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Beyond Address Spaces -
Flexibility, Performance, Protection, and Resource Management in the
Type-Safe JX Operating System

Michael Golm, Jirgen Kleinéder, Frank Bellosa
University of Erlangen-Nurnberg
Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany
{golm,kleinoeder,bellosa}@informatik.uni-erlangen.de

Abstract

Early type-safe operating systems were hampered by
poor performance. Contrary to these experiences we show
that an operating system that is founded on an object-ori-
ented, type-safe intermediate code can compete with MMU-
based microkernels concerning performance while widen-
ing the realm of possibilities.

Moving from hardware-based protection to software-
based protection offers new options for operating system
quality, flexibility, and versatility that are superior to tradi-
tional process models based on MMU protection. However,
using a type-safe language—such as Java—alone, is not
sufficient to achieve an improvement. While other Java
operating systems adopted a traditional process concept, JX
implements fine-grained protection boundaries. The JX Sys-
tem architecture consists of a set of Java components exe-
cuting on the JX core that is responsible for systeminitial-
ization, CPU context switching and low-level domain man-
agement. The Java code is organized in components which
are loaded into domains, verified, and translated to native
code.

JX runs on commodity PC hardware, supports network
communication, a frame grabber device, and contains an
Ext2-compatible file system. Without extensive optimization
this file system already reaches a throughput of 50% of
Linux.

1 Introduction

coarse), nor offers it appropriate abstractions for access con-
trol (page tags are not capabilities).

These deficiencies justify the exploration of alternative
protection mechanisms. Java popularized a protection
mechanism that is based on a combination of type-safe
intermediate code and load-time program verification.

Several other research groups have been building Java-
based operating systems: Sun’s JavaOS [14], which was
later replaced by “JavaOS for Business” [18], JN [16], J-
Kernel [11], KaffeOS [2], and Joust [9]. But they are either
limited by a monolithic structure or are built upon a full-fea-
tured OS and JVM. Furthermore, no performance figures
for OS related functionality are published. KaffeOS and J-
Kernel are two projects that try to overcome the monolithic
structure by intruducing a process concept which is similar
to the domain concept of JX. But their research is mainly
concerned with introducing the traditional process concept
and a red line [6] between user level and kernel into their
Java operating system. While a red line between trusted and
untrusted code is indeed important, we must free our mind
from the MMU-enforced architecture of traditional operat-
ing systems. The aim of our research is a customizable and
flexible [4] open OS architecture with fine-grained protec-
tion boundaries. Depending on functionality and deploy-
ment of a system there are different levels of trust and pro-
tection. An embedded real-time system needs a different red
line than a single-user desktop system or a multi-user server
system or an active network node OS [5]. In our architecture
it is possible to draw red lines when and where they are

For several years there has been an ongoing discussion if€éeded. _ _ _
the OS community whether software-based protection is a  While other Java operating systems require a microker-
promising approach [3]. We want to support the arguments N€l, or even a full operating system including a JVM, JX
for software-based protection with the experience we runs on the bare hardware with only a minimal statically

gained while building the JX operating system.

linked core (< 100kB). The remaining operating system

While MMU-based protection is commonly used in functionality, including device drivers, is provided by Java
today’s operating systems it has some deficiencies [10], [3].cOmponents that are verified, compiled to native code, and
From the point of functionality it neither meets the actual OPtimized at load time.

requirements of fine grained protection (page size is too



The paper is structured as follows: In section 2 we <During a portal call a component must check the validity
describe the architecture of the JX system. The problems of the parameters because the caller could be in a different
that appear when untrusted modules directly access hard-domain and is not trusted. When caller and callee are co-
ware are discussed in section 3. Section 4 gives examples oflocated (intra-domain call), the checks change their moti-

the performance of IPC and file system access. vation—they are no longer done for security reasons but
for robustness reasons. We currently parametrize the com-
2 JX System Architecture ponent whether a safety check should be performed or not.

i , ) Resour ce Management. JX domains have their own heap
The JX system consists of a small core, written in C and g4 own memory area for stacks, code, etc. If a domain

assembler, which is less than 100 kilobytes in size. The haeqs memory, a domain-specific policy decides whether
majority of the system is written in Java and running in sep- s request is allowed and how it may be satisfied, i.e.,
arate protection domains. The core runs without any protec-\ynare the memory comes from. Objects are not shared
tion and therefore must be trusted. It contains functionality panveen domains, but it is possible to share memory. Other
that can not be provided at the Java level (system initializa- 5., o systems use shared objects with the consequence of
tion after boot up, saving and restoring CPU state, low-level complicated and not interdependent garbage collection,

domain management, monitoring). problems during domain termination, and quality-of-ser-

P vice crosstalk [13] between garbage collectors.
Components Heap . . . L
Classed Portals Typing. A domain has its own type space, that initially con-
EEm . tains exactly one typgava.lang.Object. Types (classes and
Objects R interfaces) and code (classes) can then be loaded into the
Threads K domain. Our type-space approach differs from the Java type
JaVa'StaCkE E E spaces [12] as we do not use the class loader as type-space
_ Thread Control Blocks » _ separator but tie type separation to resource management
(_Domain A ! Domain B and protection. By this meansSacurityManager becomes
¥ redundant and protection boundaries are automatically
C Code Threads E E E enforced.
Assembler Stacks The C and assembler code of the JX core are encapsu-

Lhéegd Control Blocks lated by a special domain, callddomainZero. All other

domains contain only Java code. We do not alloative
The Java code is organized in components (Sec. 2.2)methods.
which are loaded into domains (Sec. 2.1), verified (Sec.
2.4), and translated to native code (Sec. 2.5). A domain can2.2 Components
communicate with another domain by using portals (Sec.
2.3). Code is generally loaded as a component. JX does not
The protection of the architecture is solely based upon support loading of single classes. A component is a collec-
the JX core, the code verifier, the code translator, and hard-tion of classes and interfaces. There are four kinds of com-
ware-dependent components (Sec. 3). These elements angonents:

Domain Zero

thetrusted computing base [7] of our architecture. «Library: A simple collection of reusable classes and inter-
faces (example: the Java Development Kit).
2.1 Domains «Service: A component that implements a specific service,

o ) ) e. g., afile system or a device driver. A service component
A domain is the unit of protection, resource manage- s garted after it has been loaded. To start a service means
ment, and typing. to execute a static method that is specified in a configura-
Protection. Components in one domain trust each other. tion file that is part of the component.
One of our aims is code reusability between different sys- «Interface: Access to a service in another domain is always
tem configurations. A component should be able to runina performed using an interface. An interface component
separate domain, but also together (co-located) with other contains all interfaces that are needed to access a service.
components in one domain. This leads to several problems: An interface component also contains the classes of
«The parameter passing semantics must be by-copy in inter- parameter objects. A special interface libragso contains
domain calls, but may be by-reference in the co-located all interfaces to access DomainZero.
case. This is an open problem.



«Domain: A domain is started by loading a domain compo- 2.4 Component Verifier
nent. An initial thread is created and a static method is exe-
cuted. When a component is loaded into a domain, its bytecode

Components can be shared between domains. Sharinéﬁ verified before it is translated into machine code. As in the
happens at two levels. At a logical level sharing establishesnormal Java bytecode verifier, the conformance to the Java
a window of type compatibility between two domains. At a rules is checked. Basically this guarantees type safety. Fur-
lower level, sharing saves memory, because the (machine}hermore the verifier performs additional JX-specific checks
code of the component has to be stored only once. Whilefégarding interrupt handlers (Sec. 2.6), memory objects
component sharing complicates resource accounting andSec- 2.7), and schedulers (Sec. 2.9).
domain termination, we believe that code sharing is an A type-safe operating system has the well-known advan-
essential requirement for every real operating system.t@ges of robustness and ease of debugging. Furthermore, it
While code can be shared if the domains use the same typdS POssible to base protection and optimization mechanisms
of execution environment (translator, memory layout), ON the type information. This is extensively employed in JX
static variables are never shared. In JX this is implementedPy using well-known interfaces (contained in a trusted
by splitting the internal class representation into a domain- library) and restricting the implementability of these inter-
local part, that contains the statics, and a shared part, thafaces (Sec. 2.6 and 2.7).
contains code and meta information.

2.5 Component Translator

2.3 IPC, Portals, and Services _ )
Components are translated from bytecode into machine

Domains communicate solely by using portals. An code. The translator is a crucial element of JX to get a rea-

object that may be accessed from another domain is callegsonable performance. The translator is domain-specific, so
service. Each service is associated witkesvice thread. it can be customized for a domain to employ application-

A portal is a remote reference that represents a service ;specific translation strategies. The same component may be
which is running in another domain. Portals are capabilities translated differently in different domains. As the translator
that can be passed between domains. Portals allow to estajs & trusted component, this facility has to be used carefully
lish the “principle of least privilege”. A domain gets only because it affects the protection of the whole system.

the portals it needs for doing its job. Furthermore the translator is used to “short-circuit” sev-
A portal looks like a normal object reference. The portal €ral pc_)rtal invocations. Special portals that are exported by
type is an interface that is derived from the interfRoetal. DomainZero often do not need the domain context of

A portal invocation behaves like a normal synchronous PomainZero. Invocations of such portals can be inlined
interface method invocation: The calling thread is blocked, directly at the call site.

the service thread executes the method, returns the result

and is then again available for new service requests via a2.6 Interrupts

portal. The caller thread is unblocked when the service

method returns. While a service thread is processing a An interruptis handled by invoking thieandlelnterrupt

request, further requests for the same service are blocked.Method of a previously installed interrupt handler object.
The method is executed by a dedicated thread while inter-

. _Se_:ryi_ce_}l O rupts on the interrupted CPU are disabled. This would be
senvice2l) O cqlled thefirst-level interrupt handler in a traditional oper-
_ ating system. To guarantee that the handler can not block the
Domain B system forever, the verifier checks all classes that imple-

An object reference can be passed as parameter of a porent thenterruptHandlgr iqterface Whetherthhf.mdlelnter.-
tal invocation only if the object is a service. In this case a fupt method has certain time bounds. To avoid undecidable
portal to the service is transferred and the reference counteProblems, only a simple code structure is allowed (linear
of the service is incremented. Other parameters are passefde, l00ps with constant bound and no write access to the
by value. When a portal is no longer referenced in a domain, |00P Variable inside the loop). Aandlelnterrupt method
it is removed by the garbage collector and the referenceUsually acknowledges the interrupt at the device and
counter of the associated service is decremented. unblocks a thread that handles the interrupt asynchronously.
A portal/service connection between two domains
requires that these domains have overlapping type spaces?-7 Memory Management
i.e. the interface component must be logically shared. If the

interface component depends on other components, they1€ap and Garbage Collection. The memory of the
must be shared, too. objects within a domain is managed by a heap manager with



garbage collector. Currently, the heap manager is part of the2.9  Scheduling
JX core. It cooperates with the translator to obtain informa-
tion about the object structure and stack structure. So farwe CPU scheduling in JX is split into two scheduler levels.
are working with only one heap manager implementation The low-level scheduler decides which domain should run
and one translator implementation, but it is also possible toon the CPU. Each CPU has its own low-level scheduler. The
build domain-specific heap managers. They can even behigh-level scheduler is domain-specific - each domain has
written in Java and run in their own domain. The heap man- one high-level scheduler per available CPU. A domain may
ager is a trusted part of the system. not be allowed to use all CPUs. To use a CPU, the domain
must obtain aCPU portal for the specific CPU. The high-
level schedulers are responsible for scheduling the threads
ré} a domain.

The high-level scheduler may be part of the domain or
may be located in a different domain.

To avoid that one domain monopolizes the CPU, the

Memory objects. To handle large amounts of data, Java

uses arrays. Java arrays are useless for operating syste
components, because they do not provide access control an
it is not possible to share only a part of an array. JX uses
Memory objects instead. The memory that is represented by

such aMemory object can be accessed via method invoca- computation can be interrupted by a timer interrupt. The

tions. These invocations are inlined by inserting the . ) 1
L . . timer interrupt leads to the invocation of the low-level
machine instructions for the memory access instead of the L .
. : . scheduler. The low-level scheduler first informs the high-
method invocation. This makes memory access as fast a . i
. evel scheduler of the interrupted domain about the preemp-
array access. Memory object can represent a part of the

. . tion. For this purpose it invokes a method of the high-level

memory of anotheMemory object andvemory objects can o )
S ; scheduler with interrupts disabled. An upper bound for the
be shared between domains like portals. Sharing memory L ) o .
. . . execution time of this method has been verified during the
objects between domains and the ability to create subranges” "~ .
) : verification phase. When the method returns, the system
are the fundamental mechanisms for a zero-copy implemen-

; . - switches back to the low-level scheduler. The low-level
tation of system components, like the network stack, the file . . .
scheduler then decides, which domain to run next. After
system, or an NFS server.

ensuring that it will be reactivated with the next (CPU-local)
Avoiding range checks by object mapping. A memory timer interrupt, the low-level scheduler activates the high-
range can be mapped to a (virtual) object that implements alevel scheduler of the selected domain. The high-level
marker interface (an interface without methods that is only scheduler chooses the next runnable thread. It can switch to

used to mark a class aappedLittleEndian or MappedBig- this thread by calling a method at tl@&PU portal. This
Endian). The verifier ensures that a class tiaplements method can only be called by a thread that runs on the cor-
one of these interfaces is never instantiated bythebyte- responding CPU.

code. Instead the objects are created by mapping and the
translator generates code to directly access the memory3 Device Drivers
range for access to instance variables. This makes the range

check redundant. Due to the enormous amount of new hardware that
appeared in the last years, operating system code is domi-
2.8 Domain Termination nated by device drivers. While it is rather straight forward to

move most operating system parts, such as file systems or
When a domain terminates, all resources must benetwork protocols, out of the trusted kernel, it is very diffi-
released. Further interaction with the domain raises ancylt for device drivers.
exception. Developers of commodity hardware do not assume that
All services are removed by stopping the service thread. their products are directly accessed by untrusted code.
A service contains a reference counter, that is incrementedajthough the Nemesis project has demonstrated that it is
each time a portal to this service is passed to anotherpossible to build user-safe hardware [17], we do not expect
domain. It is also incremented when a client domain passessuch hardware to become commercially available in the
the portal to another client domain. It is decremented, whennear future.
the portal object in a client domain is garbage collected or  pevice drivers in JX are programmed in Java and are
when the client domain is terminated. As long as the refer- jnstalled as service component in a domain. JX aims at only
ence counter is not zero, the service can not be completelytrysting the hardware manufacturer (and not the driver pro-
removed when its domain terminates. Until all reference vider) in assuming that the device behaves exactly accord-

counters drop to zero, the domain remains rbiestate.  ing to the device specification. When special functionality
Interrupt handlers are uninstalled. _AII threads are of the hardware allows bypassing the protection mecha-
stopped and the memory (heap, stacks) is released. nisms of JX, the code for controlling this functionality must

also be trusted. This code can not be part of the JX core,



because it is device dependent. One example for such cod@osted JX can be attributed to the ussigprocmask to dis-

is the busmaster DMA initialization, because a device can able/restore signals.

be programmed to transfer data to arbitrary main memory  The IPC cost of J-Kernel do@st include thread switch-

locations. ing costs, because the J-Kernel uses a “segmented” stack.
To reduce the amount of critical code, the driver is split IPC without switching threads complicates resource

into a (simple) trusted part and a (complex) untrusted part. accounting, garbage collection, termination, and type sepa-
To understand the issues related to device drivers, weration.

have developed drivers for the IDE controller, the 3C905B

network card, and the Bt848 framegrabber chip. The IDE

controller and network card basically use a list of physical |\ \;sed the iozone benchmark to measure the Linux

memory ao_ldresses for busmas_ter DMA. The code thfatethfs re-read throughput (file size: 4 kB, record length: 4
builds and installs these tables is trusted. The Bt848 chip, g .~ 4 <4 .0 i 1). To measure JX re-read

can exec%”e a program in a special instr.uctio.n set (.Rlscthroughput we wrote a Java benchmark, similar to iozone.
code). This program writes captured scanlines into arbitrary The system configuration that we measured works as fol-

memory regions. The memory addresses are part of thqows: The virtual file system, the buffer cache, and the ext2
RISC program. We currently trust the RISC generator and file system run in one domaifFgDomain). The IDE device
thus limit extensibility. To allow an untrusted component to driver runs in another domain. The client runs in a third

download RISC code, we would need a verifier for this domain. A service thread in theSDomain accepts client

mstArILIJctl_on T(et' Ibased svst here dri drequests. The client domain gets a portal to the virtual file
microkemel-based systems, where drivers aré move system and calls lookup to geF#éelnode portal.FSDomain

into untrusted address spaces run into the same IorObIemSlJSes one thread to asynchronously receive data from the
but they have much weaker means to cope with these IOrob’block device driver. Only the service thread is active in this

lems. Using an MMU. does not hglp, because .busmaSterbenchmark, because all data comes from the buffer cache.
DMA accesses physical RAM without consulting page

File System. We have implemented the ext2fs in Java [19].
We reused the algorithms that are used in Linux-ext2fs.

tables. JX uses type-safety, special checks of the verifier, System Throughpyt Latency

and splitted drivers to address these problems. (MByte/s) | (usec/4kB)
Linux (PIll 500 MHz) 400 10.4

4 Performance JX (PIll 500MHz) 201 19.9
JX co-located (Plll 500MHz) 213 18}7

I PC. We measured the performance of a portal call. Table 1
compares the IPC round-trip performance of JX with fast
microkernels and other Java operating systems. We now try to estimate the necessary performance
improvement to reach Linux throughput. The latency can be

Table 2: File system re-read throughput and latency

System IPC .
4 (cycles) broken down as shown in table 3.

L4KA (PIIl, sysenter, sysexit) [8] 800 Operation JX JX goa
Fiasco/L4 (PIll 450 MHz) 2610 memory copy 5.2 5.2
[http://os.inf.tu-dresden.de/fiasco/status.html] e 13 1.3
J-Kernel (LRMI on MS-VM, PPro 200MHz) [11] 440 file system logic 13.9 35
Alta/KaffeOS [1] 2727( -
JIXIhosted (Linux 2.2.14, PIIl 500MHz) 7100 Table 3: Latency breakdown (in usec)
JX/native (PIll 500MHz) 650 Memory copy and IPC are relative constant costs in JX.

The poor performance of the file system logic is not a prob-
lem of the JX architecture but of our non-optimizing com-
Comparing IPC times for these systems is not easy piler. With an improvement of factor 4 in Java performance,
because they were measured on different hardware (cachwe would reach the Linux performance level. Although
size, cache bandwidth, memory bandwidth, etc.), and, moresafety-related overhead cannot be avoided completely,
importantly, they have different protection models. IPC is recent research in JIT compiler technology has shown that
usually more expensive on a system with better protection.an optimizing compiler can improve the performance of a
Currently the IPC path in JX is implemented in C and not Java program significantly. Performance differences of fac-
optimized. It may be better compared with the Fiasco imple- tor 10 are not unusual between non-optimizing and optimiz-
mentation of L4 than with L4KA. The emphasis of our work ing Java compilers.
was on getting the architecture right and enabling perfor-
mance, but not achieving it. The bad performance of Linux-

Table 1: IPC latency (round-trip)



5 Statusand future work [9] J. Hartman, L. Peterson, A. Bavier, P. Bigot, P. Bridges, B.
Montz, R. Piltz, T. Proebsting, and O. Spatscheckti. Experiences
The system runs either on standard PC hardware (i486 building a communication-oriented JavaQSiware--Practice
Pentium, and embedded PCs with limited memory) or as aand Experience, 30 (10), Apr. 2000
guest system on Linux. The JX Java components also run o
a standard_JDK (with an emulation féfemory objects). tection. Technical Report TR-98-1670, Dep. of Comp. Science,
When running on the bare hardware, the system can accesy | o University, March 1998
IDE disks [19], 3COM 3C905 NICs [15], and Matrox G200 '
video cards. The network code contains IP, TCP, UDP, [11] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, T. von
NFS2 client, and SUN RPC. JX also runs on a PIll SMP Eicken. Implementing Multiple Protection Domains in Java. In
machine. Proc. of the USENIX Annual Technical Conference, New Orleans,
We have already implemented a heap manager that rung A, June 1998
in its own domain and manages the heap of another domain
This heap manager is always called, when the manage
domain tries to create a new object or array. Creating a new
object with the build-in mechanism costs 250 cycles, calling [13] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D.
another domain adds at least 650 cycles. This is not practicaEvers, R. Fairbairns, and E. Hyden. The design and implementation
until we further improve IPC performance. There are also of an operating system to support distributed multimedia applica-
efforts to improve the quality of the machine code generated tions.|EEE Journal on Sdected Areasin Communications, 14(7),
by the translator. pp. 1280-1297, Sept. 1996
The JX architecture suppor'Fs a broad spectrum of 08[14] P. Madany, et. alavaOS : A SandaloneJava. Environmant.
structures — from pure monolithic to a vertical structure White Paper, Sun Microsystems, May 1996
similar to the Nemesis OS [13]. We are going to investigate ' '
the issues that are involved when reusing components[15] M. Meyerh&ferDesign und Implementierung eines Ethernet-
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Studienarbeit (supervised by M. Golm), University of Erlangen,
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Design Issuesin System Support for Programmable Routers
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Abstract benefits. We call such computation “router extensions” or
“router applications”.

Placement of computation inside the network is a pow- However, the success of this paradigm in real networks
erful computation model that can improve the overall per- critically depends upon the existence of carefully designed
formance of network applications. In this paper, we address system support for router programmability. Without appro-
the problem of providing sound and efficient system support priate resource control and protection mechanisms, dynam-
for placing computation in a network router. We identify a ically added computation can effect the performance and
set of requirements, related to protection, resource control, integrity of a router in undesirable ways. Moreover, since
scheduling and efficiency, that are relevant to the design of routers are massively shared systems, the computation and
this system support. We have developed a system that at- I/O resources of a programmable router are scarce resources
tempts to meet these requirements, and have used it to write that must be effectively arbitrated. In addition, in order to
a router application that performs aggregated congestion make it practical for performance sensitive applications to
control. use router extensions, router extensions must be efficiently

executed. Our goal in this paper is to discuss some of the
requirements for sound and efficient OS support for router
programmability.

In the following sections, we describe the main require-

] ments that we believe should be taken into account while
The success of the Internet can largely be attributed to yesjgning a router OS.

the simplicity and robustness of its service model. Provid-
ing a simple, stateless forwarding service and keeping all .. .
complexity in end-systems has allowed the Internet to scale2  Efficient Memory Protection
to enormous proportions. Good end-to-end algorithms, like
TCP for congestion control, have further contributed to the ~ Memory protection is a basic requirement for maintain-
adequacy of this model, by being able to control network ing system integrity in the presence of dynamically installed
stability using purely end-to-end mechanisms. functions. A dynamically added function may not necessar-
However, there is quantitative evidence to show that ily be malicious, but it may perform unintended operations
the ability to place computation inside the network can that compromise the safety of the system. Since the exe-
lead to significant performance optimizations for applica- cution of a function, in general, may be dependent upon the
tions. Network-resident computation has topological ad- environmentit executes in, it may not be possible to exhaus-
vantage that allows routers to perform local recovery for tively test it for safe operation. Thus in general, a "trusted
reliable multicast [1] or media gateways to adapt to het- function” may not be safe unless there are restrictions on
erogenous receivers [2]. Also, by having access to multi- what kind of computation the function may perform.
ple flows belonging to an application (gtobal context), It is possible to write functions in a restricted program-
network-resident computation can enable some global opti- ming language that guarantees safe execution. For certain
mizations for all the flows of that application. For example, kind of functions it may even be possible to statically deter-
sharing of congestion state across a set of TCP flows thatmine safety, even though they are written in an unrestrict-
share a bottleneck link helps short TCP flows achieve bet- ed programming language. However, our interest is in an
ter throughput [3], whereas global knowledge of session-to- approach which does not restrict the expressiveness of the
server mappings in an SSL server cluster leads to improvedlanguage in which these functions are written. Our experi-
connection throughput [4]. In many cases, the ability to ences in writing two router applications that involved TCP
place computation even in a restricted set of network nodescongestion control and splice mechanisms [4] [3] show that
(e.g. edge routers) can provide a large subset of the possibleouter application code can be of significant complexity. We

1 Introduction



feel that writing these applications in a restricted language might be bursty. Thus core tasks may need high short-term
would have been substantially more complex, and perhap-processing bandwidth, even though long-term requirements
s suboptimal in performance. The key goal then becomesmay be small. Thus, to provide true isolation to these tasks,
to provide safety efficiently for unrestricted router applica- prioritization is the appropriate scheduling primitive. Prior-
tions. itization ensures that in a programmable router, the process-
Efficient memory protection can be provided by utilizing ing demands of core tasks will be handled with zero latency
the low-level hardware protection features of the router’s in the presence of router applicatidnsFor generic flows
processor architecture. Most general-purpose processorsind control processing, this essentially simulates a router
provide hardware primitives for protection, where all asso- in which there were no applications running. Moreover, if
ciated checks are embedded in the micro-architecture andapplication flows are scheduled among themselves using a
thus do not incur any extra overhead. These primitives, proportional share scheduler, they will adapt gracefully to
when exploited at the lowest level, can provide efficiency short-term reduction in available resource bandwidth (sys-
as well as hard protection guarantees. We have been abléem virtual time will not advance while the prioritized task
to implement efficient protection domains in a router OS by is being run).
utilizing the segmentation hardware of the X86 architecture
[5]- The protection subsystem of our router OS exposes the
segmentation hardware at a low enough level that router ap-
plications can use it easily, while keeping invocation over-
heads close to that of a protected function call in hardware. ~ An important characteristic of many useful router appli-
Similar approaches have been tried with other architecturescations is the use of functions that carry state across invoca-
as well [6]. In general, by tuning its protection subsystem tions. Protocol stacks are one example, where every "layer”
implementation to the processor architecture, a router OSis a stateful function. Similarly, any router application that
can provide efficient as well as strong memory protection exploits global context across flows must use stateful func-
without compromising expressiveness of router application tions. Typically, a single stateful function would be used
code. In spirit, this design principle is similar to that of by many flows. Similarly, a single flow would use several
Exokernels [7], which would argue for exposing hardware stateful functions that act like a "processing pipeline” for
protection features to the application. the flow. This model localizes state in the functions, and
carries a flow’s invocations from function to function. This
is in contrast with the "thread” model, where it is expect-
ed that a thread executing on behalf of the flow has access
to all the state. If different functions are in different pro-

We distinguish between flows that are bound t0 SOMe ¢ction domains (because some functions are privileged, or
router application, calledpplication flows, and flows that jstalled by mutually untrusted authorities), the thread ap-

are processed by the routers standard forwarding code,nroach must either resort to state sharing through an inter-
calledgeneric flows. We call generic flow processing and - gace (since it cannot directly read/write it), or there should
control plane processing as the routaxse tasks. The e 4 mechanism for a thread to "cross” protection domains.
goal of performance protectionis to protectthe performance The |atter essentially takes the form of an explicit invoca-
seen by the router’s core tasks in the presence of applica-tion, as proposed in [10] through descriptor passing.

Fion flows. Performance protection limits the scope of the Thus, we argue that the computation and composition
impact that dynamically added computation has on fiows model for router applications should be event-based, as op-

going through the router : application'flov.vs perceive the posed to thread-based. Besides providing a closer match
end_—to-end e_ffects of placing computatlon m_the_ router (as to a computation model that uses stateful shared functions,
desired), while the presence of this computation is transpar- key advantage of an event-based model is that all invoca-
entPto ?enerlc ﬂOWS't tion h implicati tions areexplicit andasynchronous. Since invocations carry
oS eFr.orrInance protection kas two "Qp L)catlogs On arouter o identity of the resource principal making the invocation,
>. Firstly, %c;je Irouter tas S;EPSI ek ound to aE aPPro-the resource principal associated with a piece of work is al-
priate core scheduling context, Is makes core task pro- ways explicitly known throughout the system. This gives

cessing_explicit in the scheduler, allowing it to deliver the the scheduler complete knowledge of pending work in the
appropriate performance guarantee. Secondly, the SCheOILII'system for each resource principal, and allows it to sched-

ing policy for the Eor_e tasks must be ghosenj Wh\';/;;\lnay ]Pe ule work correctly. Further, by being asynchronous, every
prioritization or sharing. Recent studies using tral" ‘invocation acts as an instant when the scheduler gets con-

fic traces [8] a}nd inter-domain routing message tra}ces [] trol, leading to tighter resource control than that allowed in
show that traffic patterns and control plane processing load

in Internet routers is difficult to characterize accurately, and  Modulo non-preemption. See section 4.

4 Event-Driven Control Flow

3 Performance Protection




a constant time-slice based scheduler. Note that at every6 Binding Resourcesto Flows

scheduling instant, the scheduler can look for invocations

n_1ade in the core scheduling context (section 3), and priori- Typically router resources would be shared by a large

tize them. number of application flows, which calls for appropriate
resource arbitration. Moreover, many router applications
would typically operate upon set of flows belonging to

5 Integrated Resource Scheduling a type of network application, as opposed to operating on
single flows. In such cases, the router application would
typically have an aggregate, as opposed to per-flow, per-

An application flow requires CPU cycles as well as link formance requirement. This makes the task of accurately

bandwidth from the router to meet its performance require- binding router resources to flows an important one. The

ment. However, the router application can only specify a expressiveness of the resource reservation interface deter-

flow's requirement in terms of the amount of work required mines how accurately router applications will be able to

from each resource, and a single, global deadline (or rate)express their resource requirements. An inflexible inter-

requirement. For example, for each packet of a flow, it may face may lead to coarse specifications, leading to under-

specify the CPU cycles required, the packet size in bytes, utilization of router resources. Likewise, an overly flexible

and a single deadline for the packet to get serviced. Theinterface may blow up the scheduling state in the system,

application does not specify how deadlines should be allo- while being a burden to a router application writer.

cated in the CPU and the link. This task is best done by  We believe that two key principles suffice to provide a

the router OS that should figure out how to best deliver the simple and flexible interface.

overall deadline by allocating a per-resource deadline. We

call this router OS functiomtegrated resource scheduling. 1. Decouple execution contexts from scheduling con-
texts: This means that the interface should clearly dis-

tinguish between a thread of control associated with
a flow, and the resource principal associated with it.
Thus, an invocation made in the context of a flow
should have two components : the identity of the flow,
and the identity of the resource principal, which may
be different in general.

We generalize integrated resource scheduling in terms of
deadlines, since rate requirements can be mapped to dead-
lines. Thus, we assume that a flow asks for a deadtipe (
for each of its packets, and specifies the amount of work re-
quired from the CPUI ) and the link {’,). The goal of
integrated resource scheduling is to sglihto d, a dead-
line for the CPU, and,, a deadline for the link, according
to an optimization criterion. We briefly describe a dead- 2 Allow absolute as well asymbolic specification of re-
line allocation algorithm here. At any time, there are a set source reservations : A symbolic specification means
of requests admitted into the system, correspondingto aset 4 reference to another principal’s resource reservation.
of reservations in each resource. If a resource has capacity  Thys, a flowf; may specify that it requires an over-

C and has admitted a set of requests where requesed- all rate 0f100 packets/sec with each packet haviig
s work W; and has been allocated a deadlihe then the bytes (independent link reservation6a00 bytes/sec),
residual capacity of the resourcefs = C — » ,W;/d,. but shares the CPU with floys (symbolic CPU reser-

When a new request comes for this resource, asking foran  yation).

amount of work//, its minimal service time in this resource

iS dmin = W/R. If the sum of the quantitd ., for every These principles have two important implications. First,
resource is less than or equal to the global deadline of thebinding a flow to a resource principal now becomes an ex-
task, then the request is admissible. However, if the sum isplicit operation. Second, resources can be shared on a per-
less than the global deadline, these deadlines cad ded resource basis, as opposed to an all-or-none basis (where
such that each resource has some spare capacity left (Noteither both CPU and link resources are shared, or none is
that allocating a deadline df,,;,, in a resource corresponds shared). An example application where this is needed is
to using upall the residual capacity of that resource). Itisin a multicast application that transcodes incoming data on a
this relaxation step that the system-wide optimization crite- link and distributes it over three output links. Each output
rion comes in. For instance, if the optimization goal is to flow requires its own context in its output link, and may
keep all resources equally utilized, so that the system keepseven have distinct link rate requirements due to receiver
spare capacity uniformly available across all resources, thenheterogeneity. However, the transcoding operation is done
the deadline allocated in the heavily utilized resource would once on a single copy of every packet, and hence the CPU
be relaxed more. Such a mechanism should be an integrafreservation should be shared. This application can be im-
part of a router OS in order to achieve tight admission con- plemented using three flows that share their CPU resource.
trol for application flows. One of the flows can make the absolute CPU reservation,



and the other two can refer to this reservation symbolical- that holds per-flow state ; or & modules where there are
ly. A cursory look at the example might say that the same K congestion sharing groups, each of which holds per-flow
could be done by declaring one incoming flow that only re- state only for the flows in that group. We have currently
serves the CPU, and three outgoing flows reserving only implemented ATCP as a monolithic function. Only one ex-
the respective link rates. However, this would break the in- ecution context is used, since all session state is centralized
tegrated CPU and link scheduling requirement described inin one function. Since there are no blocking calls in the ap-
section 5. plication, there is no need for multiple execution contexts to
hide blocking latency.

7 Srishti and Aggregate TCP
8 Evaluation

The ideas presented above have been incorporatgd in
rishti, a substrate for writing applications in a router that We have implemented Srishti od@0 MHz Pentium and
uses the X86 architecture for application flow processing. tested it as a router with Intel eepro100 network interfaces.
Using the above design principles, Srishti allows compo- While the implementation uses a Linux skeleton, it depends
sition of router applications through stateful functions and more directly on the X86 architecture rather than on Lifwux
flows. The functions are untrusted, preemptible functions In this section, we provide some microbenchmarks on the
that can be efficiently co-located with core router function- system that give some insight into the design decisions laid
s in a single address space. Flows are execution contextsput earlier.
bound explicitly to resource principals using Srishti's API. We begin with some microbenchmarks related to protec-
All control transfer is explicit and asynchronous, and func- tion. A null router application function, co-located with the
tions are called through references. These references areouter kernel in a lesser privileged segment, incurs an over-
obtained by anaming service that acts like a dynamic sym- head 0f325 cycles for a call and return. When the function
bol table of loaded functions. also makes a protected function call to a core router function

We briefly share our experience in writing a router appli- before returning, the overhead becorfi¢$ cycles. This is
cation over Srishti to perform aggregated TCP congestion more than twice of the single call, due to additional over-
control. TCP does not provide mechanisms to allow a new heads of saving all general-purpose registers. To see the
connection to reuse congestion estimates gathered by otheadvantages of co-location, we ran a ping-pong test between
connections that have used the same path. This forces a newwo null functions in different address spaces, incurring on
TCP connection to always start from a conservative estimateoverhead ofl 360 cycles per call. This overhead would be
of available bandwidth, causing short connections to never higher in general for a non-null function, due to the cost of
reach the correct value of the available bandwidth. Short re-populating flushed TLB entries with every address space
HTTP connections can perform at significantly sub-optimal switch.
performance levels due to this, if there is a lot of opportu-  The next measurement shows the role of event-driven
nity for temporal and spatial congestion state reuse. ATCP control flow in providing fine-grained prioritization to the
is a router mechanism that allows congestion state reuse berouter's generic flows. We modified the eepro100 driver
tween TCP connections that are expected to share bottleto use polling instead of interrupts. Thus, interrupt con-
neck links in the network without changing end-system text is not used to process generic flows. We tried three
TCP implementations. The details on how ATCP imple- ways in which the scheduler could get control in order to
ments its functionality and its evaluation on a real-world serve generic flows. In the first case, the scheduler on-
HTTP trace are available in [3]. ly gets control at system timer interrupt)(msec). This

While composing ATCP using Srishti's API, the mostin- simulates a time-slice based scheduler, and a system that
teresting choice is in how resources are to be allocated, anduses synchronous function invocations. The second case
thescope of congestion state sharing. The scenario we envi- gives control to the scheduler only when application func-
sionis that ATCP is deployed in a router that serves a certaintions return, simulating asynchronous control flow, but with
number of busy TCP servers, say fravhdifferent organi- no timers. In the last case, the scheduler gets control ev-
zations. In this case, the scope of congestion state sharingery time a function returns or the timer fires, representing
is all TCP flows originating at thes®¥ servers, and the re-  the finest scheduling granularity. The system continuously
source allocation goal is to be max-min fair to th@gerga- runs invocations whose running time is uniformly distribut-
nizations. Thus the ATCP implementation usésesource ed from 3 msec to21 msec in increments df, centered
principals, to which incoming TCP packets are bound. One roughly aroundl0 msec. The router is fed with a uniform
can choose to implement ATCP as a monolithic function stream of packets with varying inter-packet gap. The metric

2ATCP approximates this by grouping together flows destined to the  3Code for Srishti and ATCP is available via anonymous FTP from se-
same subnet. quoia.ecsl.cs.sunysb.edu/pub/srishti.
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Figure 1. Utilization of two resources v/s admit-
ted flows for fixed allocation (algorithm 1) and load-
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dependent allocation (algorithm 2).

skewed utilization and stops admission control sooner than
algorithm2. Algorithm 2 tries to keep resource utilization
balanced by allocating more slack to the more loaded re-
source.

9 Reated Work

Recent interest in providing system support for router
programmability has led to the specification of the NodeOS
interface [11] which attempts to lay down implementation-
independent primitives that a programmable router should
provide. NodeOSmplementations internally implemen-

t these primitives using substrates like language runtimes or
specialized OSes [12], and expose the NodeOS interface to
router applications. Placing our work in this context, the re-

quirements we identify pertain to NodeOS implementation-

s. In other words, we expose some of the design decisions
which are hidden beneath the NodeOS interface, but are im-
portantin making router programming a practical paradigm.

Some of the requirements that we propose are generic in the
sense that they can be incorporated in existing implementa-
tions. For example, the requirements pertaining to resource

that reflects the "disturbance” introduced in the forwarding scheduling can be incorporated into any framework that al-
pat_h of _generic flows is_ the standard o_leviation of the inter- ready supports scheduling, whereas efficient memory pro-
arrival time at the receiver. As shown in table 1, the event- yecjon primitives can be utilized to sandbox non-protected

driven approach leads to lesser perturbation than a ConStaanproaches such as router plugins [13]. Stateful computa-
time-slice based scheduler, and the scheduler that combineg, may not be directly applicable in some systems, for

events with time slices performs the best.

Sender Inter Timer Function | Timer OR
Pkt Gap Interrupt Return | Fn. Return
1.0 1.746 1.821 1.573
4.0 4,383 3.783 3.069
7.0 4,312 3.832 3.082
12.0 3.881 3.658 2.844

Table 1. Standard Deviation (in msec) of received
inter-packet gap for three ways in which the scheduler

can get control from router applications.

The final measurement shows the impact of integrated

resource scheduling in providing tighter admission control. [4]

example those based upon functional languages. Howev-
er fine-grained scheduling afforded by event-driven control
flow can be supported in language runtimes by giving con-
trol to the language runtime upon a method invocation.
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1 Motivation achieve the required speed. Since a tasks’s user-level threads are
unknown objects for the kernel and execute all in the context of a
Although IPC has become really fast it is still too slow on cer- single kernel thread user-level-thread switchs are invisible to the
tain processors. Two examples motivating even faster IPC, critical kernel and can entirely execute in user mode. However, the over-
sections in real-time applications and multi-threaded servers, arehead required to make user-level threads kernel schedulable [1]
briefly discussed below. more than compensates the above speed gain in a system that of-

Critical sections in real-time applications suffer from the well-  fers sufficiently lightweight threads and fast IPC. From our previ-
known priority-inversion problem [7]. Multiple solutions have ous experience, we are convinced that the total costs of user-level
been proposed, e.g. priority inheritance (which is generally not threads in terms of time and total system complexity are much
sufficient), priority ceiling [7], and stack-based priority ceiling [2].  higher than their gain. Furthermore, having two concepts, kernel
All methods need to modify a thread’s priority while the thread threads and user-level threads, is conceptually inelegant and con-
executes the critical section. In the stack-based priority-ceiling tradicts the idea of conceptual minimality.
protocol, for example, a thread has to execute the critical section Therefore, our goal is to find an implementation of kernel
always with the maximum priority of all threads that might even- threads that offers all speed advantages of user-level threads for
tually execute the critical section, regardless of its original priority. intra-task communication.

A very natural solution for stack-based priority ceiling in a Let us revisit how an intra-address-space thread switch hap-
thread/IPC-based system is to have a dedicated thread per criticapens. We assume an aton8endAndWaitForReply IPC which is
section. This thread’s priority is set to the (static) ceiling priority. typically used for RPC. Client and server variant of this call dif-
Any “client” thread calls the critical section through RPC (two fer only marginally. The client thread sends a request to a server
IPCs). Priorities are automatically updated through the undelying thread and waits for a reply from that server. Correspondingly,
thread switch. The synchronous IPC mechanism also serializesthe server thread replies to the client thread and waits for the next
threads automatically that compete for the critical section. Pro- request which may arrive from any client. We show the client
vided that simultaneously pending request IPCs are delivered invariant:
prioritized order, we have a simple and elegant implementation of
stack-based priority ceiling. A= B: o ' _ _

However, this method of implementing critical section requires call IPC function, i.e. push A's instruction pointer ;
very lightweight threads. In particular, IPC should be very fast. if B is a valid thread id AND thread B waits for thread A
180 cycles which is the current L4 time on a Pentium I11 is too ex- then save A's stack p?'m‘?rf’ .
pensive. Such costs are acceptable when real synchronization ac- 22: ’é‘,z :2:32 Ig \r"l'fr:'t or B
tions are necessary such as entering the invoker into a wait queue load B's stack pointer ;
if the critical-section thread is blocked on a page fault. However, '

. i . 4 current thread :=B ;
typically a critical-section thread can be called directly. 180 cycles return, i.e. pop B's instruction pointer

are inacceptable in this casEherefore, we need much faster IPC! else
For achieving highest performanaeulti-threaded servers of- more complicated IPC handling
ten needcustomized policies how to distribute incoming requests endif .

to worker threads. For instance, a server might want to handle up
to 3 requests in parallel but queue further requests. The naturalThere are two reasons why to be execute this code in kernel mode:
solution is one distributor thread which also implements a request
queue and 3 worker threads that communicate through IPC with 1. Atomicity. Checking B’s state and the following thread
the distributor. Again, 180 cycles are inacceptafleerefore, we switch have to be executed atomically to avoid inconsisten-
need much faster 1PC! cies.

In general, we see that the availability of fast IPC lets people
think about fine-grain system componentization. Once they areon 2. Kernel Data. Stack pointer, thread status, and “current
this path they ask for mechanisms that enable even more fine-grain thread” are protected data that can only be accessed by the

componentization, in particular infinitely fast IPTherefore, we kernel to prevent user-level code from compromising the
need much faster IPC! system.

