mere terminology

quibble, but the lack of such a term, and the failure to recog-
nize the concept's importance, has led to a several difficult
problems.

In particular, what does an HTTP cache entry store?
Clearly not the resource itself (think of a CGI-generated
resource). Not a Web “document,” since these are often
composites of multiple resources with differing cachability
properties. Instead, HTTP caches are currently defined as
storing “response messages.” (I.e., an HTTP cache entry
does not store what a resource is; it stores what the resource
says.) As a result, it is difficult to define precisely what
an HTTP cache must do in many circumstances, since the
same resource could say two different things in response
to two apparently identical requests. The lack of a clear
formal specification for caching causes implementors to
make guesses. This leads to non-interoperability, because
content providers cannot predict what caches do.

It also makes it very hard to extend the protocol to handle
partial updates (e.g.,delta encoding) or even to define pre-
cisely how to combine existing HTTP/1.1 features (e.g., the
ability to request arange of bytes and also to apply com-
pression). The current model does not even provide a useful
framework to discuss these questions.

3. A better model
We could solve these problems by adding a new data

type, theinstance. One can think of an instance as a com-
plete snapshot of the current result of applying a GET to the
resource. The instance can then be the input to a series of
instance manipulations, which can include range selection,
delta encoding, and compression.

In this model, HTTP cache entries are defined to store
instances (or partial instances). An entity tag is tied to an
instance, because it must be assigned prior to any instance
manipulations. It is clearly not tied to the “entity” (and
would better have been called an “instance tag”). Therefore,
a cache can tell that two partial pieces of the same instance
may be combined, because they have the same entity tag.

The implications of the new model (necessary protocol
changes; the ability to more rigorously define existing
and new HTTP features) require a longer writeup. (See
research.compaq.com/wrl/people/mogul/hotos8).
But it should be clear that the long-term success of a pro-
tocol such as HTTP depends on clear definitions that
address distributed-systems issues, and on a better dialog
between protocol designers and operating systems people.

139

Position Summary: The Conquest File System—Life after Disks

An-I A. Wang, Peter Reiher, and Gerald J. Popek
Computer Science Department

University of California, Los Angeles
{awang, reiher, popek}@fmg.cs.ucla.edu

Geoffrey H. Kuenning
Computer Science Department

Harvey Mudd College
geoff@cs.hmc.edu

The cost of paper and film has been a critical barrier to
cross for a storage technology to achieve wide deploy-
ment and better economy of scale. By 2003, the declining
cost of persistent RAM (e.g., battery-backed DRAM) will
break this barrier, signifying the arrival of the persistent-
RAM-based storage era.

Persistent RAM will not fully replace disks for many
years. However, as RAM becomes cheap, memory can
assume more roles of file systems. In particular, by 2005
high-end desktops can afford to be equipped with 4 to 10
Gbytes of persistent RAM for storage; this is sufficient to
deliver nearly all aspects of file-system services, with the
single exception of high-capacity storage.

TheConquest file system is designed to provide a tran-
sition from disk- to persistent-RAM-based storage. Ini-
tially, we assume 2 to 4 Gbytes of persistent RAM and the
popular single-user desktop environment. Unlike other
memory file systems,Conquest can incrementally assume
more responsibility for in-core storage as memory prices
decline. TheConquest approach realizes most of the
benefits of persistent-RAM-based file systems before
persistent RAM becomes cheaply abundant.Conquest
also benefits from the removal of disks as the primary
storage by identifying disk-related complexities and iso-
lating them from the critical path where possible.

Unlike cache, which treats main memory as a scarce
resource,Conquest anticipates the abundance of cheap
persistent RAM. Conquest uses disk to store only the
data well suited for disk characteristics. Reducing the
range of access patterns and characteristics anticipated by
the file system translates into simpler disk optimizations.

Our initial Conquest implementation uses core mem-
ory to store all metadata, small files (currently based on a
size threshold), executables, and dynamically linked li-
braries, leaving only the content of the large files on disk.
All accesses to in-core data and metadata incur no data
duplication or disk-related overhead, and executions are
in-place. For the large-file-only disk storage, we can use
a larger access granularity to reduce the seek-time over-
head. Because most accesses to large files are sequential,
we can relax many historical disk design constraints, such

Gerald Popek is also associated with NetZero, Inc.

as complex layout heuristics intended to reduce fragmen-
tation or average seek times.

Conquest also speeds up computing by allowing easy
reuse of previously computed results. With an expanded
API, Conquest allows direct storage of runtime data struc-
tures, states, or even processes that interact with the envi-
ronment in constrained ways. Unlike memory-mapped
files, storing runtime states underConquest requires no
compaction or alignment to page boundaries, which bene-
fits many data representations. Direct storage of runtime
states relieves developers of the need for serialization and
deserialization. Applications can also take advantage of
storing runtime data in the most appropriate form for
processing. For example, network applications can store
outbound data in the format of network packets to bypass
both disk-to-memory and memory-to-network transla-
tions.

Storing data in core inevitably invites the question of
reliability and data integrity. However, conventional
techniques of sandboxing, access control, checkpointing,
fsck, and object-oriented self-verification still apply. For
example,Conquest still needs to perform frequent system
backups. Conquest uses common memory protection
mechanisms by having a dedicated memory address space
for storage (assuming a 64-bit address space). A periodic
fsck is still necessary, but it runs at memory speed. We
are also exploring the object-store approach of having a
“typed” memory area, so a pointer can be verified to be of
a certain type before dereferencing.

Various areas ofConquest are under investigation.
Memory underConquest is a shared resource among exe-
cution, storage, and buffering for disk access. Finding the
“sweet spot” for system performance requires both mod-
eling and empirical investigation. The ability forCon-
quest to store runtime states has the flavor of wide-
address-space computing, which can be applied and ex-
tended to the distributed environment and database sys-
tems.

The Conquest prototype is operational under Linux
2.4.2. It is POSIX compliant and supports both in-core
and on-disk storage. The source consists of 3,800 lines of
kernel code, 1,400 lines of file-system-creation code, and
3,600 lines of testing code. Initial deployment and per-
formance measurements are under way.

140

Position Statement: Supporting Coordinated Adaptation in Networked
Systems

Patrick G. Bridges Wen-Ke Chen
Department of Computer Science

The University of Arizona
Tucson, AZ 85721

Matti A. Hiltunen Richard D. Schlichting
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

While adaptation is widely recognized as valuable, adap-
tations in most existing systems are limited to changing ex-
ecution parameters in a single software module or on a sin-
gle host. Our position is that the true potential of adapta-
tion can only be realized if support is provided for more gen-
eral solutions, including adaptations that span multiple hosts
and multiple system components, andalgorithmic adapta-
tions that involve changing the underlying algorithms used
by the system at runtime. Such a general solution must, how-
ever, address the difficult issues related to these types of adap-
tations. Adaptation by multiple related components, for ex-
ample, must be coordinated so that these adaptations work to-
gether to implement consistent adaptation policies. Likewise,
large-scale algorithmic adaptations need to be coordinated
using graceful adaptation strategies in which as much nor-
mal processing as possible continues during the changeover.
Here, we summarize our approach to addressing these prob-
lems in Cactus, a system for constructing highly-configurable
distributed services and protocols [2].

When multiple related system components can adapt to
changes in the system state, the adaptations performed by
these components must be coordinated to achieve a con-
sistent adaptation policy. To achieve this, we have imple-
mented anadaptation controller architecture that is responsi-
ble for making adaptation decisions for related adaptive com-
ponents. Adaptation policies are specified on a component-
by-component basis using sets of fuzzy logic rules, and then
composed along with rules to coordinate the actions of differ-
ent components to form a single controller. The challenge, of
course, is designing a set of fuzzy rules that reflect the best
adaptation strategies for a given situation.

Even when coordinated adaptation decisions are made,
large-scale algorithmic adaptations still present a difficult
challenge. Without special provisions, for example, an adap-
tive system may be unable to process normal application traf-
fic while it is changing between different algorithms. To al-
leviate this problem, we have designed and implemented a
graceful adaptation protocol that coordinates changes across

�This work supported in part by DARPA under grant N66001-97-C-8518
and NSF under grants ANI-9979438 and CDA-9500991.

hosts and gracefully switches between algorithmic alterna-
tives on each host. This protocol uses agreement, barrier syn-
chronization, and message tagging to ensure that hosts reach
consistent adaptation decisions and change between alterna-
tive algorithms with minimal disruption.

These techniques are being prototyped using Cactus, a de-
sign and implementation framework for constructing config-
urable services in networked systems. The graceful adap-
tation protocol and adaptation controller are currently being
prototyped separately using different versions of Cactus. The
controller is being implemented using the C version of Cactus
2.0. The initial focus is on coordinating layers for a test con-
figuration consisting of a streaming video application layered
on a configurable transport protocol, CTP [3]. Initial experi-
mental results suggest that the controller is indeed successful
in coordinating adaptation between multiple components. An
initial version of the graceful adaptation protocol has been
completed using the C++ version of Cactus 1.1. Preliminary
experimental results using an adaptive group communication
service suggest that the protocol does indeed provide a grace-
ful transition from one adaptation aware module to another,
and demontrate the overall value of adaptive strategies. Fur-
ther details on the graceful adaptation protocol can be found
in [1].

References
[1] W.-K. Chen, M. Hiltunen, and R. Schlichting. Constructing

adaptive software in distributed systems. InProceedings of the
21st International Conference on Distributed Computing Sys-
tems, Phoenix, AZ, Apr 2001.

[2] M. Hiltunen, R. Schlichting, and G. Wong. Cactus system soft-
ware release. http://www.cs.arizona.edu/cactus/software.html,
Dec 2000.

[3] G. Wong, M. Hiltunen, and R. Schlichting. CTP: A configurable
and extensible transport protocol. InProceedings of the 20th An-
nual Conference of IEEE Communications and Computer Soci-
eties (INFOCOM 2001), Anchorage, Alaska, Apr 2001.

141

Position Summary.
Middleware for Mobile Computing: Awareness vs. Transparency

Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

fL.CaprajW.EmmerichjC.Mascolog@cs.ucl.ac.uk

Abstract

Middleware solutions for wired distributed systems can-
not be used in a mobile setting, as mobile applications im-
pose new requirements that run counter to the principle of
transparency on which current middleware systems have
been built. We propose the use of reflection capabilities and
meta-data to pave the way for a new generation of middle-
ware platforms designed to support mobility.

1. The Rationale

The increasing popularity of wireless devices, such as
mobile phones, personal digital assistants and the like, is en-
abling new classes of applications that present challenging
problems to application designers. These devices face tem-
porary loss of network connectivity when they move; they
discover other hosts in an ad-hoc manner; they are likely
to have scarce resources, such as low battery power, slow
CPU speed and small amounts of memory; and they are re-
quired to react to frequent and unannounced changes in the
environment, e.g. variable network bandwidth.

Middleware technologies [2] have been designed and
successfully used to support the development of stationary
distributed systems built with fixed networks. Their success
has been mainly due to their ability of making distribution
transparent to both users and software engineers, so that
systems appear as single integrated computing facilities.

However, completely hiding the implementation details
from the application becomes both more difficult and makes
little sense in a mobile setting. Mobile systems need to
quickly detect and adapt to drastic changes happening in
the environment. A new form ofawareness is needed, as
opposed to transparency, to allow application designers to
inspect the execution context andadapt the behaviour of
middleware accordingly.

2 Research Directions

We believe that reflection and metadata can be success-
fully exploited to develop middleware targeted to mobile
settings. Through metadata we obtain separation of con-
cerns, that is, we distinguish what the middleware does from
how the middleware does it. Reflection is the means that we
provide to applications in order to inspect and adapt mid-
dleware metadata, that is, influence the way middleware be-
haves, according to the current context of execution.

We have developedXMIDDLE [3], a middleware for mo-
bile computing that focuses on synchronization of repli-
cated XML documents. In order to enable application-
driven conflict detection and resolution,XMIDDLE sup-
ports the specification of conflict resolution policies through
meta-data definition using XML Schema.

The following step has been the definition of a global
model for the design of mobile middleware systems, based
on the principles mentioned above. In [1], we have dis-
cussed a reflective conceptual model and a reflective archi-
tecture of middleware systems targeted to support mobile
applications that call for context-awareness, where by con-
text we do not mean only location but everything in the
physical environment that can influence the behaviour of
the application, such as memory and battery power.

References

[1] L. Capra, W. Emmerich, and C. Mascolo. Reflective Middle-
ware Solutions for Context-Aware Applications. Technical
Report RN/01/12, UCL-CS, 2001. Submitted for Publication.

[2] W. Emmerich. Software Engineering and Middleware: A
Roadmap. InThe Future of Software Engineering - 22nd Int.
Conf. on Software Engineering (ICSE2000), pages 117–129.
ACM Press, May 2000.

[3] C. Mascolo, L. Capra, and W. Emmerich. XMIDDLE: A Mid-
dleware for Ad-hoc Networking. 2001. Submitted for Publi-
cation.

142

Position Summary: Separating Mobility from Mobile Agents

Kåre J. Lauvset , Kjetil Jacobsen and Dag Johansen
Dept. of Computer Science, University of Tromsø, Tromsø, Norway

Keith Marzullo

Dept. of Computer Science, University of California San Diego, La Jolla, USA.

Mobile agents, like processes, are separate units of
concurrent execution. They differ in how they view the
processor upon which they run. For processes, the proces-
sor is abstracted away: each process can consider itself to
be running on an independent virtual machine. For mobile
agents, the processor upon which they run is not abstract-
ed away: it is a first-class entity that is under program
control. A mobile agent can move from one processor to
another in order to profit from the details - such as fast
access to local data, use of computational resources and
I/O devices, and so on - of the new processor.

The reasons for using mobile agents are well-known:
moving computation to data to avoid transferring large
amounts of data; supporting disconnected operation by,
for example, moving a computation to a network that has
better connectivity; supporting autonomous distributed
computation by, for example, deploying a personalized
filter near a real-time data source. Many mobile agent
systems have been constructed and are in the public do-
main. But, despite these well-known advantages and
widely available software, mobile agents are not yet being
used as a common programming abstraction.

We have been working since 1993, under the name of
TACOMA, on operating system support and application of
mobile agents. We have addressed issues including fault-
tolerance, security, efficiency, and runtime structures and
services. We have built a series of mobile agent middle-
ware systems and evaluated them by building realistic and
deployed applications. We have found that mobile agents
are especially useful for large-scale systems configuration
and deployment, system and service extensibility, and
distributed application self-management.

The programming model TACOMA supports has
changed over these years to reflect our experience with
writing real applications. Like other mobile agent sys-
tems, TACOMA started with a programming model that
resembled the characterization given above of mobile
agents being processes with explicit control over where
they execute. We call this the traditional model of mobile
agents. Using the traditional model leads to several prob-
lems including: the complexity of code that contains an
explicit and dynamic trajectory; the overhead of implicit

state capture; and the temptation to support only a single
programming language (which is typically Java, whose
use presents yet other problems).

More fundamentally, we have found that mobile
agents are best thought of as one of several tools used
together to build distributed applications. A distributed
application has, in addition to its function, nonfunctional
aspects such as its deployment, monitoring, adaptation to
a changing runtime environment, and termination. We
call this the factored model of distributed applications.
This model separates the functional aspect of the appli-
cation from its mobility and management aspects. Mobile
agent platforms can be used to implement the mobility
aspect, and the mobile agents themselves to implement
the management aspects.

Legacy and COTS software constitute a significant
portion of the function of many real-world distributed
applications. The mobility aspect provides the mechan-
isms and structures necessary for deploying the function
and for its adaptive reconfiguration. The management
aspect manages both function and mobility at a higher
level. More specifically, it implements polices for when,
where, and how to execute the function. Examples of
management policies of applications include fault-
tolerance, server cloning to accommodate increased
demand, and invoking security countermeasures in
response to intrusion detection alarms.

We have redesigned TACOMA to only directly pro-
vide the mobility aspect of distributed applications. This
version, called νTOS, provides less than full-fledged
mobile agent systems and more than remote execution
facilities such as ssh, rsh and rexec. It is rather small:
it consists of approximately 90 lines of Python code.
Despite its diminutive size, it can be used to implement
itinerant mobile agents that move over encrypted network
channels.

We have used νTOS to construct some simple but
realistic distributed applications such as a parallel image
renderer based on COTS components. We are now
building a personal computational grid called Open Grid.
Doing so is making concrete issues of deployment,
security, fault-tolerance, and adaptation.

Further details on the νTOS project can be found at
http://tacoma.cs.uit.no. This work was supported by NSF (Norway) grants No.

112578/431 and 126107/431 (Norges Forskningsråd,
DITS program).

143

Position Summary: The Importance of Good Plumbing
Reconsidering Infrastructure in Distributed Systems

Andrew Warfield and Norm Hutchinson
University of British Columbia
fandy,normg@cs.ubc.ca

The fundamental abstractions and mechanisms used to
deliver communications within distributed systems have re-
mained essentially unchanged for a considerable time. With
very few exceptions, operating systems implement a sim-
ple, socket-based approach to communications in which the
host’s involvement in a particular communication stream
ends at the network interface. TCP/IP provides an environ-
ment in which the notion of a data stream does not actually
exist within the network, but rather is an abstraction made by
‘connected’ endpoints.

Above the network, significant developments have been
made to advance the state of distributed systems technology.
Many sizeable middleware infrastructures have been devel-
oped and are actively being used in the construction of com-
mercial distributed applications. Despite the benefits pro-
vided by these packages, they remain dependent on an in-
sufficient infrastructure, which may be considered according
to three fundamental flaws: 1. TCP/IP simply does not pro-
vide adequate network functionality for distributed systems.
The shortcomings of the protocol provide a list of ongoing
research problems including mobility, quality of service, and
group collaboration. 2. The primary OS abstraction for a
stream, the socket, is inflexible and represents a poor cou-
pling between the network and the OS. 3. Remote procedure
calls, which are thede facto approach to distributed invoca-
tion almost universally attempts to hide the network, obscur-
ing failures (and features) from overlying applications.

Within the network TCP/IP also proves problematic. Con-
siderable research efforts exist in the ongoing attempts to
carry a legacy protocol well beyond the scope of its initial de-
sign. Traffic management, congestion control, and resource
reservation all remain largely unsolved problems due to the
difficulties of managing data streams within the network.

The existing infrastructure successfully provides a servi-
cable network. We feel that the ongoing functionality of the
existing system explains the thrust of research towards ad-
dressing individual deficiencies rather than addressing the
system as a whole. However, there is an opportunity to re-
alize substantial benefits through the development on an ab-
straction that is understood and supported by both the OS and
the network routers. Our work to date has been in the design
and development of a stream-centric model for communica-
tions which we have called theflow [1]. A flow is a uniquely
named, message-based, multicast communications stream.

Flows are named by FlowIDs which represent a collection
of resources used to provide a communications stream in
the same manner that process IDs represent resources associ-
ated with a computational task. By providing distinct names
for these multicast streams, services become decoupled from
network endpoints. This single property provides sweeping
benefits for mobility, fault tolerance, and resource location.

In addition to naming, we have implemented three prop-
erties of flows which we feel are beneficial to distributed ap-
plications. First, flow messages arebanded. Each flow has
a label space of 128 bands within which messages may be
sent. This allows an external separation of concerns for mes-
sages within a stream, and also provides an effective means to
tie administrative and fault messages to a stream from points
within the network. Second, flows support a notion oflocal-
ity. Locality acts as an extension of TTL that allows message
transmission to be scoped according to criteria such as geo-
graphic area, available bandwidth, or latency. Finally, flow
messages are delivered from the network to client-defined
queues. These queues allow local delivery options, such as
drop strategy and message ordering, to be defined and imple-
mented at the application. Queues may be attached to various
bands of a flow, providing a great degree of flexibility in how
and where the message stream is used.

We have finished an initial implementation of flows as a
network middleware and have become convinced that they
are an interesting and useful communications abstraction.
We are currently extending our definition to allow the recur-
sive embedding of flows, providing a hierarchy of streams.
We feel that this property will be very beneficial both in terms
of traffic management and software design. Additionally, we
are investigating methods of typing individual data streams in
order that the format of their content may be advertised to de-
vices along the transmission path. Our investigation of these
two properties coincides with efforts to implement flows ef-
ficiently at the network layer.

References

[1] Flows project web page. www.cs.ubc.ca/spider/andy/flows/.

We would like to acknowledge Alexander Fraser and Glenford
Mapp at AT&T research for their support and ideas, in particular
that of recursive flows.

144

Position Summary - Towards Global Storage Management and Data Placement

Alistair Veitch, Erik Riedel, Simon Towers and John Wilkes
Hewlett Packard Laboratories

{aveitch, riedel, stowers, wilkes}@hpl.hp.com

As users and companies increasingly depend on shared, net-
worked information services, we continue to see growth in
data centers and service providers. This happens as services
and servers are consolidated (for ease of management and
reduced duplication), while also being distributed (for fault-
tolerance and to accommodate the global reach of custom-
ers). Since access to data is the lifeblood of any organization,
a global storage system is a core element in such an infra-
structure. Based on success in automatically managing local
storage, we believe that the key attribute of such a system is
the ability to flexibly adapt to a variety of application seman-
tics and requirements as they arise and as they change over
time. Our work has shown that it is possible to automatically
design and configure a storage system of one or more disk
arrays to meet a set of application requirements and to
dynamically reconfigure as needs change, all without human
intervention. Work on global data placement expands the
scope of this system to a world of distributed data centers.

Data location
Ensuring that data is available in the right location is a key
challenge as data and applications go global. Due to speed of
light and congestion, network performance will always be a
bottleneck. The system will have to transparantly migrate
data to have the data that each application needs co-located
with the servers that are currently operating on it. Whether
data follows a particular user as they travel around the globe;
supports a global design team in its daily work; or handles
customer data or inventory for a global corporation, the indi-
vidual data “shadows” of all types of users and applications
must be supported efficiently. Such a system can be viewed
as a network of “cache” devices – each data center provides
a pool of storage that at any one time is caching a subset of
the global store. The key problem is deciding when to move
data from one to another, when to keep multiple copies, and
how many copies to keep – automating data placement such
that load is balanced both within and across data centers.

Data replication and consistency
For many applications, the most efficient solution will be to
have multiple replicas of the same data. Along with the core
requirement of availability in the event of local failures, the
makes it necessary to store the same data in multiple global
locations and keep it consistent. The ability to adapt consis-
tency levels within the storage system to the varying require-
ments of individual applications is a key enabler for global
data placement. Ideally this would be done transparently,
without changes to existing application code, and much of

the necessary information and flexibility is available even
with storage interfaces designed for local resources.

Mechanisms for maintaining consistency across global sites
range from expensive pessimistic approaches with multiple
round trips of locking overhead, to low latency optimisitic
approaches that allow occasional inconsistencies or require
rollback. To evaluate the cost of such schemes, we analyzed
traces for a number of applications, including email, soft-
ware development, databases, and web browsing. At the
storage level - after cache accesses have been eliminated -
the results do not seem very promising. A high fraction of
requests are updates, the ratio of metadata to data is high, and
a high fraction of requests are synchronous. However, con-
sidering individual applications in isolation, these metrics
vary widely, making adaptive consistency that uses different
mechanisms as appropriate attractive.1 We have also begun
to quantify how much sharing takes place, and see the frac-
tion of “hard” sharing in a large store is promisingly low.2

Security
Data must be secure, especially in a system where facilities
are shared amongst many different organizations. This
requires strong authentication, authorization and encryption
mechanisms, none of which are necessary in the context of
local storage systems. Initial analysis shows that large stores
quickly encompass large numbers of objects to be protected
and principals requiring authentication, posing scalability
problems. However, if we consider the number of objects
that an individual user handles - their “shadow” on the entire
store - and the commonality among access patterns to these
objects, the scope of security quickly becomes more tracta-
ble. The question then becomes which levels of abstraction
to provide for different classes of users and data.

System management and control
Our local management system can determine appropriate
placement in the local case with local information. We antic-
ipate a hierarchy in the global setting, with some optimiza-
tion best done within the data center, and a more global view
controlling movement across centers, all informed by the
“shadow” that supports a particular coherent data set or user.
Such a system must operate at a range of time scales and
granularities, and will critically depend on the ability to
accurately and efficiently model and predict the behavior of
all the components within and the links across the system.

1. Technical memo HPL-SSP-2001-1, HP Labs, March 2001.
2. “When local becomes global” 20th IPCCC, April 2001.

145

Position Summary: Towards Zero-Code Service Composition

Emre Kıcıman, Laurence Melloul, Armando Fox
{emrek, melloul, fox}@cs.stanford.edu

Stanford University

Zero-Code Composition For many years, people have
been trying to develop systems from modular, reusable
components[2]. The ideal iszero-code composition: build-
ing applications out of components without writing any new
code. By investigating zero-code composition, our goal is
to make composition easy enough to be of practical use to
systems researchers and developers. We are focusing on
identifying and removing systemic impediments to compo-
sition, and on exploiting composition to achieve system-
wide properties, such as performance, scalability, and re-
liability.

Impediments to Composition Today, even when compo-
nents are designed to be reused, software developers have
difficulties composing them into larger systems. We be-
lieve the problem lies with the methods and fundamen-
tal abstractions used to package and compose components.
For example, abstractions such as function calls work well
when building small systems, however, they actually en-
force properties on components that significantly impede
composition and reuse generally. These impediments can
be classified into two categories:

� Control flow impediments relate to the ordering of ex-
ecution of components [1]. For example, two compo-
nents cannot be used together when they make differ-
ent assumptions about the sequencing of computation
and passing of control between them.

� Interface impediments occur when components con-
tain statically bound information about other compo-
nents’ interfaces, such as method names, data types
and orderings, and communication protocols. How-
ever, this information will be invalid in different con-
texts, and will prevent the component from being
reused in an arbitrary composition.

A Data Flow Composition Model To avoid these im-
pediments, we advocate that compositions be built of au-
tonomousservices connected together in a data flow net-
work. Autonomous services avoid control model mis-
matches by keeping their own locus of control. Interface

impediments are avoided by allowing services to only name
their own input and output ports. The data flow model is de-
fined by the data dependencies between services, and pro-
vide an explicit description of the composition. A generic
run-time system handles passing data from one compo-
nent’s output port to another’s input port according to the
data flow description of the composition.