. On processors with relatively expensive kernel/user-mode-switch
2 Is User-Level IPC Possible? operations such as x86, the above two reasons increase IPC costs
from 20— cycles to 180 cycles (Pentium Ill, using systenter/sysexit
Nicely, we seem to need superfast IPC particularly for intra-task instructions). Therefore, we should find a way to invalidate both
communication which does not include an address-space switchreasons, i.e. to execute the above IPC operation entirely in user
User-level threads which are no kernel objects [1, 6, 5] might mode.
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2.1 Atomicity more expensive than intra-processor communication. Restricting

] o ) ] ) user-level IPC to intra-processor is thus acceptable.)
Ensuring atomicity in user mode is relatively simple as long as

the kernel knows the executed code. The method goes back to an
idea that Brian Ford [3] proposed in 1995: Let some unmodifi-
able “kernel code” execute in user space so that the kernel can act
specifically to this code if an interruption within this “kernel code” 2 2 Kernel Data
occurs.

In our example, the kernel would simply reset the thread’s in- . .
struction pointgr to the beginning of thepI)FCC routine if an inter- The kernel data involved are A-TCB and B-TCB variabiéack
ruption occurs before a real status modification has become ef-Pointer, status and the system variableurrent thread. We have
fective. After the system state has been partially modified, the to analy_ze whether these variables must be really protected from
kernel would have to either undo those modifications or complete Unautorized user access.
the IPC operation before handling the interruption. Such a method  For the time being, assume that the above mentioned IPC code
cannot ensure atomicity in general; e.g., it fails if the questionable runs in user mode. Then, the TCB variabtack pointer holds a
code experiences a page fault. However, we can easily implementhread'suser stack pointer. Remember that A and B both run in the
the IPC code such that the described forward-completion methodsame address space so that they can arbitrarily modify each other
works: stacks and perhaps even code. Protection would therefore not be
significantly better if A's stack pointer would be protected against
access from BConsequently, the TCB variable stack pointeican
be user accessible.

A— B:
call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;

— restart point — The status case is a little more complicated. Assume that a
if B is a valid thread id AND thread B waits for thread A thread’s status can only be “run” or “wait for X”. We have to an-
then — forward point — alyze three cases when thread A maliciously switches thread B’s
set A’s status to “wait for B” status: from “run? to “wait for X", from “wait for X" to “wait for
set B’s status to “run” Y”, and from “wait for X” to “run”.
load B’s stack pointer ; . .
current thread := B Whenever A modifies B’s status illegaly we see user-level ef-
— completion point — fects and system effects. User-level effects within A's address
return, i.e. pop B's instruction pointer space can be ignored (see above). Effects in different address
else ... space that indirectly result from user-level effects within A's ad-

Interruptions including page faults between restart point and for- dress space are also irrelevant since A has full access to their data
ward point occur before the system’s state has really changed. Pro-even without modifying the thread states. As long as only thread
vided that no required registers have been overwritten, resetting tostates within the same task are accessible, user-level effects are
the restart point heals the interruption: thus uncritical.

System effects are more serious. Whenever the system state
depends on a thread¥atus variable we need provisions ensuring
system integrity. Unauthorized modification oltatus variable
The algorithm is robust against page fabligpon accessing must in no case lead to system inconsistencies. For instance, the
thread-control blocks (TCBs): If a page fault occurs when TCB kernel can no longer assume that a threastaitis “run” is always
B is accessed to check B’s status the IPC operation simply restartsin the run queue. Similarly, a thread might be in the run queue
after page-fault handling. We assume thfr the forward point, although itsstatus says “wait for X”. This run-queue problem can,
no legal page faults can occur since both TCBs have been accessed.g., be solved by the lazy-scheduling technique [4] where the run
in the check phase. However, illegal page faults might occur, e.g. queue is updated lazily.
if a user program jumps directly to the middle of the code or even

to the middle of an instruction. Consequently, any page fault in . more generally applicable technique is based on the idea
this region is illegal and permits to kill the thread. to have akernel twin for each unprotected user-accessible kernel

variable. Before the unprotected variable is used by the kernel,
the kernel always checks consistency. If unprotected variable and
kernel twin do not match the kernel takes appropriate actions to

interruption between restart point and forward point:
set interrupted instruction pointer to restart point .

interruption between restart point and complete point:
if is page fault

then kil thread A reestablish consistency. The fundamental problem is to determine

else A’s status = “wait for B” : whether the recognized inconsistency is legal or not. If it is le-
B's status := “run” gal the unprotected variable is used to update the protected kernel
load B’s stack pointer ; state. If itis illegal the unprotected variable can be reconstructed
current thread :=B ; based on its kernel twin or the current thread can be killed.

set interrupted instruction pointer to completion point

endif For example, we could have an unprotecstadus, variable in

user space and a protected kernel twiatus, in kernel space per
thread. Whenever the kernel detestatus, # status; it will

On a uniprocessor, we have thus guaranteed atomicity without US- aestablish consistency by:

ing privileged instructions. For multiprocessors, the method can
be extended to work for threads residing on the same processor.
(Cross-processor communication is anyhow an order of magnitude

20n this level of abstraction, “run” is used to denote a ready-to-run
1Some systems might hold TCBs in virtual memory. thread as well as a thread that currently executes on a processor.
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status inconsistency: CurrentUTCB inconsistency:

if status,, = “run” AND statusy, is wait for if CurrentUTCB,, is in valid utcb region
then insert thread into run queue ; then NewKTCB := CurrentUTCB,—>ktcb ;
statusy, := status, if NewKTCB is in valid ktcb region and aligned
elif status,, is wait for AND status;, = “run” AND NewKTCB—>utcb = CurrentUTCB,,
then delete thread from run queue then switch from CurrentKTCB to NewKTCB ;
status,, := status,, CurrentKTCB := NewKTCB ;
else kill thread CurrentUTCBy, := CurrentUTCB,, ;
endif . return
endif
The algorithm can be straightforwardly extended to handle more endif ;
thread states than only “run” and “wait for X". Ignoring perfor- kill thread (CurrentKTCB) .

mance questions and potential complications due to dependencies
between multiple kernel objects, we can conclude that, in princi-
ple, some kernel data can be made user-mode accessible. 3.2 Coprocessor Synchronization

. . Most modern processors permit to handle floating-point registers
3 Lazy Switching and those of other coprocessors lazily. Those resources can be
locked by the kernel. If another thread tries to access them an
The fundamental insight is that twin inconsistencies need only to exception is raised that permits the kernel to save the coprocessor
be checked on kernel entry. This sounds trivial. However, its im- register in that TCB which has used the coprocessor so far and
mediate consequence is that an IPC executing completely in usefreload the registers from the current TCB. Typically, coprocessors
level does not need to synchronize with the kernel. can only be locked by kernel-mode software.
In particular, this type of IPC can switch threads without di- Therefore, we have to extend the above CurrentUTCB-
rectly telling the k_erngl. The kernel will synchronize, i.e. exe- synchronization algorithm to make it coprocessor safe.
cute th_e threa_d swltch in retrosp?ct upon Ehe next kernel entry, e.g. We introduce a pair of flagEoprocessorUsed, /.. Both flags
timer tick, device Interrupt, cross add_ress space IPC, or page faUIt'are set by the kernel whenever it allocates the coprocessor to the
In general, lazily-evaluated operations pay if more of'them OC current thread. ICoprocessorUsed;. is set the kernel locks the co-
cur than have to be evaluated effectively. Correspondingly, 1azy o cessor when switching from this thread to another one and re-
switching can pay if only a samll fraction of lazy-switching Op- gets hoth flag twins. The user-level IPC code now checks whether

erations lead finally to real kernel-level process switches. Such CoprocessorUsed, is not set. If it is set user-level IPC is not pos-
behavior can be expected whenever a second IPC, for example theSible and a full kgrnel IPC is’ invoked

reply or a forwarding IPC, happens before an interrupt occurs. Our .
Py g bp b Of course,Coprocessor,, is not trustworthy. Therefore, we

motivating examples “critical region” and “request distribution” . . ) o
fall into this category provided their real work phase is short. might see an invalid coprocessor flag when switching through
user-level code from A to B. A potential coprocessor confusion
between A, B, and other threads of the same task can be ignored.
3.1 UTCBs and KTCBs However, we must ensure that the information “one of the current
task’s threads has currently allocated the coprocessor” never gets
Now let us try to apply the insights of the previous section to the |ost. Otherwise, the coprocessor confusion could infect threads of
concrete problem: other tasks. Fortunately, this can be done lazily, i.e. needs only to
be checked when a an UTCB inconsistency is handled:
1. The IPC system-call code is mapped to a fixed address in
user address space and can be executed in user mode; atom- Switch from CurrentK TCB to NewKTCB:
icity is guaranteed as described in Section 2.1. e
NewKTCB—>CoprocessorUsed := CurrentK TCB—>CoprocessorUsed ;
2. We separate each thread’s TCB into a UTCB and a KTCB.
The UTCB is unprotected and user accessible. The KTCB Remember that user-level IPC never legally switches away from
can only be accessed by the kernel. A thread’s UTCB holds a thread that currently uses the coprocessor. As long as all lazy
its user stack pointer and itsstatus, . Satus;, is in the KTCB. switches have been legal, the above statement copies therefor al-
Furthermore, the UTCB holds the KTCB address which is ways a 0-flag. However, as soon as we have a coprocessor con-
of course not trustworthy. However, the KTCB holds a fusion through an illegally res&oprocessorUsed, , it copies a 1-
backpointer to its corresponding UTCB so that the UTCB'’s  flag and propagates the coprocessor confusion to the new thread.

KTCB pointer can be validated (see algorithm below). If later a kernel IPC or other kernel-level thread switch switches to
) another task the coprocessor is deallocated so that the coprocessor
3. An unprotected kernel variaburrentUTCB, can be ac- confusion can not infect the other task.

cessed from user mode. It is intended to point to the current
thread’'s UTCB. lIts protected twiGurrentUTCBy, lives in
kernel space.
4 Prototype Performance

The only variable that triggers synchronizationGsrrentUTCB.

Inconsistencies that include ondiatus are ignored because they The current prototype takes 12 cycles for the fast IPC path on a
are always illegal. Due to lazy scheduling [4fatus inconsisten- Pentium Il1. Slight increases have to be expected when integrating
cies can be tolerated. it into a fully-functional L4 version 4 microkernel.
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5 Conceptual Summary

Lazy switching enables very fast blocking intra-task IPC between
kernel-implemented threads. This type of IPC can typically be
entirely executed in user mode although it operates on kernel ob-
jects. We hope that lazy switching adds the advantages of user-
level threads to kernel-level threads.

The work on lazy switching is ongoing research in its early
stage. Whether all its promising properties can make it to real-
ity is still open. Further open questions:

1. Can we include the structural modifications required for lazy
switching into an existing microkernel at almost no cost?

2. Processors with low kernel/user-switch costs such as Alpha
obviously do not require lazy switching. Can we find an API
that permits lazy switching on x86 without impose additional
costs on an Alpha implementation?

3. Can we extend lazy switching to certain cross-address-space
process switches?
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Abstract

This paper argues that a common design paradigm for
systems is fundamentally flawed, resulting in unstable, un-
predictable behavior as the complexity of the system grows.
In this flawed paradigm, designers carefully attempt to pre-
dict the operating environment and failure modes of the sys-
tem in order to design its basic operational mechanisms.
However, as a system grows in complexity, the diffuse cou-
pling between the componentsin the system inevitably |eads
to the butterfly effect, in which small perturbations can re-
sult in large changes in behavior. We explore this in the
context of distributed data structures, a scalable, cluster-
based storage server. We then consider a number of design
techniques that help a system to be robust in the face of
the unexpected, including overprovisioning, admission con-
trol, introspection, adaptivity through closed control loops.
Ultimately, however, all complex systems eventually must
contend with the unpredictable. Because of this, we believe
systems should be designed to cope with failure gracefully.

1. Introduction

ning on traditional interrupt-driven operating systems, a
slight increase in load beyond the capacity of the server can
drive the server into a persistent state of livelock, drasti-
cally reducing its effective throughput. As a third example,
in [1], Arpaci-Dusseau et al. demonstrate that with conven-
tional software architectures, the difference in performance
resulting from placing data on the inner tracks vs. outer
tracks of a single disk can affect the global throughput of
an eight node cluster of workstations by up to 50%. A final
example is that of BGP “route flap storms” [11, 12]: un-
der conditions of heavy routing instability, the failure of a
single router can instigate a storm of pathological routing
oscillations. According to [11], there have been cases of
flap storms that have caused extended Internet outages for
millions of network customers.

By their very nature, large systems operate through the
complex interaction of many components. This interaction
leads to a pervasive coupling of the elements of the system;
this coupling may be strong (e.g., packets sent between ad-
jacent routers in a network) or subtle (e.g., synchronization
of routing advertisements across a wide area network). A
well-known implication of coupling in complex systems is
the butterfly effect [14]: a small perturbation to the system
can result in global change.

As the world grows more dependent on complex com- Avoiding Fragility

puting systems (such as scalable web sites, or even the In-
ternet itself), it has become increasingly evident that these A common goal that designers of complex systems strive
systems can exhibit unpredictable behavior when faced with for is robustness. Robustness is the ability of a system to
unexpected perturbations to their operating environment. continue to operate correctly across a wide range of opera-
Such perturbations can be small and innocuous, but duetional conditions, and to fail gracefully outside of that range.
to latent flaws in the design of the system combined with In this paper, we argue against a seemingly common design
widespread coupling between its components, the effects ofparadigm that attempts to achieve robustness by predicting
small perturbations may be large and destructive, possiblythe conditions in which a system will operate, and then care-
rendering the system inoperative. fully architecting the system to operate well in those (and
For example, in [5], Floyd and Jacobson demonstrated only those) conditions. We claim that this design technique
that periodic signals (such as router broadcasts) in the Inter-is akin to precognition: attempting to gain knowledge of
net tend to become abruptly synchronized, leading to pat- something in advance of its actual occurrence.
terns of loss and delays. As another example, in [4], Dr-  As argued above, it is exceedingly difficulty to com-
uschel and Banga demonstrate that with web servers run-pletely understand all of the interactions in a complex sys-
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tema priori. Itis also effectively impossible to predict all [ client ] [ client | [ client | [client | | client ]
of the perturbations that a system will experience as a re-

sult of changes in environmental conditions, such as hard- WAN

ware failures, load bursts, or the introduction of misbehav- =
ing software. Given thisye believe that any system that
attemptsto gain robustness solely through precognition

service service service hash table
- N | € AP
DDS lib DDS lib DDSlib |

isproneto fragility. ™~ - redundant, low
In the rest of this paper, we expore this hypothesis by SAN et
presenting our experiences from building a large, complex / | \ L network
cluster-based storage system. We show that although the storage | | storage | | storage F brick <
system behaved correctly when operating within its design  [brick” | | Torick | | Tbrick” | single-node,
assumptions, small perturbations sometimes led to the vio- * [storage | [storage | [ storage | : e
lation of these assumptions, which in turn lead to system-  |[Cbwick™| ([brick™| [TbrickT :
wide failure. We then describe several design technigques ' cluster

that can help systems to avoid this fragility. All of these
techniques have existed in some form in previous systems,
but our goal in this paper is to consolidate these techniques
as a first step towards the design of more robust systems.

Figure 1. DDS architecture: each box in the diagram
represents a software process. In the simplest case, each
process runs on its own physical machine in a cluster, how-
ever there is nothing preventing processes from sharing
physical machines.

2. DDS: A Case Study

In [7], we presented the design and implementation of jo3) anomalies. In all cases, the anomalies arose because
a scalable, cluster-based storage system caltésirabuted of an unforeseen perturbation to the system that resulted in
data structure (DDS). A DDS, shown in Figure 1, is a high- — the violation of one of our operating assumptions; the con-
capacity, high-throughput virtual hash table that is parti- sequences of these violations were usually severe.
tioned and replicated across many individual storage nodes |, his section of the paper, we describe several of the

calledbbncks. D[,)S c|l|ents (tyP'Ca”y Ir.1tehrnet s;:rvll'%es Suﬁh more interested and unexpected behavioral anomalies that
as web servers) invoke operations on it through alibrary that .o oncountered over the one or two years’ worth of experi-

acts as a two-phase_ commit coordinator across _replicas af- nce we had with this system. Some may choose to consider
fecteﬁ_by the op_er_atlop. l‘:’hese t\{vo-phaze CommMIts are Useqyase anomalies simply as bugs in the design of the system,
to achieve atomicity of all operations and one-copy equiva- arising from lack of foresight or neéty on the part of its

lence across the gntire Cluster. . o designers. We argue, however, that these “bugs” all shared
The design philosophy we used while building the DDS  gijar properties: they were extremely hard to predict, they

was to choose_a carefully selecteql set of_reasonable OP€ra5 nse from subtle interactions between many components
tional assumptions, and then to build a suite of mechanlsmsOr layers in the system, and they bugs led to severe impli-

and an architecture that would perform robustly, scalably, cations in our system (specifically, the violation of several

and efficiently given our assumptions. Our design strategy e ating assumptions which in turn led to system unavail-
was essentially predictive: based on extensive experienceabi"ty or data loss)

with such systems, we attempted to reason about the behav-

ior of the software components, algorithms, protocols, and ) )
hardware elements of the system, as well as the workloads it2-1- Garbage Collection Thrashing and Bounded

would receive. In other words, we largely relied on precog- Synchrony
nition while designing mechanisms and selecting operating
assumptions to gain robustness in our system. Various pieces in the DDS relied on timeouts to detect

Within the scope of our assumptions, the DDS design the failure of remote components. For example, the two-
proved to be very successful. We were able to scale thephase commit coordinators used timeouts to identify the
number of nodes in the system across two orders of mag-deaths of subordinates. Because of the low-latency (10-100
nitude, and we observed a corresponding linear scaling in us), redundant network in the cluster, we chose to set our
performance. We also demonstrated fault-tolerance by de-timeout values to several seconds, which is four orders of
liberately inducing faults in the system and showing that the magnitude higher than the common case round trip time of
storage remained available and consistent. However, as weanessages in the system. We then assumed that components
operated the system for a period of more than a year, wethat didn’t respond within this timeout had failed: we as-
observed several very unexpected performance and behavsumedoounded synchrony.
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saturation
point dition in their two-phase commit handling code that didn't

i affect correctness, but which had the side-effect of a caus-
ing a memory leak. Under full load, the rareness of this
race condition caused memory to leak at the rate of about
10KB/minute. We configured each brick’s JVM to limit its
heap size to 50MB. Given this leak rate, the bricks’ heaps
would fill after approximately 3 days.

latency

>
throughput Whenever we launched our system, we would tend to
. ) ) ) launch all bricks at the same time. Given roughly balanced
Figure 2. Performance with GC thrashing: this graph load across the system, all bricks therefore would run out

depicts the (parametric) curve of latency and throughputas ¢ hoan gpace at nearly the same time, several days after

a function of load. As load increases, so does throughput they were launched. We also speculated that our automatic

and latency, until the system reaches a saturation point. Be- . . . . )

yond this, additional load results in GC thrashing, and a failover mechanisms exacerbated this situation by increas-

decrease in throughput with a continued latency increase.  ing the load on a replica after a peer had failed, increase the

After saturating, the system falls into a hole out of which it rate at which the replica leaked memory.

must “climb”. We did in fact observe this correlated failure in practice:
until we isolated and repaired the race condition, our bricks
would fail predictably within 10-20 minutes of each other.

The DDS was implemented in Java, and therefore made e uniformity of the workload presented to the bricks was
use of garbage collection. The garbage collector in our JvM itself the source of coupling between them: this coupling,
was a mark-and-sweep collector; as a result, as more activeVhen combined with a slow memory leak, lead to the vio-
objects were resident in the JVM heap, the duration that lation of our assumption of independent failures, which in
the garbage collector would run in order to reclaim a fixed turncaused our system to experience unavailability and par-
amount of memory would increase. If the DDS were operat- tial data loss.
ing near saturation, slight (random) fluctuations in the load
received by bricks in the system would increase the pressure2.3. Unchecked Code Dependenciesand Fail-Stop
on their garbage collector, causing the effective throughput
of these bricks to drop. Because the offered load to the sys-  As mentioned above, we used timers in order to detect
tem is independent of this effect, this would cause the de- fajlures in our system. If a timer expired, we assumed that
gl’aded bricks to “fall behind” relative to its peers, |eading the Corresponding en“ty in the System had Crashed; there-
to more active Objects in its heap and a further degradationfore, in addition to assuming bounded synchrony’ we also
in performance. This catastrophe leads to a performanceassumed nodes would behave irfail-stop manner (i.e.,
response of the system as shown in Figure 2. a node that failed to respond to one message would never

Once the system was pushed past saturation, the catasagain respond to any message).
trophe would cause the affected node to slow down untilits ¢ gain high performance from our system given the
latency exceeded the timeouts in the system. Thus, the preshighly concurrent workload, we implemented our bricks us-
ence of garbage collection would cause the system to violatejng an event-driven architecture: the code was structured as
the assumption of bounded synchrony as it approached and, single thread executing in an event loop. To ensure the

then exceeded saturation. liveness of the system, we strove to ensure that all long-
. latency operations (such as disk 1/0) were performed asyn-
2.2. Slow Leaksand Correlated Failure chronously. Unfortunately, we failed to notice that portions

of our code that implemented a network session layer made

We used replication in the DDS to gain fault-tolerance: use of blocking (synchronous) sockeinnect () routines
by replicating data in more than one location, we gained in the Java class library. This session layer was built to at-
the ability to survive the faults of individual components. tempt to automatically reinstantiate a network connection

We further assumed théilures would be independent, and if it was broken. The main event-handling thread therefore
therefore the probability that multiple replicas would simul- could be surreptitiously borrowed by the session layer to
taneously fail is vanishingly small. forge transport connections.

For the most part, this assumption was valid. We only  On several occasions, we noticed that some of our bricks
encountered two instances of correlated failure in our DDS. would seize inexplicably for a multiple of 15 minutes (i.e.,
The first was due to blatant, naive bugs that would cause 15 minutes, 30 minutes, 45 minutes, ...), and then resume
bricks to crash; these were quickly fixed. However, the sec- execution, egregiously violating our fail-stop assumption.
ond was much more subtle. Our bricks had a latent race con-After much investigation, we traced this problem down to
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a coworker that was attempting to connect a machine that (nderprovisioned) - (overprovisioned)
was behind a firewall to the cluster. The firewall was silently ;

dropping incoming TCP syn packets, causing session layers
to block inside theconnect () routine for 15 minutes for
each connection attempt made to that machine.

While this error was due to our own failure to verify the : R
behavior of code we were using, it serves to demonstrate ' S throughput
that the low-level interaction between independently built o (e iods
components can have profound implications on the overall . . . .
behavior of the system. A very subtle change in behavior Figure 3. An overprovisioned system: by overprovi-

. o : ) sioning relative to the expected load, the system has slack:
(a single node dropping incoming SYN packets) resulted in  t can withstand unexpected bursts of load without falling
the violation of our fail-stop assumption across the entire  into the “hole” associated with operating beyond saturation.
cluster, which eventually lead to the corruption of data in
our system.

latency

3. Towards Robust Complex Systems However, overprovisioning contains the implicit as-
sumption that the designers can accurately predict the ex-

pected operating regime of the system. As we've argued in

The exan:[lﬁ les |r1 the plzevllqous sectt|on servecli to 'HUSUT'[ZSeCtion 1, this assumption is often false, and it can lead to
a common theme: small changes to a complex, couple unexpected fragility.

system can result in large, unexpected changes in behavior, o o
possibly taking the system outside of its designers’ expected JSe @dmission control: given that systems tend to be-

operating regime. In this section, we outline a number of come u.nstable as they ;aturate, a useful technique is to use
design strategies that help to make systems more robust iﬁadm|35|on control to reject load as the system approaches

the face of the unexpected. None of these strategies aréhe saturation point. Of course, to do this requires that the
a panacea, and in fact, some of them may add significantsaturaﬂon point is identifiable; for large systems, the num-

complexity to a system, possibly introducing more unex- ber of variables that contribute to the saturation point may
pected behavior. Instead, we present them with the hope ofo€ large, and thus statically identifying the saturation point

stimulating thought in the systems community for dealing MY b€ d|ff|culf. Adm|55|o? control often can be added to a
¢ System as an “orthogonal” or independent component. For

with this increasingly common problem: we believe tha X k
an important focus for future systems research is building ©<@MPe, high throughput web farms typically use layer 5
switches for both load balancing and admission control.

systems that can adapt to unpredictably changing environ-
ments, and that these strategies are a useful starting point T0 reject load still requires resources from the system;
for such investigation. each incoming task or request must be turned back, and
Systematic overprovisioning: as exemplified in Sec-  the act of turning it back consumes resources. Thus, we
tion 2.1, systems tend to become less stable when operating/iew systems that perform admission control as having two
near or beyond the threshold of load saturation. As a sys-classes of service: normal service, in which tasks are pro-
tem approaches this critical threshold, there is less “slack” cessed, and an extremely lightweight service, in which tasks
in the system to make up for unexpected behavior: as a re-are rejected. It is important to realize that the |IghtW€Ight
sult, the system becomes far less forgiving (i.e., fragile). A Service has a response curve similar to that shown in Fig-
simple technique to avoid this is to deliberately and system- ure 2: a service, even if it is performing admission control,
atica”y overprovision the System; by doing S0, the System can saturate and then CO”apse. This effectis called |ive|OCk,
is ensured to operate in a more forgiving regime (Figure 3). and it is described in [4]. Admission control simply gives
Overprovisioning doesn't come for free; an overprovi- & System the ability to switch between two response curves,
sioned system is underutilizing its resources, and it is tempt- one for each class of service.
ing to exploit this underutilization instead of adding more Build introspection into the system: an introspective
resources as the load on the system grows. In fact, itsystem is one in which the ability to monitor the system is
is only when the system nears saturation that many well- designed in from the beginning. As argued in [2], by build-
studied problems (such as load balancing) become inter-ing measurement infrastructure into a system, designers are
esting. However, we believe it is usually better to have much more readily able to monitor, diagnose, and adapt to
a well-behaved, overprovisioned system than a poorly be- aberrant behavior than in a black-box system. While this
haved, fully utilized one, especially given that computing may seem obvious, consider the fact that the Internet and
resources are typically inexpensive relative to the cost of many of its protocols and mechanisms do not include the
human designers. ability to introspect. As a result, researchers have often
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found it necessary to subvert features of existing protocols in the hope that failures will be contained within a single
[9, 15], or to devise cunning mechanisms to deduce prop- compartment. Alternatively, systems may stave off failure
erties of network [13]. We believe that introspection is a by proactively “scrubbing” their internal state to prevent it
necessary property of a system for it to be both managablefrom accumulating inconsistencies [3].

and for its designers and operators to be able to help it adapt

to a changing environment.

Introduce adaptivity by closing the control loop: the
usual way for systems to evolve over time is for their de-
signers and operators to measure its current behavior, and In this paper, we have argued that a common design
then to correspondingly adapt its design. This is essentially Paradigm for complex systems (careful design based on a
a control loop, in which the human designers and operatorsPrediction of the operating environment, load, and failures
form the control logic. This loop operates on a very long that the system will experience) is fundamentally fragile.
timescale; it can take days, weeks, or longer for humans to This fragility arises because the diffuse coupling of compo-
adapt a complex system. nents within a complex systems makes them prone to com-

However, an interesting class of systems are those whichP!€tely unpredictable behavior in the face of small pertur-
include internal control loops. These systems incorporate Pations. Instead, we argue that a different design paradigm
the results of introspection, and attempt to adapt control N€€dS t0 emerge if we want to prevent the ever-increasing
variables dynamically to keep the system operating in a sta-COMPlexity of our systems from causing them to become
ble or well-performing regime. This notion of adaptation More and more unstable. This different design paradigm is
is important even if a system employs admission control or ©N€ in Which systems are given the best possible chance of
overprovisioning, becausaternal as well as external per- ~ Stable behavior (through techniques such as overprovision-
turbations can affect the system. For example, modern disksiNd: @dmission control, and introspection), as well as the
occasionally perform thermal recalibration, vastly affecting 2Pility to adapt to unexpected situations (by treating intro-
their performance: if a system doesn’t adapt to this, tran- spection as feedback to a closed control loop). Ultimately,

sient periods of poor performance or even instability may systems must be designed to handle failures gracefully, as
result. complexity seems to lead to an inevitable unpredictability.

In the future, we hope to explore the rich design space
associated with robust, complex systems. Our plans include
evaluating and extending the techniques identified in this
paper in the context of adaptive, wide-area information de-
livery systems, such as caching hierarchies, content distri-
bution networks, and peer-to-peer content sharing systems.

4. Summary

Closed control loops for adaptation have been exploited
in many systems, including TCP congestion control, online
adaptation of query plans in databases [8, 10], or adaptive
operating systems that tuning their policies or run-time pa-
rameters to improve performance [16]. All such systems
have the property that the component performing the adap-
tation is able to hypothesize somewhat precisely about the
effects of the adaptation; without this ability, the system References
would be “operating in the dark”, and likely would become
unpredictable. A new, interesting approach to hypothesiz-
ing about the effects of adaptation is to use statistical ma-
chine learning; given this, a system can experiment with
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Abstract

Software errors are a major cause of outages and they
are increasingly exploited in malicious attacks. Byzantine
fault tolerance allows replicated systems to mask some soft-
ware errors but it is expensive to deploy. This paper de-
scribes a replication technique, BFTA, which uses abstrac-
tion to reduce the cost of Byzantine fault tolerance and to
improve its ability to mask software errors. BFTA reduces
cost because it enables reuse of off-the-shelf service imple-
mentations. It improves availability because each replica
can be repaired periodically using an abstract view of the
state stored by correct replicas, and because each replica
can run distinct or non-deterministic service implementa-
tions, which reduces the probability of common mode fail-
ures. We built an NFS service that allows each replica to
run a different operating system. This example suggests that
BFTA can be used in practice — the replicated file system
required only a modest amount of new code, and prelimi-
nary performance results indicate that it performs compa-
rably to the off-the-shelf implementations that it wraps.

1. Introduction

Rodrigo Rodrigues and Barbara Liskov
MIT Laboratory for Computer Science

545 Technology Sq., Cambridge, MA 02139, USA

{rodrigo,liskov} @Ics.mit.edu

tion hides implementation details to enable the reuse of off-
the-shelf implementations of important services (e.g., file
systems, databases, or HTTP daemons) and to improve the
ability to mask software errors.

We extended the BFT library [1, 2] to implement BFTA.
The original BFT library provides Byzantine fault tolerance
with good performance and strong correctness guarantees if
no more thari /3 of the replicas fail within a small window
of vulnerability. However, it requires all replicas to run the
same service implementation and to update their state in a
deterministic way. Therefore, it cannot tolerate determinis-
tic software errors that cause all replicas to fail concurrently
and it complicates reuse of existing service implementations
because it requires extensive modifications to ensure identi-
cal values for the state of each replica.

The BFTA library and methodology described in this pa-
per correct these problems — they enable replicas to run dif-
ferent or non-deterministic implementations. The method-
ology is based on the conceptsatktract specification and
abstraction function from work on data abstraction [11]. We
start by defining acommon abstract specification for the
service, which specifies afstract state and describes how
each operation manipulates the state. Then we implement
a conformance wrapper for each distinct implementation to
make it behave according to the common specification. The
last step is to implement an abstraction function (and one of

There is a growing demand for highly-available systems its inverses) to map from the concrete state of each imple-
that provide correct service without interruptions. These mentation to the common abstract state (and vice versa).
systems must tolerate software errors because these are a Our methodology offers several important advantages.
major cause of outages [7]. Furthermore, there is an in- Reuse of existing code. BFTA implements a form of state
creasing number of malicious attacks that exploit software machine replication [14, 10], which allows replication of
errors to gain control or deny access to systems that provideservices that perform arbitrary computations, but requires

important services.

determinism: all replicas must produce the same sequence

This paper proposes a replication technique, BFTA, that of results when they process the same sequence of opera-
combines Byzantine fault tolerance [12] with work on data tions. Most off-the-shelf implementations of services fail
abstraction [11]. Byzantine fault tolerance allows a repli- to satisfy this condition. For example, many implementa-
cated service to tolerate arbitrary behavior from faulty repli- tions produce timestamps by reading local clocks, which

cas, e.g., the behavior caused by a software bug, or the becan cause the states of replicas to diverge. The conformance

havior of a replica that is controlled by an attacker. Abstrac- Wrapper and the abstract state conversions enable the reuse
of existing implementations without modifications. Fur-

This research was partially supported by DARPA under contract F30602-the_rmore' these |mplemerjt_at|ons can be non-dett_armlnlstlc,
which reduces the probability of common mode failures.
Softwarerejuvenation. It has been observed [9] that there

98-1-0237 monitored by the Air Force Research Laboratory.
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is a correlation between the length of time software runs and 2. The BFTA Technique
the probability that it fails. BFTA combines proactive re-

covery [2] with abstraction to counter this problem. Repli-  This section provides an overview of our replication tech-
cas are recovered periodically even if there is no reason tonjque. It starts by describing the methodology that we use to

suspect they are faulty. Recoveries are staggered such thajild a replicated system from existing service implemen-
the service remains available during rejuvenation to enabletations. It ends with a description of the BFTA library.

frequent recoveries. When a replica is recovered, it is re-
booted and restarted from a clean state. Then it is brought 1 ethodology
up to date using a correct copy of the abstract state that
is obtained from the group of replicas. Abstraction may
improve availability by hiding corrupt concrete states, and
it enables proactive recovery when replicas do not run the
same code or run code that is non-deterministic.
Opportunistic N-version programming. Replication is
not useful when there is a strong positive correlation be-
tween the failure probabilities of the different replicas, e.g.,
deterministic software bugs cause all replicas to fail at the
same time when they run the same code. BFTA enables a
opportunistic form of N-version programming [3] — repli-
cas can run distinct, off-the-shelf implementations of the
service. This is a viable option for many common services,
e.g., relational databases, HTTP daemons, file systems, an
operating systems. In all these cases, competition has led ta,
four or more distinct implementations that were developed
and are maintained separately but have similar (although not
identical) functionality. Furthermore, the technique is made
easier by the existence of standards that provide identical
interfaces to different implementations, e.g., ODBC [6] and
NFS [5]. We can also leverage the large effort towards stan-
dardizing data representations using XML.

It is widely believed that the benefits of N-version pro-
gramming [3] do not justify its high cost [7]. It is better
to invest the same amount of money on better development,
verification, and testing of a single implementation. But op- ter
portunistic N-version programming achieves low cost due
to economies of scale without compromising the quality of
individual implementations. Since each off-the-shelfimple-
mentation is sold to a large number of customers, the ven-
dors can amortize the cost of producing a high quality im-
plementation. Additionally, taking advantage of interoper-
ability standards keeps the cost of writing the conformance
wrappers and state conversion functions low.

The paper explains the methodology by walking through
an example, the implementation of a replicated file service
where replicas run different operating systems and file sys-
tems. For this methodology to be successful, the confor-
mance wrapper and the state conversion functions must b
simple to reduce the likelihood of introducing more errors
and introduce a low overhead. Experimental results indicate
that this is true in our example.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the BFTA methodology and
library. Section 3 explains how we applied the methodol-
ogy to build the replicated file system. Section 4 presents
our conclusions and some preliminary results.

The goal is to build a replicated system by reusing a
set of off-the-shelf implementations,, ..., I,,, of some ser-
vice. ldeally, we would liken to equal the number of repli-
cas so that each replica can run a different implementation
to reduce the probability of simultaneous failures. But the
technique is useful even with a single implementation.

Although off-the-shelf implementations of the same ser-
vice offer roughly the same functionality, they behave dif-
nferently: they implement different specificatiorts,, ..., S,
using different representations of the service state. Even the
behavior of different replicas that run the same implementa-
%[J'Son may be different when the specification they implement

not strong enough to ensure deterministic behavior. For
stance, the specification of the NFS protocol [5] allows
implementations to choose arbitrary values for file handles.

BFTA, like any form of state machine replication, re-
quires determinism: replicas must produce the same se-
quence of results when they execute the same sequence of
operations. We achieve determinism by definingoat
mon abstract specification, .S, for the service that is strong
enough to ensure deterministic behavior. This specification
defines the abstract state, an initial state value, and the be-
havior of each service operation.

The specification is defined without knowledge of the in-
nals of each implementation unlike what happens in the
technique sketched in [13]. It is sufficient to treat them as
black boxes, which is important to enable the use of existing
implementations. Additionally, the abstract state captures
only what is visible to the client rather than mimicking what
is common in the concrete states of the different implemen-
tations. This simplifies the abstract state and improves the
effectiveness of our software rejuvenation technique.

The next step, is to implemerbnformance wrappers,
Cy,...,C,, for each ofl4, ..., I,,. The conformance wrap-
pers implement the common specificatiSn The imple-
mentation of each wrappé€r; is a veneer that invokes the
operations offered by; to implement the operations if;
8n implementing these operations it makes use @b
formance rep that stores whatever additional information is
needed to allow the translation from the concrete behavior
of the implementation to the abstract behavior.

The final step is to implement thabstraction function
and one of its inverses. These functions allow state transfer
among the replicas. State transfer is used to repair faulty
replicas, and also to bring slow replicas up-to-date when
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messages they are missing have been garbage collected. For To perform state transfer in the presence of Byzantine
state transfer to work replicas must agree on the value of thefaults, it is necessary to be able to prove that the state being
state of the service after executing a sequence of operationstransferred is correct. Otherwise, faulty replicas could cor-
they will not agree on the value of the concrete state but our rupt the state of out-of-date but correct replicas. (A detailed
methodology ensures that they will agree on the value of discussion of this point can be found in [2].) Consequently,
the abstract state. The abstraction function is used to con-replicas cannot discard a copy of the state produced after
vert the concrete state stored by a replica into the abstractexecuting a request until they know that the state produced
state, which is transferred to another replica. The receiving by executing later requests can be proven correct. Repli-
replica uses the inverse function to convert the abstract statecas could keep a copy of the state after executing each re-
into its own concrete state representation. quest but this would be too expensive. Instead replicas keep
To enable efficient state transfer between replicas, thejust the current version of the concrete state plus copies of
abstract state is defined as an array of variable-sized objectsthe abstract state produced every k-th request (e.g., k=128).
We explain how this representation enables efficient stateThese copies are called checkpoints.
transfer in Section 2.2. As mentioned earlier, to implement checkpointing and
There is an important trend that simplifies the method- state transfer efficiently, we require that the abstract state
ology. Market forces push vendors towards extending their be encoded as an array of objects. Creating checkpoints by
products to offer interfaces that implement standard spec-making full copies of the abstract state would be too ex-
ifications for interoperability, e.g., ODBC [6]. Usually, a pensive. Instead, the library uses copy-on-write such that
standard specificatio§’ cannot be used as the common checkpoints only contain the objects whose value is dif-
specificationS because it is too weak to ensure determin- ferent in the current abstract state. Similarly, transferring
istic behavior. But it can be used as a basis§and, be- a complete checkpoint to bring a recovering or out-of-date
causeS andS’ are similar, it is relatively easy to implement  replica up to date would be too expensive. The library em-
conformance wrappers and state conversion functions, theseloys a hierarchical state partition scheme to transfer state
implementations can be mostly reused across implementa-<fficiently. When a replicais fetching state, it recurses down
tions, and most client code can use the replicated systema hierarchy of meta-data to determine which partitions are

without modification. out of date. When it reaches the leaves of the hierarchy
(which are the abstract objects), it fetches only the objects
2.2. Library that are corrupt or out of date.

To implement state transfer, each replica must provide
The BFTA library extends BFT with the features neces- the library with two upcalls, which implement tlabstrac-
sary to provide the methodology. Figure 1 presents a sum-tion function and one of its inversegset _obj receives an

mary of the library’s interface. object indexi, allocates a buffer, obtains the value of the
Client call: abstract object with index, and places that value in the
int invoke (Byz.req *req, Byaxep wree, buffer. It returns the size for that object and a pointer to

oot read.onlyl; the buffer.put _obj s receives a vector of objects with the
Execution upcall: corresponding indices and sizes. It causes the application
int execute (Byz.req*req, Byz.rep*rep, to update its concrete state using the new values for the ab-

int client, Byzbuffer *non-det); stract objects passed as arguments. The library guarantees
Checkpointing: thc_slt theput _obj s upcall is invoked yvith an argument that
void modify (int nobjs, int* objs); brings the abstract state of the replica to a consistent value
(i.e., the value of a valid checkpoint). This is important to
State conversion upcalls: allow encodings of the abstract state with dependencies be-
int get-obj(int i, char** obj); tween objects, e.g., it allows objects to describe the meaning
void put._objs(int nobjs, char **objs, of other ObjECtS-
int *is, int *szs); Each time theexecute upcall is about to modify an

object in the abstract state it is required to invokeca -

ify procedure, which is supplied by the library, passing the
Theinvoke procedure is called by the client to invoke object index as argument. This is used to implement copy-

an operation on the replicated service. This procedure car-on-write to create checkpoints incrementally: the library in-

ries out the client side of the replication protocol and returns vokesget _obj with the appropriate index and keeps the

the result when enough replicas have responded. When thecopy of the object until the corresponding checkpoint can

library needs to execute an operation at a replica, it makesbe discarded.