Explicitly exposing the structure of applications enables
systematic inspection, manipulation, and augmentation of
applications. We can inspect the data flow composition for
bottlenecks in performance, and strategically move, repli-
cate or replace parts of a composition which are performing
poorly. For example, one simplistic strategy is to dynami-
cally place caches around strings of expensive services in a
composition to improve performance. We can similarly ma-
nipulate a composition to increase its fault-tolerance, scala-
bility and reliability.

Current Status We have implemented a prototype com-
position architecture [3], and are beginning to implement
dynamic manipulations of compositions, and explore the
relationships between these manipulations, system-wide
properties and various service attributes such as determin-
ism or idempotency.

References

[1] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In Proceedings of International Conference on Software En-
gineering ’95, Seattle, April 1995.

[2] P. W. Gio Wiederhold and S. Ceri. Towards megaprogram-
ming: A paradigm for component-based programming.Com-
munications of the ACM, (11):89–99, 1992.

[3] E. Kıcıman and A. Fox. Using dynamic mediation to inte-
grate cots entities in a ubiquitous computing environment. In
Handheld and Ubiquitous Computing (HUC 2000), Second
International Symposium, Sept. 2000.

146

Position Summary: Aspect-Oriented System Structure

Yvonne Coady, Gregor Kiczales, Michael Feeley,
Norman Hutchinson, Joon Suan Ong and Stephan Gudmundson

University of British Columbia

Operating system structure is important – it leads to un-
derstandable, maintainable, ‘pluggable’ code. But despite
our best efforts, some system elements have been difficult
to structure. We propose a new analysis of this problem,
and a new technology that can structure these elements.

Primary functionality in system code has a well defined
structure as layered abstractions. Other key elements nat-
urally defy these structural boundaries – we say that they
crosscut the layered structure. For example, prefetching
for mapped files involves coordinated activity at three lev-
els: predicting the pattern of access and allocating pages
in the VM layer, determining the contiguity of blocks in
the disk layer, and reconciling the costs of retrieval in
the file system layer. Because of its inherent crosscutting
structure, the implementation of prefetching is scattered
through the primary functionality in each of the layers in-
volved (Figure 1a).

In FreeBSD v3.3, prefetching for mapped files is ap-
proximately 265 lines of code, grouped into 10 differ-
ent clusters, scattered over 5 functions from VM and FFS
alone. Dynamic context, such as flagging VM-based re-
quests, is passed as parameters from high level functions
down through lower ones. Portions of prefetching code
violate layering by accessing high level abstractions from
lower level functions, such as freeing and page-flipping
VM pages from within FFS. In this form, there is no struc-
ture to the implementation of prefetching – it is hard to un-
derstand, hard to maintain, and certainly hard to unplug.

Aspect-oriented programming (AOP) [3, 2] uses lin-
guistic mechanisms to support the separation of cross-
cutting elements, oraspects of the system, from primary
functionality. Aspects declare code to executebefore, af-
ter or wrappedaround existing primary function calls,
within the execution flow of other function calls, and with
access to specific parameters of those calls. AOP im-
proves the comprehensibility of crosscutting elements in
two ways: it allows small fragments of code that would
otherwise be spread across functions from disparate parts
of the system to be localized; and it makes the local-
ized code more coherent, because interaction with pri-
mary functionality is declared explicitly and within shared
context.

We have developed a proof-of-concept AOP implemen-
tation of prefetching in FreeBSD [1]. In our implementa-
tion, we have been able to modularize prefetching. The

(b) Aspect−oriented structure

and
attachescrosscuts
to a path

(a) Original structure

prefetching
code for code for

prefetching
is localized

the layers

is scattered
and

Disk layer

FFS layer

VM layer

Figure 1:Prefetching and primary functionality.

internal structure of the prefetching code and its interac-
tion with the overall VM and FFS activity are explicitly
defined as a sequence of activities that occur at well de-
fined pointsalong a page-fault path, rather than being
broken into layers (Figure 1b). The AOP implementa-
tion is designed to allow us to see precisely how low-level
prefetching code acts in service of high-level prefetching
code. Primary page fault handling functionality no longer
includes prefetching code, nor does it explicitly invoke
prefetching functionality.

In the AOP implementation, one aspect captures how
prefetching plays out over page-fault handling for sequen-
tially accessed mapped files: first the page map is locked
and pages are pre-allocated according to a prediction, then
these and possibly other pages are synchronously brought
into the file buffer cache and page-flipped where appro-
priate, and finally further pages may be asynchronously
prefetched into the cache. We can clearly see how this
differs from the prefetching aspect for the non-sequential
case, where pages may be de-allocated if it is not cost-
effective to retrieve them, the file buffer cache is not in-
volved, and further asynchronous prefetching is not ap-
plied. Structured this way, prefetching gains context, is
more tractable to work with, and is even unpluggable.

We believe that other key elements of operating sys-
tems are crosscutting and that their unstructured imple-
mentation is excessively complex. We are currently de-
veloping AspectC, and plan to use it to further explore the
structure of elements such as paging in layered system ar-
chitectures, consistency in client-server architectures, and
scheduling in event-based architectures.

References

[1] AspectC. www.cs.ubc.ca/labs/spl/aspects/aspectc.html.

[2] AspectJ. www.aspectj.org.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InEuropean Conference on Object-Oriented
Programming (ECOOP), 1997.

147

Position Summary. An Streaming Interface for Real-Time Interprocess
Communication

Jork Löser Hermann H¨artig Lars Reuther

Dresden University of Technology, Germany

Abstract

Timely transfer of long, continuous data streams and
handling data omission are stringent requirements of mul-
timedia applications. To cope with these requirements, we
extend well known mechanisms for inter-address-space data
transmission, such as zero-copy and fast IPC, by the notion
of time. Therefore, we add a time track to data streams and
add mechanisms to limit the validity of data. For cases of
overload we add notification and revocation techniques.

Inadequacies of current IPC mechanisms Efficient in-
terprocess communication schemes for long data transfers
in non real-time applications [2, 5, 6] address the problem
of copy avoidance by using shared memory. But they do not
cover issues of time, such as data loss due to CPU shortage.

In hard real-time systems data loss does not occur, be-
cause the entire system is designed for the worst case re-
garding resource needs during execution. However, this re-
sults in poor resource utilization and is therefore not prac-
tical. Designing the system for the average case improves
the overall resource utilization [4, 1], at the cost of quality.
Resource shortages during execution can happen and lead
to data loss then. To cope with this, data loss should be
expressed at the communication layer.

Tolerating occasional resource shortages allows multiple
applications to share resources, e.g. memory pools for com-
munication buffers. This in turn requires retracting these re-
sources in overload situations and hence must be supported.

The DROPS Streaming Interface The DROPS Stream-
ing Interface (DSI) is our approach to a real-time inter-
process communication subsystem. It defines a user-level
timed packet-oriented zero-copy transport protocol between
real-time components. The data flows are represented by
streams with assigned traffic specifications.

For actual data transfer, DSI uses a consumer-producer
scheme on a ring buffer containing packet descriptors. The
packet descriptors provide an indirection for data access and
allow a flexible use of the shared data buffers.

The specifications of streams in DSI base on jitter-
constrained periodic streams (JCS) [3]. JCS allow to esti-

mate the resources needed for a given stream, e.g. buffer ca-
pacity. On stream creation, DSI uses these estimates when
establishing the shared data buffers. If the communication
peers behave conforming to their specification, no buffer
shortage and no data loss occurs.

In cases of resource shortages, the communication peers
cannot always meet their traffic specification. To cope with
this at the sender, DSI adds timestamp information to the
transferred data packets. To cope with resource shortage at
the receiver, DSI limits the validity of data by time. This
means, the data packets produced at the sender will expire
after a certain time, even they were was not consumed by
the receiver. For both techniques, DSI uses virtual time,
which is assigned to and stored together with each data
packet. The virtual time corresponds to the position of the
data in the entire stream. The mapping of virtual time to
real-time is the responsibility of the communication part-
ners.

A problem arises when the expiration of data must be
enforced. It must not impose any blocking, but the sender
must know for sure, that the receiver will not continue to
access old data anymore. Thus sending a message to the re-
ceiver and waiting for an answer is not an option. To enforce
the expiration of data DSI uses virtual memory techniques.
For this, the sender can request retraction of shared mem-
ory pages from the receiver. When the receiver noticed the
retraction, it requests re-establishing the memory mapping.
This allows an immediate notification without blocking.

References
[1] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow

imprecise results.IEEE Transactions on Computers, 39(9):1156–1173, Sept.
1990.

[2] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-domain transfer
facility. In 14th ACM Symposium on Operating System Principles (SOSP), pages
189–202, Asheville, NC, Dec. 1993.

[3] C.-J. Hamann. On the quantitative specification of jitter constrained periodic
streams. InMASCOTS, Haifa, Israel, Jan. 1997.

[4] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul. Cooperating resource
managers. InFifth IEEE Real-Time Technology and Applications Symposium
(RTAS), Vancouver, Canada, June 1999.

[5] F. W. Miller, P. Keleher, and S. K. Tripathi. General data streaming. In19th
IEEE Real-Time Systems Sysmposium (RTSS), Madrid, Spain, Dec. 1998.

[6] V. S. Pai, P. Druschel, and W. Zwanenpoel. IO-Lite: A unified I/O buffering and
caching system.ACM Transactions on Computer Systems, 18(1):37–66, Feb.
2000.

148

Position summary:
eOS – the dawn of the resource economy

John Wilkes, Patrick Goldsack, G. (John) Janakiraman,
Lance Russell, Sharad Singhal, and Andrew Thomas

Hewlett-Packard Laboratories, Palo Alto, CA 94304
{john_wilkes, patrick_goldsack, john_janakiraman, lance_russell, sharad_singhal, andrew_thomas}@hpl.hp.com

We believe that achieving the benefits of a resource
economy, which supports the execution of services wherever
and whenever is most convenient, cost-effective, and
trustworthy, represents the next big computer systems
research opportunity. That is, the emphasis in the operating
research community should move away from extracting a
few more percentage points of speed from individual
computing resources, and focus instead on how to size,
provision, and manage those resources to serve the needs of
a rapidly diversifying set of services. HP Laboratories are
embarking on a major endeavor to pursue this, and are
actively seeking research partners to collaborate with us.

The vision

Scene: a Corporate IT director’s office, the day before a
company board meeting. The COO, Chris, knocks on the
door, and comes in without waiting.

Chris: Jean: what’s all this about us getting billed for
computing resources in Singapore? How am I going to
explain that? We don’t have a facility there! What’s going
on here?

Jean: Calm down! It’s ok—really.
Chris: Not good enough. You know I have to give a bullet-

proof answer tomorrow … so you don’t have much time.
Jean: Ok, ok. Do you remember the end of the last month?

We had the R&D guys needing to do their protein shape
calculations to meet an FDA deadline …

Chris: Yes—but weren’t they using some cheap compute
cycles in Prague that you’d found for them?

Jean: … and then the marketing team wanted a new
computer-generated-graphics commercial in time for
Comdex that included film of our Malaysian manufacturing
plant as a backdrop …

Chris: Yes—but you said that wouldn’t be a problem …
Jean: … and the financial results that you are holding, by

the look of it, needed some decision analysis that we don’t
usually do, in collaboration with our Japanese partners …

Chris: Yes—but you told me …
Jean: Please—if I could finish?
Chris: Sorry. It’s been a bit hectic today.
Jean: No way could the Prague facility keep both the

chemists and the video team happy: both the computation
needs and storage space requirements were way over the
top. And the Malaysian plant has nothing, really, so it
looked like it would cost us a fortune. … All because those
geeks couldn’t get their timing right.

Chris: [Sigh.] I must have told them a dozen times …
Jean: But then our eOS system discovered that we are co-

buying storage space for the Malaysian lot-failure analysis
data with our Hong Kong subsidiaries in Singapore; and it

checked out the effects of migrating the data back to Prague
and the computations to Singapore.

Chris: But wouldn’t that have been a huge hassle to get
right? Moving all that data?

Jean: Not at all—I didn’t even find out until 2 days after it
had happened!

Chris: What do you mean? You let it make a decision like
that?

Jean: Sure! It even reported that the average response time
for our OLTP jobs were 30% better than usual—they
usually get hammered by the decision support people at the
end of the month. Probably because of the time-zone
effects. If you look, I think you’ll find we even saved money
- we used to have a team of people doing this stuff, trying to
keep one step ahead of the next wave of demands. They
could never keep up, so the customers were always
unhappy—and they were people who we couldn’t really
afford to have spending their time on that when there were
more important things they could do for us, like rolling out
new services.

Chris: But what about the users while things were being
changed?

Jean: They hadn’t even noticed! My biggest headache is
our accounting systems: they make the resource location
visible at your level—but nobody else cares.

Chris: You didn’t even have to come up with this solution
yourself?

Jean: Nope. I didn’t do a thing. eOS did it all!

What we’re up to

The proliferation of computers and the Internet into all
aspects of commerce and society is well under way. Many
of the fundamental technical issues to do with the
components of modern computing systems are either
solved, or well in hand. It is our position that the next wave
of innovation—and hence research opportunities—lies in
the field of aggregating pools of computing resources in
support of the explosion in scale, complexity, and diversity
of computing services. The eOS program at HP Labs is
aimed at removing the technical barriers to this happening.

eOS is not a single artifact: it is better thought of as a set
of related research activities that are striving towards
achieving the vision described above over the next few
years. It is akin to other research efforts (e.g., Oceano, Grid,
OceanStore) in large scale systems in its scope. The
research focus in eOS is to discover methods to abstract and
virtualize computing and storage resources and make them
available upon demand at a global scale.

A fuller version of this paper is obtainable from the URL
http://www.hpl.hp.com/personal/John_Wilkes/papers

149

Position Summary: Transport Layer Support for Highly-Available Network
Services

Florin Sultan, Kiran Srinivasan, Liviu Iftode
Department of Computer Science

Rutgers University, Piscataway, NJ 08854-8019
fsultan, kiran, iftodeg@cs.rutgers.edu

We advocate a transport layer protocol for highly-
available network services by means of transparent migra-
tion of the server endpoint of a live connection between co-
operating servers that provide the same service. The cur-
rent connection-oriented transport layer protocol of the In-
ternet (TCP) reacts to what it perceives as lost or delayed
segments only by retransmitting to the same remote end-
point of the connection. TCP provides no means to alleviate
a performance degradation (low throughput, many retrans-
missions etc.) caused by adverse factors like server over-
load or failure, or network congestion on a given path. At
the same time, TCP creates an implicit association between
the server contacted by a client and the service it provides.
This is overly constraining for today’s Internet service mod-
els, where the end user of a service is concerned more with
the quality of the service rather than with the exact identity
of the server.

We propose a transport protocol that(i) offers a better al-
ternative than the simple retransmission to the same server,
which may be suffering from overload or a DoS attack, may
be down, or may not be easily reachable due to congestion,
and (ii) decouples a given service from the unique/fixed
identity of its provider. Our protocol can be viewed as an
extension to the existing TCP, and compatible with it. To
start a service session, the client establishes a TCP connec-
tion with a preferred server, which supplies the addresses
of its cooperating servers, along with authentication infor-
mation. At any point during the lifetime of the session, the
server endpoint of the connection may migrate between the
cooperating servers, transparent to the client application.
The current and the new server hosts mustcooperate by
transferring supporting state in order to accommodate the
migrating connection.

We assume that the state of the server application can
be logically split among the connections being serviced, so
that there exists a well-defined state associated with each
service session. Transfer of this state ensures that a new
server can resume service to the client in the presence of
other concurrent service sessions. In addition to the associ-

ated application-level state, transfer of in-kernel TCP con-
nection state reconciles the TCP layer of the new server with
that of the client.

Our proposed solution provides a minimal interface to
the OS for exporting/importinga per-connection application
state snapshot by a server. The origin server executes the
export operation in order to(i) define an execution restart
point for the stateful service on the connection in case of
its migration, and(ii) synchronize the service state (reached
as a sequence of reads/writes on the connection) with the
in-kernel TCP state. The new server executes the import
operation to reinstate the connection at the restart point, and
resumes service on it, transfering data without altering the
TCP exactly-once semantics.

We intend to integrate this mechanism in a general mi-
gration architecture in which theclient side TCP initiates
connection migration, in response to varioustriggers that
can reside either at the client or at the server(s). Triggers
are events like a degradation in perceived traffic quality (on
the client side), failure, DoS attack, a load balancing deci-
sion etc. (on the server side).

The features of our protocol are:(i) It is general and
flexible, in that it does not rely on knowledge about a given
server application or application-level protocol.(ii) It al-
lows fine-grained migration of live individual connections,
unlike a heavy-weight process migration scheme.(iii) It is
symmetric with respect to and decoupled from any migra-
tion policy.

We have implemented an operational prototype of our
protocol in FreeBSD. We are currently building several ap-
plications that can take advantage of the protocol, including
a transactional database application with migration support.

Issues that we plan to address in the future are: ex-
plore and evaluate various migration trigger policies, eval-
uate the two options for connection state transfer (ea-
ger vs. lazy), develop support to implement fine-grained
fault tolerance, and explore the performance tradeoffs of
our scheme. More details can be found at our site:
http://discolab.rutgers.edu/projects/mtcp.htm.

150

MANSION: A Room-based Multi-Agent Middleware

Guido J. van’t Noordende, Frances M.T. Brazier, Andrew S. Tanenbaum, Maarten R. van Steen

Division of Mathematics and Computer Science, Faculty of Sciences
Vrije Universiteit, Amsterdam, The Netherlands

fguido,frances,ast,steeng@cs.vu.nl

Keywords: Middleware, Multi-Agent Systems, Distributed Systems, Mobile Agents, Virtual Environments

Abstract

In this paper we present work in progress on a
worldwide, scalable multi-agent system, based on a
paradigm of hyperlinked rooms. The framework of-
fers facilities for managing distribution, security and
mobility aspects for both active elements (agents) and
passive elements (objects) in the system. Our frame-
work offers separation of logical concepts from phys-
ical representation and a security architecture.

1 The Mansion Paradigm

Our framework consists of a world (or possibly
multiple disjoint worlds), each containing a set of hy-
perlinked rooms. Each room contains agents and ob-
jects. At any instant, an agent is in one room, but
agents can move from room to room and they can take
objects with them.

In essence, a room forms a shared data-space for
agents with regard to visibility. Agents can interact
only with objects in the same room, but can send mes-
sages to agents anywhere in the world. However, nor-
mally an agent will do most of its business with other
agents in the same room.

Entities in a room can be agents, objects, or hyper-
links. Each agent is a (possibly multithreaded) pro-
cess running on one host. No part of the internal pro-
cess state of an agent can be accessed from the out-
side by other agents. Objects are strictly passive: they
consist of data and code hidden by an interface. Hy-
perlinks determine how rooms are connected.

Every world also has anattic. The attic contains
global services and is directly accessible to agents
in any room. Through the attic, an agent can obtain
world-scoped information, for example, the topology
(hyperlink layout) of a world, directory services, or a
bulletin board service (e.g., for publishing agent in-
formation.)

An agent enters a world by entering a room. Once
in an entry room, an agent may move to any other

room to which that room is hyperlinked. Directly
moving to internal rooms (behind an entry room) is
not allowed; agents can only follow hyperlinks. Ex-
cept for following hyperlinks, a mobile agent may
also move to a different host. However, our frame-
work also allows for remote access to rooms, so that
immobile (static) agents may also use our system.

All mechansims for moving to rooms, obtain-
ing (binary) interfaces to objects or for inter-agent
communication, as well as security mechanisms are
hidden inside the middleware layer of our system.
Agents can in principle be written in any program-
ming language. A world designer should provide sup-
port for this language in the middleware.

2 Examples

As an example of the Mansion paradigm, consider
a world designed for buying and selling raw materials
for industry. An entry room is set up where interested
parties can obtain information about the products for
sale. Hyperlinks from this room lead to rooms for
specific products, such as ore, water, and electricity.

Agents for users that want to buy or sell certain
products can be launched into the system and go to an
appropriate room where they can meet other agents
that offer or want products.

An offer may be negotiated, after which an agent
can either return to its owner with the current offer,
or communicate with other agents to try to negoti-
ate a package deal (e.g., optimizing for the cheap-
est combination of ore, water, and electricity). Some
global information such as up-to-date currency ex-
change rates, freight rates, etc., may be available to
all agents through the attic.

In short, the Mansion paradigm replaces the World
Wide Web paradigm of a collection of hyperlinked
documents that users can inspect with that of a collec-
tion of hyperlinked rooms in which agents can meet
to do business.

151

Active Streams: An approach to adaptive distributed systems

Fabián E. Bustamante, Greg Eisenhauer, Patrick Widener, Karsten Schwan, and Calton Pu�

College of Computing, Georgia Institute of Technology
ffabianb, eisen, pmw, schwan, caltong@cc.gatech.edu

An increasing number of distributed applications aim to
provide services to users by interacting with a correspond-
ingly growing set of data-intensive network services. Such
applications, as well as the services they utilize, are gen-
erally expected to handle dynamically varying demands on
resources and to run in large, heterogeneous, and dynamic
environments, where the availability of resources cannot be
guaranteeda priori — all of this while providing acceptable
levels of performance.

To support such requirements, we believe that new ser-
vices need to be customizable, applications need to be dy-
namically extensible, and both applications and services
need to be able to adapt to variations in resource availabil-
ity and demand. A comprehensive approach to building new
distributed applications can facilitate this by considering the
contents of the information flowing across the application
and its services and by adopting a component-based model
to application/service programming. It should provide for
dynamic adaptation at multiple levels and points in the un-
derlying platform; and, since the mapping of components
to resources in dynamic environment is too complicated,
it should relieve programmers of this task. We propose
Active Streams [1], a middleware approach and its asso-
ciated framework for building distributed applications and
services that exhibit these characteristics.

With Active Streams, distributed systems are modeled as
being composed ofapplications, services, anddata streams.
Services define collections of operations that servers can
perform on behalf of their clients. Data streams are se-
quences of self-describing application data units flowing
between applications’ components and services. They are
madeactive by attaching application- or service-specific
location-independent functional units, calledstreamlets.
Streamlets can be obtained from a number of locations;
they can be downloaded from clients or retrieved from a
streamlet repository. The Active Streams C-based frame-
work employs dynamic code generation in order to insure

�Active Streams is part of the Infosphere Project, partially supported by
DARPA/ITO under the Information Technology Expeditions, Ubiquitous
Computing, Quorum, and PCES programs, by NSF/CISE under the CCR
and ANIR programs, and by Intel.

that streamlets can be dynamically deployed and efficiently
executed across heterogeneous environments. Application
evolution and/or a relatively coarse form of adaptation is
obtained by the attachment/detachment of streamlets that
operate on and change data streams’ properties. Finer grain
adaptation involves tuning an individual streamlet’s behav-
ior through parameters remotely updated via a push-type
operation, and by re-deploying streamlets to best leverage
the available resources over the datapath.

Active Streams are realized by mapping streamlets and
streams onto the resources of the underlying distributed
platform, seen as a collection of loosely coupled, intercon-
nected computational units. These units make themselves
available by running as Active Streams Nodes (ASNs),
where each ASN provides a well-defined environment for
streamlet execution. Active Streams applications rely on
a push-based customizable resource monitoring service
(ARMS) to collect resource information and trigger adap-
tation. Through ARMS, applications can select a subset of
the data made available by distributed monitors. These data
streams can be integrated to produce application-specific
views of system state and decide on possible adaptations.

As is common in distributed systems, a directory service
provides the “glue” that holds the Active Streams frame-
work together. The dynamic nature of most relevant objects
in Active Streams makes the passive client interfaces of
classical directory services inappropriate. Thus, the Active
Streams framework includes aproactive directory service
with a publish/subscribe interface through which clients can
register for notification on changes to objects currently of
interest to them. The levels of detail and granularity of these
notifications can be dynamically tuned by the clients.

The implementation of Active Streams is mostly com-
plete, and we plan on making it available by December
2001.

References

[1] F. E. Bustamante and K. Schwan. Active Streams: An ap-
proach to adaptive distributed systems. Tech. report, College
of Computing, Georgia Institute of Technology, Atlanta, GA,
June 1999.

152

Position Summary. Smart Messages: A System Architecture for Large Networks
of Embedded Systems

Phillip Stanley-Marbell, Cristian Borcea, Kiran Nagaraja, Liviu Iftode
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

{narteh@ece, borcea@cs, knagaraj@cs, iftode@cs}.rutgers.edu

We propose a system architecture and a computing
model, based onSmart Messages (SMs) , for computation
and communication in large networks of embedded sys-
tems. In this model, communication is realized by send-
ing SMs in the network. These messages are comprised of
code, which is executed at each hop in the path of the mes-
sage, and data which the message carries in the network.
The execution at each hop determines the next hop in the
message’s path – SMs are responsible for their own routing.

The nodes that support the execution of SMs are termed
Cooperative Nodes (CNs). The primary logical components
of these nodes are a virtual machine that provides a hard-
ware abstraction layer for executing SMs, and aTag Space
that provides a structured memory region consisting of tags
persistent across the execution of SMs. Tags are used to
store data that can be used for content-based addressing,
routing, data sharing, or synchronization between SMs. An
SM consists of code and data components. Upon admis-
sion at a CN, a task is created out of these components and
executed on the virtual machine.

Figure 1 illustrates a network consisting of three types of
nodes, represented with squares, circles and triangles. The
nodes represented by squares are nodes of interest to an SM
which is launched from the circular node in the lower left
of Figure 1. The goal of the application implemented by
this SM is to visit the five square nodes and to propagate a
local data item of each node to the next one visited in order.
The SM may use other nodes in the network, the circular
and triangular nodes, as intermediates hops as it navigates
through the network.

Admission at a CN is restricted based on tag availabil-
ity, and resource demands of an SM. Tags can be used for
synchronization between SMs executing on a CN : an SM
may be de-scheduled on a read of a tag, pending a write
on that tag by another SM, or the expiration of the tag in
question. CNs employ a simple scheduling policy to accept
and run multiple SMs. Once executing, an SM may create,

Before execution of SM in network

1

2

3

4

5

6

7

8

1

14

10

7

5

1

2

3

4

5

6

7

8

0

1

14

10

7

After execution of SM in network

Figure 1. Smart Message Model Example

delete, read or write tags, either on the CN or in its own data
component, subject to access restrictions and tag lifetimes.
An SM may also create and send new SMs, building them
out of its constituent code and data components, or it may
migrate itself to another CN.