Figure 1. BFTA Interface and Upcalls

an upcall to arexecute procedure that is implemented BFTA implements a form of state machine replication
by the conformance wrapper for the service implementation that requires replicas to behave deterministically. The metho-
run by the replica. dology uses abstraction to hide most of the non-determinism
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in the implementations it reuses. However, many services state consists of a fixed-size array of pairs with an object and
involve forms of non-determinism that cannot be hidden by a generation number. Each object has a unique identifier,
abstraction. For instance, in the case of the NFS service, theoid, which is obtained by concatenating its index in the ar-
time-last-modified for each file is set by reading the server’s ray and its generation number. The generation number is in-
local clock. If this were done independently at each replica, cremented every time the entry is assigned to a new object.
the states of the replicas would diverge. The library pro- There are four types of objects: files, whose data is a byte
vides a mechanism [1] for replicas to agree on these non-array; directories, whose data is a sequencer@me, oid>
deterministic values, which are then passed as arguments tgairs ordered lexicographically; symbolic links, whose data
theexecute procedure. is a small character string; and speaiall objects, which
Proactive recovery periodically restarts each replica from indicate an entry is free. All non-null objects have meta-
a correct, up-to-date checkpoint of the abstract state that isdata, which includes the attributes in the NE&: t r struc-
obtained from the other replicas. Recoveries are staggeredure. Each entry in the array is encoded using XDR [4]. The
so that less thaty/ 3 of the replicas recover at the same time. object with index) is a directory object that corresponds to
This allows the other replicas to continue processing client the root of the file system tree that was mounted.
requests during the recovery. Additionally, it should reduce  The operations in the common specification are those de-
the likelihood of simultaneous failures due to aging prob- fined by the NFS protocol. There are operations to read and
lems because at any instant less thgfA of the replicas  write each type of non-null object. The file handles used by
have been running for the same period of time. the clients are theids of the corresponding objects. To en-
Recoveries are triggered by a watchdog timer. When sure deterministic behavior, we define a deterministic pro-
a replica is recovered, it reboots after saving the replica- cedure to assignids, and require that directory entries re-
tion protocol state and the concrete service state to disk.turned to a client be ordered lexicographically.
The protocol state includes the abstract objects that were The abstraction hides many details; the allocation of file
copied by the incremental checkpointing mechanism. Then blocks, the representation of large files and directories, and
the replica is restarted, and the conformance rep is recon-the persistent storage medium and how it is accessed. This
structed using the information that was saved to disk. Next, is desirable for simplicity, performance, and to improve re-
the library uses the hierarchical state transfer mechanism tosilience to software faults due to aging.
compare the value of the abstract state it currently stores
with the abstract state values stored by the other replicas.3.2. Confor mance Wrapper
This is efficient: the replica uses cryptographic hashes stored
in the state partition tree to determine which abstract objects The conformance wrapper for the file service processes
are out-of-date or corrupt and it only fetches the value of NFS protocol operations and interacts with an off-the-shelf
these objects. file system implementation also using the NFS protocol as
The object values fetched by the replica could be sup- illustrated in Figure 2. A file system exported by the repli-
plied to put _objs to update the concrete state, but the cated file service is mounted on the client machine like any
concrete state might still be corrupt. For example, an im- regular NFS file system. Application processes run unmod-
plementation may have a memory leak and simply calling ified and interact with the mounted file system through the
put_objs will not free unreferenced memory. In fact, im- NFS client in the kernel. We rely on user level relay pro-
plementations will not typically offer an interface that can cesses to mediate communication between the standard NFS
be used to fix all corrupt data structures in their concrete client and the replicas. A relay receives NFS protocol re-
state. Therefore, it is better to restart the implementation quests, calls thenvoke procedure of our replication li-
from a clean initial concrete state and use the abstract statérary, and sends the result back to the NFS client. The

to bring it up-to-date. replication library invokes thexecute procedure imple-
mented by the conformance wrapper to run each NFS re-
3. An example: File System quest.

The conformance rep consists of an array that corresponds
to the one in the abstract state but it does not store copies
of the objects; instead each array entry contains the gener-
Rtion number, the file handle assigned to the object by the
underlying NFS server, and the value of the timestamps in
the object’s abstract meta-data. Empty entries store a null
e file handle. The rep also contains a map from file handles
3.1. Abstract Specification to oidsto aid in processing replies efficiently.

The wrapper processes each NFS request received from a

The common abstract specification is based on the spec<lient as follows. It translates the file handles in the request,
ification of the NFS prOtOCOI [5] The abstract file service which encodmidS, into the Corresponding NFS server file

This section illustrates the methodology using a repli-

the NFS protocol [5]. Its replicas can run different operating
systems and file system implementations.
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replica 1 ing the file handle ire to make calls to the NFS server. This
Conformance o j\ is done differently for different types of objects. For files,

wrapper | conversion it is sufficient to issue aetattr and awrite to update
reﬁ'ki)fgfon the file’s meta-data and data, and for symbolic links, it is

e sufficient to update their meta-data. Updating directories is

unmodified NFS daemon 1 slightly trickier. The inverse abstraction function reads the

client

Andrew
benchmark

replication
library

: entire directory from the NFS server, computes its current
 emenesaen ) ormggggrce St \) 3bstract valur;, and compares this value wit'rNothing is
1 one for entries that did not change. Entries that are not
'eﬁl;?::'on present ino or point to a different object are removed by
————————————— issuing the appropriate calls to the NFS server. Then entries
unmodified NFS daemon n Yy,

that are new or different i@ are created but if the object
they refer to does not exist in the current abstract state, it is
Figure 2. Software Architecture first created using the value for the object that is supplied to
put_objs.

. . In the second case, the NFS server is invoked to remove
handles. Then it sends the modified request to the underly-y, object and then the function proceeds as in case 3.

ing NFS server. The server processes the requestand retums |, tne third case, the NFS server is invoked to create the

areply. object (initially in a separatenlinked directory) and the ob-
The wrapper parses the reply and updates the confor-jo v (ata and meta-data is updated as in case 1. It is guar-

mance rep. If the operation created a new object, the wrap-gnteeq that the directories that point to the object will be

per allocates a new entry in the array in the conformance ,,cessed: the object is then linked to those directories and

rep, increments the generation number, and updates the engemqyed from the unlinked directory. When new objects are
try to contain the file handle assigned to the object by the ¢ eateq; their file handles are recorded in the conformance
NFS server. If any object is deleted, the wrapper marks wrapper's data structures.

its entry in the array free. In both cases, the reverse map
from file handles twids is updated. The wrapper must also 3.4. Proactive Recovery
update the abstract timestamps in the array entries corre-
sponding to objects that were accessed. We use the library NFS file handles are volatile: the same file system ob-
to agree on the timestamp value that is assigned t0 ach OPje ¢ may have a different file handle after the NFS server

eration [1]. Lhis \(aluie is one gfbtheharguments todhe - restarts. For proactive recovery to work efficiently, we need
cute procedure implemented by the wrapper. a persistent identifier for objects in the concrete file system

_FinaIIy, the wrapper retur_nsamodified reply to the (_:Iient, state that can be used to compute the abstraction function
using the map to translate file handlesitds and replacing during recovery

the concrete t_imestamp values by the abstrac_t Ones. When “rpe NFs specification states that each object is uniquely
handlingreaddir calls the wrapper reads the entire directory identified by a pair of meta-data attributesfsid,fileid>.

fand gorts it ngicographically to ensure the client receives We solve the problem above by maintaining an additional
identical replies from all replicas. map from<fsid, fileid> pairs to the correspondirmigds. This
map is saved to disk asynchronously when a checkpoint is
created and synchronously before a proactive recovery. Af-
ter rebooting, the replica that is recovering reads the map
The abstraction functionin the file service is implemented from disk. Then it traverses the file system’s directory tree
as follows. For each file system object, it uses the file han- depth first from the root. It reads each object, uses the map
dle stored in the conformance rep to invoke the NFS servertg obtain itsoid, and uses the cryptographic hashes from the
to obtain the data and meta-data for the object. Then it re- state transfer protocol to check if the object is up-to-date. If
places the concrete timestamp values by the abstract oneshe object is out-of-date or corrupt, it is fetched from an-
converts the file handles in directory entriesdids, and other replica.
sorts the directories lexicographically. Instead of simply callingut _obj s with the new object
The inverse abstraction function in the file service works values, we intend to start an NFS server on a second empty
as follows. For each file system objectt receives, there  disk and bring it up-to-date incrementally as we obtain the
are three possible cases depending on the state of theeentry value of the abstract objects. This has the advantage of im-
that corresponds tein the conformance rep: (E)contains  proving fault-tolerance as discussed in Section 2.2. Addi-
o’'s generation number, (2)is not free and does not contain  tionally, it can improve disk locality by clustering blocks

o's generation number, (3)is free. from the same file and files that are in the same directory.
In the first case, objects that changed can be updated usThis is not done in the current prototype.

replica n

3.3. State Conversions
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4. Conclusion

run fault injection experiments to evaluate the availability

improvements afforded by our technique.

Software errors are a major cause of outages and they ar
increasingly exploited in malicious attacks to gain control
or deny access to important services. Byzantine fault toler-
ance allows replicated systems to mask some software er-
rors but it has been expensive to deploy. We have described
areplication technique, BFTA, which uses abstraction to re-
duce the cost of deploying Byzantine fault tolerance and to
improve its ability to mask software errors.

BFTA reduces cost because it enables reuse of off-the-
shelf service implementations without modifications, and it
improves resilience to software errors by enabling oppor-
tunistic N-version programming, and software rejuvenation
through proactive recovery.

Opportunistic N-version programming runs distinct, off-
the-shelfimplementations at each replica to reduce the prob-
ability of common mode failures. To apply this technique,
it is necessary to define a common abstract behavioral spec-
ification for the service and to implement appropriate con-
version functions for the state, requests, and replies of each
implementation in order to make it behave according to the
common specification. These tasks are greatly simplified by
basing the common specification on standards for the inter-
operability of software from different vendors; these stan-
dards appear to be common, e.g., ODBC [6], and NFS [5].
Opportunistic N-version programming improves on previ-
ous N-version programming techniques by avoiding the high
development, testing, and maintenance costs without com-
promising the quality of individual versions.

Additionally, we provide a mechanism to repair faulty
replicas. Proactive recovery allows the system to remain
available provided no more thari3 of the replicas become

faulty and corrupt the abstract state (in a correlated way) [10]

within a window of vulnerability. Abstraction may enable
more thanl/3 of the replicas to be faulty because it can
hide corrupt items in concrete states of faulty replicas.

The paper described a replicated NFS file system imple-
mented using our technique. The conformance wrapper and
the state conversion functions in our prototype are simple —
they have 1105 semi-colons, which is two orders of magni-
tude less than the size of the Linux 2.2 kernel. This suggests
that they are unlikely to introduce new bugs.

We ran a scaled-up version of the Andrew benchmark [8, [13]

2] (which generates 1 GB of data) to compare the perfor-
mance of our replicated file system and the off-the-shelf
implementation of NFS in Linux 2.2 that it wraps. Our
performance results indicate that the overhead introduced
by our technique is low; it is approximately 30% for this
benchmark with a window of vulnerability of 17 minutes.
These preliminary results suggest that BFTA can be used
in practice. As future work, it would be important to run
experiments that apply BFTA to more challenging services,
e.g., a relational database. It would also be important to
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Fail-Stutter Fault Tolerance

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin, Madison

Abstract hardware promises even more complexity with the advent
of “intelligent” devices [1, 27]. In software, as code bases
Traditional fault models present system designers with two ex- mature, code size increases, and along with it complexity —
tremes: the Byzantinefault model, which is general and there- the Linux kernel source alone has increased by a factor of
fore difficult to apply, and the fail-stopfault model, whichiseasier  ten since 1994.
to employ but does not accurately capture modern device behav- Increasing complexity directly affects component behav-
ior. To address this gap, we introduce the concept of fail-stutter ior, as complex components often do not behave in simple,
fault tolerance, a realistic and yet tractable fault model that ac- predictable ways. For example, two identical disks, made
counts for both absolute failure and a new range of performance by the same manufacturer and receiving the same input
failures common in modern components. Systems built under the stream will not necessarily deliver the same performance.
fail-stutter model will likely perform well, be highly reliable and  Disks are not the only purveyor of erratic performance; as
available, and be easier to manage when deployed. we will discuss within this document, similar behavior has
been observed in many hardware and software components.
. Systems built under the “fail-stop illusion” are prone to
1 Introduction poor performance when deployed, performing well when
everything is working perfectly, but failing to deliver good
Dealing with failure in large-scale systems remains a chalerformance when just a single component does not behave
lenging problem. In designing the systems that form ttees expected. Particularly vulnerable are systems that make
backbone of Internet services, databases, and storage static uses of parallelism, usually assuming that all compo-
tems, one must account for the possibility or even likelihoatents perform identically. For example, striping and other
that one or more components will cease to operate correclAID techniques [28] perform well if every disk in the
just how one handles such failures determines overall sggstem delivers identical performance; however, if perfor-
tem performance, availability, and manageability. mance of a single disk is consistently lower than the rest,
Traditionally, systems have been built with one of twthe performance of the entire storage system tracks that of
fault models. At one extreme, there is tBgzantine fail- the single, slow disk [6]. Such parallel-performance as-
ure model. As described by Lamport: “The component casumptions are common in parallel databases [16], search
exhibit arbitrary and malicious behavior, perhaps involvingngines [18], and parallel applications [12].
collusion with other faulty components” [25]. While these To account for modern device behavior, we believe there
assumptions are appropriate in certain contexts, (Secu- is a need for a new model of fault behavior. The model
rity), they make it difficult to reason about system behavioshould take into account that components sometimes fail,
At the other extreme, a more tractable and pragmatic agd that they also sometimes perform erratically. We term
proach exists. Known as ttiail-stop model, this more lim- the unexpected and low performance of a componeet-a
ited approach is defined by Schneider as follows: “In réermance fault, and introduce théail-stutter fault model,
sponse to a failure, the component changes to a state #raextension of the fail-stop model that takes performance
permits other components to detect a failure has occurfadlts into account.
and then stops” [33]. Thus, each component is either work-Though the focus of the fail-stutter model is component
ing or not, and when a component fails, all other comp@erformance, the fail-stutter model will also help in build-
nents can immediately be made aware of it. ing systems that are more manageable, reliable, and avail-
The problem with the Byzantine model is that it is gerable. By allowing for plug-and-play operation, incremen-
eral, and therefore difficult to apply. The problem with théal growth, worry-free replacement, and workload modifi-
fail-stop model is that it is simple, and therefore does noation, fail-stutter fault tolerant systems decrease the need
account for modern device behavior. Thus, we believe thdog human intervention and increase manageability. Diver-
is a need for a new model — one that is realistic and yet s8lty in system design is enabled, and thus reliability is im-
tractable. The fail-stop model is a good starting point forgroved. Finally, fail-stutter fault tolerant systems deliver
new model, but it needs to be enhanced in order to accognnsistent performance, which likely improves availability.
for the complex behaviors of modern components. In this paper, we first build the case for fail-stutter fault
The main reason an enhancement is in order is the tnlerance via an examination of the literature. We then dis-
creasing complexity of modern systems. For example, thass the fail-stutter model and its benefits, review related
latest Pentium has 42 million transistors [21], and futurgork, and conclude.
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2 ThekErratic Behavior of Systems  the same processor underidentical conditions, has run times
that vary by up to a factor of three. Kushman discovered
In this section, we examine the literature to document tifieur such anomalies, though the cause of two of the anoma-
many places where performance faults occur; note that thés remains unknown.
listis illustrative and in no means exhaustive. In our surveReplacement Policy: Hardware cache replacement poli-
we find that device behavior is becoming increasingly dities also can lead to unexpected performance. In their work
ficult to understand or predict. In many cases, even when replicated fault-tolerance, Bressoud and Schneider find
erratic performance is detected and investigated, no catsat: “The TLB replacement policy on our HP 9000/720
is discovered, hinting at the high complexity of moderprocessors was non-deterministic. An identical series of
systems. Interestingly, many performance variations conegation-references and TLB-insert operations at the pro-
from research papers in well-controlled laboratory settingsessors running the primary and backup virtual machines
often running just a single application on homogeneogsuld lead to different TLB contents” [10], p. §,2. The
hardware; we speculate that component behavior in legsason for the non-determinism is not given, nor does it ap-
controlled real-world environments would likely be worsepear to be known, as it surprised numerous HP engineers.

2.1 Hardware 2.1.2 Disks

We begin our investigation of performance faults with thosgault Masking: Disks also perform some degree of fault
that are caused by hardware. We focus on three importaisking. As documented in [6], a simple bandwidth ex-
hardware components: processors and their caches, digksiment shows differing performance across 5400-RPM
and network switches. In each case, the increasing coStagate Hawk drives. Although most of the disks deliver
plexity of the component over time has led to a richer set gf5 MB/s on sequential reads, one such disk delivered only
performance characteristics. 5.0 MB/s. Because the lesser-performing disk had three
times the block faults than other devices, the author hypoth-
esizes that SCSI bad-block remappings, transparent to both

Fault Masking: In processors, fault masking is used tgsers and file systems, were the culprit.
increase yield, allowing a slightly flawed chip to be used; Bad-block remapping is also an old technique. Early op-
the result is that chips with different characteristics are sdi#ating systems for the Univac 1100 series would record
as identical. For example, the Viking series of processomich tracks of a disk were faulty, and then avoid using
from Sun are examined in [2], where the authors measdf@m for subsequent writes to the disk [37].
the cache size of each of a set of Viking processors viameouts. Disks tend to exhibit sporadic failures. A study
micro-benchmark. “The Single SS-51 is our base case. Tofea 400-disk farm over a 6-month period reveals that: “The
graphs reveal that the [effective size of the] first level caclrgest source of errors in our system are SCSI timeouts and
is only 4K and is direct-mapped.” The specifications sugparity problems. SCSI timeouts and parity errors make up
gest a level-one data cache of size 16 KB, with 4-way s#8% of all errors; when network errors are removed, this
associativity. However, some chips produced by Tl had pdigure rises to 87% of all error instances” [38], p.73. In
tions of their caches turned off, whereas others, producgxhmining their data further, one can ascertain that a time-
at different times, did not. The study measured applicaut or parity error occurs roughly two times per day on av-
tion performance across the different Vikings, finding peerage. These errors often lead to SCSI bus resets, affecting
formance differences of up to 40% [2]. the performance of all disks on the degraded SCSI chain.
The PA-RISC from HP [35] also uses fault-masking in Similarly, intermittent disk failures were encountered by
its cache. Schneider reports that the HP cache mechanBotosky et al. [9]. They noticed that disks in their video
maps out certain “bad” lines to improve yield [34]. file server would go off-line at random intervals for short
Fault-masking is not only present in modern processopsriods of time, apparently due to thermal recalibrations.
For example, the Vax-11/780 had a 2-way set associati@eometry: Though the previous discussions focus on per-
cache, and would turn off one of the sets when a failure wismance fluctuationscross devices, there is also a per-
detected within it. Similarly, the Vax-11/750 had a direcformance differential presemtithin a single disk. As doc-
mapped cache, and would shut off the whole cache undemented in [26], disks have multiple zones, with perfor-
a fault. Finally, the Univac 1100/60 also had the ability tsmance across zones differing by up to a factor of two. Al-
shut off portions of its cache under faults [37]. though this seems more “static” than other examples, unless
Prediction and Fetch Logic: Processor prediction anddisks are treated identically, different disks will have differ-
instruction fetch logic is often one of the most complegnt layouts and thus different performance characteristics.
parts of a processor. The performance characteristicslsfknown Cause: Sometimes even careful research does
the Sun UltraSPARC-| were studied by Kushman [24], armbt uncover the cause of I/O performance problems. In their
he finds that the implementation of the next-field predievork on external sorting, Rivera and Chien encounter disk
tors, fetching logic, grouping logic, and branch-predictioperformance irregularities: “Each of the 64 machines in the
logic all can lead to the unexpected run-time behavior ofuster was tested; this revealed that four of them had about
programs. Simple code snippets are shown to exhibit n@68% slower 1/O performance. Therefore, we excluded them
deterministic performance — a program, executed twice mm our subsequent experiments” [30], p. 7, st

2.1.1 Processorsand Caches
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A study of the IBM Vesta parallel file system revealsacross otherwise identical disks and file systems. Sequen-
“The results shown are the best measurements we obtairied file read performance across aged file systems varies by
typically on an unloaded system. [...] In many cases theup to a factor of two, even when the file systems are other-
was only a small (less than 10%) variance among the difise empty. However, when the file systems are recreated
ferent measurements, but in some cases the variance afagsh, sequential file read performance is identical across
significant. In these cases there was typically a clusteraif drives in the cluster.
measurements that gave near-peak results, while the ofB&tkground Operations: In their work on a fault-tolerant,
measurements were spread relatively widely down to as leNétributed hash table, Gribblet al. find that untimely

as 15-20% of peak performance” [15], p. 2%. garbage collection causes one node to fall behind its mir-
. ror in a replicated update. The result is that one machine
2.1.3 Network Switches over-saturates and thus is the bottleneck [20]. Background

Deadlock: Switches have complex internal mechanisn%oerations are common in many systems, including clean-
that sometimes cause problematic performance behavg(f. in I_og-structu_re_d file systems [.31]’ and salvagers that
In [6], the author describes a recurring network deadlo uristically repair inconsistencies in databases [19].

in a Myrinet switch. The deadlock results from the struc-

ture of the communication software; by waiting too long be2.2.2  Interference From Other Applications

tween packets that form a logical “message”, the deadlock- ) ]

detection hardware triggers and begins the deadlock rech{emory Bank Conflicts: In their work on scalar-vector
ery process, halting all switch traffic for two seconds. memory interference, the authors show that perturbanonstq
Unfairness.  Switches often behave unfairly under higt® Vector reference stream can reduce memory system effi-
load. As also seen in [6], if enough load is placed on @€ncy by up to a factor of two [29].

Myrinet switch, certain routes receive preference; the resiemory Hogs: In their recent paper, Brown and Mowry

is that the nodes behind disfavored links appear “sloweghow the effect of an out-of-core application on interactive
to a sender, even though they are fully capable of receiviifs [13]. Therein, the response time of the interactive job
data at link rate. In that work, the unfairness resulted inigshown to be up to 40 times worse when competing with a
50% slowdown to a global adaptive data transfer. memory-intensive process for memory resources.

Flow Control: Networks also often have internal flow-CPU Hogs: Similarly, interference to CPU resources leads
control mechanisms, which can lead to unexpected perfte-unexpected slowdowns. From a different sorting study:
mance problems. Brewer and Kuszmaul show the effects‘dhe performance of NOW-Sort is quite sensitive to vari-
a few slow receivers on the performance of all-to-all trangus disturbances and requires a dedicated system to achieve
poses in the CM-5 data network [12]. In their study, once’peak’ results” [5], p. 89 1. A node with excess CPU load
receiver falls behind the others, messages accumulate innéduces global sorting performance by a factor of two.
network and cause excessive network contention, reducing

transpose performance by almost a factor of three. 2.3 Summary

2.2 Software We have documented many cases where components ex-

Sometimes unexpected performance arises not due to hglygiuggrﬁpicr:gg tgeirrjgrr;naas??ﬁ ﬁ‘inﬁorgx?tardﬂgre;gd;gfrz
ware peculiars, but because of the behavior of an impqf- P : prexity, y

tant software agent. One common culprit is the operatit ely to perfprm internal error correction an(_j f_ault mask-
system, whose management decisions in supporting valg" have different performance characteristics depend-

ous complex abstractions may lead to unexpected perfI te?r?wi#?sat(ijc;rd llilsé)atlget,hainghc?x?tgrr?werza;?;rn?ae:?gilunc(an_
mance surprises. Another manner in which a compon Y. p

will seem to exhibit poor performance occurs when anoth tions j[hat oc;ur re.mdomly across all components can
ikely be ignored; particularly harmful are slowdowns that

application uses it at the same time. This problem is p o lona-lived and likelv to occur on a subset of Compo-
ticularly acute for memory, which swaps data to disk whel g y compo-
over-extended. nents. Those types of faults cannot be handled with tradi-

tional methods, and thus must be incorporated into a model
2.2.1 Operating Systems and Virtual Machines of component behavior.

Page Mapping: Chen and Bershad have shown th .

virtual-memory mapping decisions can reduce applicati?;%n Fail-Stutter Fault Tolerance

performance by up to 50% [14]. Virtually all machines

today use physical addresses in the cache tag. Unlesslthéhis section, we discuss the topics that we believe are
cache is small enough so that the page offset is not use@¢énmtral to the fail-stutter model. Though we have not yet

the cache tag, the allocation of pages in memory will affefiilly formalized the model, we outline a number of issues

the cache-miss rate. that must be resolved in order to do so. We then cover an
FileLayout: In[6], a simple experimentdemonstrates howxample, and discuss the potential benefits of utilizing the
file system layout can lead to non-identical performandail-stutter model.
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3.1 Towardsa Fail-Stutter M odel delivers bandwidth at 10 MB/s.” However, the simpler the

model, the more likely performance faults occue,, the

We now discuss issues that are central in developing the f@ifre Jikely performance deviates from its expected level.
stutter model. We focus on three main differences from the,ys pecause different assumptions can be made, the sys-

fail-stop model: the separation of performance faults frofam designer could be allowed some flexibility, while stil
correctness faults, the notification of other components &}fawing attention to the fact that devices may not perform
the presence of a performance fault within the system, agg expected. The designer must also have a good model of
performance specifications for each component. how often various performance faults occur, aholv long
Separation of performance faults from correctness faults.  they last; both of these are environmentand component spe-

We believe that the fail-stutter model must distinguish twéific, and will strongly influence how a system should be
classes of faults: absolute (or correctness) faults, and p&fiit to react to such failures.

formance faults. In most scenarios, we believe the appro-
priate manner in which to deal with correctness faults sugy  An Example
as total disk or processor failure is to utilize the fail-stop
model. Schneider considers a component faulty “once it¢e now sketch how the fail-stutter model could be em-
behavior is no longer consistent with its specification” [33ployed for a simple example given different assumptions
In response to such a correctness failure, the componabbut performance faults. Specifically, we consider three
changes to a state that permits other components to detegnarios in order of increasingly realistic performance as-
the failure, and then the component stops operating. In agimptions. Although we omit many details necessary for
dition, we believe that the fail-stutter model should incorp@omplete designs, we hope to illustrate how the fail-stutter
rate the notion of gerformance failure, which, combined model may be utilized to enable more robust system con-
with the above, completes the fail-stutter model. A compstruction. We assume that our workload consists of writing
nent should be considered performance-faulty if it has npt data blocks in parallel to a set ®f N disks and that data
absolutely failed as defined above and when its performaris@ncoded across the disks in a RAID-10 fashiam, ach
is less than that of its performance specification. pair of disks is treated as a RAID-1 mirrored pair and data
We believe this separation of performance and corretocks are striped across these mirrors a la RAID-0).
ness faults is crucial to the model, as there is much toln the first scenario, we use only the fail-stop model, as-
be gained by utilizing performance-faulty components. Isuming (perhaps naively) that performance faults do not oc-
many cases, devices may often perform at a large fractiomr. Thus, absolute failures are accounted for and handled
of their expected rate; if many components behave this way,cordingly — if an absolute failure occurs on a single disk,
treating them as absolutely failed components leads tdt & detected and operation continues, perhaps with a recon-
large waste of system resources. struction initiated to a hot spare; if two disks in a mirror-pair
One difficulty that must be addressed occurs when a cofail, operation is halted. Since performance faults are not
ponent responds arbitrarily slowly to a request; in that casmnsidered in the design, each pair (and thus each disk) is
a performance fault can become blurred with a correctnegigen the same number of blocks to Writ% Therefore,
fault. To distinguish the two cases, the model may includéfaa performance fault occurs on any of the pairs, the time
performance threshold within the definition of a correctness write to storage is determined by the slow pair. Assum-
fault, i.e,, if the disk request takes longer th@rseconds to ing N — 1 of the disk-pairs can write aB MB/s but one
service, consider it absolutely failed. Performance faults fdisk-pair can write at only MB/s, with b < B, perceived
in the rest of the regime when the device is working. throughput is reduced t& - b MBJ/s.
Notification of other components. One major departure In the second scenario, in addition to absolute faults, we
from the fail-stop model is that we do not believe that otheonsider performance faults that are static in nature; that is,
components need be informed of all performance failurege assume the performance of a mirror-pair is relatively sta-
when they occur, for the following reasons. First, erratiole over time, but may not be uniform across disks. Thus,
performance may occur quite frequently, and thus distribwtdthin our design, we compensate for this difference. One
ing that information may be overly expensive. Further, @ption is to gauge the performance of each disk once at in-
performance failure from the perspective of one componestallation, and then use the ratios to stripe data proportion-
may not manifest itself to others.§., the failure is caused ally across the mirror-pairs; we may also try to pair disks
by a bad network link). However, if a component is persishat perform similarly, since the rate of each mirror is de-
tently performance-faulty, it may be useful for a system termined by the rate of its slowest disk. Given a single
export information about component “performance states|ow disk, if the system correctly gauges performance, write
allowing agents within the system to readily learn of anttiroughput increases @V — 1) - B + b MB/s. However,
react to these performance-faulty constituents. if any disk does not perform as expected over time, perfor-
Performance specifications. Another difficulty that arises mance again tracks the slow disk.
in defining the fail-stutter model is arriving at a performance Finally, in the third scenario, we consider more general
specification for components of the system. Ideally, we bperformance faults to include those in which disks perform
lieve the fail-stutter model should present the system da-arbitrary rates over time. One design option is to contin-
signer with a trade-off. At one extreme, a model of comparally gauge performance and to write blocks across mirror-
nent performance could be as simple as possible: “this dig&irs in proportion to their current rates. We note that this
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approach increases the amount of bookkeeping: becadse Related Work

these proportions may change over time, the controller must

record where each block is written. However, by increasir@ur own experience with 1/O-intensive application pro-
complexity, we create a system that is more robust in thattamming in clusters convinced us that erratic performance
can deliver the full available bandwidth under a wide rangs the norm in large-scale systems, and that system support
of performance faults. for building robust programs is needed [5]. Thus, we began
work on River, a programming environment that provides
mechanisms to enable consistent and high performance in
spite of erratic performance in underlying components, fo-

Perhaps the most important consideration in introducin cgsing mainly on disks [7]. However, River itself does
p P o . ot handle absolute correctness faults in an integrated fash-
new model of component behavior is the effect it woul

: - : Ion, relying either upon retry-after-failure or a checkpoint-
have if systems utilized such a model. We believe such SY&start package. River also requires applications to be com-

ggﬁétely rewritten to enable performance robustness, which
may not be appropriate in many situations.

- . Some other researchers have realized the need for a
erant system Is likely to be .better.than a fail-stop SYSteMudel of fault behavior that goes beyond simple fail-stop.
for the following reasons. First, fail-stutter fault toleranc%he earliest that we are aware of is Shasha and Turek's work

enables true “plug-and-play”, when the system administrgﬁ “slow-down” failures [36]. The authors design an al-

tor adds a new component, the system uses whatever ’g?r

3.3 Bensfits of Fail-Stutter

able than systems built only to tolerate fail-stop failures.
Manageability: Manageability of a fail-stutter fault tol-

. . ) " . rithm that runs transactions correctly in the presence of
formance it provides, without any additional involveme

f th i {rue “no futz” Svst 301 S uch failures, by simply issuing new processes to do the
rom the operator —a true “no futz” system [32]. €CONGyork elsewhere, and reconciling properly so as to avoid

such a fsys{tem can be |Tcrfrrg)enta:;g/ %fOV‘g(‘j_[ll]{haHOV‘;”Work replication. However, the authors assume that such
newer, faster components 1o be added, adding these a%gavior is likely only to occur due to network congestion

compo”nerl;ts to mcrhem?gtally scale the sy stelm is hand rocesses slowed by workload interference; indeed, they
naturally, because the older components simply appeartoig, e that a fail-stop model for disks is quite appropriate.

performance-faulty versions of the new ones. Third, admin- DeWitt and Gray label periodic performance fluctuations

istrators no longer need to stockpile components in ami‘fi'har dwardnterference [17]. They do not characterize the

pation of their discontinuation. Finally, new workloads (an o .
the imbalances they may bring) can be introduced into t{ﬁlture of these problems, though they realize its potential

system without fear, as those imbalances are handled byI eg‘j’wt on’ parallel operations. . .
performance-fault tolerance mechanisms. In all cases, t Irmans r_ecent work on Bmc:dal MHIF'CaSt also ad-
need for human intervention is reduced, increasing over [FSses the issue of'noqles that stutter ’|n the context of
manageability. As Van Jacobson said, “Experience sho éjltlcast-based applications [8]. Birman's solution is to

that anything that needs to be configured will be misconfig- ange the semantics .O.f multicast from absolute delivery
ured” [23], p. 6; by removing the need for intricate tuning equirements to probabilistic ones, and thus gracefully de-
' ! grade when nodes begin to perform poorly.

the problems caused by misconfiguration are eradicated. X . ) 4
Availability: Gray and Reuter define availability as fol- The networking literature is replete with examples of
y: y y r’%iaptation and design for variable performance, with the

lows: “The fraction of the offered load that is processed . / S
with acceptable response times” [19]. A system that o ime example of TCP [22]. We believe that similar tech

utilizes the fail-stop model is likely to deliver poor perfor- ques will _need to be employed in t.he development of
: I adaptive, fail-stutter fault-tolerant algorithms.

mance under even a single performance failure; if perfor-

mance does not meet the threshold, availability decreases. .

In contrast, a system that takes performance failures into &-  Conclusions

count is likely to deliver consistent, high performance, thus

increasing availability. Too many systems are built assuming that all components

Reliability: The fail-stutter model is also likely to improveare identical, that component behavior is static and un-

overall system reliability in at least two ways. First, “desigahanging in nature, and that each component either works

diversity” is a desirable property for large-scale systems; by does not. Such assumptions are dangerous, as the in-

including components of different makes and manufacturreasing complexity of computer systems hints at a future

ers, problems that occur when a collection of identical comthere even the “same” components behave differently, the

ponents suffer from an identical design flaw are avoided. Ay they behave is dynamic and oft-changing, and there is

Gray and Reuter state, design diversity is akin to having &large range of normal operation that falls between the bi-

belt and suspenders, not two belts or two suspenders” [184ry extremes of working and not working. By utilizing the

A system that handles performance faults naturally workail-stutter model, systems are more likely to be manage-

well with heterogeneously-performing parts. Second, reible, available, and reliable, and work well when deployed

ability may also be enhanced through the detection of pén-the real world.

formance anomalies, as erratic performance may be an earliMany challenges remain. The fail-stutter model must be

indicator of impending failure. formalized, and new models of component behavior must
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be developed, requiring both measurement of existing sys4
tems as well as analytical development. New adaptive algo-
rithms, which can cope with this more difficult class of fail-

ures, must be designed, analyzed, implemented, and teséeaﬁl.

The true costs of building such a system must be discern
and different approaches need to be evaluated. 16
As a first step in this direction, we are exploring the

construction of fail-stutter-tolerant storage in the Wiscon-
sin Network Disks (WiND) project [3, 4]. Therein, we are
investigating the adaptive software techniques that we B&/l
lieve are central to building robust and manageable storage
systems. We encourage others to consider the fail-stut[tl%ﬁ
model in their endeavors as well.
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Abstract 1. Locating the mobile host or service: Before any
communication can be initiated, the desired end-point

Despite the popularity of mobile computing platforms, ap- must be located and mapped to an addressable desti-

propriate system support for mobile operation is lacking

in the Internet. This paper argues this is not for lack of nation. . L )
deployment incentives, but because a comprehensive sys- 2. Preserving communication: Once a session has
tem architecture that efficiently addresses the needs of mo- been established between end points (typically ap-
bile applications does not exist. e identify five funda- p||C8.tIOhS), communication ;hould be robusF across
mental issues raised by mobility— ocation, preservation of changes in the network location of the end points.
communication, disconnection handling, hibernation, and 3. Disconnecting gracefully: Communicating applica-
reconnection—and suggest design guidelines for a system tions should be able to rapidly discern when a discon-
that attempts to support Internet mobility. nection at either end, or a network partition, causes
In particular, we argue that a good system architecture communication to be disrupted.

should (i) eliminate the dependence of higher protocol 4. Hibernating efficiently: If a communicating host is
layers upon lower-layer identifiers; (i) work with any unavailable for a significant period of time, the sys-
application-selected naming scheme; (i) handle (unex- tem should suspend communications, and appropri-
pected) network disconnections in a graceful way, expos- ately reallocate resources.

ing its occurrence to applications; and (iv) provide mo-
bility services at the mobile nodes themselves, rather than
via proxies. Motivated by these principles, we propose a
session-oriented, end-to-end architecture called Migrate,
and briefly examine the set of services it should provide.

5. Reconnecting quickly: Communicating peers should
detect the resumption of network connectivity in a
timely manner. The system should support the re-
sumption of all previously established communication
sessions without much extra effort on the part of the
applications.

1 Introduction

Most current approaches provide varying degrees of sup-

The proliferation of laptops, handheld computers, cellular port for the first two problems. The last three—

phones, and other mobile computing platforms connected gjisconnection, hibernation, and reconnection—have re-

to the Internet has triggered much research into system sup- cejved little attention outside of the file system context[17].

port for mobile networking over the past few years. Yet, e argue that a complete—and useful—solution must ad-
when viewed as a large-scale, heterogeneous, distributed gress all these issues.

system, the Internet is notoriously lacking in any form of

general support for mobile operation One need look no further than interactive terminal appli-

cations likessh or telnet, one of the Internet’s oldest
We argue that previous work has failed to comprehen- appjications, for a practical example of the continuing lack
sively address several important issues. This paper dis- of support for these important components. A user with
cusses some of these issues and describes a sessiongn open session might pick up her laptop and disconnect
oriented architecture we are developing to preserve end- from the network. After traveling for some period of time,
to-end application-layer connectivity under various mobile - she reconnects at some other network location and expects
conditions. that her session continue where it left off. Unfortunately, if
Mobility raises five fundamental problems: there was any activity on the session during the period of
disconnectivity, she will find the connection aborted upon
This research was funded by DARPA (Grant No. MDA972-99-1-0014), reconnection .t0 the network. The parthUI.ar details of t.he
NTT Corporation, Intel, and IBM. Alex C. Snoeren is supported by aNa- €Xample are irrelevant, but demonstrate just how lacking
tional Defense Science and Engineering Graduate (NDSEG) Fellowship. current support is, even for this simple scenario.
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Based on our own experience developing various mobile
protocols and services [1, 3, 12, 24] and documented re-

ports of several other researchers over several years [7, 11,

13, 16, 26], we identify four important guidelines that we
believe should be followed as hints in designing an appro-
priate network architecture for supporting mobile Internet
services and applications:

1. Eliminate lower-layer dependence from higher lay-
ers. A large number of problems arise because many
higher layers of the Internet architecture use iden-
tifiers from lower layers, assuming they will never
change during a connection.

. Do not restrict the choice of naming techniques. Dy-
namic naming and location-tracking systems play an
important role in addressing mobility. In general,
whenever an end point moves, it should update a nam-
ing system with its new location—but forcing all ap-
plications to use a particular naming scheme is both
unrealistic and inappropriate.

. Handle unexpected disconnections gracefully. We ad-
vocate treating disconnections as a common occur-
rence, and exposing them to applications as they oc-
cur.

. Provide support at the end hosts. Proxies are attractive
due to their perceived ease of deployment. However,
it becomes markedly more difficult to ensure they are
appropriately located when hosts are mobile.

We elaborate upon these guidelines in Section 2. They
have served as a guide in our development of an end-to-
end, session-oriented system architecture, cllegtate,

over which mobile networking applications and services
can be elegantly layered. We describe our proposed archi-
tecture in Section 3, discussing how it addresses four of the
five problems mentioned above: preserving communica-
tion, and handling disconnection, hibernation, and resump-
tion. We do not provide or enforce a particular location or
naming scheme, instead leveraging domain-specific nam-
ing services (e.g., DNS, service discovery schemes [1, 10],
etc.) for end-point location.

An attractive feature of our architecture is that it accom-
plishes these tasks without sacrificing common-case per-
formance. Migrate provides generic mechanisms for man-
aging disconnections and reconnections in each application
session, and for handling application state and context. We
briefly discuss related work in Section 4 before concluding
in Section 5.

2 Design guidelines

In this section, we elaborate on our four design guidelines
for supporting applications on mobile hosts.
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2.1 Eliminate lower-layer dependence

The first step in enabling higher-layer mobility handling
is to remove inter-layer dependences. In a 1983 retrospec-
tive paper on the DoD Internet Architecture, Cerf wrote [6]:
“TCP’s [dependence] upon the network and host addresses
for part of its connection identifiers” makes “dynamic re-
connection” difficult, “a problem .. which has plagued
network designers since the inception of the ARPANET
project in 1968." The result is that when the underlying
network-layer (IP) address of one of the communicating
peers changes, the end-to-end transport-layer (TCP) con-
nection is unable to continue because it has bound to the
network-layer identifier, tacitly (but wrongly) assuming its
permanence for the duration of the connection.

A host of other problems crop up because of similar link-
ages. For example, the increasing proliferation of network
address translators (NATSs) in the middle of the network
has caused problems for applications (like FTP) that use
network- and transport-layer identifiers as part of their in-
ternal state. These problems can be avoided by removing
any assumption of stability of lower-layer identifiers. If a
higher layer finds it necessary to use a lower-layer identi-
fier as part of its internal state, then the higher layer should
allow for it to change, and continue to function across such
changes.

Furthermore, each layer should expose relevant changes to
higher layers. In today’s Internet architecture, applications
have almost no control over their network communication
because lower layers (for the most part) do not concern
themselves with higher-layer requirements. When impor-
tant changes happen at a lower layer, for example to the
network-layer address, they are usually hidden from higher
layers. The unfortunate consequence of this is that it makes
it hard for any form of adaptation to occur.

For example, a TCP sender attempts to estimate the prop-
erties of the network path for the connection. A significant
change in the network-layer attachment point often implies
that previously discovered path properties are invalid, and
need to be rediscovered. This consequence is not limited
to classical TCP congestion management—for example, if
mobile applications are notified of changes in their envi-
ronment and given the power to effect appropriate changes,
significant improvements in both performance and usabil-
ity can be realized [17, 19]. Similar results have also been
shown in the network layer [7, 11, 28], and in the area of
transport optimization over wireless links [3, 5, 24].

2.2 Bewarethe Siren song of naming

Many researchers have observed that the first problem
raised by mobility, namely locating the mobile host or ser-
vice, can be addressed through a sophisticated naming sys-



tem, hence most proposals for managing Internet mobility
attempt to provide naming and location services as a fun-
damental part of the mobility systemUnfortunately, the
tight binding between naming schemes and mobility sup-
port often causes the resulting system to be inefficient or
unsuitable for various classes of applications. For exam-
ple, Mobile IP assumes that the destination of each packet
needs to béndependently located, thereby necessitating a
home agent to intercept and forward messages to a mobile
host. The utility of alternative proposals to use agile nam-
ing [1] or IP multicast [18] for mobility support hinges on
widespread deployment of their location systems.

We believe that inexorably binding mobility handling with
naming unnecessarily complicates the mobility services,
and restricts the ability to integrate advances in naming
services. On the face of it, it appears attractive that a
“good” naming scheme can provide the level of indirection
by which to handle mobility. In practice, however, it is im-
portant to recognize and separate two distinct operations.
The first is a “location” operation: The process of finding
an end point of interest based on an application-specific
name. The second is a “tracking” operation: Preserving
the peer-to-peer communication in some way. There are
two problems with using a new idealized naming scheme:
First, there are a large number of ways in which applica-
tions describe what they are looking for, which forces this
ideal naming scheme to perform the difficult task of accom-
modating them all. Experience shows that each application
is likely to end up using a naming scheme that best suits
it (e.g. INS, DNS, JINI, UPnP), rather than suffer the in-
adequacies of a universal one. Second, if this tracking is
done through the same name resolution mechanism, every
packet would invoke the resolution process, adding signifi-
cant overhead and degrading performance.

We therefore suggest that an application use whichever
naming scheme is sufficiently adept at providing the appro-
priate name-to-location binding in a timely fashion. This
service is used at the beginning of a session between peers
or in the (unlikely) event that all peers change their net-
work locations “simultaneously.” At all other times, the
onus of preserving communication across moves rests with

the peers themselves. Inthe common case when only a sub-

set of the peers moves at a time, the task of reconnection is
efficiently handled by the peers themselves. We have previ-
ously described the details of such a scheme in the context
of TCP connection migration [24].