The Smart Message architecture is meant to provide a
pervasive computing infrastructure for networks of embed-
ded systems, such as sensor networks and computational
fabrics – woven textiles with embedded computing ele-
ments. These networks will be inherently heterogeneous
in their hardware architectures and inter-networking tech-
nologies, since each node will typically be specialized for
performing a specific function, hence the need for a hard-
ware abstraction layer such as a virtual machine, and will
be volatile, due to node mobility and node failure. Applica-
tions utilizing these networks to perform a global task must
be willing to accept partial results, or executions that satisfy
a specificQuality of Result (QoR).

Issues to be addressed in the architecture include: eval-
uating tradeoffs between flexibility and overhead of migra-
tion, defining a QoR for a partially successful execution,
and CN security. A prototype implementation using Blue-
tooth technology for networking, and Sun Microsystem’s
KVM for the virtual machine is under development. More
information can be found at:
http://discolab.rutgers.edu/projects/sm.htm.

153

Position Summary: Supporting Hot-Swappable Components for System
Software

Kevin Hui † Jonathan Appavoo† Robert Wisniewski‡

Marc Auslander‡ David Edelsohn‡ Ben Gamsa§

Orran Krieger‡ Bryan Rosenburg‡ Michael Stumm§

A hot-swappable component is one that can be replaced
with a new or different implementation while the system
is running and actively using the component. For exam-
ple, a component of a TCP/IP protocol stack, when hot-
swappable, can be replaced—perhaps to handle new denial-
of-service attacks or improve performance—without dis-
turbing existing network connections. The capability to
swap components offers a number of potential advantages
such as: online upgrades for high availability systems, im-
proved performance due to dynamic adaptability and sim-
plified software structures by allowing distinct policy and
implementation options to be implemented in separate com-
ponents (rather than as a single monolithic component) and
dynamically swapped as needed.

In order to hot-swap a component, it is necessary to
(i) instantiate a replacement component, (ii) establish a qui-
escent state in which the component is temporarily idle,
(iii) transfer state from the old component to the new com-
ponent, (iv) swap the new component for the old, and
(v) deallocate the old component. In doing so, three fun-
damental problems need to be addressed:

• The first, and most challenging problem, is to estab-
lish a quiescent state when it is safe to transfer state
and swap components. The swap can only be done
when the component state is not currently being ac-
cessed by any thread in the system. Perhaps the most
straightforward way to achieve a quiescent state would
be to require all clients of the component to acquire
a reader-writer lock in read mode before any call to
the component. Acquiring this external lock in write
mode would thus establish that the component is safe
for swapping. However, this would add overhead in
the common case, and cause locality problems in the
case of multiprocessors.

• The second problem is transferring state from the old
component to the new one, both safely and efficiently.

†University of Toronto, Dept of Computer Science
‡IBM T. J. Watson Research Center
§University of Toronto, Dept of Electrical and Computer Engineering

Although the state could be converted to some canon-
ical, serialized form, one would like to preserve as
much context as possible during the switch, and handle
the transfer efficiently in the face of components with
potentially megabytes of state accessed across dozens
of processors.

• The final problem is swapping all of the references
held by client components so that the references now
refer to the new one. In a system built around a sin-
gle, fully typed language, like Java, this could be done
using the same infrastructure as used by garbage col-
lection systems. However, this would be prohibitively
expensive for a single component switch, and would be
overly restrictive in terms of systems language choice.

We have designed and implemented a mechanism for
supporting hot-swappable components that avoids the prob-
lems alluded to above. More specifically, our design has the
following characteristics:
• zero performance overhead for components that will

not be swapped
• zero impact on performance when a component is not

being swapped
• complete transparency to client components
• minimal code impact on components that wish to be

swappable
• zero impact on other components and the system as a

whole during the swapping operation
• good performance and scalability; that is, the swapping

operation itself should incur low overhead and scale
well on multiprocessor systems.

Our mechanism has been implemented in the context of
the K42 operating system (www.research.ibm.com/K42), in
which components in the operating system and in applica-
tions that run on K42 have been made hot-swappable. Our
design and implementation, preliminary performance num-
bers with respect to swapping overhead, and some of the
performance benefits such a facility can provide are pre-
sented in www.research.ibm.com/K42/full-hotos-01.ps.

154

Applying the VVM Kernel to Flexible Web Caches

Ian Piumarta, Frederic Ogel, Carine Baillarguet, Bertil Folliot

email:fian.piumarta, frederic.ogel, carine.baillarguetg@inria.fr, bertil.folliot@lip6.fr

1 Introduction

The VVM (virtual virtual machine)1 is a systematic approach
to adaptability and reconfigurability for portable, object-oriented
applications based on bytecoded languages such as Java and
Smalltalk [FP+00].

The main objectives of the VVM are (i) to allow adaptation of
languageand system according to a particular application domain;
(ii) to provide extensibility by allowing a “live” execution environ-
ment to evolve according to new protocols or language standards;
and (iii) to provide a common substrate on which to achieve true
interoperability between different languages [FPR98,Fol00].

On the way to implement a VVM we already implemented
VVM1 (and it’s application to active networks [KF00]) and VVM2
(and it’s application to flexible web cache and distributed obser-
vation). The VVM2 is a highly-flexible language kernel which
consists of a minimal, complete programming language in which
the most important goal is to maximise the amount of reflective
access and intercession that are possible—at the lowest possible
“software level”.

2 Our architecture

The VVM2 contains adynamic compiler front-end/back-end,
which converts input into optimized native code and an object-
oriented environment (with automatic, transparent memory man-
agement) used internally by the VVM2 (this work is under consid-
eration for publication).

3 Example application: flexible web caches

Flexibility in web caches come from the ability to configure a
large number of parameters2 that influence the behaviour of the
cache (protocols, cache size, and so on). What’s more, some
of these parameters cannot be determined before deploying the
cache, like: user behaviour, change of protocol or the “hot-spots-
of-the-week” [Sel96]. However, reconfiguring current web caches
involves halting the cache to install the new policy and then restart-
ing it, therefore providing only “cold” flexibility. Our flexible
cache architecture is built directly over the VVM2 and so provides
“warm” replacement of policies, without compromising the ease
of writing new protocols found in existing web caches. Other ad-
vantages include the ability to tune the web cache on-line, to add
arbitrary new functionality (observation protocols, performance
evaluation, protocol tracing, debugging, and so on) at any time,
and to remove them when they are no longer needed.

Our approach supports both initial configuration, based on sim-
ulation, and dynamic adaptation of the configuration in response
to observed changes in real traffic as they happen.

This approach is highly reflexive because the dynamic manage-
ment of the cache is expressed in thesame language that is used
to implement the cache. The resulting cache, called C/NN3, can
be modified at any time: new functionality and policies can be in-
troduced and activated during execution. It is therefore possible to

1VVM is both a concept, an implementation and the project’s name.
2See the configuration file for Squid...
3TheCache with No Name.

dynamically define reconfiguration policies to process adaptations,
while preserving the cache contents and delaying request for a few
�s.

In order to evaluate the flexibility of our cache we made both
quantitative and qualitative measurements4. Timing the principal
operations in C/NN was trivial because of the use of the highly-
reflexive VVM2 at the lowest level. We were able to “wrap” timers
around the functions without even stopping the cache. Results
are very promising : handling a hit (the main bottleneck for the
cache itself) takes less than 200�s, switching from one policy to
another takes less than 50�s, at least defining a new policy and re-
evaluating 5,000 documents takes a couple of tens of ms. It seems
clear that dynamic flexibility does not penalise the performance of
the cache. It is also important to consider the ease of use of recon-
figuration in our cache : typical replacement and reconfiguratoin
functions are short and quickly written (a few minutes for a system
administrator).

4 Conclusions

This paper presented and evaluated shortly, due to lack of
space, the benefits of using a highly-flexible language kernel, the
VVM2, to solve a specific computer science problem : flexible
web caching. The resulting web cache, C/NN, demonstrates that
reconfigurability can be simple, dynamicand have good perfor-
mance.

We finished to incorporate Pandora[PM00a] into VVM2. Pan-
dora is a system for dynamic evaluation of the performance of web
cache configurations: this opens the way for “self-adapting” web
caches, were the policies are constantly re-evaluated and modified
asand when needed.

References
[Fol00] B. Folliot, The Virtual Virtual Machine Project, Invited talk at the

SBAC’2000, Brasil, October 2000.

[FPR98] B. Folliot, I. Piumarta and F. Ricardi,A Dynamically Config-
urable, Multi-Language Execution Platform SIGOPS European Work-
shop 1998.

[FP+00] B. Folliot, I. Piumarta, L. Seinturier, C. Baillarguet and C.
Khoury,Highly Configurable Operating Systems: The VVM Approach,
In ECOOP’2000 Workshop on Object Orientation and Operating Sys-
tems, Cannes, France, June 2000.

[KF00] C. Khoury and B. Folliot,Environnement de programmation actif
pour la mobilit, Proceedings of Jeunes Chercheurs en Systemes, GDR
ARP et ASF, Besanon, France, June 2000.

[PM00a] S. Patarin and M. Makpangou,Pandora: a Flexible Network
Monitoring Platform Proceedings of the USENIX 2000 Annual Tech-
nical Conference, San Diego, June 2000.

[Sel96] Margo Seltzer,The World Wide Web: Issues and Challenges ,
Presented at IBM Almaden, July 1996.

[ZMF+98] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and
V. Jacobson,Adaptive Web Caching: towards a new global caching
architecture, Computer Networks and ISDN Systems, 30(22-23):2169-
2177, November 1998

4On a G3 233MHz, running LinuxPPC 2000

155

Position summary: Hinting for goodness’ sake

David Petrou, Dushyanth Narayanan, Gregory R. Ganger, Garth A. Gibson, and Elizabeth Shriver†

Carnegie Mellon University and†Bell Labs, Lucent Technologies

Modern operating systems and adaptive applications offer
an overwhelming number of parameters affecting applica-
tion latency, throughput, image resolution, audio quality,
and so on. We are designing a system to automatically tune
resource allocation and application parameters at runtime,
with the aim of maximizing user happiness orgoodness.

Consider a 3-D graphics application that operates at vari-
able resolution, trading output fidelity for processor time.
Simultaneously, a data mining application adapts to net-
work and processor load by migrating computation between
the client and storage node. We must allocate resources be-
tween these applications and select their adaptive parame-
ters to meet the user’s overall goals. Since the user lacks the
time and expertise to translate his preferences into parame-
ter values, we would like the system to do this.

Existing systems lack the right abstractions for applica-
tions to expose information for automated parameter tuning.
Goodness hints are the solution to this problem. Applica-
tions use these hints to tell the operating system how re-
source allocations will affect their goodness (utility). E.g., a
video player might have no goodness below some allocation
threshold and maximum goodness above another. Goodness
hints are used by the operating system to make resource al-
location decisions and by applications to tune their adaptive
parameters. Our contribution is a decomposition of good-
ness hints into manageable and independent pieces and a
methodology to automatically generate them.

One half of a goodness hint is aquality-goodness map-
ping which tells us how application qualities translate into
user happiness. Qualities are measures of performance (la-
tency, throughput) or of fidelity (resolution, accuracy). We
hope to leverage user studies from the human-computer in-
teraction community to generate these mappings. The sys-
tem will also use user feedback to dynamically tailor the
mappings to specific users.

A resource-quality mapping forms the other half of a
goodness hint; our current research focusses on this half.
This mapping describes the relationship between an appli-
cation’s resource allocation and its qualities. To do this, we
first map adaptive parameters to resource usage by monitor-
ing the application, logging its resource usage for various
parameter values, and using machine learning to find the

relationship between parameter values and resource usage.
We create this mapping offline with controlled experiments
to explore the parameter space, and update it online based
on dynamic behavior.

Given the resource usage and allocation of an applica-
tion, we predict its performance using simple models. E.g.,
a processor-bound computation requiring 1�106cycles and
allocated 2�106cycles will have a latency of 0:5sec. More
complex applications will use multiple resources, perhaps
concurrently. We will use machine learning techniques to
specialize our models to particular applications.

Finally, given some resource allocation, an application
must pick adaptive parameter values that maximize its
goodness. Anoptimizer searches the parameter space to
find the optimal values. By embedding the optimizer in the
goodness hint, the operating system is also made aware of
what the application will choose. The operating system it-
self uses a similar optimizer to find the resource allocation
that will maximize goodness across applications.

We are building a prototype to validate these concepts.
Currently, the prototype supports two resources: processor
and network. To map adaptive parameters to resource usage
we use linear least squares regression. To search through the
space of application parameters and resource allocations,
we use a stochastic version of Powell’s conjugate direction-
set method. We have two very different applications: a 3-D
graphics radiosity application [Narayanan, et al., WMCSA
2000], and an Abacus data mining application [Amiri, et al.,
USENIX 2000].