2.3 Handleunexpected disconnections

The area of Internet mobility that has received the least at-
tention is support for efficient disconnection and reconnec-

lindeed, the authors of this paper are guilty of having taken this posi-
tion in the past.
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tion. While significant work has been done in the area of
disconnected file systems [13, 17], less attention has been
paid to preserving application communication when a dis-
connection occurs, enabling it to quickly resume upon re-
connection. The key observation about disconnections is
that they are usually unexpected. Furthermore, they last for
rather unpredictable periods of time, ranging from a few
seconds to several hours (or more). Today’s network stacks
terminate a connection as soon as a network disconnection
is detected, with unfortunate consequences—the applica-
tion (and often the user) has to explicitly reinitiate connec-
tivity and application state is usually lost.

Like all other aspects of network communication, we be-
lieve the system should therefore provide standard sup-
port for unexpected disconnection, enabling applications
to gracefully manage session state, releasing system re-
sources and reallocating them when communication is re-
stored. Even if the duration of the disconnection period
is short enough to avoid significantly impacting commu-
nication or draining system resources, the disconnection
and ensuing reconnection events are often hidden by cur-
rent network stacks, leaving the higher network layers and
application to eventually discover (often with unfortunate
results) that network conditions have changed dramatically.

2.4 Provideservicesat theend points

A great deal of previous work in mobility management
has relied on a proxy-based architecture, providing en-
hanced services to mobile hosts by routing communica-
tions through a (typically fixed) waypoint that is not col-
located with the host [3, 8, 9, 15, 20, 26]. It is often easier
to deploy new services through a proxy, as the proxy can
provide enhanced services in a transparent fashion, inter-
operating with legacy systems. Unfortunately, in order to
provide adequate performance, it is not only necessary to
highly engineer the proxy [15], but locate the proxy appro-
priately as well.

'Several researchers have proposed techniques to migrate

proxy services to the appropriate location, avoiding the
need to preconfigure locations [8, 25]. Unfortunately, all
candidate proxy locations must be appropriately preconfig-
ured to participate. Further, in the face of general mobility,
proxies (or at least their internal state) must be able to move
with the mobile host in order to remain along the path from
the host to its correspondent peers. This is a complex prob-
lem [26]; we observe that it can be completely avoided if
the support is collocated with the mobile host itself.

3 Migrate approach

We now describe the Migrate approach to mobility, which
leverages application naming services and informed trans-
port protocols to provide robust, low-overhead communica-



tion between application end points. We describe a session-

layer protocol that handles both changes in network attach-
ment point and disconnection in a seamless fashion, but is
flexible enough to allow a wide variety of applications to
maintain sufficient control for their needs.

3.1 Servicemodel

The number of communication paradigms in use on the
Internet remains small, but the type and amount of mo-
bility support needed varies dramatically across modali-
ties [7]. In particular, the notion of a session is application-
dependent and varies widely, from a set of related connec-
tions (e.g. FTP’s data and control channels) to an individual

the application itself, or appropriately authorized external
entities that may be concurrently monitoring connection
state [2]. Since a session may span multiple protocols, con-
nections, destinations, and application processes, there may
be several sources of connectivity information. Regardless
of the source, the session manager handles notification of
disconnection and reconnection in a consistent fashion.

3.2.1 Disconnection. If a host can no longer communicate
with a session end point due to mobility, as signaled by
changes in the network layer state, transport layer failure,
or other mechanisms, it informs the application. If the ap-
plication is not prepared to handle intermittent connectivity
itself, the session layer provides appropriate management

datagram exchange such as those often found in RPC-basedservices, depending on the transport layers in use, includ-
applications (e.g. a cached DNS response). As session ing data buffering for reliable byte streams. Specifically, it

lengths grow longer and sessions become more complex in may block or buffer stream sockets, selectively drop unre-
terms of the system resources they consume, applications liable datagrams, etc. Additional application and transport-

can benefit from system support for robust communication
between application end points. However, due to the dis-
parate performance and reliability requirements of different
session-based applications, it is important that a mobility
service enables the application to dictate its requirements
through explicit choice of transport protocols and policy
defaults.

Hence we propose an optional session layer. This layer
presents a simple, unified abstraction to the application
to handle mobility: a session. Sessions exist between
application-level end points, and can survive changes in the
transport, network, and even other session layer protocol
states. It also includes basic check-pointing and resumption
facilities for periods of disconnection, enabling compre-

specific services can be provided, such as disabling TCP
keep-alives.

Depending on the system configuration, the session layer
may need to actively attempt to reestablish communication,
or it may be notified by network or transport layers when it
becomes available again. System policy may dictate trying
multiple network interfaces or transport protocols. In either
case, if the period of disconnection becomes appropriately
long (as determined by system and application configura-
tion), it will attempt to conserve resources by reducing the
state required in the network, transport, and session lay-
ers (with possibly negative performance implications upon
reconnection), and notify the application, enabling addi-
tional, domain-specific resource reallocation.

hensive, session-based state management for mobile-aware3 2 2 Reconnection. Upon reattachment, a mobile host

applications. Unlike previous network-layer approaches, contacts each of its correspondent hosts directly, informing
our session layer exports the specifics of the lower layersto them of its new location. Some transport layers may be
the application, and provides an API to control them, ifthe  ynaple to adequately or appropriately handle the change in
application is inclined to do so. network contexts. In that case, the session layer can restart
. them, using the session ID to re-sync state between the end
3.2 Session layer points. In gither case, the sessio)rg layer informs the appli-
Applications specify their notion of a session by explicitly ~ cation of reattachment, and resynchronizes the state of the
joining together related transport-layer connections (or des- corresponding session layers.

tinations in connectionless protocols). Once established, a The complexity of synchronization varies with the trans-
session is identified by a locally-unique token, or Session port protocols in use; a well-designed transport layer can
ID, and serves as the system entity for integrated account- handle many things by itself. By using a transport-layer to-
ing and management. The session layer exports a unified ken, anchot a network layer binding, the persistent connec-
session abstraction to the application, managing the con- tion model can provide limited support for changes in at-
nections as a group, adapting to changes in network attach- tachment point, often with better performance than higher-
ment point as needed. The selection of network end point |ayer approaches [21, 24]. Similarly, the performance of
and transport protocol, however, remains completely under even traditional transport protocols can be enhanced when
the application’s control. the network layer exposes the appropriate state [3, 5]. Sim-

To assist in the timely detection of connectivity changes,
the session layer accepts notification from lower layers
(e.g., loss of carrier, power loss, change of address, etc.),
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ilarly, grouping multiple transport instances between the
same end points into sessions can provide additional per-
formance improvement [2, 22].



Legacy transport protocols may be completely unable to 3.3.1 State migration. We believe the session abstraction
handle changes in network addresses. In that case, the may be a useful way to compartmentalize small amounts of
session layer may initiate an entirely new connection, and connection state, reducing the amount of state applications
resynchronize them transparently at the session layer. In need to store themselves, and simplifying its management.
the worst case, the application itself may be unable to han- Furthermore this state could be tagged as being associated
dle unexpected address changes, and provide no means ofwith a particular communication session, and managed in
system notification. Such applications are still supported an efficient fashion together with system state [4]. Sys-
via IP encapsulation. The correspondent session layers es-tem support may allow intelligent paging or swapping of

tablish an IP tunnel to the new end point, and continue to
send application data using the old address.

If a correspondent end point is no longer reachable (possi-
bly because the other end point also moved), the applica-
tion is instructed to perform another naming/location res-
olution operation in attempt to locate the previous corre-
spondent, returning a network end point (host, protocol,
port) to use for communication. The particular semantics
of suitable alternative end points and look-up failure are
application specific. It may be a simple matter of another
application-layer name resolution (perhaps a fresh DNS
query), or the application may which wish to perform its
own recovery in addition to or in place of reissuing the lo-
cation query.

While the amount overhead varies with the capabilities of
the available lower layer technologies, overhead is incurred
almost exclusively during periods of disconnectivity and
reconnection. This provides high performance for the com-
mon case of communication between static peers.

3.3 State management

In a spirit similar to Coda, our architecture considers dis-

associated state out of core if the period of disconnection
becomes too long.

3.3.2 Context management. There is a significant amount

of context associated with a communication session, and
it may be the case that some (or all) of it will be inval-
idated by disconnection and/or reconnection. In particu-
lar, previous work has shown that context changes in the
transport layer can be leveraged to adapt application pro-
tocol state [23]. Hence any state the session layer man-
ages needs to be revalidated, possibly internally, possibly
through application-specific up-calls. Changes in context
may dictate that buffers be cleared, data be reformatted, al-
ternate transport protocols be selected, etc. This requires a
coherent contextual interface between the application and
the session layer.

4 Related work

The focus of the Migrate architecture is on preserving end-
to-end application communication across network location
changes and disconnections. Much work has been done in
the area of system support for mobility over the past few
years; this section outlines the work most directly related
to ours.

connection to be a natural, transient occurrence that should At the network-layer, several schemes have been proposed
be handled gracefully by end hosts. For extended periods of to handle mobile routing including Mobile IP [20] and

disconnection, resource allocation becomes an additional
concern. While managing application state is outside the
scope of our architecture, enabling efficient strategies is de-
cidedly not. In particular, since disconnection often occurs

without prior notice, applications may require system sup-

port to reclaim resources outside of their control.

There has been a great deal of study on application specific-

methods of dealing with disconnected or intermittent op-
eration. Most of it has focused on providing continued
service at the disconnected client, and has not addresse

multicast-based mobility [18]. Mobile IP uses a home
agent as to intercept and forward packets, with a route
optimization option to avoid triangle routing. The home-
agent-based approach has also been applied at the transport
layer, as in MSOCKS [15], where connection redirection
was achieved using a split-connection proxy, providing so-
called transport-layer mobility. Name resolution and mes-
sage routing were integrated to implement a “late binding”
option that tracks highly mobile services and nodes in the

dlntentional Naming System [1].

the scalability of servers. If our approach becomes pop- Most TCP-specific solutions for preserving communica-
ular, and disconnected sessions begin to constitute a non- tion across network-layer changes [21, 24] do not handle
negligible fraction of the connections being served, servers the problems associated with connections resuming after
will need to free resources dedicated to those stalled con- substantial periods of disconnectivity. A “persistent con-
nections, and be able to easily reallocate them later. We are nection” scheme where the communication end-points are
considering a variety of state management services the ses-location independent was proposed for TCP sockets and
sion layer should implement, and briefly hypothesize about DCE RPC [27], but the mapping between global endpoint
two: migrating session state between the system and appli- names and current physical endpoints is done through a
cation, and providing contextual validation of session state. global clearinghouse, which notifies everyone of binding
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updates. Session layer mobility [14] explored moving en-
tire sessions by utilizing a global naming service to provide

endpoint bindings; address changes are affected through a

TCP-specific protocol extension.

5 Conclusion

(11]

(12]

1
In this paper, we have defined five salient issues concerning [

host mobility in the Internet. We presented a set of design
guidelines for building a system to address these issues, [14
distilled from a decade of research in mobile applications

and system support for mobility on the Internet. Follow-
ing these principles, we outlinddigrate, a basic session-

based architecture to preserve end-to-end application-layer [15)
communication in the face of mobility of the end points.

We believe the general abstractions for disconnection, hi-

bernation, and reconnection provided by the session layer [16]

define an appropriate set of interfaces to enable more ad-

vanced system support for mobility.
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Abstract

Remote access feels different from local access. The
major issues are consistency (machines vary in GUIs,
applications, and devices) and responsiveness (the user
must wait for network and server delays). Protium attacks
these by partitioning programs into local viewers that
connect to remote services using application-specific pro-
tocols. Partitioning allows viewers to be customized to
adapt to local features and limitations. Services are
responsible for maintaining long-term state. Viewers
manage the user interface and use state to reduce commu-
nication between viewer and service, reducing latency
whenever possible.

System infrastructure sits between the viewer and ser-
vice, supporting replication, consistency, session manage-
ment, and multiple simultaneous viewers. The prototype
system includes an editor, a draw program, a PDF viewer,
a map database, a music jukebox, and windowing system
support. It runs on servers, workstations, PCs, and PDAs
under Plan 9, Linux, and Windows; services and viewers
have been written in C, Java, and Concurrent ML.

1 Introduction

In the 1970's,0ne could walk up to any telephonein
the world anduseit aseasily asone’s hometelephone.
The computerrevolution might have followed suit, but
the opposite holds. It is nearly impossibleto use the
neighbor’s computer: data files are unavailableor not
availablein aconsistenplace,the wrongapplicationsare
installed, and the preferencedor thoseapplicationsare
personalized.

Why can'tone use any computeron the planet?The
reasongarehistoricalandeconomic First, the last twenty
yearsof thecomputingindustryhavebeenaboutper sonal
computing.Mainframeand minicomputerusersshareda
consistent(if sometimesunresponsive)environmentin
their single, sharedsystem.In contrast,every PCis cus-
tomized,binding large amountsof stateto eachPC. The
moveto PCsgaveusersresponsivenesat the costof con-
sistency. Secondly, networked computing environments
work “well enough”within a singlesecuritydomainsuch
asa corporateintranetor university-widenetwork. Such
environmentgdo allow usersto log into multiple termi-
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nals, and this covers a large percentageof shared-use
cases.Third, remote accesstools are “good enough”:
usersare willing to dial into or tunnelto their corporate
intranetto get accessgdespiteaddedlatencyor inconsis-
tency.Lastly, the Internetgrewup only in thelastdecade;
beforethatonecouldn'tthink of beingconnectedo every
computerin the world. A new generationof computing
devicesis uponus; eachpersonwill havemanydevices
and each personwill expectthe multiple and remote
devicesto work consistentlyWe will haveto rewrite all
of our applicationsfor the new devicesanyway;why not
rewritethemsotheywork better?

Our goal is to be able to useany Internet-connected
deviceasif it werethe machinein our office. Further,we
want this accessconsistentlyand responsively.Consis-
tencyis similarity of experiencecrosslevicesTheuser's
sessiormustmigratefrom deviceto device .Eachapplica-
tion will adaptto eachenddeviceso thatit exploitsthe
device'suniquecapabilitiesandworks aroundthedevice's
limitations. Responsivenedsplies thatremoteaccesss
ascomfortableasalocal application.Many remoteaccess
systemshave addressedne or the other of thesetwo
goals;few addresdoth.

Protium splits applicationsinto two pieces.Oneruns
nearthe user;the otherrunsin a serviceproviderthatis
highly available haspersistenstorage andhasabundant
computatiorcycles.We call thesepiecesviewers andser-
vices, respectivelyto emphasizehat stateis maintained
by the service.Viewersandservicescommunicatevia an
application-specific protocol; the application designer
must partition the applicationto maximize consistency
andresponsivenesgpplicationsarebuilt asif only asin-
gle viewer-servicepair existed, with certain additional
constraints.These constraintsallow the Protium infra-
structureto support connection,reconnection,multiple
simultaneousviewers, state consistencyand replication,
andsessiormanagement.

The Protium prototype includes a text editor, a
MacDraw-styledrawing program,a PDF viewer, a map
viewer with map databasea digital music jukebox, and
windowing systemsupport. Viewers and serviceshave
been written in C, Java,and ConcurrentML and run
underthe Plan 9 OperatingSystem,inside Javaapplets,
andunderLinux. All of theseviewersandservicesinter-
operate.



2 A Better World

We'dlike to beableto work all day atthe office, using
a researchoperatingsystemsuchasPlan9 or Linux. At
theendof the daywe'dlike to walk awayfrom the office
computerpossiblywith stateuncommittedto stablestor-
age.On the train home,we'd like to be ableto pull outa
wirelessPDA or cellular phone,and have the portable
devicereplicatethe office sessionPDA-specificviewers
for eachof our applicationswill be launchedthat show
the exactsamestate,including uncommittedchangesas
the work sessiorbackin the office. The PDA is limited,
but one could imagine readingdrafts of a documentor
fixing typosevenon its smallscreerandusingits limited
input capabilitiesWhenwe gethome thehomecomputer
runs only Windows. But using a web browserand Java
appletswe againreplicatethe sessiongetting Javaver-
sionsof eachof our applicationswith the samesession
stateaswe hadat theendof ourtrainride. In eachremote
case(PDA and Java),the applicationsrespondimmedi-
atelyto userinput; updatespoolbackto the office server.

Our two consistency-relatedoalsare session mobility
and platform independence. The exampleshowssession
mobility wherethe useraccessedhe samestateof appli-
cationsusingthreedifferentsystemsWe will notsupplya
precisedefinition of “session”in this paper;however,an
intuitive definition would be the stateof all applications
currently open on one's workstation screen. Platform
independencénvolves accessinghe samesessionon a
variety of devicesand operatingsystems:a workstation
runningaworkstationOS,a PDA with its proprietaryOS,
andaWindowshomePCwith a standardrowserAnd to
makethingsdifficult, we will notsacrificeresponsiveness
for theseconsistencyoals.

This examplesoundslike typical ubiquitouscomput-
ing propagandabhut our systemconcretelyprovidesthem:
we havea prototypesystemrunning.We nextdescribehe
assumptionsabout future technologiesthat underlie our
engineeringchoices thengo on to describeour approach
andprototypesystemBeforeconcluding,we explainwhy
prior approachefail someof our requirements.

3 Assumptions

We makesomeassumptionsaboutthe future. On the
technical front, Moore's law continues, exponentially
improving processingpower,memorysizes,devicesizes,
heatdissipation,and cost. As a corollary, the world will
move to multiple devicesper person.Bandwidth will
increasan the backbonenetworkandwill increasgalbeit
less quickly) to portable and home devices. Wired or
wireless remote coveragewill improve over the next
decade;we thus choosenot to focus on disconnected
operationHowever,we alsoassumeahatcommunications
latencywill not improvemuchin the nextdecade.

While the speedof light placesa fundamentalower
boundon communicationsit takeslight only about130
millisecondgto go aroundtheworld. Our latencyassump-
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tion insteadrestson the currentrealitiesin datanetwork-
ing, where differentiated services have not yet been
deployedand switchingdelaysare significant. Evenwith
a speedycore Internet,however,it seemsbelievablethat
last hop communicationserviceswould still experience
notabledelaysfor the next decade(today, we regularly
experiencel0 second round-triptimeson CDPD modems
and WAP cellular phones;systemsmust respondwithin
100 millisecondsto feel instantaneouandwithin 1.0 sec-
ond notto disruptthe user’sflow of thought[3]). Further-
more, 130 millisecondsis very long for a computer,so
servicesthat rely on other servicesstill face latency
issues.

On the social front, we havetwo assumptionsFirst,
we believe that therewill be a new round of operating
systemwars for the PDA/cellphonemarket. The market
will determinewhich (if any) of the currentcontenders
(PalmOS,Windows CE, Psion,to namea few) will win.
In the meantime,we should deploy systemsthat work
well regardlessof programminglanguageor operating
system.

Our secondsocial assumptioris that distributedpro-
grammingis hard.If we canfind waysto sweepmany of
the traditional distributed programmingproblemsunder
the rug of our infrastructure,the averageprogrammer
might be ableto write a robustdistributedapplication.A
secondargoalis thatwriting anapplicationin our system
will not be much harderthanwriting a standaloneGUI-
basedapplicationis today.

4 Partitioned Applications

Our approachdrawsits inspirationfrom two applica-
tionsthatwork whenalow-performancehannekonnects
the user and his data: the Samtext editor [4] and the
IMAP mail protocol[1]. Samcomesin two pieces.Sam’s
service runs near the file systemwhere editing takes
place;Sam’sviewerrunson whateverdevicethe userhas
at hand.Viewer and servicecommunicatausing a proto-
col that keepstrack of the stateof both halves.IMAP
works similarly but for mail instead of editing. Both
applicationgivide thetaskinto two parts:aservicethatis
highly available and has large compute and storage
resourcesandaviewerthatneedsaconnectiorto theser-
vice andsomekind of userinterfacebut neednot down-
loadthe entireprogramstate.Perhapshecentralquestion
of our projectis: canwe generalizérom Samand IMAP
to all applications?And canwe build infrastructurethat
makes this easy? We call this approach,“partitioned
applications,”becausehe networkbreaksthe application
into parts.

Anotherway of looking at Protiumis thatwe are“put-
ting the network into the application.” Most previous
approachesdivide remote from local at an existing
abstractionlayer, for examplethe file system,the GUI
API (The X Window System[6]), or the frame buffer.
Partitioning incorporatesthese prior approachesit just
addsa newdimensionof flexibility.
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Figure 1: A monolithic application, the same application after partitioning,

view multiplexing

and multiple

viewers connected to a single service through aview multiplexer.

Partitioninginducesrich systemdssuesFor example,
whatmanages sessionHow doesoneconnectr recon-
nectto a serviceWhat maintainsconsistencyreplicates
state, or provides multicasting across simultaneously
active viewers?What happensvhen a viewer crashesor
the viewer deviceis lost? Our prototypesystemsuggests
preliminaryanswerdo eachof thesequestions.

5 Prototype System

Our prototypesystemcurrently supportsfive applica-
tions in addition to the sessionservice/view manager.
Thesearea simpletext editor,a MacDraw-styledrawing
program,a PDFimageviewer,a mapprogram(with both
photographicimages and polygonal graphics), and a
music jukebox. Theserepresenta variety of interesting
desktopapplications,so we areencouragedhatwe have
beenable to build them with our currentinfrastructure.
However for usto really claimthatwe arebuildingagen-
eral system,we needto build more applications.We are
investigatingvideo and hope to add PDA applications
(calendaremail,addresooks)to our suite.

One of the mostinterestingresearchissuesinvolves
adaptingviewersto the platformonwhichtheyrun. There
areat leastfour differentkinds of platforms:big bitmaps
(desktopsand laptops),small bitmaps (PDAs and cell-
phones),text, and voice. We presentsome preliminary
resultsaboutdevice-specificadaptationin the sectionon
session management,but this topic remains largely
untouched.

Building applicationsarounda protocolgivesusa high
degreeof languageand operatingsystemindependence.
Our prototypeapplicationsrun underPlan9 (all viewers
and the edit and draw services),Java(all but the PDF
viewer;mapandjuke services)andLinux (drawandPDF
services).The Plan 9 programswere written in C; the
Linux programswerewritten in ConcurrentML. Porting
remainsa significanttask, but this wide variety of lan-
guagesandsystemssupportsa claim to languageand OS
independence.

Just rewriting applicationsinto two pieces doesn’t
make a systemsproject. For Protium, the interesting
issuesare in the infrastructure,and we describetwo
piecesof the infrastructurehere,followed by an applica-
tion example.The first pieceof infrastructure the view
multiplexer,supportsnultiple viewersonasingleservice,
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while simulatinga connectionto a single counterparto

eachvieweror service.Thesecondieceof infrastructure,
the sessionservice, bundlestogether multiple services
into asessionijt hasa correspondingiece theview man-
ager,which runson the viewing device.After describing
the piecesof infrastructure we will go on to anapplica-
tion example our mapprogram.

5.1 Multiplexed Viewers

Eachviewer or serviceis designedasif it spoketo a
singlecounterparserviceor viewer, respectivelyBut we
want to be able to support multiple viewers simulta-
neously connectedto a single service.The view multi-
plexersimulatesasingleviewerto aservice New viewers
thatwishto connecto arunningservicedo sothroughthe
view multiplexer,sothe serviceneednot be awarethata
new viewer hasconnectedFigure 1 showsa view multi-
plexerinterposedetweera serviceandmultiple viewers.

To do its job, the view multiplexer snoopsthe mes-
sagesbetweenserviceand viewer. Each messagen the
systemhasatagto help the multiplexer.Most communi-
cationis synchronoudrom viewer to service,in viewer-
initiated request-responsgairs. Viewers can generate
read,lightweightwrite, andheavyweightwrite messages.
Servicesrespondwith either acknowledgementéACKSs)
or negativeacknowledgement@NACKS); the infrastruc-
tureis allowedto NACK a messagavithout allowing the
messagéo reachtheservice Viewersmustalsobeableto
handleasynchronousipdatemessagesyhich are gener-
ated by the infrastructurewhen one viewer receivesan
ACK; anupdatetellsaviewerthatsomeotherviewersuc-
ceededin updatingthe state. Since all viewers seeall
ACKSs, they can keeptheir views of the stateup-to-date.
Lastly, servicescanasynchronouslyproadcasto all view-
ers; broadcastmessagesupportstreamingmedia. This
consistencymodelis similar to publisher-subscriberon-
sistencymodels.

In addition to multicastingACKs (as updates)to all
viewers, the view multiplexer helps build responsive
viewers.Using a simple token-passingchemethe view
multiplexer allows one viewer to become privileged.
Lightweightwrites from the privilegedviewerareimme-
diately ACKed; this allows the privileged viewer to
deliver local responsetime. Thesewrites must then be
propagatedo the serviceand the other viewers; formal
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Figure 2: Three applications (with service and viewer pieces) connected through the ses-
sion service/view manager multiplexor/demultiplexor  pair.

requirement®f the protocolandthe serviceimplementa-
tion guarante¢hatthe servicewill acknowledgehewrite.
Lightweightwrites shouldbe commonactionsthatdo not
requiresupportfrom the service,e.g.,respondingo key-
strokesor mouse events.Global search-and-replacer
commit to stablestorageshould be heavyweightwrites.
Token managemenmatchesour intendeduses,wherea
single userexpectsimmediateresponsdrom the device
heusesbut cantoleratedelayedupdatesn otherdevices.

5.2 Session Management

Intuitively, a sessioris the stateof one’'sdesktop.The
Protium session service runson the servicesideandbun-
dles togethermultiple servicesinto a single session.A
device-specifioview manager connectdo the sessiorser-
vice andrunsthe viewersthat correspondo the services
in the session.The sessionservice and view manager
form a multiplexer/demultiplexempair, linking multiple
viewersto multiple correspondingservices.In our intro-
ductoryexample the view managetaunchedhe viewers
onthe PDA andundertheJava-enabletrowser.

The sessionservice and view managerbehave as
anotherapplicationpair, so the pipe betweerthemcanbe
managedy the view multiplexerjust like for any other
application.The sessiorandview managerganalsohier-
archically encapsulatend route message$or the under-
lying service/viewepairs;however,servicesandviewers
are free to communicateout-of-bandif the designerso
choosesFigure 2 depictsa setof applicationsmanaged
by a sessiorserviceandview managerWe cancompose
view multiplexersandsession/viewnanagepairsin arbi-
trary nesting;thetwo setsof multiplexersrecurse.

In addition to managingthe set of applications,the
view managersadapt window system eventsto their
devices.Moving or resizing a window on a big screen
causesa correspondingmove or resize on anotherbig
screen.Moves and resizeshave no small screenanalog
(becauseapplicationstypically use the whole screen);
however,focus changesandiconification work similarly
on big and small screensWe havenot yet implemented
thetext-onlyor voice-basediewers,sowe haveno expe-
riencein this area;a text-only view manageshouldwork
like a shell. Another openproblemis adaptingto differ-
ently sizedbig screens.
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5.3 A Protium Application: Map

Someof us (Szymanskiand Lakshman)areinterested
in geographidatasuchasterrestrialmaps,aerialimages,
elevationdata, weatherinformation, aviation maps,and
gazetteerinformation; one goal is synthesizingthese
views coordinatedby positionalinformation. Gigabytes
of datacomefrom scatteredsourcesandmultiple servers.
We had built a Javageodataviewer that could navigate
and edit the data. Different types of geodatashow as
selectabledisplay layers. Different layers or different
parts of the same layer may be served by different
machinesHowever,all serversandthe viewer havethe
sameabstracview of thedataandhold somepieceof the
datalocally. This uniform view resultsin a simple proto-
col betweertheviewerandtheservers.

We usedthe Protium infrastructureto sharethe geo-
dataviewer,thebasicideabeingthatmultiple viewerscan
sharea sessionmoderatedy a sessiorserverthattracks
whatis being viewed andtells viewerswhat datato get
and from where. Actual data travels out-of-band;only
control messagesoute through the Protium infrastruc-
ture. The sessionserveralso supportstextual messaging
sothata sharedviewer canbe usedto give driving direc-
tions to someoneg(with appropriatemapsand messaged
instructions)ata remotelocation.

The map applicationis designedo hide latencyfrom
the user. For example,the viewer displaysstreetnames
and addressein a tool tip; a remotequery would make
this featuretoo slow andtoo variablein latency.All geo-
graphicaldatais keptin atiled format,compressedising
a methodappropriateto its type, and transmittedto the
viewer upon demandor (sometimes)before. The map
viewer storesthis datain a two-level cachein which the
lower level (which counteractietworklatency)contains
compressediata,andthe upperlevel (which counteracts
decompressionlatency) contains fully expandeddata
structuresneededo supportuserinteractionsRequestso
map servicesare executedn batcheghat are satisfiedin
an out-of-orderfashion. This overlapsserverprocessing
with both network transmissiontime and client decom-
pressiontime. This architectureprovides a degree of
responsivenesthat could not be approacheavith a con-
ventionalbrowser/servestructure.



As partof this exercisewe implementeda newviewer
in C underPlan 9. The Javaand Plan 9 viewers differ
greatly: the Plan 9 viewer targetsthe small but colorful
iPAQ displayandusespeninput; the Javaviewerrunson
big screensindusesthereal estatefor acomplexGUI.

The sessionserver (excluding marshalling code) is
about330linesof Java.An additional286linesallow the
existing viewer to interoperatewith the sessionserver.
The Plan 9 viewer required 3527 lines of C of which
about300linesdealwith communicatiorandtherestdeal
with graphicsand event handling. Thus, with a small
amountof effort, we wereableto convertan existingsin-
gle-userapplication(which wasalreadysplit into service
andviewer parts)into a sharedapplication.

6 Remote Access

Thebody of relatedwork is far too vastto surveyin a
position paper;remoteaccesssystemsspanmany disci-
plines including operatingsystems networking, distrib-
uted systems, and databases.This section instead
highlights major approachesto remote access and
explainswhy theydo not meetour goals.

Most remote accesssystemsfail one or both of our
consistencyandresponsivenesgquirementsRlogin and
its more securemoderndescendantssh[7], areplatform
independenbut do not provide sessiommobility. Distrib-
uted file systems(examplesabound; AFS, Coda, and
Locus/Ficusto namea few) allow one to accessstable
storagewhereverthe network reachesbut say nothing
about how to provide applications.Remote Procedural
Call packagessimilarly do not show how to provide
applications. Distributed object frameworks such as
CORBA andDCOM addresghe sameproblemaswe do,
but sufferperformanceroblemsbecauseheir abstraction
of remoteandlocal objectshideslatencyfrom designers
[8]. Recentwork in thin-client computingandits prede-
cessorgclient-servercomputing,give someforms of con-
sistencybut force clientsto wait during both networkand
serveratencies.

A numberof systemsapplythebrute-forceapproactof
sendingscreerdifferencesandraw userinputinformation
acrossthe network. Examplesinclude Virtual Network
Computing(VNC) from AT&T Researchb], the SunRay
product from Sun Microsystems,Citrix System’s Win-
dows-basegroduct,and Microsoft's NetMeeting.All of
these systemsprovide bit-for-bit consistencybut suffer
whennetworklatencyincreasesTheyalsodo notadaptto
the constraintsof local devices:viewing large virtual
screen®n smallphysicaldevicesis difficult, andthe sys-
tem architecturepreventsfurther device-specificadapta-
tion.

Philosophicallythe BerkeleyNinja projectis closesto
our approacHh?2]. We follow Ninja’'s approactof keeping
stable storagein a service provider (Ninja calls this a
“base”)andallowing “soft” statein the viewersto belost.
Ninja focusesnscalableservicesProtiumfocusesonthe
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applicationswe usedaily on the desktop Protium’sinfra-
structureworks primarily betweenserviceandviewer.

7 Experiences

To partition an application, one must focus on the
application-specifigrotocol. We would like to presenta
how-toguideon partitioning,but thelessonsso far sound
like platitudes,ncluding “match messageto userinput”,
“separatecontrolanddata”, and“bewareroundtrips.” In
an early versionof the draw protocol,eachobjectdeleted
requireda separatenessagelf the userselecteca number
of objects and issueda delete command,some of the
deletesmight fail, leavingthe applicationin a confusing
state.The juke, map, and PDF applicationshave large
datastreamgqmusic,graphics/imageandimage);waiting
for alargeobjectto be transmittedcankeepa smallcon-
trol messagefrom taking effect. Designing protocols
without a delay simulator is dangerous:what works
acceptablyon a LAN may be unusablewith a 1-second
round-trip time. We hopeto be able to summarizeand
illustratemoresuchprinciplesin thefuture.

Protocoldesignersnustdecidewhich applicationstate
is viewer-specificand which is service-mediatedFor
exampletheeditapplicationkeepsscroll barpositionand
text selectionlocal to the viewer. The draw application
tries to do the same, but some operations(grouping,
ungroupinganddeletingobjects)resetthe selectionto be
consistentacrossall viewers.More ambitiously,it might
be useful to be able to preview the next PDF pageon
one’'sremotecontroldevicewhile continuingto showthe
currentpageon the video projectordevice,but this is not
yet supportedby the PDF protocol. Some applications
have addedstate expresslyfor collaborativeor remote-
control purposesthe map and PDF programsboth sup-
port telestrator-styleverlays,and the map programalso
includesa chatroom.

Writing viewersis harderthanwe would like. Viewers
include all of the stateand complexity of a traditional
stand-alonepplication,augmentedy the complexity of
managinga singleoutstandingequesthile beingableto
acceptasynchronousipdatesandbroadcastsBackingout
attemptedchangesvhena NACK arrivesfurther compli-
cates design. All of our viewer programsare multi-
threadedthis seemsa higherstandard¢hanwe would care
to imposeon the averageprogrammerWe are exploring
programmingdioms,APls,andlibrary supporthatmight
simplify viewerdevelopment.

8 Discussion and Conclusion

This systemis not aboutthe nextkiller application.If
anything,we arerebuildingall of our old applicationsto
live in a new world. This follows our biasesas system
builders: we know how to build infrastructure.If this
projector onelike it succeedsye will haveuniversaldata
service like universaltelephoneservice.Thenewdevices



requirerewriting all of our old applicationsanyway.We
mightaswell getsomebenefitout of it.

The Protium approachmakesadditionaldemandson
applicationprogrammersTheinitial designerof anappli-
cation createsan application-specificprotocol, while
designersof new viewersor servicesmustadhereto that
protocol (if our projectsucceedsthen perhapsstandards
for applicationprotocolswill emerge)Portinganapplica-
tion to anewplatforminvolvesatleastportingtheviewer.
Building a viewer combinesboth traditional GUI issues
andcommunicatingackto theservice Serviceamayalso
needto be ported.

What is the bestway for Protiumto supportexisting
applications?It dependson the application. Programs
with cleanseparatiorbetweendisplay and stateintegrate
easilywith Protium; most programs however,are large,
complex, and have tangled state- and display-manage-
mentcode.We observehatthemoveto newdevicessuch
as PDAs and phoneswill force such programsto be
rewritten anyway; integratingthe programwith Protium
aspart of the rewrite will be a modestextrarequirement
andwill benefitthe applicationby makingit usethe net-
work moreeffectively.

Consideringapplicationsin a partitionedcontextpro-
videsnew opportunitiesto useold tricks. Persistencés a
service-onlyproblem;the serviceneednot worry about
geographidistribution, so known persistencdéechniques
apply. Viewers that are lost or lose state are easily
replacedor restoredbecauséhe serviceis the repository
of record.Theconnectiorbetweerserviceandviewercan
be a networksocket;knowntechniquegor authentication
and encryptionthereforeapply. Security, logging, cach-
ing, and prefetchingseemlike obvious featuresto add.
This paperconcentrate®n the single user;Protium also
gives limited supportfor collaborationand remotecon-
trol. We think of theseasbonusegatherthanour primary
researclgoal; it seemsa high enoughgoal to be ableto
useany computerin theworld.

Protiumis the mostcommonisotopeof hydrogenthe
mostcommonelementin the universe.A protium atom
hastwo piecesthat are closely coupledand essentiatto
the natureof hydrogen,but the two piecesare different
from eachother.And while thetwo piecesarethemselves
basic, the exploration of their interaction has occupied
scientistfor morethanacentury.
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draw (left), juke (top right), map (bottom), and
PDF (bottom right, Plan 9 only).
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Abstract 2. The General Approach

It is common in distributed systems to replicate data. In An application using our approach is provided with prob-
many cases this data evolves in a consistent fashion, and abilistic models that capture how a replicated data structure
this evolution can be modelled. A probabilistic modebf the evolves in time. These probabilistic models allow the ap-
evolution allows us to estimate the divergence of the repli- plication to estimate the number of updates that are likely
casand can be used by the applicationto alter itsbehaviour, to have been performed on the data structure, or part of it,
for example to control synchronisation times, to determine  during a specified time period, for example between the last
the propagation of writes, and to convey to the user infor- time a synchronisation was performed and the current time.
mation about how much the data may have evolved. The application can then use this to adapt to the data struc-

In this paper, we describe how the evolution of the data tures’ evolution by, for example, controlling when synchro-
may be modelled and outline how the probabilistic model nisations should occur, alerting the user to divergence, or
may be utilised in various applications, concentrating on a controlling when updates to the shared data are propagated.
news database example. The generation of a single probabilistic model that captures

the evolution of the other replicas, is known iagerence.
The application then makelgcisions based upon the infor-
mation contained within this single model. This partition of
the problem into two stages of inference and decision en-
ables our approach to be applied to a wide variety of appli-
In distributed systems the replication of shared mutable cations. The inference stage is decomposed into the gener-
data has been widely studied. When mutable data is repli-ation of models representing the evolution of the replicated
cated there is a need to consider the consistency model usedata structure, or parts of it, and the subsequent combining
to control the level of divergence of the different replicas.  of these models as requested by the application. In the For
In this paper, we advocate using knowledge of how the the inference stage a general purpose tool can be used to
shared data evolves to control and manage divergence. Emereate the probabilistic models, and combine them, whilst
pirical evidence shows that updates to shared data, in manythe decision stage is specific to each application.
cases, follow systematic patterns. By modelling the way in  The probabilistic models are generated by a tool, which
which the data has been updated in the past, we can provideequires a log of descriptions of the operations performed on
information to an application on how, the data has evolved the shared data structure. For each update to the data struc-
since the replicas were last consistent. The basis of this apture the log contains: information about the operation, the
proach isprobabilistic modelling applied to the distribution  part of the data structure that was affected, the time when
of operations performed on the data structure. The approachthe operation was performed and an identifier representing
is novel and preliminary results on a mobile news databasethe source of the update (for example a user id). A descrip-
and a mobile email reader are encouraging. tion of the data structure and its different components s also
In the next section we describe the general approach, inrequired by the tool, which allows each component of the
Section 3 a mobile news database case study is detailed, imata structure to be modelled independently. Once a set of
Section 4 the results for a mobile email reader are presentedprobabilistic models have been created, these can be up-
and then in Section 5 we describe other applications we aredated dynamically as new updates are performed.
currently working on. As a simple example of the data structure decomposition,

1. Introduction
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consider an address database application. Each entry withirfor each of these sub-logs independently, and this is now
the database is marked as either being a personal contact odescribed.
as a business contact. This data structure can be thought of There are a number of factors that effect the creation of

as being composed of two parts, the personal and the busithe models. For example, the periodicity of the data has
ness parts, and two models can be generated and providegh be determined (e.g. hourly, daily, weekly, monthly and
to the application. A model for the entire address databasesp forth). The tool currently creates histogram based mod-
can then be generated by combining the two models. A g|s. Such models may be parameterised by widths and start-
further sub-division could exist within the database with, ing points for the bins. All the parameters of the model
perhaps, the personal database is divided into family andcan be learned from the information contained within the
friends. Separate probabilistic models can then also be genqog. It should be noted that there are many alternative
erated for each of these sub-divisions and again composedforms of probabilistic model which can be used, for ex-

The application is required to create the logs, provide the ample wrapped mixtures of Gaussians and circular normals
information about the decomposition of the data structure, (see [5]). Although in this paper we use histogram based
and to perform the decisions based upon the information models, we are currently evaluating other approaches.

provided by the models. For each probabilistic model the correct parameters need
to be established, and these control the model complexity.

Probabilistic Modelling Learning of the probabilistic  The main consideration in the selection of the model com-
models can be automated using model selection techniquesplexity is its generalisation ability. In other words, we wish
and the models may also be changed over time as more upto create a model that not only describes well the updates
dates are made to the replicas. upon which it is based but also one that will describe fu-

A probabilistic model is a particularly powerful repre- ture updates. In the address book example above, where
sentation as such models may be combined in a straightthe events we are modelling are updates of the database,
forward and principled manner. This means that the datawe could create a histogram model with too many bins so
structure can be decomposed and each part modelled indithat each update occurs in a single bin. Such a model is
vidually, as can different sources of data updates. For ex-unlikely to provide a good predictor of the evolution of the
ample, in the address database application, there could beeplica because the model complexity is too high. At the
separate models for the secretary and the owner of the ad-other extreme, if we create a histogram model with only
dress book, reflecting their particular patterns of updates.one bin we will be predicting a uniform distribution for
Hence, when the address book is replicated for the ownersthe future updates, again this is likely to be a poor predic-
use, the probabilistic model generated can describe how thetor of the replica’s evolution. There is obviously a ‘happy
secretarys copy evolves. medium’ and this may be found througtoss-validation of

It is important to remember that the probabilistic model the model [1]. Cross-validation involves splitting the log
is a prediction of future behaviour based on the past. Theinto a number parts, for example five. The first four parts
true evolution of the replica may not be consistent with the are then used to construct a model with a particular param-
model. Even if the model is correct, its probabilistic na- eterisation and the fifth part is used to ‘validate’ the model.
ture means that its individual predictions can err, even if in This involves computation of the histogram models likeli-
general itis accurate. As a result we advocate using our ap-hood of creating the validating data. The part that is used
proach in ways that will enhance the user experience ratherfor validation and one of those used for construction is then
than restrict functionality. The user interface should suggest inter-changed and the model is re-validated. This procedure
and advise rather than constrain and command. is repeated five times so that each part of the data has been

used to validate the model once giving five different scores.

The System The System is composed of a tool for creat- The validation scores are then combined, for example by
ing the probabilistic models, and a library for use in the ap- averaging, and the final score is associated with the param-
plication for merging the probabilistic models. These mod- €ters used for constructing the model. A range of param-
els capture the rate at which the Operations are performed,eterisations can be tested in this manner and the one with
and how that rate changes over time. Therefore, the timethe highest score is then selected, and utilised to construct a
at which an update to the data structure occurs is the pri-model based on all the data, which is the final model.

mary information required to create the models. The other  Another factor determined during the cross-validation
information in the log allows multiple models to be created, phase is the periodicity of the updates. The tool uses a
based on the part of the data structure being updated, or omumber of pre-programmed periodicities: a daily cycle, a
the user performing the update. In order to achieve this, theweekly cycle, weekdays separately generated from week-
tool pre-processes the log, creating a separate log for eackends, and Saturdays separately generated from Sundays
entity to be modelled. A probabilistic model is then created both of which are separately generated from weekends.
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More pre-programmed periodicities can easily be added, create the log required to generate the probabilistic models.
such as hourly or monthly based periodicities. Note that the We decomposed the news database into several parts, where
set of candidate models includes the uniform distribution, each subject was treated as a separate part. All writes to the
and so the performance of the system should be no worsenews database were considered as being performed by a sin-
that that of the uniform model, in the event that one of the gle user. The mobile news database application allowed the
pre-programmed periodicities is not appropriate. Currently, user to select which parts of the news database they wished
we are looking at other techniques to determine the period-to have replicated on the mobile device.
icity of the updates. The probabilistic models of the news database are cre-
A prior distribution is used, which can either beumi- ated by the tool overviewed in the previous section. The
form prior or, in some situations, there may be prior knowl- mobile news database uses the probabilistic models to gen-
edge about when the updates arrive. The prior distribu- erate a visual cue in the application interface to allow a user
tion is combined with the model generated using Bayes's to see the number of updates that are likely to have occurred
rule. For a histogram model this prior plays an important to each part of the news database since the last synchroni-
role of ensuring the final histogram model is non-zero at all sation. The application also uses the probabilistic models
points within its range, i.e. even when there are no observedto control synchronisation times between the device and the
points within a bin’s range the histogram has some resid- master news database. It is likely that, due to the cost of
ual value. The residual value of the histogram is a further bandwidth, as well as the limited amount of bandwidth, the
cross-validated parameter. If there is no or little information mobile devices will not be continuously connected. There-
about when the updates occur, this is valuable, because thdore, the synchronisation times have to be chosen, as this is
model is initialised using the prior distribution and as more part of the decision stage.
updates are observed, the model is refined to represent more

accurately the underlying distribution of the updates. This Optimal synchronisation The obvious approach to

process can be extended to allow more recent data to bechoosing when the mobile device should synchronise would

more inf_luential,_ther_eby "?‘”°W‘_”9 the sy_ste_m t_o d(_eal_ with be to have a user specify the number of synchronisations

non-stationary situations in which the distribution is itself per day they were willing to pay f8r and these would oc-

evolving with time. cur uniformly during the day, for example once every four
hours.

3. Example M obile News Database Our mobile news database makes an adaptive choice of
when to synchronise. This aims to find a trade-off between

We now demonstrate the use of our approachin a mobilethe cost of synchronisation and the average staleness of the

news database application. We are seeing a proliferation ofgalta’ where_ stalentehss IS dff'ned asc:hcta tkl)me bet\(/jveen an ar
applications that replicate information on mobile devices, Icle appearing on the master news database and appearing

such as the service provided by AvantGoThese allow on the device.

mobile devices to store replicas of small news databases for In order to cak_:ulate the sy,nchronl_sauon times, itis nec-
access when the mobile device is disconnected essary to formalise the user’s requirements and calculate

Our mobile news database application provides, on a Now to achieve them. In the mobile news database this is
mobile device, a list and summary of the current nevx’/s sto- achieved either by setting the number of synchronisations

ries. We assume that the mobile device has wireless connecP®" day to achieve a particular average staleness, or by al-

tivity which allows it to synchronise with the master news lowing the user to set the number of synchronisations per

database. We assume a pull model, where the device initi-fjay and then scheduling the synchronisation times to min-

. imi h len .
ates the connection. se the staleness

For this application a database of new articles is required, tiorYVSin)E:%rfzsrt:seelftfsrrr?zft;\e;ﬁ::tri]ggls 'r\:vtﬁ;ﬂshme Bbsdg?(\:/\-/ants
and we generated one from the BBC News web site. The "~ ' P y u )

BBC publishes news articles to their web site 24 hours adaylhn the nhews dgtabase phr'ol?]Iem, the S'th:Le COtStI funct|onfv¥E
and each of the news items is classified under a category, ave ¢ Sslen |sv\(/3ne 'Wh 'f re_\p.re_senti t? s ‘iﬁntesst.ﬂ €
such as sport, business, health and so forth. For every articlg ©WS articies. WWe wish to minimise the ime that articies

appearing on the BBC News website over a three month ?hre ﬁ]vagl_?btlje n thanerws iatagafe:[:ut ?rle rTOt aya;lr?b![_emon
period we extracted the date and time of publication, and € mopile device. For every article the staleness 1s tne ime

the subject of the news article to create a news database. IL%mmvggﬁg ;he?lir;'de was available but not in the replica on
We treated the news database as the replicated data struc- '

ture, and used the information gathered from the website to  2Assuming a per synchronisation charge; other charging models are
possible and different cost functions can be created to deal with this in our
Lhttp://www.avantgo.com/ approach.
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Figure 1. Synchronisation time optimisation for the Business part of the news database, showing
the learned histogram model together with uniform synchronisation times (dashed lines) and the
optimised synchronisation times (solid lines).

The cost incurred from synchronising at timgmay be 3.1. Results

written
N .
C— Z(Si — up) 1) Figure 1 shows some of the elements of our approach.
ot ’ The histogram based probabilistic model for weekdays for

the business part of the news database is shown as boxes on
given that]V articles have arrived since the last synchro- the graph, generated using the updates occurringin May and
nisation at timess; to uy. We wish to find a synchroni- June 2000. The tool automatically determines the periodic-
sation time which minimises this cost. Unfortunately we ity of the data, and for the business part of the news database
don’t know when the updates will arrive, we can only esti- this is a weekday and weekend periodicity. Therefore, the

mate the rate of arrival using our probabilistic model, so we Weekdays are mapped into one twenty-four hour period and
need to minimise thexpected cost. created a histogram to represent that twenty-four hours, and

Consider how the expected cost will depend on three or- this is shown in Figure 1 (there is a separate model for the
dered synchronisation timas 1, s; ands; 1 : weekend which is not shown here). Six synchronisations
were requested per day, and the vertical solid lines in Fig-
ure 1 show the optimal synchronisation times, to minimise
the staleness. The vertical dotted lines in the lower half
@) of the graph identify synchronisation times as taken from a

‘uniform’ strategy that synchronises every four hours.

55 Si41
C(si_l, si,si+1) = / )\(t)(si —t)dt-‘,—/ /\(t)(si+1 —t)dt,
Si—1 s

i— i

whereA(t) is a time varying function representing the esti- Table 1 presents some results for our news database ap-
mated rate at which updates are occuring at the master newslication, showing the staleness achieved when each of the
database, and is obtained from the probabilistic model. Thefour named databases is replicated individually, and when
first term in Equation 2 is the expected cost that will be in- they are all replicated. It shows the average time in min-
curred when we synchronise at timg Note the inclusion  utes between an article becoming available on the master
of the second term, which is the expected cost that will be news database and appearing in the replica on the mobile
incurred when we synchronise at timg, ;. This costalso  device, for articles arriving on weekdays in July 2000. The
depends oR;. figures show the results when six synchronisations per day

We can now minimise the expected cost with respect were used, with both the uniform and adaptive synchroni-
to eachs; given the neighbouring synchronisations. This sation times. The uniform approach started at midnight, as
may be done through an iterative algorithm where passesis shown in Figure 1 The percentage decrease in stale-
are made through the proposed Synchronisation times opti_ness for adaptive over uniform is shown. In the final column
mising each one in turn until convergence is achieved. the number of synchronisations required by the adaptive ap-
proach to achieve a similar average staleness of articles as

An alternative to minimising staleness is to maintain the th i his ai ith the ob d
same level of staleness that could be achieved using the uni- € uniform approach 1S given, wi € observed average

form approach, but to achieve this using fewer synchronisa- staleness shown in brackets afterwards.
tions per day. This has the benefit of reducing the number

of messages required (pOtentifi”y r_edl'_'Cing the ﬁn_anCial COSt 3yt should be noted the effect of starting the uniform synchronisation at
of using the system), and has implications for saving power. other times does not impact the results significantly.
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P Staleness (mins) % Decrease in staleness Number of synchronisations
Classification - - . : .
Uniform | Adaptive | for adaptive over uniform for equivalent staleness

Business 123.3 87.9 29% 4(130.2)

Entertainment| 113.7 78.6 31% 4 (119.4)

Health 131.8 94.6 28% 5(125.4)

UK 120.2 109.5 9% 5(127.2)

All 1223 105.2 14% 5(132.9)

Table 1. Results for weekdays of the month of July 2000 using six synchronisations and comparing
uniform with optimised synchronisation times, together with the number of optimised synchronisa-
tions required to achieve comparable levels of staleness as six uniform synchronisations.

4. Example Mobile Email Client “©

w
=)
T
I

We now demonstrate the use of our approach in a se
example, a mobile email client. A central server is be
used to store email, and the mobile email client running
a mobile device synchronises with the central email se
We assume that a pull model is used, so the mobile €
reader initiates the synchronisation. The mobile email cl
is similar to the mobile news database, and uses the p R R
bilistic models to indicate to the user the likely diverge! 6 2 4 6 8 10 12 14 16 18 20 22 24
between the email cached on the mobile device, and the w0 Number of synehronisations per day
control when synchronisations should occur. These are cal-
culated using a similar cost function to that used in the News
Database example.

A tool was used to create a log of when email arrived
(email folders updated) for six Microsoft Exchange users
over the months of January and February 2001, by using in-
formation held in the Exchange server. The update log for that regardless of the number of synchronisations per day
January was used to create the probabilistic models and théhe average staleness of email is reduced.
information for February was used to evaluate the perfor-
mance of the synchronisation times chosen. The probabilis-5. Other Applicationsand Future Work
tic models were created automatically, with the tool calcu-
lating the periodicity of the data being modelled. For the Web Cache Web caches have become an integral part of
six users, four were modelled using a weekly periodicity, the World Wide Web. Caches are embedded within web
and the other two were modelled using a weekday/weekendprowsers as well as throughout the general infrastructure of
periodicity. the web. Their role is to replicate web pages thereby reduc-

Figure 2 presents results for the optimally chosen syn- ing latency of web page access, bandwidth usage and web
chronisation times for the six Exchange users, showing theserver load. The HTTP protocol [4] provides support for
mean percentage decrease in staleness versus the numbeseb caches, allowing the life times of object received to be
of synchronisations per day, with the error bars represent-explicitly set, and for fields providing explicit instructions
ing +/- one standard deviation. For the uniform synchroni- to caches on how to treat a particular page. A number of
sation, all possible synchronisation times (based on a fiveschemes have been proposed to allow caches to work more
minute granularity) were tried. So, for 24 synchronisations efficiently [6].
per day, the scenarios tried included a synchronisation oc- Many web sites are automatically generated using tools
curred on every hour, then 5 minutes past every hour, thenthat could generate logs of when the pages are updated.
10 minutes past every hour, etc. In this example, 11 sets of These logs could then be used by our tools to generate the
synchronisation times would be calculated and the averageprobabilistic models of each page. The models are small
staleness was evaluated, and used to represent the staleneggpproximately 100 bytes) and can be carried within the
for the uniform approach. HTTP protocol from the web server which generates the

The number of synchronisations was varied between 1 web page to web caches and browsers. Enabled web caches
and 24 synchronisations per day. The results show clearlyand browsers can then use these models to make decisions

% decrease in staleness
N
o
T
1

-
o
T
I

Figure 2. Reduction in staleness of emalil
items for between 1 and 24 synchronisations
per day for six users.
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about when a cached page is still acceptable (under usethey haven't observed every update of the page. Due to its

specified parameters), and inform a user the likelihood that nature, a web crawler is unable to obtain a complete log of

the page has been updated. page updates and as a result it is non-trivial to obtain an un-
biased estimate of the rate of change of the page. The model

Calendar The examples used so far involve data that can- they prescribe is too simple, however, to enable decisions on
not be modified at the replica. Whilst interesting, clearly the the granularity of a day about when synchronisations should
most exciting applications are those that allow the all repli- be made.
cas to be modified. Therefore, we have been looking at a  In contrast, we assume that we have complete logs of
calendar application, where a single user’s calendar is repli-updates. Our models can be much richer than an estima-
cated, and there are multiple people concurrently accessingion of a constant rate and thus provide more information
and updating the calendar (for example a manager and theiffor decision making. We are also making the information
secretary). available to the application, allowing it to choose when to
As with the mobile news database and mobile email synchronise (picking an optimal time to synchronise rather
reader, the calendar application can calculate synchronisathan just picking the order in which to synchronise elements
tion times. More interestingly, the user interface can use in the database), and also allowing the application to gener-
the information to adapt, for example, indicate appointment ally alter its behaviour based on the expected divergence.
slots that are less likely to lead to conflicts when synchro-  In TACT [7] a number of metrics are proposed that al-
nisation occurs. Also, potentially, the models can be used oW the control of the replica divergenciumerical error,
to providejust-in-time update propagation. Imagine a sce- Order error andSaleness. However, these metrics control
nario where a secretary has access to a salesperson’s calbe divergence rather than attempt to estimate its probable
endar. The salesperson and the secretary are the only pedlivergence.
ple who make appointments and the secretary works only
weekdays. If on a Saturday the salesperson makes an ap7. Conclusions
pointment for the following week this need not be prop-
agated until Monday morning, when the secretary armives.  This paper has described how probabilistic models can
However, if on a Tuesday morning the salesperson makespg ysed to estimate replica divergence and has given exam-
an appointment for the next day this should be propagatedyes s to the sort of decisions that can be made based upon
immediately because the secretary will be booking appoints ihese models to improve the end-user experience. We have
on the same day. If the same salesperson also makes agyen a proof-of-concept demonstration of the approach in

appointment on the Tuesday morning for a month in the  simple applications and have suggested further, more
future, this might not need to be propagated immediately complex examples to which the methods can be applied.
because, for example, the secretary never makes appoint-

ments more than a week in advance. Using the models of
how the data evolves, the write update’s propagation can be
delayed until the system thinks that by delaying any longer
the chance of conflict increases significantly. Furthermore, [1] %rgﬂuil.izfgt Ngi:;]sNits\;\g)E:ks for Pattern Recognition. Ox-
the updates Ca.” be propaggted nany orQer. Thus the ad.van[2] J. Cho and yH Gar(,:ia-Molina. Estimating frequency of
tages of delaying propagation are that it may be possible

- e . change. Submitted for publication., 2000.
to package the updates in packets more efficiently, saving 31 ;. cho and H. Garcia-Molina. Synchronizing a database to
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Abstract

Pervasive computing creates environments saturated
with computing and communication capability, yet grace-
fully integrated with human users. Remote execution has
a natural role to play in such environments, since it lets
applications simultaneously leverage the mobility of small
devices and the greater resources of large devices. In this
paper, we describe Spectra, a remote execution system de-
signed for pervasive environments.

Spectra monitors resources such as battery energy and
file cache state which are especially important for mo-
bile clients. It also dynamically balances energy use and
quality goals with traditional performance concerns to de-
cide where to locate functionality. Finally, Spectra is self-
tuning—it does not require applicationsto explicitly specify
intended resource usage. Instead, it monitors application
behavior, learns functions predicting their resource usage,
and uses the information to anticipate future behavior.

1 Introduction

When locating functionality, Spectra must balance the tra-
ditional goal of minimizing application latency with new
goals such as maximizing battery lifetime. It must allow
for wider variation in resources such as CPU and network
bandwidth and monitor new resources such as energy use
and cache state.

Pervasiveness causes additional complexity, and it is un-
reasonable to leave the burden of handling this complex-
ity to applications. Spectra does not require applications to
specify resource requirements for a variety of platforms and
output qualities. Instead, it iself-tuning—it monitors ap-
plication resource usage in order to predict future behavior.

2 Design considerations

The design of Spectra has been greatly influenced by the
need to address the complexities of pervasive computing.

Spectra weighs several possibly divergent goals when
deciding where to execute applications. Performance re-
mains important in mobile environments, but is no longer
the sole consideration. It is also vital to conserve energy so
as to prolong battery lifetime. Quality is another factor—a
resource-poor mobile device may only be able to provide

Remote execution is an old and venerable topic in sys- a low fidelity version of a data object [16] or computa-

tems research. Systems such as Condor [3] and Butler [15]tion [20], while a stationary machine may be able to gen-
have long provided the ability to exploit spare CPU cycles erate a better version.
on other machines. Yet, the advent of pervasive computing  Spectra monitors environmental conditions and adjusts
has created new opportunities and challenges for remote exthe relative importance of each goal. For example, energy
ecution. In this paper, we discuss these issues and how wause is paramount when a device’s battery is low. However,
have addressed them in the implementation of Spectra, awhen the battery is charged, performance considerations
remote execution system for pervasive computing. may dominate. Monitoring battery state and expected time
The need for mobility leads to smaller and smaller com- to recharge allows Spectra to adjust the relative importance
puting devices. The size limitations of these devices con- of these goals.
strain their compute power, battery energy and storage Spectra monitors resources that are uniquely significant
capacity. Yet, many modern applications are resource-in pervasive environments. In addition to battery energy,
intensive, with demands that often outstrip device capacity. file cache state is often critical. Consider a mobile client
Remote execution using wireless networks to access com-with limited storage running a distributed file system. When
pute servers thus fills a natural role in pervasive computing, there is a choice of remote execution sites, a server with a
allowing applications to leverage both the mobility of small warmer file cache may often be preferable to one with a
devices and the greater resources of stationary devices.  faster processor.
Pervasive computing also creates new challenges [19]. Finally, Spectra is self-tuning. Applications need not
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Prism attribute-value lookup [1, 23]. Similarly, while we currently

task support, user intent, high-level proactivity use RPC-based remote execution, Spectra could be modi-
fied to use other mechanisms such as mobile code. Finally,
Appl App2 App3 Coda provides Spectra a single shared file system across

multiple machines.
Spectra consists of three main elements:
¢ an application interface for describing operations.

Spectra
remote execution

other Aura runtime support

Coda Odvsse e monitors that predict resource use and availability.
nomadic file access resoUrce mn?t'ormgyadamaﬁm ¢ adecision engine that selects the best execution option.
Linux Kernel 3.2 Application interface

Intelligent Networking

network westher ponitoring, network proadiivity Applications use the Odyssey multi-fidelity inter-

face [14] to communicate with Spectra. The fundamental
unit of discourse is theperation: a code component which
Figure 1. Aura architecture may profit from remote execution. Spectra targets applica-
tions which perform operations of one second or more in
duration—examples are speech recognition, rendering for
augmented reality, and document processing.

specify their expected usage of various resources. Providing
estimates for even a single resource such as battery energy Applications first register operations with Spectra, A

is very difficult since energy use depends upon the hard- registration lists possible fidelities and methods of dividing
ware platform and the degree of power management used.

o . : . computation between local and remote machines. It also

Spectra applications need only specify operations of interest,; : i
. . lists input parameters that affect operation complexity.

and the input parameters to those operations. Spectra mon- o
. L For example, we have modified the Janus speech recog-
itors and logs resource usage as applications execute. From . . D or

. . Lo nizer [24] to use Spectra. The basic operation is utterance
logged data, it learns functions relating input parameters to

resource usage. allowing it to predict future apolication re- recognition. This operation has two fidelities: full and re-
ge 9 P P duced. Reduced fidelity uses a smaller, more task-specific

source use. vocabulary than full fidelity. There are three modes of di-
viding computation: recognition may be performed on the
3 Implementation client (local mode), on a server (remote mode) or on both
(hybrid mode). In hybrid mode, the first phase is performed
3.1 Spectraoverview locally, yielding a greatly compressed data set which is

shipped remotely for the completion of recognition. The

Spectra is the remote execution component of Aura, a Single input parameter is the length of the utterance.
new computing system being built at Carnegie Mellon Uni-  Prior to operation execution, an application invokes
versity. Aura provides users with an invisible halo of com- SPectra to determine how and where the operation will ex-
puting and information services that persists regardless ofécute. The application passes in the value of the input
location. As shown in Figure 1, an Aura client is composed parameters—for example, the size of an utterance to be rec-
of many parts. The Coda file system [10] allows mobile o_gnized. Spectra c_hoos_es the_best fidelity level and execu-
nodes to access shared data, even when weakly-connected®n mode as described in Section 3.4 and returns these val-
or disconnected from the network. Odyssey [16] supports U€S to the application. For remote operations, Spectra also
applications that vary their fidelity as resource availability chooses the server on which the operation will be executed.
changes. Fidelity is an application-specific metric of qual-  APplications execute operations by making remote pro-
ity expressed in multiple discrete or continuous dimensions. cedure calls to the selected server. Direct procedure calls
For instance, dimensions of fidelity for speech recognition ¢an be used in the local case to optimize performance.
are vocabulary size and acoustic model complexity. Applications inform Spectra when operations complete, at

To provide a complete solution, Spectra must addressWhich time Spectra logs resource usage. The logged data
several complex issues, including function placement, ser- allows Spectra to improve resource prediction over time.
vice discovery, execution mechanism and data consistency.
Our initial prototype focuses on the first problem: decid- 3.3 Resource monitoring
ing where and how operations should be executed. It uses
existing technology to address the remaining issues. We Only part of the data needed by Spectra comes from
hope to leverage service discovery protocols which allow applications—the remainder is supplied by resource moni-
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tors. Resource monitors are modular, resource-specific codebattery monitor is Compagq’s Itsy v2.2 [8], an advanced
components that predict resource availability and demand. pocket computer with a DS2437 smart battery chip [5].
Prior to operation execution, each monitor predicts how Since the DS2437 reports average current drawn over a
much of a resource the operation will receive. Monitors 31.25ms. period and voltage levels change little, we could
make predictions for the local machine and for any re- measure power by sampling current at 32Hz. Unfortu-
mote servers on which the operation may execute. For in-nately, the DS2437’s communication protocol makes the
stance, the network monitor predicts bandwidth and round- overhead of frequent sampling unacceptably high. The bat-
trip times between the client and each server. Spectra gathiery monitor balances overhead and accuracy by sampling at
ers the predictions in @esource snapshot, which providesa 6 Hz during operation execution. This rate accurately mea-
consistent view of resource availability for that operation.  sures operation energy use with low (1.8%) CPU overhead.
Resource monitors observe application behavior to pre- At other times, the monitor samples at 1Hz—a rate suffi-
dict future resource demand. While an operation executes,cient to accurately measure battery charge and background
each monitor measures its resource usage. Upon operapower drain.
tion completion, these values are logged, along with the
operation’s input parameters, fidelity, and method of divid- 3.3.2 The cache state monitor

ing computation. From this data, Spectra learns functionsD ¢ iqnificant i d h
which predict operation resource usage. Thus, the more an, ata access can consume significant ime and energy when

operation is executed, the more accurately its resource usJtems are unavailable locally. The cache state monitor esti-

; : mates these costs by predicting which uncached objects will
age is predicted. be accessed. It currently provides estimates for one impor:
We have built monitors for four resources: CPU, net- ) yp P

work, battery, and cache state. As CPU and network aretant CI‘?SS of |tem§. files in the Codafile system.
) ) During operation execution, the monitor observes ac-
well-understood resources, we describe these monitors only - .
. . . . . cesses of Coda files. When an operation completes, the
briefly here. The CPU monitor, described in [14], predicts . . :
7 . . monitor logs the name and size of each file accessed.
availability using a smoothed estimate of recent CPU load, . ; .
. . - The cache state monitor currently uses a simple predic-
weighted by the maximum speed of the processor. During . . - ) .
. . . tion scheme—it assumes the likelihood of a file being ac-
operation execution, the CPU monitor measures CPU cy- ) R
) cessed during an operation is similar to the percentage of
cles consumed on local and remote machines. The network; - : . 2
. ) ) : o imes it was accessed during recent operations of similar
monitor predicts available bandwidth and round-trip times . oo . .
. - . - type and input parameters. The access likelihood is main-
to remote machines using the algorithm in [16]. For each

. . . tained as a weighted average, allowing the monitor to adjust
operation, it measures bytes sent and received, as well a . o . : .

0 changes in application behavior over time. For each file
the number of RPCs.

that may be accessed, the monitor queries Coda to deter-

mine if the file is cached. If it is uncached, the expected
3.3.1 Thebattery monitor number of bytes to fetch is equal to the file’s size multiplied

by its access likelihood. The monitor estimates the number
The battery monitor must provide accurate, detailed infor- ¢ bytes that an operation will fetch by summing individual
mation without hindering user mobility. Previous energy predictions for each file.
measurement approaches are thus insufficient for the task. It  The monitor makes predictions for both local and remote
is infeasible to use external measurement equipment [7, 21]machines. It also estimates the rate at which data will be
since such equipment can only be used in a laboratory setfetched from Coda servers so that Spectra can calculate the

ting. Alternatively, one can calibrate the energy use of eypected time and energy cost of fetching uncached items.
events such as network transmission, and then later approx-

imate energy use by counting event occurrences [4, 13].34 Selecting the best option
However, results will be inaccurate when the calibration
does not anticipate the full set of possible events, or when  Spectra’s decision engine chooses a location and fidelity
events such as changes in screen brightness are invisible t¢or each operation. Its inputs are the application’s descrip-
the monitor. tion of the operation and the monitors’ snapshot of resource
Our battery monitor takes advantage of the advent of availability. It uses Odyssey's multi-fidelity solver [14] to
“smart” batteries: chips which report detailed information search the space of possible fidelities, remote servers, and
about battery levels and power drain. The monitor predicts methods of dividing computation. Using gradient-descent
availability by querying the amount of charge left in the heuristics, the solver attempts to find the best execution al-
battery. It measures operation energy use by periodically ternative.
polling the chip to sample energy use. Spectra evaluates alternatives by their impactuesr
The first platform on which we have implemented our metrics. User metrics measure performance or quality per-
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ceptible to the end-user—they are thus distinct from re- we used the speech recognizer described in Section 3.2.
sources, which are not directly observable by the user (other  We limited execution to two machines. The client was an
than by their effect on metrics). For instance, while battery Itsy v2.2 pocket computer with a 206 MHz SA-1100 proces-
energy and CPU cycles are resources, execution latency angdor and 32 MB DRAM. The server was an IBM T20 laptop
change in expected battery lifetime are user metrics. with a 700 MHz PlII processor and 256 MB DRAM. Since
To evaluate an alternative, Spectra first calculates athe Itsy lacks a PCMCIA slot (such as is available on the
context-independent value for each metric. It then weights Compagq iPAQ), the two machines were connected with a
each value with ammportance function that expresses the  serial link.
current desirability of the metric to the user. Finally, it cal- We first recognized 15 utterances so that Spectra could
culates the product of the weighted metrics to compute a |earn the application’s resource requirements. We then cre-
single value for evaluating the alternative. This calculation ated several scenarios with varying resource availability and
is a specific instance of the broader concept of “resource-measured how well Spectra adapted application behavior
goodness mappings” [17]. Spectra currently considers threewhen a new utterance was recognized. Figure 2(a) shows
user metrics in its evaluation: execution latency, battery life- measured execution latency and energy use for each possi-
time, and application fidelity. ble combination of fidelity and location. For each scenario,
Spectra may use many resource predictions to calculatethe option that best satisfies the evaluation criteria for the
a metric’s context-independent value. For example, execu-speech application is highlighted. Figure 2(b) shows results
tion latency is the sum of the predicted latencies of fetching when Spectra chooses the alternative to execute.
uncached items, network transmissions, and processing on | the baseline scenario both computers are unloaded and
local and remote machines. Processing latencies are calggnnected to wall power. Spectra correctly chooses the hy-
culated by dividing the predicted cycles needed for execu- prid mode and full vocabulary here. Using the reduced vo-
tion by the predicted amount of cycles available per second. capulary in hybrid mode slightly reduces execution time,
Network and cache latencies are calculated similarly. but not nearly enough to counter the reduction in fidelity.
Since importance functions express the currentdesirabil- 5. remaining scenario differs from the baseline by
ity of metrics to the user, they may change over time. FOr yarying the availability of a single resource. In the battery
example, we use goal-directed adaptation [6] as the impor-geenario, the client is battery-powered with an ambitious
tance function for battery lifetime. The user specifies a du- battery lifetime goal of 10 hours. Energy use is critical, so
ration that the battery should last, and the system attemptsgpectra chooses the remote mode. As before, the small en-
to ensure that the battery lasts for this duration. A feedbackergy and latency benefits of using the reduced vocabulary
parameterg, represents how critical energy use is at the §o ot outweigh the decrease in fidelity.

present moment. Spectra adjusts this parameter using esti- The network scenario halves the bandwidth between the
mates of battery charge and recent power usage reported by,jo s and server. Spectra correctly chooses hybrid execu-

the battery monitor. Given expected energy isehe bat- tion and the full vocabulary in this scenario. The CPU sce-

i i i C
:ﬁry |mportta nce funftlon i1/ ﬁ) - As an eéamzle, whenh nario loads the client processor. Spectra chooses remote
€ computer operates on wall power, C 1S © and energy Nasgy o tion since the cost of doing the first recognition phase
no impact in evaluating alternatives.

. I ... . locally outweighs the benefit of reduced network usage.
For execution latency, we use an application-specific im- . . .
X ) X In the cache scenario, the server is made unavailable
portance function that reflects perceptible deadlines for op-

. . ._ T and the 277 KB language model for the full vocabulary is
eration completion. For example, the speech recognizer's 2
) . o . flushed from the client’'s cache. Spectra uses the reduced
importance function for latency,, is simply /L. This

function has the intuitive broperty that a recognition that vocabulary since the cache miss makes full fidelity recogni-
. . property 9 tion approximately 3 times slower than the reduced case.
takes twice as long is half as desirable to the user.

Fidelity is a multidimensional metric of application- S Tht(?ugiprellml?haryt;th?sires;ltiartrr]e gnci:r?uragkl]ng,s:]ncr?
specific quality. The importance of fidelity is user- pectra cnooses the Hes: execulion Mode [n each scenario.

dependent and is often expressed with utility functions that E\t’:gevr\;im%%\;ergre“?]de2{;2?r%iﬁe£fr§;§ezhoose an alterna-
map each user’s preferences to a single value. For the P )
speech recognizer, the fidelity importance function gives re-

duced fidelity the value 0.5 and full fidelity the value 1.0. 5 Redated work

4 Preliminary evaluation Spectra’s uniqueness derives from its focus on pervasive
computing. It is the first remote execution system to mon-

Our evaluation measured how well Spectra adapts toitor battery and cache state, support self-tuning operation,
changes in resource availability. As a sample application, and balance performance goals with battery use and fidelity.
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Local/Reduced Local/Full Hybrid/Reduced Hybrid/Full Remote/Reduced Remote/Full
(Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0)
Time Energy| Time Energy| Time Energy] Time Energy| Time Energy| Time Energy|
Scenarig  (s.) J.) (s.) J.) (s.) J.) (s.) J.) (s.) J.) (s.) J.)

baseline| 37.4(0.1) 69.2(0.5) 7.8(0.6) 8.7(0.7) 9.3(0.6) 10.3(0.3)

battery | 37.4(0.0) 22.6(0.2)| 69.2(0.6) 43.5(0.5)| 7.3(0.2) 3.5(0.0)| 8.6(0.6) 3.6(0.1)| 9.2(0.4) 2.4(0.1)[10.2(0.5) 2.5(0.1)
network | 37.4(0.2) 69.8(0.4) 9.2(0.1) 10.5(0.6) 22.2(3.7) 21.443) NI/A
CPU |75.2(0.4) 137.6(0.6) 12.4(1.2) 12.7(0.1) 10.8(1.4) 12.02.7)

cache |36.6(0.2) 105.4(0.4)

(a) Time and energy cost of each possible execution alternative

Scenarig Best Alternative Chosen AlternativeTime (s.) Energy (J.) Fidelity
baselineg  Hybrid/Full Hybrid/Full 8.7(0.8) 1.0
battery | Remote/Full Remote/Full {10.6(1.2) 2.7(0.3) 1.0
network| Hybrid/Full Hybrid/Full 10.7(1.1) 1.0
CPU Remote/Full Remote/Full |12.0(1.2) 1.0
cache | Local/Reduced Local/Reduced |36.7(0.2) 0.5

(b) Results of using Spectra to select an alternative

This figure shows how Spectra adapts the behavior of a speech recognizer in the resource availability scenarios described in Section 4. Part
(a) shows the value of the three user metrics considered by Spectra (execution time, energy use, and fidelity) for each of the six possible

execution alternatives. The highlighted alternative is the one that best satisfies the evaluation criteria for the speech application. Part (b)

shows the results of using Spectra to select an alternative—it lists the best possible alternative, the alternative actually chosen by Spectra,
and the values of the three metrics. Energy use is only measured in the battery scenario since the client operates on wall power in all other
scenarios. Each result shown is the mean of five trials—standard deviations are shown in parentheses.

Figure 2. Spectra speech recognition results

As the field of remote execution is enormous, we restrict 6 Conclusion
our discussion of related work to the most closely related

systems. Rudenko's RPF [18] considers both performance  Remote execution lets pervasive applications leverage
and battery life when deciding whether to execute processesyoth the mobility of small devices and the greater resources
remotely. Kunz's toolkit [12] uses similar considerations of |arge devices. Our initial results with Spectra show that
to locate mobile code. Although both monitor application  thjs benefit can be effectively realized if the system moni-
execution time and RPF also monitors battery use, neitherigrs pervasive resources, balances multiple goals in evalua-
monitors individual resources such as network and cachetjon and supports self-tuning operation.
state, limiting their ability to cope with resource variation. Yet, much work remains to be done. Our early expe-
Kremer et al. [11] propose using compiler techniques to rience with Spectra suggests that predictions often involve
select tasks that might be executed remotely to save energytradeoffs between speed and accuracy. For example, when
At present, this analysis is static, and thus can not adaptestimating remote CPU availability, Spectra might use a
to changing resource conditions. Such compiler techniquesslightly stale cached value, or it might query the server
are complementary to Spectra, in that they could be used toto obtain more accurate information. If the difference be-
automatically select Spectra operations and insert Spectraween possible alternatives is slight, as for example with
calls in executables. short-running operations, Spectra would do better to make a
Vahdat [22] notes issues considered in the design of “quick and dirty” decision. However, when alternatives dif-
Spectra: the need for application-specific knowledge and fer significantly, Spectra should invest more effort to choose
the difficulty of monitoring remote resources. the optimal alternative. This suggests to us that Spectra it-
Several systems designed for fixed environments shareself should be adaptive—it should balance the amount of
Spectra’s self-tuning nature. Coign [9] statically partitions effort used to decide between alternatives against the possi-
objects in a distributed system by logging and predicting ble benefit of choosing the best alternative.
communication and execution costs. Abacus [2] moni-  Since resource logs can grow quite large for complex op-
tors network and CPU usage to migrate functionality in a erations, we hope to develop methods for compressing log
storage-area network. Condor monitors goodput [3] to mi- data without sacrificing significant semantic content. We
grate processes in a computing cluster. also plan to investigate how the importance functions used
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in evaluation can be modified with simple user interfaces.
Finally, we wish to evaluate Spectra using more dynamic
resource scenarios.
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Energy isjust another resource:
Energy accounting and energy pricing in the NemesisOS
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Abstract resource management architecture can be used to manage

energy consumption in mobile computers.
In this position paper, we argue that, with an appropri-

ate operating system structure, energy in mobile computers This paper is motivated by two observations: First, re-
can be treated and managed as just another resourceln cent research efforts to move energy management into the
particular, we investigate how energy management could operating system, and indeed, the application domain, ex-
be added to the Nemesis OS which provides detailed and hibit similar problems to those we have observed while
accurate resource accounting capabilities in order to pro- working on the Nemesis operating system [19], an OS pro-
vide Quality of Service (QoS) guarantees for all resources  Viding applications with Quality of Service (QoS) guaran-
to applications. We argue that, with such an operating sys- tees for all physical resources. An essential prerequisite
tem, accounting of energy to individual processes can be for providing QoS guarantees (and more generally, man-
achieved. Furthermore, we investigate how an economic aging resource allocations to competing clients) is accu-
model, proposed for congestion avoidancein computer net- rate accounting of resource usage to individual applications
work, and recently applied to CPU resource management, and users. We observed that the mechanisms, deployed
can be used as a dynamic, decentralised energy manage- in Nemesis for accounting for the usage of traditional re-
ment system, forming a collaborative environment between sources (e.g., CPU, network, disks, and displays), can be
operating system and applications. applied to accurately account for the energy consumption of

individual applications as well. In section 2 we detail how
Nemesis’ resource accounting mechanisms can be utilised
o and extended to provide accounting of energy consumption.
1 Motivation
The second observation is related to our ongoing re-

Recently, there has been increased research activity insearch where we apply pricing and charging mechanisms to

energy management in operating systems. The main moti_the area of resource managemept 'in multimedia operating
vation is the increased use of mobile devices such as Iap_systems [22]. We view charges, indicating the current level

top computers or PDAs, but environmental issues, such asof resource contention, as feedback signals to processes. By

overall power consumption and the noise generated by ac—i't:n't.'ng tht? ansougt oftct:ret?]lts a\;allac\itéle, E ro_ceslse_s are g|ve|n
tive cooling also play a role. A general consensus of this € incentive to adapt to these feedback Signals in an appii-

research is that applications should be involved in the man-cat'(;)nI ?pecmc fashion. This forms a smgrieceptrgl;ggd
agement of energy, as the different modes of operationtheymo el for resource management, capable of yielding re-

might offer can have a significant impact on overall power sou:]ce aIIocatloIns pro.portéonal .to the. Cred':] allochgtlon 1;or|
consumption of the system (e.g., [6, 8, 24]). In this pa- ©2Ch Process. In section 3 we investigate how this model,

per, we argue that, with an appropriate operating SystemWhich previously has been successfully applied to both net-

structure, energy can be managed just like any other re_workcongestion controll[21, 17, 18] and CPU resource aI_Io-
source. Furthermore, we investigate how a decentralisedation [22], can be applied to manage energy consumption.

*Rolf Neugebauer has been supported by a Marie Curie Fellowship 1 NiS paper is rounded off by a comparison of related
from the European Union, Contract-No.: ERBFMBICT972363. work and our conclusions.
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2 Energy Accounting of-band management functions and performs the single de-
multiplexing function for the hardware device (e.g., packet

The Nemesis operating system was designed to providef"te”ng for network devices) All hig.her Igvel functional-
accurate accounting of all resources consumed by individ- Ity: Such as network stack processing, is performed at the
ual applications. In traditional operating systems a signifi- USer level utilising (shared) libraries. Similarly, processes
cant amount of resources are consumed anonymously, i.e.OWn individual pixels or regions of pixels of the framebuffer
unaccounted for, because a significant proportion of code isdevice and all higher level drawing primitives are performed
executed in the kernel, or in shared servers, on behalf of pro-PY the processes themselves. Again, protection and access
cesses. In a multi-media operating system this may lead tocontrol is managed by the device driver. o _
an undesired effect, term&@bS-Crosstalk [19], where one As a result of this OS archltecture, most activities typl—
process could influence the performance of other processeally performed by an operating system kernel or services
by causing contention for shared resources. In Nemesis, this2'€ Performed by the applications themselves and virtually
problem has been addressed by multiplexing shared physi-a” resources consymed can pe accounted to individual pro-
cal resources only once and at the lowest possible level, fa-CESSeS, i.e., there is no significant anonymous resource con-
cilitating accurate accounting of resource consumption. The SUmption.
resulting operating system is vertically structured [1], with
most of the functionality provided by traditional operating 2.2 Energy Accounting to Processes
systems instead being executed by the applications them-
selves, implemented as user-level shared libréries In this section we investigate how this model can be ex-

An effect similar to QoS-crosstalk has been observed in tended to provide per-process accounting of energy. Con-
the context of energy management, most notably in [8]: sider a number of processés(indexed byi) and a num-

a significant amount of energy is consumed by shared re-ber of devices and resourcds(indexed byj). Each ac-
sources such as the networking stack, the kernel, or thetive device consumes an amoufif of energy. As Neme-
X-server, and by shared devices, such as the display, disksis provides accurate accounting information for the usage
or network card. We argue, that if the operating system of the resources by the processe#®, the proportionz;;

is already designed to accurately account for traditional re- of the individual resources a process is using can be deter-
source usage, then it is possible to accurately account formined. For example, consider a display device with process

energy consumption as well. P; owningp; pixels. Then the proportion; pispiay Of the
display resource belonging ; iS «;pispiay = i/ >_; Pi-
2.1 ResourceAccounting in Nemesis Similarly, the proportions for the network device or disk de-

vice can be determined based either on the number of bytes
transferred or on the proportions of time processes access
the devicé. Using the proportions of the resources used
and the energy?; consumed by each device, the overall
energy consumption for each process can be determined:

Nemesis provides QoS guarantees, and therefore accu
rate resource accounting, for the following traditional re-
sources: CPU [19], memory [12], I/O devices such as the
network interface [4] and disk drives [2], and framebuffer s
devices [1]. Procés]ses can make re[se]rvations of slices of i = 2_; (£ x xi;). The system should inform each pro-
CPU which are then scheduled using an Earliest Deadline €S about their total energy consumptionas well as its
First (EDF) based real-time scheduler. CPU resource usagepreakdown for each device (i.é2; x xi;).
is accounted for with cycle accuracy. For memory, individ- i
ual processes can request ranges of virtual memory which2-3 | mplementation I ssues
are guaranteed to be backed by a specified number of phys-
ical pages. Processes are then responsible for their own Unfortunately, the energ¥; each device is consuming
virtual memory management. Device drivers for I/O de- is difficult to determine on typical laptops or other mobile
vices are implemented as privileged, user-level processeglevices. Ideally, there would be hardware support measur-
which register interrupt handlers with the system. The in- ing the power consumption, i.e., voltage and current drawn,
terrupt handler typically only clears the interrupt condition, for each device individually. Then, the device driver could
and sends an event to the device driver process, effectively 2With appropriate hardware support, as provided, for example, by some

decoupling interrupt notification from interrupt servicing. network cards, de-multiplexing can be mainly performed in hardware, thus

The device driver process only implements infrequent out- reducing the resources needed by the device driver. A software mechanism,

known ascall-privs [4, 1], also allows some of the de-multiplexing costs
1This structure is comparable to Exokernel systems [15], though the to be accounted to the clients.

motivation behind the design is different. The principal motivation for the 3For network devices, access times may be the more appropriate basis,

Exokernel design was to allow applications to optimise the implementation as processes receiving data require the device to be active without neces-

of various system components using application-specific knowledge. sarily transferring data.
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frequently sample the current power consumption of the de- a significant impact on the overall energy consumption of

vice and account the energy to its client processes accordthe system, especially in small, hand-held devices. Should

ingly. However, we are not aware of any system providing this significantly impact the accuracy of the per process en-

such built-in online measurement facilities. ergy accounting, the calibration process could be extended
Rather than requiring the provisioning of such facilities, to include micro-benchmarks; process performance counter

we propose a mechanism, similar to PowerMeasure [20], Samples could be used during accounting, similar to [3, 7].

to estimate energy consumption of the individual devices.