Our initial results are encouraging. Our system gener-
ates accurate resource-quality mappings for both applica-
tions. (The quality-goodness half was constructed by hand.)
In simulation, our resource allocator is always able to maxi-
mize overall goodness, which is a weighted sum of applica-
tion goodnesses. However, the overhead of the search algo-
rithm is prohibitive, and we are investigating alternatives.

This work raises several research questions: How can we
talk about resource usage and allocation in a platform inde-
pendent way? What is the best way to combine individual
application goodnesses into user happiness? What kind of
online feedback can we expect from a typical user, and how
can we use it to dynamically refine goodness hints?

156

Position Summary: Censorship Resistant Publishing Through
Document Entanglements

Marc Waldman and David Mazi`eres
Computer Science Department, NYU
fwaldman,dmg@cs.nyu.edu

Today, most documents available over the the Internet
are easy to censor. Each document can usually be traced
back to a specific host or even the individual responsible
for publishing the document. Someone wishing to censor a
document can use the courts, threats, or some other means
to force the host administrator or author to delete a partic-
ular file. Certainly, there are some high profile documents
that are widely mirrored across the internet, however this is
not an option for most published documents.

Clearly, a censorship resistant system must replicate a
published document across many hosts. However, no stan-
dard naming convention exists that allows one to easily
specify several hosts via a single name. Even if such a
naming convention existed it merely makes the censor’s job
somewhat harder — the censor still knows exactly which
hosts contain the content and therefore which hosts to at-
tack.

Currently, there is little incentive or justification for a
server administrator to store documents that he is being
pressured into deleting. We propose a system, named Tan-
gler, that we believe provides some incentive to retain such
documents and solves the document naming problem.

Tangler is a censorship resistant distributed file system
that employs a unique document storage mechanism. A
group of documents, called a collection, can be published
together under a single name. This collection is named by
a public key,K. Only the individual possessingK ’s cor-
responding private key can publish a collection under the
nameK. By naming the published collections in a host and
content independent manner we allow the publisher to se-
curly update the collection at some point in the future. This
naming convention also allows a collection to include point-
ers, called soft links, to other collections. These collections
may be owned and updated by other individuals.

In order to publish a collection,C, one runs a program
that fetches random blocks of previously published collec-
tions andentangles these blocks with those ofC. Once
entangled, collectionC is dependent on the randomly cho-
sen blocks. Without these blocks, collectionC cannot be
reassembled. Therefore the publisher has some incentive to

retain these blocks, some of which belong to other collec-
tions. Notice that this implies that each block may belong
to several collections and that each block can be used to
reassemble more than one collection.

Tangler’s local caching policy causes the replication of
these dependent blocks which, at some point in the future,
may be reinjected into the distributed file system. This
caching policy and reinjection mechanism helps make the
published collection difficult to censor.

Tangler consists of a dynamic group of file servers that
can publish documents to a distributed file system. Each file
server donates local disk space to the system. Servers can
join or leave the system at will. The participating servers
collectively form a MIX based network that is used for un-
traceable communication among the servers.

Our block entanglement algorithm is based on
Shamir’s secret sharing scheme. In this scheme a secret,
s, can be split inton pieces, called shares, such that any
k � n of them can be combined to forms. In our cases is
the collection block we wish toentangle.

Theentangle algorithm takes three parameters, a collec-
tion blockb and two blocks from previously publish collec-
tions. Call these two blocksp1 andp2 respectively. These
two blocks will becomeentangled with b. Block b will
therefore depend onp1 andp2. Each block has the same for-
mat; it essentially consists of anx andy value. The points
implied by p1, p2 and (0; b) uniquely define a quadratic
equation. This quadratic is then evaluated at two random
x values. This produces two new blocks which we will call
q1 andq2. Blocksp1, p2, q1 andq2 are cached and copied to
the distributed file system. Notice that we have not cached
or copied blockb. Block b can be reconstructed from any
three of the four stored blocks, namelyp1, p2, q1 or q2.

Theentanglement process has defined a (3,4) threshold
secret sharing scheme where 3 of any 4 shares can recover
the secret (blockb). Our publish algorithm is essentially
Shamir’s secret sharing scheme with a slight twist. Rather
than randomly selecting the coefficiants of a quadratic equa-
tion we create the quadratic equation from blocks of pub-
lished collections and the block we wish to publish.

157

Position Summary: Architectures For Adaptation Systems

Eyal de Lara†, Dan S. Wallach‡, and Willy Zwaenepoel‡

Departments of Electrical and Computer Engineering† andComputer Science‡

Rice University
fdelara,dwallach,willyg@cs.rice.edu

1 Introduction

Modern systems need support for adaptation, typically
responding to changes in system resources such as avail-
able network bandwidth. If an adaptation system is imple-
mented strictly at the system layer, data adaptations can be
added within the network or file system. This makes the
adaptation system portable across applications, but sacri-
fices opportunities to change an application’s behavior. It’s
not possible, for example, to first return a low-quality ver-
sion of an image and later upgrade it should excess network
capacity be available. On the flip side, the adaptation logic
could be built into each and every application, with the sys-
tem providing information to the applications in order to
help them adapt their behavior. This becomes impractical
because many applications will never be written to perform
adaptation, and an application writer may not be able to
foresee all possible adaptations that may be desirable.

We argue that adaptation systems should be centralized,
where they can make global observations about system us-
age and resource availability. We further argue that applica-
tions shouldnot be written to perform adaptation. Instead,
applications should support an interface where the adapta-
tion system can dynamically modify an application’s behav-
ior as it runs.

How would such an interface work? Largely, we would
like applications to make visible theirdocument object
model (DOM) – the hierarchy of documents, containing
pages or slides, containing images or text, etc. Likewise,
we would like a standard way to know what portions of a
document are on the user’s screen. Finally, it’s quite helpful
when the file formats are standardized, such that the system
can see and manipulate the components within a file.

In order to support adaptation while documents are being
edited, we would like a standard way to learn which compo-
nents are “dirty” and to compute diffs between those dirty
components and their original contents. Likewise, it would
be helpful for applications to support conflict detection and
resolution between components.

2 Experience

We observe that many “component-based” applications
already support interfaces for external programs to manip-
ulate their components as the application is running. Tak-
ing advantage of this, we developed a system called Pup-
peteer [1], as it “pulls the strings” of an application.

Puppeteer currently supports Microsoft Word, Power-
Point, and Internet Explorer, as well as their StarOffice
equivalents. In terms of implementation complexity, Pup-
peteer has roughly 8000 lines of Java code shared across
applications. The Internet Explorer drivers are 2700 lines
and the PowerPoint drivers are 1800 lines of code.

Our current system supports adaptation for read-only
files. We achieve significant improvements in user-
perceived latency at a modest cost in system overhead.

3 Future Work

Building on the base Puppeteer system, we are working
on a number of extensions. We are investigating a “thin
client” version of Puppeteer to minimize the client mem-
ory footprint – an important consideration on PDAs. We
are designing a special-purpose language to express adapta-
tion policies at a high-level. We are investigating alternative
network transmission protocols and hierarchical scheduling
of network transmissions to better reflect the priorities of
the adaptation policy. We are also working on extensions to
Puppeteer to support writes, dealing with issues like cache
coherence and conflict resolution. So far, the Puppeteer ar-
chitecture has proven flexible enough to accommodate such
a wide variety of extensions without sacrificing its portabil-
ity or core architecture.

References

[1] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based adaptation for mobile computing. InPro-
ceedings of the 3rd USENIX Symposium on Internet Technolo-
gies and Systems, San Francisco, California, Mar. 2001.

158

Position Summary: Anypoint Communication Protocol

Ken Yocum, Jeff Chase, and Amin Vahdat
Department of Computer Science, Duke University

fgrant,chase,vahdatg@cs.duke.edu

It is increasingly common to use redirecting intermedi-
ary switches tovirtualize network service protocols. Re-
quest redirection enables an intermediary to represent a dy-
namic set of servers as a unified service to the client. Ser-
vices virtualized in this way include HTTP (using L4-L7
switches), NFS, and block storage protocols.

Virtualization using intermediaries is a powerful tech-
nique for building scalable cluster-based services while in-
sulating clients from the details of server structure. How-
ever, intermediaries are controversial and difficult to imple-
ment in part because transport protocols are not designed
to support them. For example, intermediaries compromise
the end-to-end guarantees of point-to-point transports such
as TCP. Current service intermediaries are constrained to
either route requests at a connection granularity (L4-L7
switches for HTTP), use weak transports such as UDP, or
terminate connections at the intermediary. These limitations
compromise performance and generality. In particular, in-
dependent routing of requests is necessary for any content-
based routing policy, but we know of no efficient interme-
diary scheme that supports independent routing for multi-
ple requests arriving on the same transport connection. The
challenges are increasingly evident as designers attempt to
build intermediaries for commercially important protocols
such as HTTP 1.1 and iSCSI.

These difficulties motivate consideration of new trans-
port protocols with more decentralized notions of what con-
stitutes a connection “endpoint”. We are developing such
a transport called the Anypoint Communication Protocol
(ACP). ACP clients establish connections to abstract ser-
vices, represented at the network edge by Anypoint interme-
diaries. The intermediary is an intelligent network switch
that acts as an extension of the service; it encapsulates
a service-specific policy for distributing requests among
servers in theactive set for each service. The switch routes
incoming requests on each ACP connection to any active
server at the discretion of the service routing policy, hence
the name “Anypoint”.

The ACP transport is similar to SCTP and TCP in that it
provides reliable, sequenced delivery with congestion con-

trol. However, ACP defines some protocol properties as
end-to-edge rather thanend-to-end. A critical respect in
which ACP is end-to-edge is that it does not define the de-
livery order for requests routed to different servers, or for
responses returned from different servers. Ordering con-
straints and server coordination are the responsibility of the
service protocol and its routing policy.

An Anypoint intermediary orchestrates the movement of
requests and responses at the transport layer. To this end,
ACP frames service protocol requests and responses at the
transport layer in a manner similar to SCTP. Transport-level
framing allows an Anypoint switch to identify frames from
the network stream in a general way. The switch applies the
service-specific routing policy to each inbound frame, and
merges outbound frames into a single stream to the client.

While ACP is fundamentally similar to other reliable
Internet transports, a central design challenge is that ACP
connection endpoint state and functions are distributed be-
tween the intermediary and the end server nodes. ACP is
designed to enable fast, space-efficient protocol intermedi-
aries with minimal buffering. Acknowledgment generation,
buffering of unacknowledged frames, and retransmission
are the responsibility of the end nodes, thus reliable deliv-
ery is guaranteed end-to-end rather than end-to-edge. The
Anypoint switch maintains a mapping between sequence
number spaces seen by the client and end server nodes for
each connection, for a bounded number of unacknowledged
frames. The switch also coordinates congestion state across
the active set of participants in each ACP connection. The
congestion scheme assumes that the bottleneck transit link
is between the switch and the client, or that the ACP stream
may be throttled to the bandwidth to the slowest end server
selected by the routing policy.

The Anypoint abstraction and ACP protocol enable vir-
tualization using intermediaries for a general class of wide-
area network services based on request/response communi-
cation over persistent transport connections. Potential ap-
plications include scalable IP-based network storage proto-
cols and next-generation Web services.

159

Position Summary: Secure OS Extensibility Needn’t Cost an Arm and a Leg

Antony Edwards and Gernot Heiser

University of NSW, Sydney 2052, Australia
fantonye,gernotg@cse.unsw.edu.au

Abstract

This position paper makes the claim that secure exten-
sibility of operating systems is not only desirable but also
achievable. We claim that OS extensibility should be done
at user-level to avoid the security problems inherent in other
approaches. We furthermore claim (backed up by some ini-
tial results) that user-level extensibility is possible at a per-
formance that is similar to in-kernel extensions. Finally,
user-level extensions allow the use of modern software en-
gineering techniques.

Extensibility is a way to build operating systems that are
highly adaptable to specific application domains. This al-
lows, for example, the use of subsystems that are highly
tuned to a particular usage patterns, and thus should be able
to outperform more generic systems.

In the past, user-level extensibility in systems like Mach
and Chorus has lead to poor performance. This has trig-
gered approaches like loadable kernel modules in Linux,
which require complete trust in extensions, or secure ex-
tensible systems like Spin or Vino, which use trusted com-
pilers or in-kernel protection domains to achieve security.
We believe that secure extensibility is possible, with good
performance, at user level.

We think that extensibility will only work if they are se-
cure, minimal restrictions are imposed, performance is not
degraded, and modern software engineering techniques are
supported.

We have developed an extension system based oncom-
ponents [2] for our Mungi single-address-space operating
system. The component model provides interfaces based
on CORBA, and supports modularisation and reuse to make
is suitable for building large systems. It supports dynamic
binding of extensions, and independent customisation (dif-
ferent users can invoke different, even mutually incompati-
ble extensions).

The single address space helps to achieve performance
goals, as it minimises the payload sizes and the amount of
marshaling required for component invocations (data is usu-
ally passed by reference). In combination with an appropri-

ate protection model, it also makes it easy to expose system
resources, to make them accessible to extensions.

The security of the extension model is ensured by a pro-
tection system that combines discretionary access control
(via password capabilities), with mandatory access con-
trol. The former supportsleast privilege while the latter is
used to enforce system-wide security policies. These secu-
rity policies are defined by user-level security objects that
are themselves extensions. Both aspects of the protection
model are used to restrict the data the extensions can ac-
cess, as well as who can access the extensions. Mandatory
security supports the confinement of extensions, to prevent
them from leaking data, even between different clients in-
voking the same extension.