Modern laptops provide advanced power management fea-

tures through the Advanced Configuration and Power Inter-

face (ACPI) [14]. Unlike its predecessor Advanced Power 3 Energy Management

Management (APM) [13], ACPI encourages collaborative

energy management between BIOS and operating system,

leaving power management policy decisions to the OS

while providing detailed information about each device and ~ Accounting for a process’ energy consumption forms

its possible power states through a hierarchical namespaceonly the basis on which advanced energy management can

The namespace contains control methods which the OS carbe performed. Centralised, passive energy management

use to manage the devices under the control of ACPI. An policies, such as provided by most APM BIOS implemen-

ACPI compliant BIOS also provides access to detailed in- tations or the DPMS extensions in X-Servers, only provide

formation about batteries by including a variant of the Smart static policies where the user can specify timeouts, after

Battery interface [10]. which parts of or the entire system are put into energy sav-
Using the Smart Battery interface, the overall current ing modes. It is now widely accepted [6, 8, 24] that en-

power consumption of the system can be measured; the in-ergy management should be performed at a higher level and

terface exports queries on the current voltage and currentMay involve applications themselves. In [8] it is impres-

rate of discharge (either in mA or in mW). During a cal- Sively demonstrated how a variety of applications, execut-

ibration process, individual devices can be systematically ing in different modes of operation, can have a significant

placed into their supported power states using ACPI control Impact on a system's energy consumption. The authors of

methods, and the resulting change in the system’s powerl8] therefore argue that processes should form a collabora-

consumption can be observed. For I/O devices, especiallytive relationship with the operating system.

for disks, where state transitions can consume consider-

able amounts of energy, the power consumption during state

transitions should also be measured during the calibration(_:‘rating systems in a similar approach to [23]. Informally,

process. - one can assume that basic resource consumption is free if

From this information, energy vectofs;, containingthe 3 resource has no resource contention (fixed costs for the
estimated energy consumption for each device in their re- hrovisioning of the resource should be covered by fixed
spective power saving states and state transitions can be decharges). However, if a resource is congested (i.e., demand
rived. For example, the energy vector for a display would exceeds the maximum supply) then everyone responsible
contain energy consumption values for the different bright- for the contention should be charged, and the charges should
ness levels the display supports. During normal operation, he proportional to the users’ individual responsibility for
the operating systems keeps track of the state each device ithe contention. Prices, capturing thégternal congestion
currently operating in and uses the correspondingralue cost, are known ashadow prices and provide aneaning-
when calculating a process’ energy consumption. The en-f| feedback signal to applications, as they convey infor-
ergy consumed during state transitions, such as a disk spinmation about the level of contention and the user’s respon-
ning up, can be accounted to processes using the device ijpjjity for it. Applications can react to these feedback sig-
atime window after the state transition. nals and dynamically adapt their behaviour in an application

Alternatively, it is also conceivable that laptop vendors and resource-specific way. Adaption is encouraged by lim-
would provide detailed energy profiles for each device. This iting the amount of credits available to individual processes.
information, similar to the one obtainable during the cali- Thus, operating system and applications together fotlm a
bration process, could be stored in the ACPI namespace. centralised resource management system, with the OS de-

In either case, using energy consumption values for dis- termining current resource prices and applications adapting
crete device states and state transitions would only leadtheir behaviour accordingly. In this section, we investigate
to estimates of the individual processes’ energy consump- how this model can be applied to energy management to
tion. Furthermore, it has been reported [3, 7], that non form the “collaborative relationship between OS and appli-
device related activities, such as cache misses, may haveations” also advocated by others [6, 8, 24].

In our ongoing research [22] we are applying micro-
economic ideas to the area of resource management in op-
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3.1 ThePricing Model approach, proposed in [8]: to a user the primary meaning-

ful, energy related performance metric is the lifetime ex-

First, we briefly summarise the theoretical framework Pectancy of the current battery charge. In other words, the

presented in [17, 18, 22]. In general, a user or progess User should be able to specify how long the current bat-
of a resource (i.e., energy) attempts to maximise its utility tery charge should last, and the energy management system

u;(x;) obtained from the amount of the resourcg con- should strive to achieve this goal while maximising the util-
sumed. As the user is charged some «@64) for the re- ity provided to the usét
source usage, the user seeks to maxitiige;) = u;(x;)— Access to the Smart Battery interface allows us to deter-

C(-). A social planner, on the other hand, attempts to mine the remaining battery capacity. Thus, with the user
achieve asocially optimal resource allocation which max-  specified battery life expectancy, we can calculate the max-
imises the sum of all the users’ utility minus the cost of the imum average discharge rate of the battery acceptable to

overall system load (externalities): achieve the user’s goal. If the current discharge rate ex-
ceeds this average discharge rate, the system runs the risk of
max Z wi(w;) — C(Z ;) (1) not being able to meet the user’s expectatiohhis can be
P P interpreted as energy contention and the processes respon-

sible for the excess energy consumption should be charged

As this desirable optimisation problem requires knowledge proportional to their current energy consumption
of the utility functions, which are typically not explicitly More specifically, in intervalg\t the reduction of bat-
known, Kelly et al. [16] suggest decomposing the optimisa- tery capacityAE is measured (courtesy of ACPI). X E
tion problem into a user and a system problem and demon-q, <aads the maximum amount of enefgy,.. the system
strate that the decomposed system also yields the sociallys 5jjowed to use in that interval, we charge every process
optimal resource allocation. i proportional to the energi\ E; it consumed during that

For this de_composition, suppose that a user is charged 3nterval, thust;z; from equation 2 equald B, /AE. As
ratet; proportional to the amount of the resourcethe user e pattery capacity is unlikely to decrease linearly, even

receives. Then the user faces the optimisation problem: |\ ,nqer constant load?,,... needs to be recalculated period-
ically (e.g., the Odyssey prototype [8], implementing a sim-
ilar mechanism, uses adaption intervals of half a sec-
ond). The model of identifying shadow prices for energy
consumption is similar to the simple “slotted time” model
discussed in [11] for network congestion prices.

ui(z) = ti Applications interpret the charges as feedback signals

and may adapt their behaviour. In [8], the authors give a

If the resource manager seeks to achieve a socially optimalnumber of good examples of how applications can change
resource allocation according to equation 1, it will set the their energy demands in application specific ways. Appli-

main(gci) = uz(xl) —tiz; (2)

For a monotonically increasing, concave, and continously
differentiable utility function the unique solution is:

charget; to the shadow pricg(y) depending on the loagl cations can adapt in various ways, making different trade-
of the resource giving: offs with respect to energy consumption. While the charges
indicate the amount of adaption required, the detailed en-
_ _d ergy information provided to processes (i.e., the overall en-

ti=ply) = d—yC’(y) ) ergy consumptior’; and its per resource breakdowuih;)

can be used to aid the adaption strategy. By limiting the
with C(y) being the rate at which cost is incurred at overall amount of credits available to individual processes, appli-
loady. Thus, the feedback signal in the form of the charge cations are encouraged to perform adaption and the user
z;p(y) is both proportional to the user’s resource allocation may use different credit allocations to prioritise processes

and the congestion cost it incurs. (e.g., to stop unimportant background processes from run-
ning when energy is scarce). Our experience with applying
3.2 Chargingfor Energy a similar resource management mechanism to more tradi-

. 4For desktop computers, the “goal” could instead be for the system not
The decomposed approach requires the resource Mang, need active cooling. An external cost of contention can then be identi-

ager to be able to assess the external cost of resource cortied, if active cooling is required. For server systems, a system administra-
tention C(y). It is straightforward to identify external tor could set a target energy consumption and resource contention can be

costs of resource contention in communication networks 'dentified if this target is exceeded.
If, however, even an idle or lightly loaded system cannot meet the

(~ drppped packets) and soft real-time Sys’[emsmissed user’s expectation, the user should be informed, so that the user can recon-
deadlines). For battery energy we adopt ¢gjoal directed sider the goal or his or her activities.
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tion resources (network [18] and CPU [22]) shows that such  Unlike these systems, we propose to use the power char-
a decentralised resource management can lead to resourcacteristics, gathered by such a methodology, to account the
allocations proportional to the credit allocation. We expect entire energy consumption of a system to individual pro-
that similar results can be achieved for energy allocations. cesses. By taking advantage of the structure and the re-

Not all applications may be capable of adapting their en- source accounting mechanisms provided by the Nemesis
ergy requirements. For these applications a user has twooperating system, we believe that it is possible to directly
options. Either the user decides that the application is im- attribute the energy consumed by the individual devices to
portant enough to run, in which case enough credits shouldthe processes using them.
be allocated to it to offset the maximum charging rate the ~ Our proposal for the resource management has some
application can incur; or the user does not value the appli- similarities with Odyssey [8]. In Odyssey, a central resource
cation enough for it to be run at all. For applications, where manager monitors the system’s energy consumption and at-
no source code is available, application proxies, as in Pup-tempts to meet a user-specified battery lifetime. To achieve
peteer [5], can be deployed to transcode input data streamghis, Odyssey periodically samples the residual energy of
based on the feedback signals to manipulate the energy conthe battery, predicts future energy demand, and notifies ap-
sumption of such applications. plications with an upcall if adaption is required. If more

It is worth pointing out that, in addition to the appli- than one application is active, a simple priority scheme de-
cation specific energy adaption, basic policies can also betermines which applications are notified. In contrast, our
used by the system. For example, unused devices would beeconomic based approach provides a more expressive feed-
switched off by their device driver, the user could select a back mechanism than the simple upcall mechanism used
brightness level for the display appropriate for the environ- in Odyssey. Furthermore, the per process energy account-
ment the user is working in, and device drivers could put ing provides more input into an application’s adaption deci-
devices in low power states, potentially trading off energy sions.
consumption and performance based on stated user prefer- The Milli Watt project [6, 24] seeks to raise the man-
ences and by observing device activity. These policies areagement of energy to first-class status among performance
orthogonal to the resource management system discussed igoals for operating system design and that applications

this paper. should be involved in the management of energy. We be-
lieve, that to an extent, the approach outlined in this paper
4 Reated Work satisfies these aims.

Recently, the application of economic models to re-
source management in computer systems has received re-

The. energy account!ng methodology, proposgd n t.h's newed attention, especially as a mechanism for congestion
paper is based on previous work by researchers investigat-

i1a the detailed ch terisi f i fcontrol and provisioning of QoS in communication net-
Ing the detailed characteristics of energy consumption oty .. Significant contributions in this area have been made
mobile devices. Our proposed calibration process is very

similar to the PowerMeasure tool, described in [20], which by economists (.9, [21]), mathematicians (€.g., [17]), and

is used to characterise the energy consumption of Apple computer scientists (e.g., [18]). ‘In our previous work, we
PowerBook laptops. The tool plgzes each rc):omponer?tpofhave applied s[milar techniques to CPL} resource manage-
o ' ment [22]. In this paper, we extended this work by applying

Fhe_ Iaptop in different power states anq obse_rves the Cr?"’“_]g":it to energy management in mobile computers.

in its instantaneous power consumption using the built-in

battery hardware. The authors show that such an approach )

is feasible and that the observed values are within 0.1% to® Conclusions

5.6% of the externally measured power consumption. El-

lis [6] describes a similar approach to determine the power We have argued that energy can be treated as just an-

consumption of a Palm Pilot in known power states. other resource provided that the operating system structure
The PowerScope [9] and Farkas et al. [7] utilise an exter- is appropriate. We have used the Nemesis OS as an ex-

nal digital multimeter to measure the power consumption, ample of an existing resource-centric operating system, and

while manipulating the target system. PowerScope then as-proposed a mechanism which allows us to account virtually

sociates power samples with program counter samples toall energy consumed by the system to individual processes.

determine an energy profile of different software compo- We believe that this can be achieved by accounting the en-

nents and processes. In addition, Farkas et al. are using a&rgy consumption of individual devices, as determined by

set of micro-benchmarks to determine the energy consump-a calibration process, to the processes in proportion to their

tion of the memory subsystem. A similar methodology is device usage. We argued that, as with any resource man-

described in [3], which correlates various processor perfor- agement system, accurate energy accounting to processes

mance counter events with energy consumption. has to form the basis for an energy management system.
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We have also investigated how a pricing mechanism,
previously only applied to network congestion pricing and
CPU resource management, can be applied to energy man-
agement. In such a system, the operating system charges
individual processes for their energy consumption if the
overall demand for energy exceeds the amount necessary

to achieve a user-specified goal (e.g., a specified battery

(8]

(9]

lifetime). These charges can be interpreted by applica- [10]
tions as meaningful feedback signals, to which they can

perform application-specific adaption, leading tdeaen-
tralised form of energy management.

(11]

While there are still many open implementation issues, [12]

e.g., the accuracy of the energy accounting process or de-

tails of the implementation of the pricing mechanism, we

believe that we have made a strong case to support our claim

that energy is just another resource.
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Abstract

This paper describes PAST, alarge-scale, | nternet based,
global storage utility that provides high availability, per-
sistence and protects the anonymity of clients and stor-
age providers. PAST is a peer-to-peer Internet application
and is entirely self-organizing. PAST nodes serve as ac-
cess points for clients, participate in the routing of client
reguests, and contribute storage to the system. Nodes are
not trusted, they may join the system at any time and may
silently leave the system without warning. Yet, the systemis
able to provide strong assurances, efficient storage access,
load balancing and scalability.

Among the most interesting aspects of PAST sdesign are
(2) the Pastry location and routing scheme, which reliably
and efficiently routes client requests between any pair of
PAST nodes, has good network locality properties and au-
tomatically resolves node failures and node additions; (2)
the use of randomization to ensure diversity in the set of
nodes that store a file's replicas and to provide load bal-
ancing; and (3) the use of smartcards, which are held by
each PAST user and issued by a third party called a bro-
ker. The smartcards support a quota system that balances
supply and demand of storagein the system.

1. Introduction

Antony Rowstron
Microsoft Research Ltd.
Cambridge, CB2 3NH, UK
antr@microsoft.com

While PAST offers persistent storage services, its ac-
cess semantics differ from that of a conventional filesys-
tem. Files stored in PAST are associated witfileld that
is quasi-uniquely associated with the file’s content, name
and ownet. This implies that files stored in PAST aire-
mutable since a modified version of a file cannot be writ-
ten with the same fileld as its original. Files can be shared
at the owner’s discretion by distributing (potentially anony-
mously) the fileld and, if necessary, a decryption key.

PAST does not support @elete operation for files. In-
stead, the owner of a file magclaim the storage associ-
ated with a file. While the semantics of file deletion require
that the file is removed when the operation completes, re-
claim has weaker semantics, and simply means that a user
can reuse the space, and the system no longer provides any
guarantees about the availability of the file.

The PAST system is composed of nodes, where each
node is capable of initiating and routing client requests to
insert, retrieve, or reclaim a file. Optionally, nodes may also
contribute storage to the system. The PAST nodes form a
self-organizing network. After a new node arrival or a node
failure, the system automatically restores all invariants after
exchanging@)(logN) messages, whet¥ is the total num-
ber of nodes in the system.

Inserted files are replicated across multiple nodes to en-
sure persistence and availability. The system ensures, with
high probability, that the set of nodes over which a file is
replicated is diverse in terms of geographic location, own-
ership, administrative entity, network connectivity, rule of

_ There are currently many projects aimed at construct- |5,y and so forth. Additional copies of popular files may be
ing peer-to-peer applications and understanding more Ofcached in any PAST node.

the issues and requirements of such applications and sys- An efficient routing scheme, calld@astry [10], ensures
Fems 1, 5 2 4. Peer-to-pe_:er sy;tems can be char_acter-that client requests tmsert or reclaim a file are routed to
|_zed as d|sFr_|puted systems n W.h.'Ch alinodes have ".jen'each node that must store a replica of the file. Client re-
tical capabilities and responsibilities and all communica- quests taetrieve a file are reliably routed to a node that is

tion is symmetric. We are developlln.g PAS.T’ an Internet “close in the network? to the client that issued the request,
based, peer-to-peer global storage utility, which aims to pro-

vide strong persistence, high availability, scalability, and
anonymity of clients and storage providers.

1The fileld is based on a secure hash of the file’s content, name and
owner. Therefore, it is extremely unlikely that files that differ in content,
name, or owner have the same fileld.

2The notion of network proximity may be based on geographic loca-

*Work done while visiting Microsoft Research, Cambridge, UK.
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among all live nodes that store the requested file. The num-versity of nodes that store replicas of a file, without the
ber of PAST nodes traversed, as well as the number of mes-need for centralized control or expensive distributed agree-
sages exchanged while routing a client request is at mostment protocols; (3) a decentralized storage management
logarithmic in the total number of PAST nodes in the sys- and caching scheme that balances the storage utilization
tem. among the nodes as the total utilization of the system ap-
A storage management scheme in PAST ensures that thegroaches 100%, and balances query load by caching copies
global storage utilization in the system can approach 100%, of popular files close to interested clients; (4) the broker,
despite widely differing file sizes and storage node capac- which performs key management and ensures the integrity
ities, and the lack of centralized control [11]. In a storage of the system; and, (5) the use of smartcards, which support
system where nodes are not trusted, a secure mechanism ia quota system to control storage supply and demand.
also required that ensures a balance of storage supply and PAST is composed of nodes, where, in general, each
demand. In PAST, a third party (broker) issues smartcardsnode can act as a storage node and a client. The smart-
for all users of the system. The smartcards support a quotacard issued to the node provides a node identifier (nodeld),
system, which balances storage supply and demand and cawhich is a 128 bit number chosen randomly from a uniform
be used by a broker to trade storage. The broker is not di- distribution and signed by the broker (using a public key
rectly involved in the operation of the PAST network, and cryptosystem maintained by the broker).
its knowledge about the system is limited to the number  Files that are inserted into the PAST system are each as-
of smartcards it has circulated, their quotas and expirationsigned a fileld. A fileld is 160 bits in length, and is the
dates. secure hash (SHA-1) of the following data: a textual file
Anotherissue in peer-to-peer systems, and particularly in name, a secure hash of the content, and the creator’s smart-
storage and file-sharing systems, is privacy and anonymity.card id. Before a file is inserted, a write certificate is gener-
A provider of storage space used by others does not wantated, which contains the fileld, file expiry date, the replica-
to risk prosecution for content it stores, and clients insert- tion factor, the creation date and a secure hash of the con-
ing or retrieving a file may not wish to reveal their identity. tent. The write certificate is signed by the smartcard of the
Anderson [3] describes the "the Gutenberg Inheritance” and file’s creator.
motivates why such levels of privacy and anonymity are de-  \When a file is inserted in PAST, the network routes the
sirable. file to thek nodes whose node identifiers are numerically
PAST clients and storage providers need not trust eachclosest to the first 128 bits of the file identifier (fileld). Each
other, and place only limited trust in the broker. In particu- of these nodes then stores a copy of the file. The replication
lar, all nodes trust the broker to facilitate the operation of a factork depends on the availability and persistence require-
secure PAST network by assigning and protecting appropri- ments of the file and may vary between files. A lookup re-
ate keys for the smartcards, and by balancing storage supplyjuest for a file is routed towards the live node with a nodeld
and demand via responsible use of the quota system. On thehat is numerically closest to the requested fileld.
other hand, users do not reveal to the broker (or anyone else)  This procedure ensures that (1) a file remains available
their identity, the files they are retrieving, inserting or stor- as Jong as one of the nodes that store the file is alive and
ing. Each user holds anitially unlinkable pseudonym [7] reachable via the Internet; (2) the set of nodes that store the
associated with their smartcard. The pseudonym remainsfile is diverse in geographic location, administration, own-
unlinkable to the user’s identity, unless the user voluntarily ership, network connectivity, rule of law, etc.; and, (3) the
reveals the binding. In addition, if desired a user may use number of files assigned to each node is roughly balanced.
multiple pseudonyms (i.e., smartcards) to obscure knowl- (1) follows from the properties of the PAST routing algo-
edge that certain operations were initiated by the same userrithm described in Section 2.2. (2) and (3) follow from the
In the following sections, we shall present an overview yniformly distributed random nodeld assigned to each stor-

of PAST's design. age site and the properties of a secure hash function (uni-
form distribution of hash values, regardless of the set of
2. PAST architecture files).

Some of the key aspects of PAST’s architecture are (1) 2.1 Security
the Pastry routing scheme, which routes client requests in
less thar{log N'] steps on average within a self-configuring, In discussing PAST’s security, we make the following
fault tolerant overlay network; (2) the use of randomiza- assumptions. We assume that it is computationally infea-
tion to ensure (probabilistic) storage load balancing and di- sible for an attacker to break the public-key cryptosystem
tion, number of network hops, bandwidth, delay, or a combination of these @Nd the secure hash function used by the broker and smart-
and other factors. cards. It is assumed that an attacker can control individual
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PAST nodes, but that they cannot control the behavior of node first verifies that the signature in the reclaim certificate

the smartcard. matches that in the write certificate stored with the file. This
Smartcards are issued by a PAST broker. Each card holdgprevents users other than the owner of the file from reclaim-

anodeld, assigned and signed by the broker, a private/publicing the file’s storage. If the reclaim operation is accepted,

key pair unique to the smartcard, and the broker’s public the smartcard of the storage node generatexlaim re-

key. The smartcard’s public key is signed by the broker for ceipt. The receipt contains the reclaim certificate and the

certification purposes. A smartcard generates and verifiesamount of storage reclaimed; it is signed by the smartcard

various certificates used during insert and reclaim opera-and returned to the client.

tions. It also maintains client storage quotas. In the follow-

'ng, we §ketch the main security related funt?tlons. Each user’s smartcard is issued with a usage quota, depend-
Generation of nodelds  The smartcard provides a nodeld ng on how much storage the client is allowed to use. When
for its associated PAST node. This nodeld is generated Us-, \yrite certificate is issued, an amount corresponding to
ing a secure random number generator and signed by thepe fije size times the replication factor is debited against
broker as part of the smartcard's manufacture. The ran-e quota. When the client presents an appropriate reclaim

dom assignment of nodelds probabilistically ensures uni- receipt issued by a storage node, the amount reclaimed is
form coverage of the space of nodelds, and a random spreayegited against the client's quota. This prevents clients

of nodelds across geographic locations, F:ountries, node oP+rom exceeding the storage quota they have paid for. A
erators, etc. Furthermore, the use of signed nodelds pre-smaricard also specifies the amount of storage contributed
vents attacks involving malicious node operators trying to by the associated node (possibly zero). Nodes are randomly
choose particular values for their_ nodel_ds (for instance, 10 4 gited to see if they can produce files they are supposed to
control all nodes that store a particular file). store, thus exposing nodes that cheat by offering less stor-
Generation of writecertificatesand receipts The smart- age than indicated by their smartcard.

card of a user W|Sh|ng to insert a file into PAST issues a In the fo”owing’ we bneﬂy discuss how some of the sys-
write certificate. The certificate contains a secure hash of tem's key properties are maintained.

the file's contents (computed by the client node, not the o i ) N

smartcard), the fileld (computed by the smartcard), a repli- Providing system integrity Several conditions underly
cation factor, a file expiration date, and is signed by the the basic integrity of a PAST system. Firstly, to maintain
smartcard. During an insert operation, the write certificate 102d balancingamong storage nodes, the nodelds andfilelds
allows each storing node to verify that (1) the user is autho- Must be uniformly distributed. The procedure for generat-
rized to insert the file into the system, (2) the content of the ing and verifying nodelds and filelds ensures that malicious
file arriving at the storing node have not been corrupted en nodes cannot bias this distribution. Sepondly, there must
route from the user’s node, and (3) the fileld is valid (i.e., it P€ @ balance between the sum of all client quotas (poten-

Storage quotas The smartcard maintains storage quotas.

is consistent with the content arriving at the node). tial demand) and the total available storage in the_ system
Each storage node that has successfully stored a copy ofSUPPI). The broker ensures that balance, potentially us-
the file then issues and returnsveite receipt to the client, N9 the monetary price of storage to regulate supply and

which allows the client to (4) verify that copies of the file ~ demand. Thirdly, individual malicious nodes must be in-

have been created on nodes with adjacent nodelds. (1) pre€a@Pable of persistently denying service to a client. A ran-
vents clients from exceeding their storage quotas, (2) ren-d0mized routing protocol, described in Section 2.2, ensures
ders ineffective attacks by malicious nodes involved in the that a retried operation will eventually be routed around the

routing of an insert request that change the content, (3) pre-malicious node.

vents denial-of-service attacks where malicious clients try Providing Persistence  File persistence in PAST depends
to exhaust storage at a subset of PAST nodes by generatingyimarily on three conditions. (1) Unauthorized users are
bogus filelds with nearby values, and (4) prevents a mali- prevented from reclaiming a file’s storage, (2) the file is ini-
cious node from suppressing the creatiott diverse repli-  tjally stored onk storage nodes, and (3) there is sufficient
cas. During a retrieve operation, the write certificate is re- diversity in the set of storage nodes that store a file. By is-
turned along with the file, and allows the client to verify that suing and requiring reclaim certificates, the smartcards en-
the content has not been corrupted. sure condition (1). (2) is enforced through the use of write
Generation of reclaim certificatesand receipts Prior to receipts and (3) is ensured by the random distribution of
issuing a reclaim operation, the user’'s smartcard generatesiodelds, which can’t be biased by an attacker. The choice
areclaim certificate. The certificate contains the fileld, is of a replication factok must take into account the expected
signed by the smartcard and is included with the reclaim re- rate of transient storage node failures to ensure sufficient
quest that is routed to the nodes that store the file. Whenavailability. In the event of storage node failures that involve
processing a reclaim request, the smartcard of a storagdoss of the stored files, the system automatically restbres
copies of a file as part of the failure recovery process.
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Providingdataprivacy and integrity Users may use en- used to balance the supply and demand of storage without
cryption to protect the privacy of their data, using a cryp- quotas, and anonymous payment transactions could make it
tosystem of their choice. Data encryption does not involve possible for a user to safely and anonymously obtain neces-
the smartcards. Data integrity is ensured by means of thesary credentials from the broker. We plan to explore emerg-
write certificates issued by the smartcards. ing technologies and reevaluate the use of smartcards as al-
Providing anonymity A user’s smartcard signature is the ternatives become available.

only information associating a stored file or a request with It is to be noted that multiple PAST systems, with sep-
the responsible user. The association between a smartcardrate brokers, can co-exist in the Internet. In fact, we en-
and the user’s identity is only known to the user, unless the vision many competing brokers, where a client can access
user voluntarily releases this information. Anonymity of files in the entire system, but can only store files on storage
storage nodes is similarly ensured because the node’s smartrodes affiliated with the client’s broker. Furthermore, it is
card signature is not linkable to the identity of the node op- possible to operate isolated PAST systems that serve a mu-
erator. tually trusting community without a broker or smartcards.

Space limitations prevent us from a full discussion of In these cases, a virtual private network (VPN) can be used
P P to interconnect the system’s nodes.

PAST’s security model. Next, we briefly reflect on the role . . . . .
In the remainder of this paper, we give a brief overview

of smartcards in PAST. Many of the functions performed of other interesting aspects of PAST namelv its rout-
by the smartcards in the current design could be safely per-. g asp ’ y

formed by the (untrusted) node software. Indeed, the use of "9 §elf-configuration schemes, storage management and
smartcards is not fundamental to PAST'’s design. However, caching schemes.

the smartcards serve two important purposes, given today’s

technology. 2.2 Pastry

First, the smartcards maintain storage quotas. Without
the trusted hardware provided by the smartcard, itis difficult ~ We now briefly describe Pastry, the location and routing
to prevent a malicious node from cheating against its quota.scheme used by PAST. Given a fileld, Pastry routes the as-
Second, the smartcards are a convenient medium througrsociated message towards the node whose nodeld is numer-
which a user can obtain necessary credentials from the bro4cally closest to the 128 most significant bits (msb) of the
ker in an anonymous fashion. A user can obtain a smartcardfileld, among all live nodes. Given the invariant that a file is
with the desired quota from a retail outlet in exchange for stored on thé: nodes whose nodelds are numerically clos-
cash, without any risk of revealing their identity. Obtaining est to the 128 msbs of the fileld, it follows that a file can be
the credentials on-line carries the risk of revealing the user’s located unless alk nodes have failed simultaneously (i.e.,
identity or leaking sensitive information to third parties. within a recovery period).

There are disadvantages to the use of smartcards. First, Pastry is highly efficient, scalable, fault resilient and self-
clients need to obtain a physical device and periodically re- configuring. Assuming a PAST network consisting /éf
place it (e.g., every year) to ensure key freshness. Secondnodes, Pastry can route to the numerically closest node to
sophisticated, resource-rich attackers could compromise aa given fileld in less thafilog,. N'| steps on averagé (s
smartcard. However, since the maximal gain is to cheat a configuration parameter with typical value 4). With con-
against the storage quote for a limited time, we believe there current node failures, eventual delivery is guaranteed unless
is insufficient incentive for a high-tech attack. |1/2] nodes withadjacent nodelds fail simultaneously {s

Finally, there are performance costs due to the limited a configuration parameter with typical valB).
processing speed and I/0O performance of smartcards. For- The tables required in each PAST node have ¢2fy—
tunately, read operations involve no smartcard operations.1) * [log,s N| + 21 entries, where each entry maps a nodeld
(In fact, read-only users don’t need a smartcard). Write op- to the associated node’s IP address. Moreover, after a
erations require a write certificate verification and a write node failure or the arrival of a new node, the invariants
confirmation generation, and we expect that a smartcardin all affected routing tables can be restored by performing
keeps up with the speed of a single disk. Larger storageO(logs: N) remote procedure calls (RPCs). In the follow-
nodes use multiple smartcards, and very large storage node#g, we give a brief overview of the Pastry routing scheme.
may require more powerful tamperproof hardware. Profes-  For the purpose of routing, nodelds and filelds are
sionally managed storage sites also have the option of con-thought of as a sequence of digits with bade A node’s
tracting with a broker, thus obviating the need for trusted routing table is organized into levels witfi—1 entries each.
hardware in exchange for a loss in anonymity. The2® — 1 entries at leveh of the routing table each refer

Future Internet technologies like an anonymous paymentto a node whose nodeld shares the present node’s nodeld
and micropayment infrastructure could obviate the need for in the firstn digits, but whose: + 1th digit has one of the
smartcards in PAST. For instance, micro-payments could be2® — 1 possible values other than the+ 1th digit in the
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present node’s id. Note that an entry in the routing table 4ith node encountered along the route frdnto Z. One can
points to one of potentially many nodes whose nodeld have show that using this informatioX” can correctly initialize
the appropriate prefix. Among such nodes, the one closestit state and notify interested nodes that need to know of its
to the present node (according to the proximity metric) is arrival, thereby restoring all of Pastry’s invariants.
chosen in practice. To handle node failures, neighboring nodes in the nodeld
In addition to the routing table, each node maintains space (which are aware of each other by virtue of being in
pointers to the set dfnodes whose nodelds are numerically each other’s leaf set) periodically exchange keep-alive mes-
closest to the present node’s nodeld, irrespective of prefix.sages. If a node is unresponsive for a pefladt is pre-
(More precisely, the set contaih&2 nodes with larger and  sumed failed. All members of the failed node’s leaf set are
1/2 with smaller nodelds). This set is called tleaf set. then notified and they update their leaf sets to restore the
In each routing step, a node normally forwards the mes- invariant. Since the leaf sets of nodes with adjacent nodelds
sage to a node whose nodeld shares with the fileld a prefixoverlap, this update is trivial. A recovering node contacts
that is at least one digit (drbits) longer than the prefix that  the nodes in its last known leaf set, obtains their current
the fileld shares with the present node’s id. If no such node leafs sets, updates its own leaf set and and then notifies the
exists, the message is forwarded to a node whose nodeldnembers of its new leaf set of its presence. Routing table
shares a prefix with the fileld as long as the current node, entries that refer to failed nodes are repaired lazily; the de-
but is numerically closer to the fileld than the present node’s tails are described in [10].
id. It follows from the definition of the leaf set that such a Fault-tolerance The routing scheme as described so far
node exists in the leaf set unlggg2| adjacent nodesinthe is deterministic, and thus vulnerable to malicious or failed
leaf set have failed simultaneously. nodes along the route that accept messages but do not cor-
L ocality In the following, we turn our attention to the prop- rectly forward them. Repeated queries could thus fail each
erties of the Pastry routing scheme with respect to the net-time, since they are likely to take the same route.
work proximity metric. Pastry can normally route messages  To overcome this problem, the routing is actually ran-
to any node in[log,. N steps. Another question is what domized. To avoid routing loops, a message must always
distance (in terms of the proximity metric) a message is be forwarded to a node that shares at least as long a pre-
traveling. Recall that the entries in the node routing tables fix with, but is numerically closer to the destination node
are chosen to refer to the nearest node with the appropriatén the namespace than the current node. The choice among
nodeld prefix. As a result, in each step a message is routednultiple such nodes is random. In practice, the probability
to the nearest node with a longer prefix match (by one digit). distribution is heavily biased towards the best choice to en-
While this local decision process clearly can’t achieve glob- sure low average route delay. In the event of a malicious
ally shortest routes, simulations have shown the the averageor failed node along the path, the query may have to be re-
distance travelled by a message is only 40% higher than thepeated several times by the client, until a route is chosen
distance of the source and destination in the underlying net-that avoids the bad node.
work [10].
Moreover, since Pastry always takes the locally short- 2.3  Storage management and caching
est step towards a node that shares a longer prefix with
the fileld, messages have a tendency to first reach a node, The statistical assignment of files to storage nodes in
among thek nodes that store the requested file, that is near PAST approximately balances the number of files stored at
the client (according to the proximity metric). One exper- each node. However, non-uniform storage node capacities
iment shows that among 5 replicated copies, Pastry is ableand file sizes require more explicit storage load balancing to
to find the nearest copy in 76% of all lookups and it finds permit graceful behavior under high global storage utiliza-
one of the two nearest copied in 92% of all lookups [10].  tion; and, non-uniform popularity of files requires caching
Node addition and failure A key design issue in Pastry is  to minimize fetch distance and to balance the query load.
how to efficiently and dynamically maintain the node state, =~ PAST employs a storage management scheme that
i.e., the routing table, leaf set and neighborhood sets, in theachieves high global storage utilization while rejecting few
presence of node failures, node recoveries, and new nodsfile insert requests. The scheme relies only on local coor-
arrivals. The protocol is described and evaluated in [10].  dination among the nodes in a leaf set, and imposes little
Briefly, an arriving node with the new nodel can ini- overhead. Experimental results show that PAST can achieve
tialize its state by contacting a nearby noti¢according to global storage utilization in excess of 95%, while the rate of
the proximity metric) and askingl to route a special mes- rejected file insertions remains below 5% and failed inser-
sage to the existing nodgwith nodeld numerically closest tions are heavily biased towards large files [11].
to X. X then obtains the leaf set frof, the neighborhood Caching in PAST allows any node to retain an additional
set from A, and theith row of the routing table from the  copy of a file. This caching is effective in achieving query
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load balancing, high throughput for popular files, and it re- environment. We have performed tests with up to 100,000
duces fetch distance and network traffic. PAST's storage PAST nodes and several million files. Routing, self-
management and caching are described in detail in [11].  configuration, file storage/retrieval, caching and storage
load balancing are fully functional; early experience and
3. Related work and conclusion performance results are very encouraging [10, 11]. Plans for
the immediate future are to verify PAST's security model
more formally, and to complete an implementation that can

There are currently many peer-to-peer systems under de-be deployed in the Internet.

velopment. Among the most prominent are file sharing fa-
cilities, such as Gnutella [2], Freenet [5], and Napster [1].
These systems are intended for the large-scale sharing oReferenceS
music; persistence and reliable content location are not re-
quired in this environment. PAST instead is a large-scale
storage utility that aims at combining scalability and self-

[1] Napster. http://www.napster.com/.
[2] The Gnutella protocol specification, 2000.

http://dss.clip2.com/GnutellaProtocol04.pdf.

configuration with strong persistence. In this regard, itis [3] R. Anderson. The eternity service. IProc.
more closely related with projects like OceanStore [6], Far- PRAGOCRYPT' 96, pages 242—-252. CTU Publishing House,
Site [4], FreeHaven [9], Publius [13] and Eternity [3]. 1996. Prague, Czech Republic.

Like PAST, OceanStore provides a global, persistent [4] W.J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
storage utility on top of an untrusted, unreliable infrastruc- sibility of a serverless distributed file system deployed on an

re. However PAST f n providin imole. lean existing set of desktop pcs. Broc. SGMETRICS 2000,
ture. However, PAST focuses on providing a simple, leal pages 3443, 2000.

storage abstraction for persistent, immutable files with the [5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
intention that more sophisticated storage semantics be build A distributed anonymous information storage and retrieval

on top of PAST if needed. OceanStore provides a more gen- system. InWbrkshop on Design Issues in Anonymity and
eral storage abstraction that supports serializable updates on Unobservability, pages 311-320, July 2000. ICSI, Berkeley,
widely replicated and nomadic data. CA, USA. .

FarSite and SFS have more traditional filesystem seman- [6] J. K. etal. Oceanstore: An architecture for global-scale per-
; ; ; ; sistent store. IfProc. ASPLOS 2000, November 2000.
tics, while PAST is more targeted towards global, archival (7] A Pfitzmann and M. _ohntopp. Anonymity,

storage. Farsite uses a distributed directory service to
locate content;. th|§ is very different from PAST'’s Pa}s- proposal for terminology, Apr. 2001
try scheme, WhIC.h integrates cpntent location and routing. http://www.koehntopp.de/marit/pub/anon/Anderminology IHW. pdf.
FreeHaven, Publius and Eternity are more focused on pro- [8] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
viding anonymity and survivability of data in the presence nearby copies of replicated objects in a distributed environ-
of a variety of threats. ment. Theory of Computing Systems, 32:241-280, 1999.
Pastry, PAST's routing scheme, bears some similarity to [9] D- M. Roger Dingledine, Michael J. Freedman. The Free
the work by Plaxton et al. [8]. The general approach of Haven prolect: Distributed anonymous sto_rage service. In
routing using prefix matching on the fileld is used in both Proceedings of the Workshop on Design Issuesin Anonymity

hich b lizati fh b and Unobservability, July 2000.
systems, which can be seen as a generalization of hypercubg o1 A Rowstron and P. Druschel. Pastry: Scalable, distributed

unobservability, and pseudonymity - a

routing. However, in the Plaxton scheme there is a special object location and routing for large-scale peer-to-peer sys-
node associated with each file, which forms a single point tems, Jan. 200http://www.research.microsoft.com/ antr/PAST/
of failure. Also, Plaxton does not handle automatic node [11] A. Rowstron and P. Druschel. Storage man-
integration and failure recovery. agement and caching in past, a large-scale, per-

Oceanstore uses a two phase approach to content loca- ~ Sistent  peer-to-peer  storage utility, ~Mar.  2001.
; ; ; ; ot ; http://www.research.microsoft.com/ antr/PAST/
tion anq roytlng. The flr.St stage Is prObablhtStIC’ ulsmg a [12] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
generalization of Bloom filters. If that stage fails to find an

. . . akrishnan. Chord: A scalable peer-to-peer lookup service
object, then a location and routing scheme called Tapestry for Internet applications. Technical Report TR-819, MIT,

is used [14]. Tapestry is based on Plaxton et al. but ex- March 2001.

tends that earlier work in several dimensions. Like Pastry, [13] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
Tapestry replicates objects for fault resilience and availabil- robust, tamper-evident, censorship-resistant, web publishing
ity and supports dynamic node addition and recovery from system. InProc. 9th USENIX Security Symposium, pages
node failures. However, Pastry and Tapestry differ in the 59-72, August 2000.

[14] B.Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-resilient wide-area location and
routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

approach they take for replicating files and in the way they
achieve locality. Another closely related scheme is location
and routing scheme is Chord [12].

A prototype of PAST operates in a simulated network
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Abstract vents Freenet from guaranteeing the ability to retrieve data.
Chord is designed to offer the functionality necessary to
W\ argue that the core problem facing peer-to-peer sys- implement general-purpose systems while preserving max-
tems is locating documents in a decentralized network and imum flexibility. Chord is an efficient distributed lookup
propose Chord, a distributed lookup primitive. Chord pro- system based on consistent hashing [10]. It provides a
vides an efficient method of |ocating documentswhile plac- unique mapping between an identifier space and a set of
ing few constraints on the applicationsthat use it. As proof nodes. A node can be a host or a process identified by
that Chord's functionality is useful in the development of an IP address and a port number; each node is associated
peer-to_peer app”cationS, we outline the |mp|en'entat|on with a Chord identifer. Chord maps each identifigo the
of a peer-to-peer file sharing system based on Chord. node with the smallest identifier greater tharThis node
_ is called thesuccessor of a.
1 Introduction By using an additional layer that translates high level

The peer-to-peer architecture offers the promise of harness- names into Chord identifiers, Chord may be used as a pow-
ing the resources of vast numbers of Internet hosts. The erful lookup service. We will outline the design of a dis-
primary challenge facing this architecture, we argue, is ef- tributed hash table (DHASH) layer and of a peer-to-peer
ficiently locating information distributed across these hosts storage application based on the Chord primitive. Figure 1
in a decentralized way. In this paper we present Chord, a shows the distribution of functionality in the storage appli-
distributed lookup service that is both scalable and decen- cation.

tralized and can be used as the basis for general purpose

peer-to-peer systems. _ . Layer | Function
A review of the features included in recent peer-to- Chord Maps identifiers to successor nodes

peer systems yields a long list. These include redundant DHASH Associates values (blocks) with identifiers
storage, permanence, efficient data location, selection of Application | Provides a file system interface

nearby servers, anonymity, search, authentication, and hier-
archical naming. Chord does not implement these services
directly but rather provides a flexible, high-performance
lookup primitive upon which such functionality can be ef-
ficiently layered. Our design philosophy is to separate the
lookup problem from additional functionality. By layering
additional features on top of a core lookup service, we be-
lieve overall systems will gain robustness and scalability.

In contrast, when these application-level features are an
integral part of the lookup service the cost is often lim-
ited scalability and diminished robustness. For example,
Freenet [5] [6] is designed to make it hard to detect which
hosts store a particular piece of data, but this feature pre-

Figure 1: A layered Chord application

Chord is efficient: determining the successor of an iden-
tifier requires tha(log N) messages be exchanged with
high probability whereV is the number of servers in the
Chord network. Adding or removing a server from the net-
work can be accomplished, with high probability, at a cost
of O(log® N) messages.