Mungi Spin Vino COM omniORB ORBacus
100 101 885 1993 768 9319

The table compares invocation costs (microseconds) var-
ious extensible architectures. These are to be taken with
a grain of salt, as they have been measured on different
hardware and normalised according to SPECint-95 ratings.
However, these results clearly show that Mungi’s perfor-
mance is superior to existing component architectures, and
at least equivalent to existing extensible operating systems.
This is being achieved while providing full protection, and
without relying on type-safe languages.

For more information see [1].

References

[1] A. Edwards and G. Heiser. A component architecture for sys-
tem extensibility. Technical Report UNSW-CSE-TR-0103,
School Comp. Sci. & Engin., University NSW, Sydney 2052,
Australia, Mar 2001. URLftp://ftp.cse.unsw.edu.au/pub/
doc/papers/UNSW/0103.pdf.

[2] C. Szyperski.Component Software: Beyond Object-Oriented
Programming. Addison-Wesley/ACM Press, Essex, England,
1997.

160

Position Summary: The Lana Approach to Wireless Computing

Chrislain Razafimahefa Ciar´an Bryce Michel Pawlak�

Object Systems Group – University of Geneva
Switzerland

Wireless communication is revolutionizing computer
systems. On the one hand, long-distance technologies like
GSM, UMTS, or satellite facilitate access to existing infor-
mation services. It is expected that wireless Internet access
in Europe will exceed fixed line access by the year 2005 [4].
Further, short-distance wireless (SDW), e.g., Bluetooth or
wireless LAN, permit ad hoc orspontaneous systems com-
posed of people carrying PDAs. These networks can offer
new kinds of services, e.g., micro-payments, localization of
offers at a market place. The hardware infrastructure for
these systems exists, and it is expected that there might be
700 billion Bluetooth enabled devices by the year 2004 [4].

There are three major issues that SDW application pro-
grammers have to be aware of:disconnected operation,
security andcoordination. The composition of SDW net-
works can be very dynamic, so disconnections have to be
planned for. This requires mechanisms that enable a node
application to continue running despite changes in its net-
work configuration. Coordination covers activities such as
service announcement and lookup in a network. Thus, when
a node joins a network, its programs can locate other pro-
grams and services. Security is required so that sensitive
exchanges between two devices are not attacked.

The goal of theLana project is to develop system sup-
port for SDW applications1. We chose alanguage-based
approach: mechanisms like scoping and typing are used to
enforce system properties. The Lana language is strongly
influenced by Java [1] – it contains interfaces, packages,
single inheritance etc. – though is designed with support
for disconnected operation, coordination and security.

Lana supports concurrentprograms. The language se-
mantics states that all memory locations transitively reach-
able from a program object must be moved along with the
program. Further, the set of programs is organized into a
hierarchy. When a program moves between nodes then all
of its sibling programs are moved along with it. This fea-
ture is used by applications to specify hoarding policies: all
related programs and objects are grouped under a common

�frazafima,bryce,pawlakg@cui.unige.ch
1This work is supported by the Swiss National Science Foundation

(FNRS 2100-061405.00).

umbrella program which is moved. Method calls between
programs are asynchronous; thus, a caller is never blocked
awaiting a reply that might never come. Each method call
generates a uniquekey object that is used by a program to
locate the reply message or exception if ever the program
momentarily leaves the network. Return messages – or se-
curity or mobility exceptions provoked by the call – have
this key value bound to them. Any program that is dele-
gated the key by the caller may therefore service the reply
message. Thus a node may leave a network yet safely dele-
gate its pending jobs to other nodes.

Concerning coordination, each environment contains a
Linda like message board [3] that is used by devices that
meet to exchange an initial set of program or object refer-
ences. The board is also used to store orphan communica-
tion replies (if the caller node disappears during a call).

Concerning security, the language prohibits a program
from gaining access to objects stored outside of its scope.
Keys are another security mechanism. As seen, keys are
used to identity method returns; this also prevents a rogue
program from intercepting replies destined at other pro-
grams. Entries in a message board are also locked with
keys. An entry can only be read if the requesting program
furnishes the matching key.

The language approach to wireless is useful because the
application programmer has control over the security and
hoarding policies. For hoarding, mechanisms implemented
in an OS kernel can be inefficient since the lack of applica-
tion behavior information can lead to the wrong data being
hoarded [2]. Security also requires application knowledge
so that meaningful security constraints can be enforced.

References

[1] K. Arnold and J. Gosling.The Java Programming Language.
The Java Series. Addison-Wesley, Reading, MA, 1998.

[2] B. D. N. et al. Agile application-aware adaptation for mobility.
In ACM SOSP, pages 276–287, Oct. 1997.

[3] D. Gelernter. Generative Communication in Linda.ACM
Trans. Prog. Lang. Syst., 7(1), Jan. 1985.

[4] The-Wireless-World-Research-Forum. The Book Of Visions.
RFC draft, The Wireless World Research Forum., Jan. 2001.

161

Disk drives are now available with capacity and price
per capacity comparable to nearline tape systems. Because
disks have superior performance, density and maintain-
ability characteristics, it seems likely that they will soon
overtake tapes as the backup medium of choice. In this
position summary, we outline the potential advantages of a
backup system composed of high-capacity disk drives and
describe what implications such a system would have for
backup software.

In the past, magnetic tape had higher capacity and
lower price/GB than magnetic disk; however, technology
trends are reversing this relationship. Tape’s capacity lead
over magnetic disks has shrunk over the last 15 years, and
disk capacity is now on par with tape capacity. Further-
more, disk media price is within a factor of 3X of tape
media price, and disks cost less per GB than tapes, once
the tape drive and the tapes supported by the enclosure are
taken into account. Given these trends, it is time to rethink
tape’s role as the backup medium of choice.

Disks confer tremendous hardware-related benefits
for a backup system:

Performance. Disks’ 5X faster sequential perfor-
mance suggests that disks are better for creating and fully
restoring backup volumes, allowing easier verification and
more efficient data scrubbing. Furthermore, disk band-
width scales more cheaply, since each disk adds band-
width, whereas only expensive tape drives add tape
bandwidth. Disks’ superior random access performance
implies that disk-based backup will be better at partial res-
torations and at satisfying simultaneous restore requests.

Density. Designing the appliance so that only a frac-
tion of the drives are simultaneously powered on reduces
power and cooling requirements, allowing denser packing.
Back-of-the envelope calculations indicate that a disk-
based backup appliance could provide roughly 2X more
capacity per unit volume than a tape-based system [1].

Support for legacy devices. Restoring data from tape
requires finding a matching tape drive, which can be diffi-
cult since tapes come in many formats. Disks include their
own read/write heads, eliminating the need to search for a
separate drive to retrieve data.

Maintainability. Tape drives need to be periodically

cleaned with special cartridges and periodically serviced
to ensure that head drift doesn’t render a tape unreadable.
In contrast, disk drives are enclosed media, which don’t
require cleaning and don’t suffer head drift problems.

Lifetime. Empirical evidence suggests that disks could
have a longer shelf life than tapes, implying that disks may
ultimately be better archival media. System administration
experts advise re-recording tape data every three years.
Disks come with warranties for three to five years, and
disk experts believe that lifetimes over ten years are possi-
ble for backup-optimized disks.

The characteristics of disk-based backup have impli-
cations for the creation of backup software:

Design for reliability. Backup software protects data
by maintaining a read-only copy that cannot be inadvert-
ently corrupted, and by providing an alternate, simpler
software path than a snapshotting file system. Further-
more, we can design the backup system to trade off reli-
ability for performance, by using self- and peer-checking
code, storing checksums with each data block and verify-
ing those checksums periodically and when the data is
accessed, and pro-actively testing the system.

Design for sharability. A backup system that keeps a
fraction of its disks online may be able to approximate the
performance of an online snapshot using hierarchical stor-
age management techniques, allowing greater simulta-
neous sharing, while still maintaining the data protection
properties of a backup.

Design for longevity. A final opportunity for backup
software is to automatically convert data formats com-
monly used today into formats that will be easy to read
many years in the future, either automatically, or through
user control.

Key challenges lie in designing backup software for
optimizing reliability and data integrity, scheduling the
resources of the backup appliance, and developing APIs
for giving users and applications more control over how
backups are performed.

[1] K. Keeton and E. Anderson. “A Backup Appliance Com-
posed of High-capacity Disk Drives,” HP Laboratories SSP
Technical Memo HPL-SSP-2001-3, available from http://
www.hpl.hp.com/research/itc/csl/ssp/papers/.

Position Summary: A Backup Appliance Composed of High-capacity Disk Drives

Kimberly Keeton and Eric Anderson
Hewlett-Packard Labs Storage Systems Program

{kkeeton,anderse}@hpl.hp.com

162

Position Summary: Energy Management for Server Clusters

Jeff Chase and Ron Doyle
Department of Computer Science, Duke University

fchase,doyleg@cs.duke.edu

The Internet service infrastructure is a major energy con-
sumer, and its energy demands are growing rapidly. For
example, analysts project that 50 million square feet of data
center capacity will come on line for third-party hosting ser-
vices in the US by 2005. These facilities have typical power
densities of 100 watts per square foot for servers, storage,
switches, and cooling. These new centers could require 40
TWh per year to run 24x7, costing $4B per year at $100
per MWh; price peaks of $500 per MWh are now common
on the California spot market. Generating this electricity
would release about 25M tons of newCO2 annually.

The central point of this position paper is that energy
should be viewed as an important element of resource man-
agement for Web sites, hosting centers, and other Internet
server clusters. In particular, we are developing a system
to manage server resources so that cluster power demand
scales with request throughput. This can yield significant
energy savings because server clusters are sized for peak
load, while traces show that traffic varies by factors of 3-6
or more through any day or week, with average load often
less than 50% of peak. We proposeenergy-conscious ser-
vice provisioning, in which the system continuously mon-
itors load and adaptively provisions server capacity. This
promises both economic and environmental benefits.

Server energy management adds a new dimension to
power-aware resource management [1], which views power
as a first-class OS resource. Previous research on power
management (surveyed in [1]) focuses on mobile systems,
which are battery-constrained. We apply similar concepts
and goals to Internet server clusters. In this context, energy-
conscious policies are motivated by cost and the need to tol-
erate supply disruptions or cooling failures.

Our approach emphasizes energy management in the
network OS, which configures cluster components and co-
ordinates their interactions. This complements and lever-
ages industry initiatives on power management for servers.
Individual nodes export interfaces to monitor status and ini-
tiate power transitions; the resource manager uses these
mechanisms to estimate global service load and react to ob-
served changes in load, energy supply, or energy cost. For
example, under light load it is most efficient to use server

power management (e.g., ACPI) to step some servers to
low-power states. The servers may be reactivated from the
network using Wake-On-LAN, in which network cards lis-
ten for special wake packets in their low-power state.

Our premise is that servers are an appropriate granularity
for power management in clusters. Although servers con-
sume less energy under light load, all servers we measured
draw 60% or more of their peak power even when idle.
Simply “hibernating” idle servers provides adequate control
over on-power capacity in large clusters, and it is a simple
alternative to techniques (e.g., voltage scaling) that reduce
server power demand under light load. Since load shifts oc-
cur on the scale of hours, power transitions are not frequent
enough to increase long-term hardware failure rates.

Dynamic request redirection provides a mechanism to al-
low changes to the set of active servers. Our system is based
on reconfigurable switches that route request traffic toward
the active servers and away from inactive servers. This ca-
pability extends the redirecting server switches (L4 or L7
switches) used in large-scale Web sites today. It enables the
system to concentrate request traffic on a subset of servers
running at higher utilizations.

Like other schemes for dynamic power management,
energy-conscious service provisioning may trade off ser-
vice quality for energy savings. Servers handle more re-
quests per unit of energy at higher utilizations, but latency
increases as they approach saturation. This fundamental
tradeoff leads to several important research challenges. For
example, it motivates load estimation and feedback mech-
anisms to dynamically assess the impact of resource allot-
ments on service quality, and a richer framework for Service
Level Agreements (SLAs) to specify tradeoffs of service
quality and cost. This would enable data centers to degrade
service intelligently when available energy is constrained.

References

[1] A. Vahdat, A. R. Lebeck, and C. S. Ellis. Every joule is pre-
cious: The case for revisiting operating system design for en-
ergy efficiency. InProceedings of the 9th ACM SIGOPS Eu-
ropean Workshop, September 2000.

163

Position Summary
Bossa: a DSL framework for Application-Specific Scheduling Policies

Luciano Porto Barreto, Gilles Muller
COMPOSE group,http://www.irisa.fr/compose

IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
{lportoba,muller}@irisa.fr

Emerging computing models and applications are con-
tinuously challenging the operating system scheduler. Mul-
timedia applications require predictable performance and
stringent timing guarantees. Embedded systems need to
minimize power consumption. Network routers demand
isolated execution of active network programs. Meeting all
these requirements requires specialized scheduling policies,
which traditional scheduling infrastructures are unable to
provide.