The rest of this position paper outlines the algorithms
used to implement the Chord primitive (Section 2), de-
scribes how Chord can be used to build peer-to-peer storage
*University of California, Berkeley. istoica@cs.berkeley.edu systems (Section 3), summarizes the current implementa-

This research was sponsored by the Defense Advanced Research ProjectéIon status of the system (Section 4), identifies some open

Agency (DARPA) and the Space and Naval Warfare Systems Center, San resea_rCh problems (SeCtion 5), relates Chord to Oth_er work
Diego, under contract N66001-00-1-8933. (Section 6), and summarizes our conclusions (Section 7).
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Figure 2: The Chord algorithm in a three-bit identifier space

2 Chord to the largest node in its finger table that precefiesall

Chord uses consistent hashing [10] to map nodes onto an this nodes. The same procedure is repeatedshyntil the
m-bit circular identifer space. In particular, each identifier ~search terminates.

a is mapped to the node with the least identifier greater or ~ For example, assume that the system is in a stable state
equal toe in the circular identifier space. This node s called  (all routing tables contain correct information) and a search

the successor of a. is initiated at node 2 of Figure 2(a) for the successor of
To implement thesuccessor function, all nodes main- identifier 6. The largest node with an identifier smaller than
tain anm-entry routing table called thﬁnger table. This 6is 5. The target of the SearCh, 6, is in the interval defined
table stores information about other nodes in the system; by 5 and its successor (7); therefore 7 is returned value.
each entry contains a node identifier and its network ad- ~ The algorithm is outlined above irecursive form: if a

dress (consisting of an IP address and a port number). The Search request requires multiple steps to completey the
k-th entry in the finger table of nodeis the smallest node  Step isinitiated by thén—1)"* node on behalf of the initia-

s that is greater than + 2¢~1. Nodes is also termed the ~ tor. The successor function may also be implemerteeel
order% successor of node The number of unique entries at|Ve|y In an iterative implementation, the |n|t|at|ng node
in the finger table i$)(log NV). The finger table can also be i responsible for making requests for finger table infor-
thought of in terms ofn identifier intervals corresponding ~ Mation at each stage of the protocol. Both implementation

to them entries in the table: the ordérinterval of a node styles offer advantages: an iterative approach is easier to
is defined ag(r +2%~1) mod 2™, (r +2¥) mod 2. Fig- implement and relies less on intermediary nodes, while the
ure 2(a) shows a simple example in whiet¥3 and three recursive approach lends itself more naturally to caching

nodes 2, 5, and 7 are present. The immediate successor ofand server selection (described in Section 3).
node 5 is the successor @ + 2°) mod 22 = 6 or node 7.
Each node also maintains a pointer to its immediate pre-

decessor. For symmetry, we also define the corresponding YWhen @ new node joins the network it must initialize its
immediate successor (identical to the first entry in the fin- finger table; existing nodes must also update their tables to

ger table). In total, each node must maintain a finger table Teflect the existence of (see Figure 2(b) and Figure 2(c)).

2.2 Nodeinsertion

entry for up toO(log N') other nodes; this represents asig- _ |f the system is in a stable state, a new nodgan ini-
nificant advantage over standard consistent hashing which tidlize its finger table by querying an existing node for the
requires each node to track almost all other nodes. respective successors of the lower endpoints of:timer-

. . vals inr’s table. Although we omit the details here, nodes
2.1 Evaluating the successor function whose routing information is invalidated bys addition

Since each node maintains information about only a small can be determined usings finger table and by following
subset of the nodes in the system, evaluating the successorpredecessor pointers: these nodes are instructeddoyp-
function requires communication between nodes at each date their tables.
step of the protocol. The search for a node moves progres- o ) )
sively closer to identifying the successor with each step. 2.3 Additional algorithm details

A search for the successor pfnitiated at node begins Several additional details of the Chord protocol are merely
by determining iff is betweerr and the immediate suc- mentioned here in the interest of brevity; a complete de-
cessor ofr. If so, the search terminates and the successor scription of the Chord primitive is given by Stoica et
of r is returned. Otherwise, forwards the search request al. [17]. Removing a node from the network involves a sim-
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void event_register ((fn) (int)) err_t insert (void *key, void *value)
ID next_hop (ID j, ID k) void * lookup (void *key)

Figure 3: Exposing Chord layer information. The Figure 4: The DHASH API (a) Inserts value under key (b)

event_register function arranges fofn to be called returns value associated with key or NULL if key does not

when a node with an ID near the registrant’s joins or leaves exist

the networknext hop performs one step of the evalua-

tion of the successor function and returns the intermediate

result (a finger table entry). software distribution available, but individually do not have
network resources to meet demand.

ilar series of steps as adding a node. Parallel joins, paral- 31 Digributed hash service
lel exits, and failures are handled by maintaining the in-
variant that all nodes are aware of their immediate succes-
sor and predecessor, and by allowing the remaining entries
of nodes’ finger tables to converge to the stable state over
time. Handling failures also requires that nodes stosac-
cessors in addition to the immediate successor.

Chord is not a storage system: it associates keys with nodes
rather than with values. A useful initial extension to this
system is a distributed hash table (DHASH). The API for
this layer is shown in Figure 4.

DHASH: :insert can be implemented by hashing
key to produce a 160-bit Chord identifiér, and storing
2.4 Thechord library API value at the successor &f A DHASH : : lookup request
is handled analogouslykey is hashed to fornk and the
successor of is queried for the value associated withay.

The transfer of value data to and from nodes is accom-
plished by an additional RPC interface which is separate
from that exported by Chord.

Values introduce a complication: when nodes leave or
join the system, the successor node of a given key may
change. To preserve the invariant that values are stored at
the successor of their associated k& SH monitors the
arrival and departure of nodes using the callback interface
provided by Chord and moves values appropriately. For ex-
ample, if the value associated with key 7 is stored on node
10 and node 9 joins the system, that value will be trans-
ferred to node 9.

Because it is based on ChomiASH inherits Chord’s
desirable properties: performing a lookup operation re-
quiresO(log N) RPCs to be issued and does not require
any centralized control. ThBHASH layer imposes an ad-
ditional cost of transferrin@( %) of the keys in the system
each time a node joins or leaves the system.

The Chord library is intended to be used in a layered de-
sign where it provides the base location functionality. Two
design principles facilitate the the use of Chord in a layered
architecture: minimum functionality and exposed informa-
tion. By minimizing the amount of functionality embedded
in Chord, we minimize the constraints we place on higher
levels which depend on Chord.

In our initial experiments with systems based on Chord,
we found that larger systems were constrained not because
Chord provides an inflexible feature set, but because higher
layers desired access to the internal state of Chord during
its computation.

To provide this access while still preserving the ab-
straction barrier we allow layers to register callback func-
tions for events they are interested in (see Figure 3) and
to evaluate the successor function one step at a time.
next_hop (j, k) sends a message to nogleaskingj
for the smallest entry in its finger table greater tka his
allows callers to control the step-by-step execution of the
Chord lookup algorithm.

For example, theHASH layer (described in section 3.1) o o
uses the callback interface to move values when nodes join 3-2 Achieving reliability
or leave the systenDHASH also evaluates the successor The DHASH layer can also exploit the properties of Chord
function step by step to perform caching on search paths.  to achieve greater reliability and performance. To ensure

- that lookup operations succeed in the face of unexpected
3 Building on Chord node failures DHASH stores the value associated with a
To illustrate the usefulness of the Chord APl we will outline  given key not only at the immediate successor of that key,
the design of layers that could be built on the basic Chord but also at the next successors. The parametemay be
primitive. These layers would be useful in a larger peer-to- varied to achieve the desired level of redundant storage.
peer file sharing application. This application should allow The tight coupling betweebHASH's approach to repli-
a group of cooperating users to share their network and cation and Chord’s (both use knowledge of a node’s imme-
disk resources. Possible users of the application might be diate successors) is typical of the interaction we hope to see
a group of open source developers who wish to make a between Chord and higher layers.
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3.3 Improving performance

To improveDHASH lookup performance, we exploit a prop-
erty of the Chord lookup algorithm: the paths that searches
for a given successor (from different initiating nodes) take
through the Chord ring are likely to intersect. These in-
tersections are more likely to occur near the target of the

Malicious nodes could fail to execute the Chord pro-
tocol properly resulting in arbitrarily incorrect behavior.
A single misbehaving node can be detected by verifying
its responses with those of other, presumably cooperative,
nodes. For instance, if a nodleeports that its successor is
s, we can query for its predecessor which should heA

search where each step of the search algorithm makes a9roup of such nodes could cooperate to make a collection
smaller *hop’ through the identifier space and provide an ©f nodes appear to be a self-consistent Chord network while
opportunity to cache data. On every successful lookup op- €xcluding legitimate nodes. We have no decentralized so-
eration of a paitk, v), the target valuey, is cached at each Iutlo_n.t.o this problem and rely |n§teaq on the legitimacy of
node in the path of nodes traversed to determine the succes- € initial ‘bootstrap’ node to avoid this attack.

sor of k (this path is returned by Chord’s successor func- 3.5 Designing a stor age system: balancing load

tion). ) In using Chord as the core of a peer-to-peer storage system
Subsequent lookup operations evaluate the SUCCESSOT e are faced with the problem of efficiently distributing

function step by step using the providetext hop load among nodes despite wide variations in the popularity
method and query each intermediate node/fdhe search of documents. In building this system we must consider

is terminated early if one of these nodes is able to return a oy to map documents to nodes and at what granularity
previously cached. to store documents.

As aresult, va!ues are “smeared” around the Chordring e might consider using DHASH directly as a peer-
near c_orrespondlng successor _nodes. Because the act Ofto-peer storage system. In this design, the contents of a
retrieving a document caches it, popular documents are gocyment are directly inserted into the DHASH system

cached more widely than unpopular documents; this is @ yeved by the hash of either the contents of the document
desirable side-effect of the cache design. Caching reduces perhaps, a human readable name. If one document be-

the path length required to fetch. a value and thergforg t'he comes highly popular, however, the burden of delivering
number of messages per operation: such a reduction is im- 5+ document will not be distributed. The caching scheme

portantgiven that we expect that latency of communication  gescriped in Section 3.3 helps for small documents, but is
between nodes to be a serious performance bottleneck fac- ., practical for very large documents.

ing this system. An alternate approach uses DHASH as a layer of indi-

. . rection: DHASH maps document identifiers to a list of IP
34 Denial of service addresses where that document was available. In this de-
The highly distributed nature of Chord helps it resist many sign DHASH functions analogously to the DNS system but
but not all denial of service attacks. For instance, Chord is does not depend on a special set of root servers as DNS
resistant to attacks that take out some network links since does. Once an IP address is selected, documents are re-
nodes nearby in identifier space are unlikely to have any trieved using some other transfer protocol (HTTP, SSL,
network locality. Additional steps are taken to preclude SFS etc.).
other attacks. Maintaining a dynamically updated list of potential

A Chord-based storage system could be attacked by in- servers for any document solves the problem of popular
serting such a large volume of useless data into the system documents by distributing load among all of the servers in

that legitimate documents are flushed from storage. By ob-
serving that the density of nodes nearby any given node
provides an estimate of the number of nodes in the system
we can partially defend against this attack by limiting the
number of blocks any one node can store in the system.
We make a local decision to fix a block quota based on the
number of nodes in the system, effectively enforcing a fixed
quota for each user on the whole system.
Nodes that could pick their own identifiers could effec-

tively delete a piece of data from the system by positioning

the list. However, this design requires that optimizations
such as caching and redundant storage be implemented
twice: once in the Chord stack and again in the transfer
protocol. We desire a tighter coupling between the solution
to the popular document problem and mechanisms of the
Chord protocol.

This coupling can be achieved by using Chord to map
pieces of documents (blocks), rather than whole docu-
ments, to servers. In this scheme, files are broken into
blocks and each block is inserted into thieASH layer us-

themselves as the data’s successor and then failing to storeing the cryptographic hash of the block’s contents as a key.

it when asked to. This attack can be prevented by requir-
ing that node identifiers correspond to a hash of a node’s IP
address, a fact which can be verified by other nodes in the
system.
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A piece of meta-data, equivalent to an inode in a traditional
file system, is also inserted into the system to provide a sin-
gle name for the file. The equivalence to a file system can
be extending to include directories as well; in our prototype



implementation, names map to a directory of documents
which is mapped into the user’s local namespace when ac-
cessed.

This approach aggressively spreads a single large doc-
ument across many servers, thus distributing the load of
serving it. It also inherits the reliability and performance
enhancements of thBHASH layer with little or no addi-
tional effort. One might note that documents smaller than
the block size are still served by a single node: we count on

Our design deliberately separates questions of
anonymity and deniability from the location primi-
tive. These properties are difficult to add to the Chord
system given the strong mapping between a document and
the node which is responsible for serving that document.
We speculate than overlaying a mix-network [4] on Chord
might allow for anonymous publishing and reading.

Collecting an index of all documents stored in Chord is
a straightforward operation: an indexer might visit every

our caching scheme to distribute these documents and the node in the Chord system by following successor pointers.

load of serving them if they become popular.
The major drawback of this scheme derives from the

Storing an index and servicing queries without resort to a
central authority remains an open question, however. Alter-

same property that made it desirable: because we spreadnatively we could provide a Chord to WWW gateway and
a single document across many servers, for each documentrely on existing WWW indexing services.

we fetch we must pay the cost of sevepalaSH lookups
(and thus several evaluations of the successor function). A
naive implementation might requird*2x°6 . seconds to
fetch anS byte document wher® is the number of servers

in the network,B is the block size and. is the average la-
tency of the network. We hope to hide most of this latency
through aggressive prefetching of data and by selecting a
server from the redundant set which is near (in the network)
the requesting node.

3.6 Authenticity

A Chord-based file system could achieve authenticity guar-
antees through the mechanisms of the SFS read-only
server [9]. In SFSRO, file system blocks are named by
the cryptographic hash of their contents, an inherently un-
forgeable identifier. To name file systems we adopt self-
certifying pathnames [14]: The block containing the root
inode of a file system is named by the public key of the
publisher and signed by that public key. ThBASH layer

can verify that the root inode is correctly signed by the key
under which it is inserted. This prevents unauthorized up-
dates to a file system. Naming file systems by public key

Directing requests to servers nearby in the network
topology is important to reducing the latency of requests.
To do so requires measuring the performance of servers
in the system. However, because Chord aggressively dis-
tributes documents to unrelated servers, in a large network
we are not likely to visit the same server multiple times; this
makes maintaining server performance metrics difficult.

6 Reated work

There has been previous work in the area of decentral-
ized location systems. Chord is based on consistent hash-
ing [10]; its routing information may be thought of as a one-
dimensional analogue of the GRID [12] location system.
OceanStore [11] uses a distributed data location system de-
scribed by Plaxton et al. [7], which is more complicated
than Chord but offers proximity guarantees. CAN uses a
d-dimensional Cartesian coordinate space to implement a
distributed hash table data structure [16]. CAN operations
are easy to implement, but an aditional maintenance pro-
tocol is required to periodically remap the identifier space

does not produce easily human readable file names; this is onto nodes. The Chord algorithm is also very similar to the

not a serious shortcoming, however, in a hypertext environ-
ment, or one that is indexed or provides symbolic links.

4 Status

The system described is under development. The Chord
protocol has been designed, implemented, and tésRuet
sults of testing with up to 1,000 nodes on the Berkeley
Millennium Cluster demonstrate that Chord’s performance
scales well with the size of the system. We have also im-
plemented the DHASH layer and a file system; in the same
testing environment and on a geographically diverse net-
work both demonstrated good load balancing properties.

5 Open problems

A number of open problems face applications built on the
Chord framework.

1The delete operation has not been implemented yet
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location algorithm in PAST [15].

Anonymous storage systems such as Freenet [5], Pub-
lius [13] and the Free Haven Project [8] use encryption,
probabilistic routing, or secret-sharing schemes to guaran-
tee clients and publishers anonymity. This anonymity guar-
antee often leads to design compromises that limit reliabil-
ity and performance. Chord separates problems like these
from the design of routing and file transfer protocols.

Napster [2], Gnutella [1], and Ohaha [3] provide a non-
anonymous file sharing service similar to that of the shar-
ing application presented here. Chord’s location algorithm
is more efficient than Gnutella’s broadcast based routing;
the decentralized nature of Chord eliminates a single point
of failure present in Napster. The Ohaha system [3] uses
a consistent hashing-like algorithm for ID mapping, and a
Freenet-style method of document retrieval; it shares some
of the weaknesses of Freenet.
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Conclusions

The performance and reliability of existing peer-to-peer
systems have been limited by inflexible architectures that
attempt to find one solution for many problems. By us-
ing the Chord primitive to separate the problem of location
from the problems of data distribution, authentication and

anonymity, peer-to-peer systems are able to decide where

to compromise and as a result offer better performance, re-
liability and authenticity.
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more-scalable systems, according to published documen-
tation, only claims that its “SmartSockets system was de-
signed to scale to thousands of users (or processes)” [14,
p. 17].

While scalability to millions of users has been dem-
onstrated by centralized systems, such as the MSN and
AOL Instant Messenger systems, we do not believe that a
truly global general-purpose system can be achieved by
means of such centralized solutions, if for no other reason
than that there are already multiple competing systems in
use. We believe that the only realistic approach to pro-
viding a global event notification system is via a federated
approach, in which multiple, mutually suspicious parties
existing in different domains of trust interoperate with
each other.

A federated approach, in turn, implies that the defin-
ing aspect of the design will be the interaction protocols
between federated peers rather than the specific architec-
tures of client and server nodes. In particular, one can
imagine scenarios where one node in the federation is
someone’s private PC, serving primarily its owner’s
needs, and another node is a mega-service, such as the

Abstract

This paper presents the design philosophy and initial
design decisions of Herald: a highly scalable global event
notification system that is being designed and built at
Microsoft Research. Herald is a distributed system de-
signed to transparently scale in all respects, including
numbers of subscribers and publishers, numbers of event
subscription points, and event delivery rates. Event deliv-
ery can occur within a single machine, within a local
network or Intranet, and throughout the Internet.

Herald tries to take into account the lessons learned
from the successes of both the Internet and the Web. Most
notably, Herald is being designed, like the Internet, to
operate correctly in the presence of numerous broken and
disconnected components. The Herald service will be
constructed as a set of protocols governing a federation
of machines within cooperating but mutually suspicious
domains of trust. Like the Web, Herald will try to avoid,
to the extent possible, the maintenance of globally con-
sistent state and will make failures part of the client-
visible interface.

1. Introduction MSN Instant Messenger service, which serves millions of
The function of event notification systems is to de- subscribers within its confines.
liver information sent by event publishers to clients who The primary goal of the Herald project is to explore

have subscribed to that information. Event notification is a the scalability issues involved with building a global event
primary capability for building distributed applications. It ~ notification system. The rest of this paper describes our
underlies such now-popular applications as “instant mes- design criteria and philosophy in Section 2, provides an
senger” systems, “friends on line”, stock price tracking, overview of our initial design decisions in Section 3, dis-
and many others [7, 3, 13, 16, 10, 15]. cusses some of the research issues we are exploring in

Until recently, most event notification systems were Section 4, presents related work in Section 5, and con-
intended to be used as part of specific applications or in cludes in Section 6.

localized settings, such as a single machine, a building, or 2. Goals, Non-Goals, and Design Strategy
a campus. With the advent of generalized eCommerce The topic of event notification systems is a broad one,

global event notitcation systems.that can nerconnect COVEliNg everyhing fom basic message delivery issues to
dynamically changing sets of clients and services, as well questions about the semantic richness o_f_chent subscr_lp-
as to enable the construction of Internet-scale diétributed tion mterests: our focus_ 'S on the scalability of the basic
applications. Such global event natification systems will message delivery and d.IS'[I’Ibute('j sFate managemen.t.capa-
need to scale to millions and eventually billions of users. b'“t'es that must underlie any dlstrlbu_ted event nOt'f'C.a'
To date, general event notification middleware im- tion system. We assume, at least until proven otherw!se,
’ that an event naotification system can be decomposed into

plementations are only a_ble to scale to_relatlvely small a highly-scalable base layer that has relatively simple se-
numbers of clients. For instance, Talarian, one of the
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Figure 1: Herald Event Notification Model

mantics and multiple higher-level layers whose primary
purposes are to provide richer semantics and functionality.

Consequently, we are starting with a very basic event e
notification model, as illustrated in Figure 1. In Herald,
the termEvent refers to a set of data items provided at a
particular point in time by gublisher for a set ofsub-
scribers. Each subscriber receives a private copy of the
data items by means of aotification message. Herald o
does not interpret the contents of the event data.

A Rendezvous Point is a Herald abstraction to which
event publications are sent and to which clients subscribe
in order to request that they be notified when events are
published to the Rendezvous Point. An illustrative se-
guence of operations is: (1) a Herald client creates a new
Rendezvous Point, (2) a client subscribes to the Rendez-
vous Point, (3) another client publishes an event to the
Rendezvous Point, (4) Herald sends the subscriber the ®
event received from the publisher in step 3.

This model remains the same in both the local and the
distributed case. Figure 1 could be entirely upon a single
machine, each of the communicating entities could be on
separate machines, or each of them could even have dis-
tributed implementations, with presence on multiple ma-
chines.

2.1 Herald Design Criteria o
Even with this simple model, there are still a variety

of design criteria we consider important to try to meet:

e Heterogeneous Federation: Herald will be con-
structed as a federation of machines within cooperat-
ing but mutually suspicious domains of trust. We
think it important to allow the coexistence of both
small and large domains, containing both impover-
ished small device nodes and large mega-services.

e Scalability: The implementation should scale along
all dimensions, including numbers of subscribers and
publishers, numbers of event subscription points,
rates of event delivery, and number of federated do-
mains.
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Resilience: Herald should operate correctly in the
presence of numerous broken and disconnected com-
ponents. It should also be able to survive the presence
of malicious or corrupted participants.
Self-Administration: The system itself should make
decisions about where data will be placed and how in-
formation should be propagated from publishers to
subscribers. Herald should dynamically adapt to
changing load patterns and resource availability, re-
quiring no manual tuning or system administration.
Timeliness: Events should be delivered to connected
clients in a timely enough manner to support human-
to-human interactions.

Support for Disconnection: Herald should support
event delivery to clients that are sometimes discon-
nected, queuing events for disconnected clients until
they reconnect.

Partitioned operation: In the presence of network
partitions, publishers and subscribers within each
partition should be able to continue communicating,
with events being delivered to subscribers in previ-
ously separated partitions upon reconnection.
Security: It should be possible to restrict the use of
each Herald operation via access control to authenti-
cated authorized parties.

2.2 Herald Non-Goals

As important as deciding what a systevill do is de-

ciding what itwill not do. Until the need is proven, Herald
will avoid placing separable functionality into its base
model. Excluded functionality includes:

Naming: Services for naming and locating Rendez-
vous Points are not part of Herald. Instead, client
programs are free to choose any appropriate methods
for determining which Rendezvous Points to use and
how to locate one or more specific Herald nodes
hosting those Rendezvous Points. Of course, Herald
will need to export means by which one or more ex-
ternal name services can learn about the existence of
Rendezvous Points, and interact with them.

Filtering: Herald will not allow subscribers to re-
quest delivery of only some of the events sent to a
Rendezvous Point. A service that filters events, for
instance, by leveraging existing regular expression or
query language tools, such as SQL or Quilt engines,
and only delivering those matching some specified
criteria, could be built as a separate service, but will
not be directly supported by Herald.

Complex Subscription Queries. Herald has no no-
tion of supporting notification to clients interested in
complex event conditions. Instead, we assume that
complex subscription queries can be built by deploy-
ing agent processes that subscribe to the relevant
Rendezvous Points for simple events and then publish



an event to a Rendezvous Point corresponding to the [5, 6]. The success of these systems implies that overlay
complex event when the relevant conditions over the networks are an effective means for distributing content to
simple event inputs become true. large numbers of interested parties. We plan to explore the

e In-Order Délivery: Because Herald allows delivery  use of dynamically generated overlay networks among
during network partitions—a normal condition for a Herald nodes to distribute events from publishers to sub-
globally scaled system—different subscribers may scribers.

observe events being delivered in different orders. 3. Design Overview
2.3 Applying the Lessons of the Internet and the This section describes the basic mechanisms that we
Web are planning to use to build Herald. These include repli-

Distributed systems seem to fall into one of two cate- cation, overlay networks, ageing of soft state via time
gories—those that become more brittle with the addition contracts, limited event histories, and use of administra-
of each new component and those that become more re- tive Rendezvous Points for maintenance of system meta-
silient. All too many systems are built assuming that com- State. While none of these are new in isolation, we believe
ponent failure or corruption is unusual and therefore a that their combination in the manner employed by Herald
special case—often poorly handled. The result is brittle is both novel, and useful for building a scalable event no-
behavior as the number of components in the system be- tification system with the desired properties. We hypothe-
comes large. In contrast, the Internet was designed as- Size that these mechanisms will enable us to build the rest
suming many of its components would be down at any of Herald as a set of distributed policy modules.
given time. Therefore its core algorithms had to be toler- 31 Replication for Scaling
ant of this normal state of affairs. As an old adage states: When a Rendezvous Point starts causing too much

“The best way to build a reliable system is out of pre- raffic at a particular machine, Herald’s response is to
sumed-to-be-broken parts.” We believe this to be a crucial move some or all of the work for that Rendezvous Point to
design methodology for building any large system. another machine, when possible. Figure 2 shows a possi-
Another design methodology of great interest to us is  ple state of three Herald server machines at locations L1,
derived from the Web, wherein failures are basically L2, and L3, that maintain state about two Rendezvous

thrown up to users to be handled, be they dangling URL points, RP1 and RP2. Subscriptions to the Rendezvous
references or failed retrieval requests. Stated somewhat points are shown as Smtand publishers to the Rendez-

flippantly: “If it's broken then don’t bother trying to fix vous Points are shown as Rub

it.” This minimalist approach allows the basic Web op- The implementation of RP1 has been distributed
erations to be very simple—and hence scalable—making among all three server locations. The Herald design al-
it easy for arbitrary clients and servers to participate, even |ows potential clients (both publishers and subscribers) to

if they reside on resource-impoverished hardware. interact with any of the replicas of a Rendezvous Point for
Applied to Herald, these two design methodologies any operations, since the replicas are intended to be func-

have led us to the following decisions: tionally equivalent. However, we expect that clients will

e Herald peers treat each other with mutual suspicion typically interact with the same replica repeatedly, unless
and do not depend on the correct behavior of any directed to change locations.

given, single peer. Rather, they depend on replication
and the presence of sufficiently many well-behaved
peers to achieve their distributed systems goals.

e All distributed state is maintained in a weakly con-
sistent soft-state manner and is aged, so that every-
thing will eventually be reclaimed unless explicitly
refreshed by clients. We plan to explore the implica-
tions of making clients responsible for dealing with
weakly consistent semantics and with refreshing the
distributed state that is pertinent to them.

o All distributed state is incomplete and is often inac-
curate. We plan to explore how far the use of partial,
sometimes inaccurate information can take us. This is
in contrast to employing more accurate, but also more
expensive, approaches to distributed state manage-
ment.

Another area of Internet experience that we plan to
exploit is the use of overlay networks for content delivery

3.2 Replication for Fault-Tolerance

Individual replicas do not contain state about all cli-
ents. In Figure 2, for instance, Sub5’s subscription is re-
corded only by RP1@L3 and Pub2’s right to publish is
recorded only by RP2@L1. This means that event notifi-
cations to these subscriptions would be disrupted should
the Herald servers on these machines (or the machines
themselves) become unavailable.

For some applications this is perfectly acceptable,
while for others additional replication of state will be nec-
essary. For example, both RP1@L1 and RP1@L2 record
knowledge of Sub2’s subscription to RP1, providing a
degree of fault-tolerance that allows it to continue receiv-
ing notifications should one of those servers become un-
available.

Since RP1 has a replica on each machine, it is toler-
ant of faults caused by network partitions. Suppose L3
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Figure 2: Replicated Rendezvous Point RP1

became partitioned from L1 and L2. In this case, Publ

could continue publishing events to Subl, Sub2, and Sub4
and Pub3 could continue publishing to Sub5. Upon recon-

nection, these events would be sent across the partition to
the subscribers that hadn't yet seen them.

Finally, note that since it isn’t (yet) replicated, should
Herald@L1 go down, then RP2 will cease to function, in
contrast to RP1, which will continue to function at loca-
tions L2 and L3.

3.3 Overlay Distribution Networks

Delivery of an event notification message to many
different subscribers must avoid repeated transmission of
the same message over a given network link if it is to be
scalable. Herald implements event notification by means
of multicast-style overlay distribution networks.

The distribution network for a given Rendezvous
Point consists of all the Herald servers that maintain state
about publishers and/or subscribers of the Rendezvous
Point. Unicast communications are used to forward event
notification messages among these Herald servers in much
the same way that content delivery networks do among
their interior nodes. However, unlike most content deliv-
ery networks, Herald expects to allow multiple geographi-
cally distributed publishers. Delivery of an event notifica-
tion message to the subscribers known to a Herald server
is done with either unicast or local reliable multicast
communications, depending on which is available and
more efficient.

In order to implement fault tolerant subscriptions,
subsets of the Herald servers implementing a Rendezvous
Point will need to coordinate with each other so as to
avoid delivering redundant event notifications to sub-

scribers. Because state can be replicated or migrated be-

tween servers, the distribution network for a Rendezvous
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Point can grow or shrink dynamically in response to
changing system state.

3.4 Time Contracts

When distributed state is being maintained on behalf
of a remote party, we associate a time contract with the
state, whose duration is specified by the remote party on
whose behalf the state is being maintained. If that party
does not explicitly refresh the time contract, the data asso-
ciated with it is reclaimed. Thus, knowledge of and state
about subscribers, publishers, Rendezvous Point replicas,
and even the existence of Rendezvous Points themselves,
is maintained in a soft-state manner and disappears when
not explicitly refreshed.

Soft state may, however, be maintained in a persistent
manner by Herald servers in order to survive machine
crashes and reboots. Such soft state will persist at a server
until it is reclaimed at the expiration of its associated time
contract.

3.5 Event History

Herald allows subscribers to request that a history of
published events be kept in case they have been discon-
nected. Subscribers can indicate how much history they
want kept and Herald servers are free to either accept or
reject requests.

History support imposes a storage burden upon Her-
ald servers, which we bound in two ways. First, the crea-
tor of a Rendezvous Point can inform Herald of the
maximum amount of history storage that may be allocated
at creation time. As with subscriptions, servers are free to
reject creation requests requiring more storage than their
policies or resources allow.

Second, because clients and servers both maintain
only ageing soft state about one another, event history



information kept for dead or long-unreachable subscribers
will eventually be reclaimed.

While we recognize that some clients might need only
a synopsis or summary of the event history upon recon-
nection, we leave any such filtering to a layer that can be
built over the basic Herald system, in keeping with our
Internet-style philosophy of providing primitives on which
other services are built. Of course, if the last event sent
will suffice for a summary, Herald directly supports that.

3.6 Administrative Rendezvous Points

One consequence of name services being outside
Herald is that when Herald changes the locations at which
a Rendezvous Point is hosted, it will need to inform the

relevant name servers of the changes. In general, there

may be a variety of parties that are interested in learning

about changes occurring to Rendezvous Points and the

replicas that implement them.

Herald notifies interested parties about changes to a
Rendezvous Point by means of asministrative Rendez-
vous Point that is associated with it. By this means we
plan to employ a single, uniform mechanism for all client-
server and server-server notifications.

Administrative Rendezvous Points do not themselves
have other Administrative Rendezvous Points associated
with them. Information about their status is communicated
via themselves.

4. Research Issues

In order to successfully build Herald using the
mechanisms described above, we will have to tackle a
number of research issues. We list a few of the most nota-
ble ones below.

The primary research problem we face will be to de-
velop effective policies for deciding when and how much
Rendezvous Point state information to move or replicate
between servers, and to which servers. These policies will
need to take into account load balancing and fault-
tolerance concerns, as well as network topology consid-
erations, for both message delivery and avoidance of un-
wanted partitioning situations. Some of the specific topics
we expect to address are:
determining when to dynamically add or delete serv-
ers from the list of those maintaining a given Rendez-
vous Point,
dynamic placement of Rendezvous Point state—espe-
cially event histories—to minimize the effects of po-
tential network partitions,
dynamically reconfiguring distributed Rendezvous
Point state in response to global system state changes,
dealing with “sudden fame”, where an Internet-based
application’s popularity may increase by several or-
ders of magnitude literally overnight, implying that
our algorithms must stand up to rapid changes in
load.
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Since we plan to rely heavily on partial, weakly con-
sistent, sometimes inaccurate, distributed state informa-
tion, a key challenge will be to explore how well one can
manage a global service with such state. Equally impor-
tant will be to understand what the cost of disseminating
information in this fashion is.

It is an open question exactly how scalable a reliable
multicast-style delivery system can be, especially when
multiple geographically dispersed event publishers are
allowed and when the aggregate behavior of large num-
bers of dynamically changing Rendezvous Points is con-
sidered. In addition, Herald requires that event notifica-
tions continue to be delivered to reachable parties during
partitions of the system and be delivered “after the fact” to
subscribers who have been “disconnected” from one or
more event publication sources. To our knowledge, op-
eration of delivery systems under these circumstances has
not yet been studied in any detail.

Herald’s model of a federated world in which foreign
servers are not necessarily trustworthy implies that infor-
mation exchange between servers may need to be secured
by means such as Byzantine communication protocols or
statistical methods that rely on obtaining redundant infor-
mation from multiple sources. Event notification messages
may need to be secured by means such as digital signa-
tures and “message chains”, as described, for example, in
[12].

Another scaling issue is how to deal with access con-
trol for large numbers of clients to a Rendezvous Point.
For example, consider the problem of allowing all 280
million U.S. citizens access to a particular Rendezvous
Point, but no one else in the world.

Finally, Herald pushes a number of things often pro-
vided by event naotification systems, such as event order-
ing and filtering, to higher layers. It is an open question
how well that will work in practice.

5. Related Work

The Netnews distribution system [8] has a number of
attributes in common with Herald. Both must operate at
Internet scale. Both propagate information through a
sparsely connected graph of distribution servers. The big-
gest difference is that for Netnews, human beings design
and maintain the interconnection topology, whereas for
Herald, a primary research goal is to have the system
automatically generate and maintain the interconnection
topology. The time scales are quite different as well. Net-
news propagates over time scales of hours to weeks,
whereas Herald events are intended to be delivered nearly
instantaneously to connected clients.

A number of peer-to-peer computing systems, such as
Gnutella [2], have emerged recently. Like Herald, they are
intended to be entirely self-organizing, utilizing resources
on federated client computers to collectively provide a
global service. A difference between these services and



Herald is that the former typically use non-scalable algo- [4]
rithms, including broadcasts. Unlike Herald, with the ex-
ception of Farsite [1], these services also typically ignore
security issues and are ill prepared to handle malicious ]
participants.

Using overlay networks for routing content over the
underlying Internet has proven to be an effective method-
ology. Examples include the MBONE [11] for multicast,
the 6BONE [4] for IPv6 traffic, plus content distribution
networks such as Overcast [6] and Inktomi’s broadcast
overlay network [5]. They have demonstrated the same
load-reducing benefits for information dissemination to
large numbers of clients needed for Herald. However,
most work has focused on single-sender dissemination (8]
networks.  Furthermore, they have not investigated
mechanisms and appropriate semantics for continued op-
eration during partitions.

The OceanStore [9] project is building a global-scale
storage system using many of the same principles and
techniques planned for Herald. Both systems are built
using unreliable servers, and provide reliability through
replication and caching. Both intend to be self-monitoring
and self-tuning.

6. Conclusions

Global event notification is emerging as a key tech-
nology underlying numerous distributed applications.
With the requirements imposed by use of these applica-
tions at Internet scale, the need for a highly scalable event
notification system is clear.

We have presented the requirements and design over-
view for Herald, a new event notification system designed
to fill this need. We are currently implementing the
mechanisms described in this paper and are planning to
then experiment with a variety of different algorithms and
policies to explore the research issues we have identified.
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Abstract

Magnetic RAM (MRAM) is a new memory technology with
access and cost characteristics comparable to those of
conventional dynamic RAM (DRAM) and the non-volatil-
ity of magnetic media such as disk. Smply replacing
DRAM with MRAM will make main memory non-volatile,
but it will not improve file system performance. However,
effective use of MRAM in a file system has the potential to
significantly improve performance over existing file sys-
tems. The HeERMESfile system will use MRAM to dramati-
cally improve file system performance by using it as a
permanent store for both file system data and metadata. In
particular, metadata operations, which make up over 50%
of all file system requests [14], are nearly freein HERMES
because they do not require any disk accesses. Data
requests will also be faster, both because of increased
metadata request speed and because using MRAM as a
non-volatile cache will allow HERMES to better optimize
data placement on disk. Though MRAM capacity is too
small to replace disk entirely, HERMESwill use MRAM to
provide high-speed access to relatively small units of data
and metadata, leaving most file data stored on disk.

1. Introduction

Current file systems are optimized for the assumption

performane, Reliable, M RAM-EnabledStorage) file sys-
tem to dramatically improve file system performance by
storing metadata and some data in MRAM. Since MRAM
will have cost comparable to that of DRAM, it cannot
totally replace disk or other types of secondary storage
such as MEMS [9]. Rather, we are researching the most
effective ways to use limited amounts of MRAM in a file
system.

An MRAM-based file system such as HeRMES has
several major advantages over existing file systems in both
performance and reliability. As we discuss in this paper,
using MRAM in the file system can reduce the cost of
metadata operations to nearly zero, leaving them limited
solely by CPU speed. It also increases the speed of file
reads and writes both by reducing metadata overhead and
by allowing the file system to better lay out data on disk by
buffering writes longer in safe MRAM. File system reli-
ability is also greatly improved. Simplifying metadata
structures results in less complex and more reliable soft-
ware. Keeping metadata in MRAM also allows HeERMES
to run consistency checks on the file system in the back-
ground during normal operation, allowing errors to be
caught early, before they spread.

2. HERMES design

The HeRMES file system is built from the ground up

that the only stable storage in the system is a block-ori- Using two assumptions that differ from current file sys-
ented, high-latency device such as a disk. As a result, t€ms: metadata accesses need not be in large contiguous
existing file systems use data structures and algorithms blocks, and metadata accesses take microseconds (at most)
that transfer data in large units and take great pains to rather than milliseconds. These assumptions differ from
ensure that the file system’s image on disk remains inter- those underlying disk-based file systems, which require
nally consistent. If the file system includes any non-vola- Milliseconds to access blocks of data.

tile memory (NVRAM), there is usually a limited amount

used as a temporary storage area to facilitate staging date2.1. M etadata management

to disk.

Magnetic RAM (MRAM) [4] is a new memory tech-

HeRMES maintains all of its metadata in MRAM,

nology, currently in development, with the speed, density, avoiding the need to access the disk for metadata requests.
and cost of DRAM and the non-volatility of disk. We are The ability of MRAM to handle single-word reads and

investigating the use of MRAM in the HeERMEBi¢h-

writes further benefits HERMES by allowing it to use



much simpler data structures. For example, the B+-trees ever, writes with HeRMES are safe once they are written
used in XFS [16] make efficient use of large blocks at the to MRAM. This allows HeRMES to postpone writes as
expense of file system complexity. HeERMES, on the other long as desired without fear of data loss due to a system
hand, can use simpler data structures such as binary treegrash.

and hash tables with in-memory semantics because it does The write buffer in HeRMES is similar to that in sys-
not need to allocate and reference structures in largetems with NVRAM, with two important differences:

blocks.

Keeping all metadata in MRAM could be prohibitive
for traditional file systems, which can require up to a
1-2% overhead for metadata; 600 MB of DRAM for a
60 GB disk may be too expensive, with memory costs
exceeding those of disk. HERMES, in contrast, will make

MRAM is considerably faster than NVRAM, and meta-
data updates accompanying a write are done immediately
in MRAM. Writes to MRAM are considerably faster than
writes to flash RAM, which can require more than two
milliseconds. MRAM’s faster write time reduces the win-
dow of vulnerability during which data can be lost from a

extensive use of compression and variable-sized alloca- system failure.

tions to drastically reduce needed space, avoiding this Because MRAM is a long-term stable store, data writ-
problem. For example, an inode in Unix might require 128 ten there can be kept as long as necessary. This allows
bytes; there would be little benefit to reducing its size on HeRMES to optimize data placement on disk, reducing
disk because retrieval time is dominated by access latencytime wasted to disk access latency. Existing file systems
which would not be reduced for smaller objects. It might do this as well, but they run the risk of data loss if they
be possible to save small amounts of DRAM at the hold data in the write buffer too long. Many systems with
expense of transforming the inode when transferring it “non-volatile” RAM actually use battery-backed RAM,
between disk and memory, but using information from which can lose data because of dead batteries in addition
other inodes to do the compression would be difficult. to the usual dangers of storing data in RAM.

HeRMES, however, can use commonalities between

inodes to reduce required space. For example, each file's2.3. MRAM file storage

inode can contain a pointer to an access control list; since

many of a user’s files have identical permissions, their MRAM may also be useful for disk reads, particularly
inodes can share a single list. File index pointers can alsojf there is a relatively large amount of MRAM in the sys-
benefit from compression and variable-sized memory- tem. Disk latencies are currently around 5-10 ms; in that
style allocation. Many file systems use extents to compresstime, a disk can transfer 64—128 KB of data. The file sys-
index lists; by storing lists of extents in variable-sized tem can keep the first few blocks of each file in MRAM,
blocks of MRAM, HeRMES can eliminate wasted space.  transferring the data out of MRAM while the disk seek is
One potential problem with keeping metadata in completed. Combining this technique with file access pre-
MRAM is that it may betoo easy to modify data struc-  diction and clustering on secondary storage [1] will further
tures, potentially causing file system inconsistency. Wild improve performance by reserving the scarce MRAM
references in the file system (or elsewhere in the operatingresource for “live” data. As probe-based storage [9]
system) could overwrite valid metadata in MRAM, cor- becomes available, this technique will become more effec-
rupting the file system. HeRMES will avoid this problems tive because the latency to data on secondary storage will
using techniques similar to those in Rio [12]. By keeping be lower, reducing the amount of file data that must be
file system MRAM protected except when explicitly nec- buffered in MRAM and increasing the number of files for
essary, HeRMES will ensure that only desired changes arewhich such buffering is possible.
made to MRAM. The process of switching a page from  As with write buffering, caching file headers (or entire
read-only to read-write in the page table is fast, and will files, if they are small) is not a new technique. However,
not significantly slow down HeRMES MRAM operations, MRAM makes this technique more attractive because it
particularly since it is only necessary when metadata is allows the structures to survive power loss and system

modified.
2.2. MRAM write buffer

Like most file systems, HeRMES will buffer writes in

memory for several reasons: allowing a process to con-

tinue without waiting for a write to go to disk, reordering

reboot, enabling the file system to build such a cache over
time without the need to preserve it on disk or reload it
after a system restart.

3. Performance

HeRMES can significantly outperform existing file sys-

writes to minimize disk latency, and waiting in the hope tems for several reasons. First, metadata operations in
that a file will be deleted. Unlike many file systems, how- HeRMES are nearly free because they only require mem-
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ory-type accesses. Table 1 shows several common file sys-metric multiprocessor systems; again, HERMES can use
tem request types [14], noting the disk operations neededrelatively course-grained locking and still maintain low
to satisfy each one. Existing file systems cache metadata inlevels of lock contention.

DRAM, updating the original on disk when changes occur.