While it is clear the need for customized scheduling poli-
cies, there is a lack of tools that capture the design singula-
rities of schedulers to ease the development process. More-
over, writing schedulers requires deep OS knowledge and
involves the development of low-level OS code, which fre-
quently crosscuts multiple kernel mechanisms (e.g., process
synchronization, file system and device driver operations,
system calls).

We present a framework for easing the development of
adaptable process scheduling infrastructures. This frame-
work permits the development and installation of ba-
sic scheduling policies, which can be specialized using
application-specific policies.

We base our approach on a Domain-Specific Language
(DSL) named Bossa. A DSL is a high-level language that
provides appropriate abstractions, which captures domain
expertise and eases program development. Implementing
an OS using a DSL improves OS robustness because code
becomes more readable, maintainable and more amenable
to verification of properties [2]. Our target is to specialize
process schedulers for an application with soft-real time re-
quirements that is able to specify adequate regulation strate-
gies for its CPU requirements.

Our framework architecture relies on two basic compo-
nents: (i) Virtual Schedulers (VSs) and (ii) Application-
Specific Policies (ASPs). We consider a process to be the
minimal schedulable entity. Every process in the system is
associated with a VS. During initialization, a process regis-
ters with a VS either by joining an existing VS or by loading
a new VS and joining it afterwards.

A VS is a loadable kernel module that controls the
execution of a set of processes. A VS manages processes by
selecting a process for execution and determining its CPU
quantum. To permit the coexistence of multiple and inde-
pendent schedulers, VSs can be stacked, forming a tree hi-
erarchy as in [1]. A VS also provides aninterface. This
interface consists of a list of functions and events that can
be used in the specification of an ASP. An ASP uses inter-
face functions to exchange data with a VS. These functions
provide a local view of the process state stored by a VS.

An ASP is a Bossa program that specializes the behavior
of a VS with respect to specific application needs. An ASP
is organized into two parts: (i) a list of global variable
declarations and (ii) a collection of event handlers. Event
handlers are executed either periodically or in response to
specific OS events.

To improve robustness, we perform static and dynamic
verification on Bossa code. By construction, Bossa pro-
grams are not allowed to have unbounded loops and recur-
sive functions. This constraint ensures that event handlers
terminate.

We are currently implementing Bossa in Linux. To pro-
vide flexibility while retaining acceptable performance, we
are implementing a JIT compiler that runs in the kernel. The
JIT compiler translates ASP code into machine code, which
is then executed in the kernel. We plan to assess our frame-
work by conducting experiments on scheduling infrastruc-
tures using real workloads. We will evaluate Bossa by
analyzing the behavior of soft real-time applications, such
as video players.

References

[1] B. Ford and S. Susarla. CPU Inheritance Scheduling. In
OSDI’96, pages 91–105, Oct. 1996.

[2] G. Muller, C. Consel, R. Marlet, L. Barreto, F. M´erillon, and
L. Réveillère. Towards robust oses for appliances: A new ap-
proach based on domain-specific languages. InACM SIGOPS
European Workshop (EW2000), pages 19–24, Sept. 2000.

164

Position Summary: Authentication Confidences

Gregory R. Ganger
Carnegie Mellon University

ganger@ece.cmu.edu

Abstract

“Over the Internet, no one knows you’re a dog,” goes the
joke. Yet, in most systems, a password submitted over the In-
ternet gives one the same access rights as one typed at the
physical console. We promote an alternate approach to au-
thentication, in which a system fuses observations about a
user into a probability (an authentication confidence) that
the user is who they claim to be. Relevant observations in-
clude password correctness, physical location, activity pat-
terns, and biometric readings. Authentication confidences
refine current yes-or-no authentication decisions, allowing
systems to cleanly provide partial access rights to authenti-
cated users whose identities are suspect.

1 The Case for Authentication Confidences

Access control decisions consist of two main steps: au-
thentication of a principal’s digital identity and authoriza-
tion of the principal’s right to perform the desired action.
Well-established mechanisms exist for both. Unfortunately,
authentication in current computer systems results in a bi-
nary yes-or-no decision, building on the faulty assumption
that an absolute verification of a principal’s identity can be
made. In reality, no perfect (and acceptable) mechanism
is known for digital verification of a user’s identity, and
the problem is even more difficult over a network. Despite
this, authorization mechanisms accept the yes-or-no deci-
sion fully, regardless of how borderline the corresponding
authentication. The result is imperfect access control.

Using authentication confidences, the system can re-
member its confidence in each authenticated principal’s
identity. Authorization decisions can then explicitly con-
sider both the “authenticated” identity and the system’s con-
fidence in that authentication. Explicit use of authentication
confidences allows case-by-case decisions to be made for a
given principal’s access to a set of objects. So, for example,
a system administrator might be able to check e-mail when
logged in across the network, but not be able to modify sen-
sitive system configurations. This position paper discusses
identity indicators, and our full white paper [1] completes
the case.

2 Human identification and confidence

Identity verification in most systems accepts any user
presenting a predetermined secret (e.g., password) or token
(e.g., ID card). The conventional wisdom is that, since they
are private, no additional information about the likelihood
of true identity is necessary or available. We disagree. For
example, a system’s confidence in the provided password
could certainly depend upon the location of its source. As
well, a gap of idle time between when the password was
provided and a session’s use might indicate that the real user
has left their workstation and an intruder has taken the op-
portunity to gain access.

A controversial emerging authentication mechanism
compares measured features of the user to pre-recorded val-
ues, allowing access if there is a match. Commonly, phys-
ical features (e.g., face shape or fingerprint) are the focus
of such schemes, though researchers continue to look for
identifying patterns in user activity. Identifying features
are boiled down to numerical values called “biometrics” for
comparison purposes. Biometric values are inherently var-
ied, both because of changes in the feature itself and be-
cause of changes in the measurement environment. For ex-
ample, facial biometrics can vary during a day due to acne
appearance, facial hair growth, facial expressions, and am-
bient light variations. Similar sets of issues exist for other
physical features. Therefore, the decision approach used is
to define a “closeness of match” metric and to set some cut-
off value — above the cut-off value, the system accepts the
identity, and below it, not.

Confidence in identity can be enhanced by combining
multiple mechanisms. The simplest approach is to apply the
mechanisms independently and then combine their resulting
confidences, but more powerful fusing is also possible. For
example, merged lip reading and speech processing can be
better than either alone. Note that if the outcomes conflict,
this will reduce confidence, but will do so appropriately.

References

[1] Gregory R. Ganger.Authentication Confidences. CMU-CS-01-123.
Technical Report, Carnegie Mellon Univeristy School of Computer
Science, April 2001.

165

Position Summary: Supporting Disconnected Operation in DOORS

Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos, Sérgio Duarte
Departamento de Informática

Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa
Quinta da Torre, 2825-114 Monte da Caparica, Portugal

{nmp, jalm, hj, smd}@di.fct.unl.pt

1. Summary

The increasing popularity of portable computers opens
the possibility of collaboration among multiple distributed
and disconnected users. In such environments, collabora-
tion is often achieved through the concurrent modification
of shared data. DOORS is a distributed object store to
support asynchronous collaboration in distributed systems
that may contain disconnected computers. In this sum-
mary we focus on the mechanisms to support discon-
nected operation.

The DOORS architecture is composed by servers that
replicate objects using an epidemic propagation model.
Clients cache key objects to support disconnected opera-
tion. Users run applications to read and modify the shared
data (independently from other users) – a read any/write
any model of data access is used. Modifications are
propagated from clients to servers and among servers as
sequences of operations – the system is log-based.

Objects are structured according to an object frame-
work that decomposes object operation in several compo-
nents (figure 1). Each component manages a different
aspect of object execution. Each object represents a data-
type (e.g. a structured document) and it is composed by a
set of sub-objects. Each sub-object represents a subpart of
the data-type (e.g. sections).

A new object is created composing the set of sub-
objects that store the type-specific data with the adequate
implementations of the other components.

The following main characteristics are the base to sup-
port disconnected operation in DOORS.

Multiple concurrency control/reconciliation strate-
gies: To support the different requirements posed by mul-
tiple data-types we rely on the flexibility provided by the
DOORS object framework. The concurrency control
component allows the use of different log-based recon-
ciliation strategies. The capsule component allows the
definition of different data configurations – e.g. the tenta-
tive and committed versions of an object can be easily
maintained duplicating the adequate components under
the control of the capsule.

Integrated awareness support: The reconciliation
among concurrent streams of activity is often performed
when users are no longer connected to the system. In
DOORS, awareness information may be generated and
processed during the reconciliation phase – this approach
makes it possible, for example, to provide shared feed-
back about data evolution and/or to explore off-system
communication infrastructures, such as the use of SMS
messages.

A
da

p
ta

tio
n

Cluster
manager

A
tt

ri
bu

te
s

Capsule

A
w

a
re

n
es

s

sub-objectssub-object proxies

Log
Concurrency

control

A
pp

lic
a

tio
n

System

Figure 1. DOORS object framework.

Partial caching: As caching a full data object is some-
times impossible for resource-poor mobile devices,
DOORS allows sub-objects to be cached independently.

Blind operation invocation: When some sub-objects
are not present in the cache, a disconnected user is still
allowed to execute operations on them. A replacement
sub-object may be created to present the tentative result of
these operations.

Adaptation: The adaptation component allows the use
of different strategies to adapt to variable network condi-
tions – as a result, operations may be performed immedi-
ately on a server or on the local copy.

The interested reader may find more information on
the DOORS system in [1] (including an extended version
of this summary). This work was partially supported by
FCT, project number 33924/99.

2. References
[1] http://dagora.di.fct.unl.pt

166

Position Summary. DiPS: A Unifying Approach for Developing System Software

Sam Michiels, Frank Matthijs, Dirk Walravens, Pierre Verbaeten
DistriNet, Department of Computer Science, K.U.Leuven

Celestijnenlaan 200A
B-3001 Leuven

Sam.Michiels@cs.kuleuven.ac.be

Abstract

In this position paper we unify three essential features
for flexible system software: a component oriented ap-
proach, self-adaptation and separation of concerns. We
propose DiPS (Distrinet Protocol Stack) [5], a component
framework, which offers components, an anonymous inter-
action model and connectors to handle non-functional as-
pects such as concurrency. DiPS has effectively been used
in industrial protocol stacks [8] and device drivers [6].

Position Statement

This position statement explains why component frame-
work technology is needed for flexible system software
(such as device drivers, protocol stacks and object request
brokers) and how we are using DiPS (Distrinet Proto-
col Stack) [5], a component framework, to build complex
adaptable system software such as protocol stacks and de-
vice drivers.

We state that there are three essential features for flexi-
ble system software: a component oriented approach, self-
adaptation and separation of concerns. There exist several
systems and paradigms that each offer one or two of these
features. Recent operating system research [1] [2] shows
the advantage of providing reusable system components as
basic building blocks. Other operating systems focus on
the flexibility of the system that allows to adapt itself to
changes in the application set it must support [7]. Sys-
tem software on tomorrow’s embedded systems (such as
personal digital assistants (PDA’s) or cellular phones) must
be intelligent enough to adapt the internal structure to new,
even non-anticipated services and to integrate the necessary
support for it (such as a new communication protocol or a
new disk caching strategy), even at run-time. Strict sep-
aration of functional and non-functional code has proven
to be an essential feature for adaptable, maintainable and
reusable software [3] [4]. The DiPS component framework

unifies component support, self-adaptability and separation
of concerns in one paradigm, which is a strong combina-
tion for system software. DiPS is not a complete operating
system, but rather a component framework to build system
software. We are convinced that other operating system ab-
stractions, such as interrupt handling or memory manage-
ment, can benefit from the DiPS approach. Our research is
also heading in that direction.

References

[1] B. Ford, K. V. Maren, J. Lepreau, and e.a. The flux os toolkit:
Reusable components for OS implementation.In Proceed-
ings of the Sixth IEEE Workshop on Hot Topics in Operating
Systems, May 1997.

[2] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-
schatz. The pebble component-based operating system.In
Proceedings of the USENIX 1999 Annual Technical Confer-
ence, June 1999.

[3] J. Itoh, Y. Yokote, and M. Tokoro. Scone: Using concurrent
objects for low-level operating system programming. Techni-
cal report, Department of Computer Science, Keio University,
1995.

[4] G. Kiczales. Foil for the workshop on open implementation,
Oct. 1994.

[5] F. Matthijs. Compontent Framework Technol-
ogy for Protocol Stacks. PhD thesis, Katholieke
Universiteit Leuven, Dec 1999. Available at
http://www.cs.kuleuven.ac.be/ samm/netwg/dips/index.html.

[6] S. Michiels, P. Kenens, F. Matthijs, D. Walravens, Y. Berbers,
and P. Verbaeten. Component framework support for devel-
oping device drivers.In Proceedings of International Con-
ference on Software, Telecommunications and Computer Net-
works, vol. 1, FESB, Split, Croatia, pp. 117-126, June 2000.

[7] M. Seltzer and C. Small. Self-monitoring and self-adapting
operating systems.In Proceedings of the Sixth IEEE Work-
shop on Hot Topics in Operating Systems, May 1997.

[8] I. Sora and F. Matthijs. Automatic composition of soft-
ware systems from components with anonymous dependen-
cies. Submitted to 8th European Software Engineering Con-
ference (ESEC), Mar 2001.

167