Though they can eliminate many (but not all) disk reads by 4, Reliability

caching, metadata writes must go through to disk to ensure

consistency, and writes often have a partial order enforced  File system reliability is, for many users, more impor-
on them to maintain file system consistency [13]. HeR- tant than performance: getting the correct data later is bet-
MES, on the other hand, handles disk requests in the ter than getting erroneous data now. HeRMES can provide
shaded columns entirely in MRAM, leaving only file data high performance, as seen in Section 3, without sacrificing
reads and writes to use the disk. This results in dramati- reliability. Moreover, HERMES will be more reliable than
cally faster metadata operations, requiring microseconds existing file systems for several reasons, including lower
rather than milliseconds to complete. Moreover, data software complexity and the ability to continuously check
writes can be safely buffered in MRAM indefinitely, as the system for consistency.

described in Section 2.2, further decreasing latency from

user write to “safe” commit of the data. 4.1. Reducing softwar e complexity

Table 1. Disk I/O needed for file system requests.

By using relatively simple structures in MRAM, HeR-

Type of disk requests needed MES reduces software complexity, making file system

Request Global File File File software more reliable. Simple data structures are well-
metadata | metadata| index | data understood and less prone to programming errors, reduc-
File stat (50%)| - read _ - ing the likelihood that a bug will be hidden in thousands of

lines of complex code. Because MRAM is so much faster

. - d d d . . .
File read (20% Jv?ft‘e rea rea than disk, there will be less temptation for programmers to
5 5 5 5 take shortcuts that save a few microseconds, making it less
File write (5%) rea rea rea rea likely that such a shortcut will malfunction.
write write write write

The lower number of locks needed in HeERMES also

Because HeRMES metadata operations are limited only increase software reliability. With metadata operations
by CPU speed, the file system can satisfy them in the time locking up structures for around &8, there is no need for
it takes to execute the metadata operation in the CPU. Forthousands of locks in the file system. On a uniprocessor
existing file systems, 20,000 — 40,000 operations are suffi- System, in fact, a single lock for the entire metadata struc-
cient to execute a file system request; this is 40 {@s8h ture is sufficient because operations are CPU-bound and
a modern processor, allowing a single processor file serverthus gain minimal benefit from interleaved requests. Even
to handle about 25,000 metadata operations per secondjn multiprocessor file servers, a relatively small number of
HeRMES will likely be able to do more operations per locks—at most one per file (for metadata), one for disk
second because it can use simpler data structures (and thugllocation, and one for memory allocation—will be suffi-
fewer instructions to manipulate them) and has no need to cient to guarantee that processors are not waiting on file
spend instructions on managing disk I/O. If a file server system locks. The net result is a lower probability of dead-
provides, on average, one 4 KB file block for every two lock as well as less chance that data will be improperly
metadata operations, such a server could sustain 50 MBmodified.
per second using a single commodity CPU.

The simple MRAM-resident data structures in HeR- 4.2. Metadata checking
MES can provide added speed in another way: reduced
lock contention. Disk-based file systems must use fine- HeRMES will also take an active approach to protect-
grained locking to ensure high levels of concurrency in the ing file system consistency by continuously checking the
face of relatively long metadata operations. In particular, metadata structures while the system is running. A back-
operations that require reading data from disk can hold ground process checking 2,000 files per second can fully
locks for milliseconds, potentially causing contention for check a system with ten million files in less than 90 min-
locks. HERMES, in contrast, can complete metadata readsutes, yet it demands less than 10% of the system’s
or updates in less than 100 microseconds. This time is resources to do so.
shorter than the scheduling quantum on many systems, Checking the file system’s metadata while the system is
and is thus less likely to result in high levels of lock con- operating increases reliability in several ways. First, it is
tention. The contention problem is exacerbated on sym- often easier to write a program tlugtects an error than it
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is to write a file system that doesn’t produce errors in the 5, Related wor k

first place. Merely detecting the error may be sufficient to

attempt correcting it, or at least to prevent it from spread-  Our work builds on many areas of file system research,
ing to the rest of the file system. Second, most existing file but research into non-volatile RAM (NVRAM) systems
systemsnever have their metadata checked. They rely on and schemes to reduce latency for disk accesses, particu-
logging [10] and other techniques to recover quickly from larly metadata, is most relevant.

a crash, but they do not examine metadata written during ~ Douglis [6] and Wu [17] proposed the use of NVRAM
normal operation. This is necessary because a full check oft© hold an entire file system. This approach is acceptable

the metadata on a large file system with ten million files E){/Rfll\?“\_’elty small file tsystelms, db'u|t< fMRAM (ll'ke
might take hours, if not days, and would consume most of ) 1s too expensive to replace disk for general pur-

the disk bandwidth during that time. Third, extremely pose file systems. Additionally, the flash RAM used in

| il ‘ teri blem: these systems does not support single word writes; instead,
?rge ne sys gms are ngw encountering a new problem. ;, requires 1-2 ms (or more) to write a relatively large
disk unreliability due to firmware errors and undetectable .k of data. This prevents fine-grained modification of

bit errors is becoming a concern. A bit error rate 6t40 data in non-volatile memory. In eNVy [17], copy-on-write
becomes a problem when file systems store a terabyte ofand puffering were used to get around the long erase
data because bit errors may go unnoticed for days. Ratheratency of flash RAM; this approach required extensive
than do continuous checks, though current file systems garbage collection similar to that used in log-structured
must assume that their code does not contain any bugs andile systems [3,15].
that the underlying media is reliable, assumptions that are NVRAM has long been used for recovery and file sys-
increasingly less likely as file systems grow larger and tem reliability [2], again with the restrictions of small size
more complex. and coarse-grained write access. In such systems,
NVRAM is used as a non-volatile cache for disk, but data
) “lives” on disk. This design improves file system reliabil-
4.3. Backing up metadata ity by reducing the window of vulnerability for written
data and improves performance by relaxing metadata write
MRAM, like any other part of a computer, will be sub- constraints. However, it does not allow the rich metadata
ject to component failure. Because MRAM is the only Structures possible when metadata is permanently resident
place metadata is stored, HeRMES must guard against!" MRAM, and writes m_ust S'tlll be sen'_c to disk, requiring
MRAM failure. It does so by logging metadata changes to disk seek.s and consumlnlg d'S'.( bandwidth. . .
a location other than that holding the MRAM. This can be _Teghnlques for redu_cmg d|sk_l_atency and improving
done in several ways. The first option is to write metadata reliability for metadata include writing data to the nearest

changes to disk. This is very similar to logging, but does free disk blocks ~[7,11], _Iogglng [10], and soft
. S updates [13]. All of these techniques reduce access latency
not involve the same ordering issues that metadata update

. . o Sor writes, but none reduces tmamber of blocks that
in conventional systems suffer. The second option is t0 st he written. Additionally, these techniques use little

keep the metadata log in a different bank of MRAM than  heyond caching to speed up metadata read access. Another
that holding the original metadata. If MRAM can be technique, combining metadata with file data [8], allows
removed from a computer, placed in a new one, and its data and metadata for small files to be read and written in a
contents read, this solution is sufficient to back up meta- single contiguous request. However, this technique was
data at very little cost. only tried with relatively small files.

In either case, metadata update logging requires very
little space. The majority of metadata updates are times-
:\{;}g}rg Tgr?::)ll(gucr):séji\ll‘\ilcf:]:tir;rf?nt:lfertxgrr:e:p;qc:'fivt\)lv?g\t/i? ' Our research into using MRAM for file sy;tems, specif-

! " ically HeRMES, has just begun. In this paper, we
MRAM can F’“ﬁer cha-mges.and flush Fhem to disk several described several ways in which MRAM can be used to
times per minute. Using this mechanism means that total improve file system performance, but many questions
MRAM failure (chip failure) can lose small amounts of emain. For example, what happens if MRAM is limited?
data, but that consistency is not affected. It is important to |f insufficient MRAM is available for all of the metadata,
remember that chip failure is not a common source of how can HeRMES efficiently transform in-memory struc-
computer failure, and that chip failure affeatkfile sys- tures to on-disk structures for infrequently used files?
tems that use memory for caching and buffering. What is the correct tradeoff between using MRAM for

6. Current research

86



metadata, write buffering, and other uses such as caching[4]
the first few blocks of a file to reduce access latency?

We are also exploring issues related to using MRAM
across a distributed file system. Clearly, some form of
sharing, perhaps similar to cooperative caching [5], will be
necessary to fully utilize MRAM in such a system. How- 5]
ever, there will be differences as well—the access latency
across a network, while lower than that of disk, is consid-
erably higher than that of MRAM.

We are just at the beginning of research into using the
new technology of MRAM in file systems, and there are [6]
many avenues of research that we will pursue.

7. Conclusions 7
Magnetic RAM will be available commercially within

a few years; it is crucially important that file system

designers incorporate it into file systems and use it effec-

tively. We have shown how magnetic RAM can be used to

dramatically improve file system performance and reliabil-

ity. Our file system, HeRMES, will keep metadata in [qg]

MRAM, allowing nearly free metadata operations limited

only by CPU speed. Because MRAM is non-volatile, there

is never a need to flush metadata to disk, also improving

file system data bandwidth by freeing disk from the need [10)

to handle frequent metadata accesses.

(8]

File system reliability also benefits from the use of
MRAM. The simpler metadata structures possible using [11]
MRAM will reduce file system complexity, and thus
increase software reliability. Background metadata consis-
tency checking, likewise, will increase the chance than an [12]
error will be found, increasing file system reliability by
snuffing out errors as soon as they happen. It is this combi-
nation of performance and reliability that makes MRAM
attractive as a technology for incorporation into file sys-
tems.

(13]
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Abstract

This white paper promotes a new approach to network
security in which each individual device erects its own se-
curity perimeter and defendsits own critical resources (e.g.,
network link or storage media). Together with conventional
border defenses, such self-securing devicesould provide a
flexibleinfrastructure for dynamic prevention, detection, di-

including intrusion detection, isolation, diagnosis, and re-
covery; (3) having a central point of security checks creates
performance, fault-tolerance, and flexibility limitations for
large-scale environments.

This position paper promotes an alternative architec-
ture in which individual system components erect their
own security perimeters and protect their resources (e.g.,
network, storage, or video feed) from intruder tampering.

agnosis, isolation, and repair of successful breachesin bor-
ders and device security perimeters. e overview the self-
securing devices approach and the siege warfare analogy
that inspired it. \WWe also describe several examples of how
different devices might be extended with embedded security
functionality and outline some challenges of designing and
managing self-securing devices.

This “self-securing devices” architecture distributes secu-
rity functionality amongsphysically distinct components,
avoiding much of the fragility and unmanageability inher-
ent in today’s border-based security. Specifically, this ar-
chitecture addresses the three fundamental difficulties by:
(1) simplifying each security perimeter (e.g., consider NIC
or disk interfaces), (2) reducing the power that an intruder
gains from compromising just one of the perimeters, and (3)
distributing security enforcement checks among the many
components of the system.

Conventional application-executing CPUs will still run

From all indications, assured OS security seems to be an@Pplication programs, but they won't dictate which packets
impossible goal. Worse, conventional security architecturesare transferred onto network wires and they won't dictate
are brittle by design, because a small number of border Iorc,_which disk blocks are overwritten. Instead, self-securing
tections (e.g., firewalls and/or host OSs) are used to protectNICs Will provide firewall and proxy server functionality
a large number of resources and services. For example, arfor @ given host, as well as throttling or labelling its out-
attacker who compromises a machine’s OS gains completebound traffic when necessary. Likewise, self-securing stor-
control over all resources of that machine. Thus, such an@age devices will protect their data from compromised client
intruder gains the ability to transmit anything onto the net- Systems, and self-securing graphics cards will display warn-
work, modify anything on the disk, and examine all input INg messages even when the window manager is compro-
device signals (e.g., typing patterns and video feeds). Like- Mised. In a system of self-securing devices, compromising
wise, an attacker who circumvents firewall-based protection the OS of an application-executing CPU won’t give a ma-
has free reign within the “protected” environment. licious party complete control over all system resources —

Having shared border protections for large sets of re- tO gain complete power, an intruder must also compromise
sources creates three fundamental difficulties: (1) the manythe disk’s OS, the network card’s OS, etc.
interfaces and functionalities for the many resources (e.g., Augmenting current border protections with self-
consider most multi-purpose OSs) make correct implemen-securing devices promises much greater flexibility for se-
tation and administration extremely difficult; the practical curity administrators. By having each device erect an inde-
implications are daily security alerts for popular OSs (e.g., pendent security perimeter, the network environment gains
Windows NT and Linux) and network applications (e.g., many outposts from which to act when under attack. De-
e-mail and web); (2) the ability of successful attackers to vices not only protect their own resources, but they can ob-
freely manipulate everything beyond the border protection serve, log, and react to the actions of other nearby devices.
greatly complicates most phases of security management]nfiltration of one security perimeter will compromise only

1. Overview
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Figure 1. Two security approaches for a computer system. On the left, () shows the conventional
approach, which is based on a single perimeter around the set of system resources. On the right,
(b) shows our new approach, which augments the conventional security perimeter with perimeters
around each self-securing device. These additional perimeters offer additional protection and flexi-
bility for defense against attackers. Firewall-enforced network security fits a similar picture, with the
new architecture providing numerous new security perimeters within each system on the internal
network.

a small fraction of the environment, allowing other devices practices during Roman times, when defenders erected
to dynamically identify the problem, alert still-secured de- walls around their camps and homes to provide protective
vices about the compromised components, raise the securitycover during attacks. Once inside the walls, however, at-
levels of the environment, and so forth. tackers faced few obstacles to gaining access to all parts
Self-securing devices will require more computational of the enclosed area. Likewise, a cracker who successfully
resources in each device. However, with rapidly shrink- compromises a firewall or OS has complete access to the re-
ing hardware costs, growing software development costs, sources protected by these border defenses—no additional
and astronomical security costs, it makes no sense to notbstacles are faced. Of course, border defenses were a
be throwing hardware at security problems. A main chal- large improvement over open camps, but they proved dif-
lenge for we OS folks is to figure out how to best parti- ficult to maintain against determined attackers — border
tion (and replicate) functionality across self-securing com- protections can be worn down over time and defenders of
ponents in order to enhance security and robustness. Alarge encampments are often spread thin at the outer wall.
corollary challenge is to re-marshall the distributed func-  As the size and sophistication of attacking forces grew,
tionality to achieve acceptable levels of performance and so did the sophistication of defensive structures. The most
manageability. After describing our inspiration for this ar- impressive such structures, constructed to withstand deter-
chitecture (medieval siege warfare), this position paper out- mined sieges in medieval times, used multiple tiers of de-

lines some of our thoughts on these challenges. fenses. Further, tiers were not strictly hierarchical in na-
ture — rather, some structures could be defended indepen-
2. Siege Warfarein the Internet Age dently of others. This major advancement in defense ca-

pabilities provided defenders with significant flexibility in
Despite enormous effort and investment, it has proven defense strategy, the ability to observe attacker activities,
nearly impossible to prevent computer security breaches.and the ability to force attackers to deal with multiple inde-
To protect our critical information infrastructures, we need pendent defensive forces.
defensive strategies that can survive determined and suc-
cessful attacks aIIowing security managers to dynamically 1This is not quite correct in the case of a firewall protecting a set of
. ! . .7 hosts that each run a multi-program OS, such as Linux. Such an environ-
detect, diagnose, and recover from breaches in Secu”tyment is more like a town of many houses surrounded by a guarded wall.

perimeters. Borrowing from lessons learned in pre-gun war- Each house affords some protection beyond that provided by the guarded
fare, we propose a new network security architecture anal-wall, but not as much in practice as might be hoped. In particular, most

ogous to medieval defense constructs. people in such an environment will simply open the doorwhen they hear a
. . . knock, assuming that the wall keeps out attackers. Worse, in the computer
Current security mechanisms are based largely on singu-enyironment, homogeneity among systems results in a single set of keys

lar border protections. This roughly corresponds to defense (attacks) that give access to any house in the town.
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Figure 2. The self-securing device architecture illustrated via the siege warfare constructs that in-
spired it. On the left, (a) shows a siege-ready system with layered and independent tiers of defense
enabled by device-embedded security perimeters. On the right, (b) shows two small intranets of such

systems, separated by firewall-guarded entry points. Also note the self-securing routers/switches

connecting the machines within each intranet.

Applying the same ideas to computer and network secu- more likely. Further, distributing security checks among
rity, border protections (i.e., firewalls and host OSs) can be many devices reduces their performance impact and allows
augmented with security perimeters erected at many pointsmore checks to be made.
within the borders. Enabled by low-cost computation (e.g., By augmenting conventional border protections with
embedded processors, ASICs), security functionality can beself-securing devices, this new security architecture
embedded in most device microcontrollers, yielding “better promises substantial increases in both network security and
security via smarter devices.” We refer to devices with em- security manageability. As with medieval fortresses, well-
bedded security functionality a&slf-securing devices. defended systems conforming to this architecture could sur-

Self-securing devices can significantly increase network Vive protracted sieges by organized attackers.
security and manageability, enabling capabilities that are
difficult or impossible to implement in current systems. For 3. Device-embedded security examples
example, independent device-embedded security perimeters
guarantee that a penetrated boundary does not compromise To make our new security architecture more concrete,
the entire system. Uncompromised components continuethis section gives several examples of how different devices
their security functions even when other system compo- might be extended with embedded security functionality. In
nents are compromised. Further, when attackers penetrat@ach case, there are difficulties and research questions to be
one boundary and then attempt to penetrate another, un-explored; here, we focus mainly on conveying the potential.
compromised components can observe and react to the in- Network interface cards (NICs): The role of NICs in
truder’s attack; from behind their intact security perimeters, computer systems is to move packets between the system’s
they can send alerts to the security administrator, actively components and the network. Thus, the natural security ex-
guarantine or immobilize the attacker, and wall-off or mi- tension is to enforce security policies on packets forwarded
grate critical data and resources. Pragmatically, each self-in each direction [2]. Like a firewall, a self-securing NIC
securing device’s security perimeter is simpler because ofdoes this by examining packet headers and simply not for-
specialization, which should make correct implementations warding unacceptable packets into or out of the computer
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system. A self-securing NIC can also act as a machine-itally signing its sensor information. Such evidence of when
specific gateway proxy, achieving the corresponding protec- and where readings were taken is needed because, unlike
tions without scalability or identification problems; by per- passwords, biometrics are not secrets [4]. For example,
forming such functions at each system’s NIC, one avoids anyone can lift fingerprints from a laptop with the right
the bottleneck imposed by current centralized approachestools or download facial images from a web page. Thus,
NIC-based firewalls and proxies can also protect systemsthe evidence is needed to prevent straightforward forgery
from insider attacks as well as Internet attacks, since only and replay attacks. Powerful self-securing sensors may also
the one host system is inside the NIC’s boundary. Further, be able to increase security and privacy by performing the
self-securing NICs offer a powerful control to network ad- identity verification step from within their security perime-
ministrators: the ability to throttle or tag network traffic at ter and only exposing the results (with the evidence). By
its sources. So, for example, a host whose security statusembedding mechanisms for demonstrating authenticity and
is questionable could have its network access blocked ortimeliness inside sensor devices, one can verify sensor in-
limited. Security administrators manage and configure self- formation (even over a network) even when intruders gain
securing NICs over the network, since they must obviously the ability to offer their own “sensor” data.

be connected directly to it — this allows an administrator to Graphical displays The role of graphical displays
use the NIC to protect the network from its host system. By i computer systems is to visually present information to
embedding this traffic management functionality inside the |,gag. Thus, a natural security extension would be to en-
NIC, one enjoys its benefits even when the host OS or otherg e that critical information is displayed. A self-securing
machines inside the LAN border are compromised. display could do this by allowing high-privilege entities to

Storage devices. The role of storage devices in com- display data that cannot be overwritten or blocked by less-
puter systems is to persistently store data. Thus, the natuprivileged entities. So, for example, a security administrator
ral security extension is to protect stored data from attack- could display a warning message when there is a problem
ers, preventing undetectable tampering and permanent delein the system (e.g., a suspected trojan horse or a new e-mail
tion [6]. A self-securing storage device does this by manag- virus that must not be opened). By embedding this screen
ing storage space from behind its security perimeter, keep-control inside the display device, one gains the ability to
ing an audit log of all requests, and keeping previous ver- ensure information visibility even when an intruder gains
sions of data modified by attackers. Since a storage devicecontrol over the window manager.

cannot distinguish compromised user accounts from legit-  routersand switches The role of routers and switches
imate users, the latter requires keeping all versions of all ;; 5 network environment is to forward packets from one
data._ Finite _capacities will Iimit hpw long such compre- |ink to an appropriate next link. Thus, one natural secu-
hensive versioning can be maintained, but 100% per yearyjy, extension for such devices is to provide firewall and
storage capacity growth will allow moderm disks to keep roxy functionality; many current routers provide exactly
several weeks of all versions. If intrusion detection mech- s~ Some routers/switches also enhance security by iso-
anisms reveal an intrusion within this multi-weeétection lating separate virtual LANs (VLANSs). More dynamic de-
window, security administrators will have this valuable au-  tensjve actions could provide even more defensive flexibil-
dit and version information for diagnosis and recovery. This ity and strength. For example, the ability to dynamically
information will simplify diagnosis, as well as detection, by change VLAN configurations would give security admin-
not allowing system audit logs to be doctored, exploit tools jsirators the ability to create protected command and con-
to be deleted, or back doors to be hidden — the common | channels in times of crisis or to quarantine areas sus-
steps t_aken_by _mtru_ders to disguise the!r presence. This iN-nected of compromise. When under attack, self-securing
formation will simplify recovery by allowing rapid restora-  qters/switches could also initiate transparent replication
tlon of pre-l_ntru3|on versions ar_wq incremental examination ¢ qata services, greatly reducing the impact of denial-of-
of intermediate versions for legitimate updates. By embed- sayice attacks. Further, essential data sites could be repli-
d_lng this datq prot.ectlon fupctlonallty inside the storage de- ateg on-the-fly to “safe locations” (e.g., write-once storage
vice, one enjoys its benefits even when the network, Useryeyices) orimmediately isolated via VLANS to ensure secu-
accounts, or host OSs are compromised. rity. Self-securing routers/switches can also take an active
Biometric sensors: The role of biometric sensors in  role in intrusion detection and tracking, by monitoring and
computer systems is to provide input to biometric-enhanced mining network traffic. When an attack is suspected, alerts
authentication processes, which promise to distinguish be-can be sent to administrators and to other self-securing de-
tween users based on measurements of their physical feavices to increase security protections. By embedding traf-
tures. Thus, the natural security extension is to ensure thefic monitoring and isolation functionality in self-securing
authenticity of the information provided to these processes. routers/switches, one can enjoy its benefits even when fire-
A self-securing sensor can do this by timestamping and dig- walls and systems on the internal network are compromised.
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Application-only CPUs: Though not strictly devices, Traffic Throttling at the Source: As the previous ex-
most future host systems are likely to have multiple CPUs. ample suggests, self-securing NICs allow network traffic to
They already have multiple functions, including OS-level be throttled at its sources. Thus, a system that is deemed
resource management and various application-level tasks:'bad” could have its network traffic slowed or cut off com-
Rather than trying to correctly implement and use a sand- pletely. Also, such malicious network activity as “SYN
box to safely host iffy code, we again suggest using physi- bombs” and IP address spoofing can be detected, termi-
cal boundaries — that is, run untrusted code on a separatenated at its source, and even automatically repaired by the
application-only CPU that has no kernel (in the traditional source’s NIC (e.g., sending RST packets to clear SYN bomb
sense) and no kernel-like capabilities. An application- connections).
only CPU should be physically locked away from its vir- Biometric I dentity Verification: A more exotic use of
tual memory mappings and device communication. The self-securing devices is auxiliary identity checks on users.
mappings, permissions, and external communication shouldFor example, imagine that an authenticated user does some-
be controlled by separateanagement CPUs, with which thing that triggers an intrusion detection alarm. There are
the application-only CPU communicates via a well-defined many possible explanations, one of which is that someone
protocol. With such an organization, the safety of the hosted else is using the real user’s session (e.g., while the real user
code becomes less critical, and the boundaries between iis away at lunch). To check for this, a network security
and more trusted components become more explicit. administrator could silently consult a nearby (or attached)

self-securing video camera and perform face or iris recog-

) . nition. Many other biometrics could also be used. The in-

4. Newly-enabled dynamic actions trusion detection system could even trigger this check au-
tomatically and terminate the corresponding system’s net-

Many new dynamic network security actions are enabled work and storage access, if the user is deemed to be an im-
by the more numerous and heterogenous security perimePOSter- N _
ters inherent to the self-securing device architecture. Toil-  Migration of Critical Data from Compromised Sys-

lustrate the potential, this section describes a few such ac-t€mMs: If a system is compromised, one important action is
tions: trying to save and retain access to its user data. In our new

Network DefCon L evels: Often. there is a trade-off be- architecture, this can be done by having the self-securing
tween security and performance. 'For example, the more de_storage device (appropriately and authoritatively directed_)
tailed and numerous the firewall rules, the greater the over-encrypt and send the relevant contents over the network via

head introduced. Likewise, the more detailed the event log- the self-securing NIC. The seIf-secunng_router can forward
ging, the greater the overhead. One use of the many neWthe data to one or more alternate Ioca.tlons and route ;ub-
security perimeters is to support dynamic increases of secu—Sequent accesses to the data approprlgtely. In_fact, dlff_er-
rity level based on network-wide status. For example, if an ent user base_s could b_e routec_j to distinct replicas. With
attack can be detected after only a small number of perime-emerglng device-to-device I/O |nte.rconnects, the ;torage-
ters are compromised, the security levels at all other self- to-network transfer can be done with no host OS involve-

securing devices can be dynamically raised. As suggested‘j{em.tatg".’ Ieat\)va :hfhsu;;c?ssful m':ruder ‘a’q'th no wafﬁ(')
above, this might take the form of more detailed firewalling Stop IL. ©0ing back {o Ihe Tirst example, another use ot this

at NICs, logging of network traffic to storage, and dynamic \S;;ﬁgort V\gfligentr? frggﬁig“ﬁgi:ﬁ:i;t%etraug:,Iggfefégg,
partitioning of the network into distinct VLANS. us sefl-securng N us

Email Virus Stomping: One commonly observed secu systems during perceived siege situations.
. ) A . AN i Displaying Trojan-defeating M essages: In perhaps the
rity problem is the rapidly-disseminated e-mail virus. Even Spraying 1ro) 'ng g P P

frer detecting th ist ‘ . it often tak simplest example, a security administrator could direct a
after detecting the existence of a new virus, It often takes aself-securing graphics card to override system directives
significant amount of time to root it out of systems. Iron-

. . and display a warning message. Such support would be par-
ically, thg common approach to spreading the ‘Yvoroyl about ticularly useful when users need to be warned to discontinue
such a virus is Via an e-malil fnessa_ge (e.g., “don’t open (or not start) using a system suspected of housing Trojan
unexpested e-ma[l that says ‘here IS the d°°“”."'e.”‘ YOUp orses. Again, device-to-device communication allows this
wanted™). By the tlm_e a user reads this message, Itis Oft(_anto happen over the network without host OS interference.
too late. An alternative, enabled by self-securing NICs, is

for the system administrator to immediately send a new rule

to all NICs: check all in-bound and out-bound e-mail for the - R€search challenges

new virus’s patterns. This would immediately stop further

spread of the virus within the intranet, as well as quickly ~ This change in network security architecture raises two
identifying many of the infected systems. major research questions, each with a number of sub-
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guestions. First, “what should each device do behind its security functionality embedded into self-securing devices.
security perimeter?” Answering this question will require The resulting collection of independent security perimeters
exploration of cost, performance, and flexibility trade-offs, could provide a flexible infrastructure for dynamic preven-
as well as exploring what is possible with the limited in- tion, detection, diagnosis, isolation, and repair of success-
formation available at any given device. Section 3 outlines ful intrusions. Although many research challenges arise, we
potential functionalities for a number of devices. Second, believe that the new architecture has great potential.

“how does one effectively manage a large collection of in-

d(_apendgnt security_ perimeters?” Answgring this question References

will require exploration of tools and techniques for marshal-

ing sets of self-securing devices, monitoring their current [1] Bill Cheswick. Security Lessons From All Over. Keynote

state, and dynamically updating their policies in. the face Address, USENIX Security Symposium, 1998.
of changes to and attacks upon the network environment’s 2

state.

The second question raises several complex sub-
questions that must be answered in order to realize dynamic
and robust network security environments from large col-
lections of distinct security perimeters. The clearest sub-
guestions center on administrative control over the various
devices, where security and convenience must be balanced.
Research is also needed into how to reason about global [4] Andréw J. Klosterman and Gregory R. Ganggscure Con-
network security given the set of local insights provided by tl'gioui B'ﬁmr;CF;Enhatand Authc_ant:\t/‘:atlllon. UCMU'.CtS'gOr'] |
distinct host systems and self-securing devices. Many other of C-omiitglcgciesggrl(/la;rznoec?(l)e eflon Lniveristy 5choo
sub-questions exist, including those related to local policy ' o ) o
configuration, robust reconfiguration, coordinated intrusion [5] Gary McGraw and Greg Morrisett. = Attacking Malicious

. . . . . . Code: A Report to the Infosec Research Coun&EE Soft-
iagnosi nd avoidan f internally-im nial-of-
:;?ACZS s, and avoidance o emally-imposed denial-o ware, pages 33—-41, September/October 2000.

[6] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,
Craig A. N. Soules, and Gregory R. Ganger. Self-securing
6. Related Work storage: protecting data in compromised systel®gnpo-
siumon Operating Systems Design and Implementation (San
Several researchers have used the siege warfare analogy  Diego, CA, 23-25 October 2000), pages 165-180. USENIX
to promote more comprehensive information security de- Association, 2000.
fenses [1, 3, 5]. Usually, the associated proposals are only
loosely connected to the analogy, simply referring to the
strengths (e.g., many parts), weaknesses (e.g., traitors), or
eventual replacement of siege defenses. We use the anal-
ogy to inspire a specific defense strategy: use of physically-
distinct barriers that monitor one another, defend collec-
tively, and must be penetrated independently.
The concept of using physical separation of functionality
for security is also not new. Perhaps the simplest examples
are physically-secured machines with no network connec-
tions. Perhaps the best examples are firewalls and proxies,
which enforce rules on network traffic entering and leaving
an intranet via hardware specifically dedicated to this pur-
pose. Here, we propose using physical component bound-
aries as the core of a security architecture rather than as a
bandaid on inherently insecure network environments. The
references below identify and discuss more related work.

] David Friedman and David F. Nagle Building Scalable
Firewalls with Intelligent Network Interface Cards. CMU-
CS-00-173. Technical Report, Carnegie Mellon Univeristy
School of Computer Science, December 2000.

[3] Jr. John L. Woodward. Information Assurance Through
Defense in Depth. U.S. Department of Defense brochure,
February 2000.

7 Summary

This white paper promotes a new security architecture
in which traditional boundary protections are coupled with
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Abstract

At the 1999 Workshop on Hot Topics in Operating Systems
(HotOS VII), the attendees reached consensus that the most
important issue facing the OS research community was
“No-Futz’” computing; eliminating the ongoing “ futzing”
that characterizes most systemstoday. To date, little research
has been accomplished in this area. Our goal in writing this
paper is to focus the research community on the challenges
we face if we are to design systems that are truly futz-free, or
even low-futz.

1 Introduction

The high cost of system administration is well known.
In addition to the official costs (such as salaries for system
administrators), countless additional dollars are wasted as
individual users tinker with the systems on their desktops.
The goal of “no-futz” computing is to slash these costs and
reduce the day-to-day frustration that futzing causes users
and administrators.

We define “futz” to mean “tinkering or fiddling experi-
mentally with something.” That is, futzing refers specifically
to making changes to the state of the system, while observ-
ing the resulting behavior in order to determine how these
relate and what combination of state values is needed to
achieve the desired behavior. When we refer to “no-futz”
computing, we mean that futzing should be allowed, but
should never be required. We interpret “low-futz” in this way
as well.

It should be noted that reducing futz is not the same as
making a system easy to use. It is also not the same as hiding
or reducing complexity: it is aboutanaging complexity and
managing difficulty. Computer systems involve intrinsically
complex and difficult things. These are not going to go away.
The goal is to make it as easy as possible to cope with that
complexity and difficulty.

Systems can be easy to use but still require unnecessary

futzing: TCP/IP configuration on older Macintoshes was
easy to adjust, but was difficult to set properly. One can also
imagine a (purely hypothetical) system that hides all its com-
plexity: it appears to need almost no futzing at all, until it

breaks. Then, extensive futzing is required, to figure out
what happened.

The goal of No-Futz computing is to eliminate the futz-
ing due to poor design or poor presentation, not to try to find
a silver bullet for software complexity; no-futz computing
attacks areas that are needlessly complicated, not those tha
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are inherently complicated.

Let’s begin with an example of a good, hi-tech, low-futz
device, and understand its basic characteristics. While read-
ing the rest of this section, keep in mind the computer sys-
tems you use regularly (particularly the ones you dislike) and
how they differ from the example.

Our Xerox 256ST copier is a no-futz device. It performs
just about every function imaginable for a copier: it collates,
staples, copies between different sizes of paper, will copy
single-sided originals to double-sided copies and vice versa,
etc., and it even sits on the network and accepts print jobs
like a printer. However, it demands no futzing. It has instruc-
tions printed on the case that describe how to accomplish
common tasks. Its user interface makes it impossible to ask it
to do something it cannot. It keeps track of its operating
state, continuously monitoring itself, and communicates in a
simple fashion with its operators. When there is a problem it
can diagnose, it displays a clear message on its console. (For
example, “Paper tray 2 is empty.”) When it detects a problem
it cannot diagnose, it begins a question-and-answer dialog
with the operator to diagnose the problem and determine an
appropriate course of action - and then, in most cases, it
guides the operator through that course of action. The ques-
tions it asks are simple, and can be answered by a novice,
such as “Did paper come out when you tried to copy?” The
key factors that make this device no-futz are:

Ease of use: The user documentation and user
interface are organized in terms of the user’s tasks, not
in terms of the system’s internal characteristics.

It is unusual to encounter a situation where it is not
clear what to do next, even in the presence of various
failures.

Self-diagnostics: When a failure occurs, the copier
diagnoses it and offers instructions for fixing things.
Simple, clear communication: It never asks the user a
question that the user cannot answer.

What makes this such an interesting example is that only
a decade ago, photocopiers required much futzing, mostly by
expert servicemen, and were extremely frustrating for all
concerned. Since then, not only have copiers become vastly
faster and more powerful, but both the use and maintenance
of them has become vastly easier. Today’s copiers have
one-tenth the components of their predecessors, significantly
more functionality, and dramatically reduced futzing [6].
How can we make similar strides forward in computing?

That which works for a photocopier may not be suffi-



cient for computers: the copier is a relatively straightforward lection of identical existing ones is difficult: the new ones are
device with well-defined function and state, whereas gen- rarely truly identical, which inevitably cuts into the economy
eral-purpose computer systems have a wide variety of func- of scale.
tions, have essentially infinitely mutable state, and are The third approach to futz reduction is centralization.
subjected to complicated and often ill-understood intercon- Centralization moves state and its accompanying require-
nections both within themselves and with other computers.  ments for futzing, away from the systems with which people
In the rest of this paper, we first discuss some current interact directly and into places where it is more conveniently
approaches to futz reduction, arguing that these do not attack managed. This gives administrators tight and efficient control
the problem directly and have negative side-effects. We then over each system. This makes it more convenient for system
discuss how futz arises in computer systems and describe administrators to futz and lets system administrators do more
what we believe is the key to a real solution: understanding of the futzing and users less of it. While this does reduce cost,
and managing system state. Then we outline some directionsthere is no actual reduction in total futz. For that, another
for future research, discuss briefly some existing related work, approach is required.
and conclude. These three approaches are capable of reducing the futz
of, or at least the cost of maintenance for, computer systems
and networks. However, all of them are limiting and/or have
negative consequences. This is a result of attempting to
reduce the total futzable state, instead of the futz problem
directly. We advocate the direct attack.

2 Current Approachesto Futz Reduction

The cost and frustration associated with futzing has led to
three common approaches to futz reduction: (1) limiting the
scope of functionality, (2) homogeneity, and (3) centraliza-
tion. These approaches are not mutually exclusive and are fre-
quently used together. The Source of Futz

The copier described above is an example of the first One definition of “futz” is in terms of state manipulation.
approach: it is a special-purpose device. Relative to a gen- Thus, the more state there is to manipulate, the more futzing a
eral-purpose computer, its functionality is quite limited. In  system allows. Mandatory futzing arises when it is not clear
this context, it has addressed the futz problem quite well. by inspection or documentation what manipulations are
Since futzing involves state changes, special purpose systemsrequired or when the supposedly correct manipulations fail to
which have relatively limited state spaces, can offer corre- produce the correct result. At this point, one must experiment
spondingly reduced futz. Other low-futz, limited scope (or call for help).
devices include dedicated file servers (e.g., Network Appli- If one can manipulate the system state without resorting
ance’s filers) and special purpose web or mail servers (e.g., to experimentation, futzing has not occurred. For instance,
Sun’s Cobalt servers) among others. seasoned Unix administrators do not have to futz to add

Homogeneity is the second approach to futz avoidance.

This approach is most often seen in large installations. In
order to reduce total installation-wide futzing, a single stan-
dard machine configuration is deployed everywhere. If there

accounts to their systems. But beginners generally do. And
even seasoned administrators usually have to futz to get print-
ing to work.

Note that the degree of futz depends on the level of

is a problem, any machine can be replaced with any other expertise of the user. A premise of no-futz computing, how-

machine. Systems can be reinstalled quickly from a master ever, is that one should not have to be an expert, or the cost of

copy. Maintenance requirements are reduced drastically. Cus-being an expert should be quite low. Unix systems are already

tom management tools need only interact with one kind of quite low-futz for hard-core experts, but it takes years and

system, and are thus much cheaper to build. The administra- years of apprenticeship to reach that level. Reducing futz for a

tors see the same problems over and over again and can preselect few is not a solution, so we need to examine sources of

pare solutions in advance; nobody besides the administratorsfutz as they appear to a casual user.

needs to futz with anything. The mutable state of a computer system can be broken
This approach can reduce global futz drastically; how- down into the following categories (this may not be a com-

ever, it does not address the underlying problem: the amount plete list):

of futzing required by a single machine is constant. Further- « Derived state: State automatically derived or generated

more, it has other flaws: first, it is inherently incompatible from other state.

with letting users control their computers. While this is fine or « Policy state: Configuration state that reflects policy of a

even desirable in some environments (e.g., the terminals bank site or user.

tellers use), it is unacceptable in others (e.g., research labs). « Autoconfig data: Data to be served in some manner by

Second, it is a security risk. The same homogeneity that the system in order to enable autoconfiguration for

makes system administration easier also makes break-ins and other systems. For example, /etc/bootptab.

virus propagation easier: if you can get into one system, you  Cached state: Cached results from autoconfiguration

can get into all of them the same way [1]. Third, most organi- protocols.

zations grow incrementally. Adding new computers to a col-
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« Manual config state: Configuration state that reflects instance, the only reason we need video card and monitor

the setup of the operating environment or hardware, and information in /etc/XF86Config is that on PC-based systems it
needs to be set manually. is not possible in many cases to safely or reliably interrogate

+ Osfilestate: files (programs or data) that are part of the hardware to find out what it is. In a hypothetical world
the operating system, as well as their organizational where you could query this hardware, which is easy to imag-
meta-data. ine, this major source of futz could be abolished.

* Application file state: files (programs or data) that are OS file state and application file state are an area in which
part of installed applications, as well as their many current systems fall down: it is quite easy, in general, to
organizational meta-data. install new application software that breaks the system, or to

* User filestate: user files and their organizational update the system and thereby break applications. It is also

meta-data. For example, a secretary’s word processor
files, or web pages.

» Application context: persistent saved application state
that is not user data. For instance, many environments
try to automatically recreate on startup where you were
when you left the last time.

» System context: persistent OS state that is not in any of
the above categories. For example, file system
meta-data.

« Cryptographic keys.

possible to delete or rename important files inadvertently (or
lose in a power failure) thereby breaking the system. At
present, recovering from these problems is generally quite dif-
ficult. In this area, for most people, futzing at all tends to

equate to reinstallation.

Reducing this category of futz requires taking more care
in analyzing the dependencies among software components,
and improving the mechanisms with which software compo-
nents are bound to one another at runtime. We need several
things: automated analysis of runtime dependencies (a hard

Policy state is a source of futz: the system acts on its pol- problem), better systems for preventing accidental version
icy settings, and if it acts incorrectly, somebody needs to Skew, and mechanisms for cross-checking that can be per-
tinker with the settings until it behaves properly. Unfortu- formed at runtime to allow failures to occur gracefully. Rein-
nately, policy state cannot be avoided in a general-purpose stallation as a failure recovery mechanism is unacceptable.
computer system: policy decisions need to be made by User file state is inevitably a source of futz as things
humans and the computer needs to know what they were. Onebecome disorganized and users mislay their data. We see no
can reduce futz in this area by cutting back the amount of immediate prospects of cutting back on the futzing this
state, and building special-purpose systems, but that inher- "équires, although developing a good model for how applica-
ently reduces the amount of functionality as well. Reducing tions should choose default save directories and the like
futz in this area without cutting back functionality is feasible Would be a good start. Content indexing techniques may be of
as we outline in the next section. help as well.

Autoconfig data is another source of futz. This category ~ Application context is normally automatically main-
reflects futz that has been “centralized away” from other sys- tained, and only becomes a source of futz when it becomes
tems. It is not necessarily the case that all autoconfig mecha- Corrupted or saves an undesired application state. This prob-
nisms require a server to serve data, but many of the existing lem is easily solved: check it for consistency when loaded, be
ones do. Itis not unreasonable to suppose that development of2ble to withstand it being deleted, and store it in a known
more sophisticated autoconfiguration can reduce or eliminate location so users can delete it if they so desire. In many cases,
most of the state and thus the futz in this category. simply not keeping such context is an adequate solution.

Cached state is not normally a source of futz. Cached System context is essentially the same, except that it is
results can be purged or updated as necessary without anysometimes not possible (or meaningful) to erase it and start
manual intervention. Similarly, derived state is a solved prob- OVer. It is much more important to check it for consistency
lem: if it goes out of date, it needs only to be regenerated. The @nd repair any problems. With some engineering, failures that
Unix make utility is already routinely used for this. require expert attention to repair can be made quite rare, as

Manual config state is a tremendous source of futz in they generally are with most Unix implementations of fsck.
most systems today. Worse, it is the most difficult kind of futz Cryptographic keys are listed separately because they
possible: unlike policy state, where various alternatives work have their own unique requirements for management, and
but may not be desired, most of the questions answered by because they are mandatory for the use of secure autoconfigu-
manual config state have only one or two right answers and ration protocols. In our experience, these are not large sources
plenty of wrong answers, and wrong answers generally render of futz. Furthermore, a lot of attention has already been paid
the system or components of it completely inoperative. Ulti- {0 kéy management in the security literature. _ _
mately, this is the category of futz that is most seriously in All the above assumes that a user is changing state in
need of reduction. Fortunately, it is possible to accomplish order to make some kind of desired configuration change,
this: to the extent that there are right answers, in almost all either as ongoing maintenance or at system installation time.
cases, with sufficient engineering of components, those right There are two other cases in which one needs to interact in
answers can be probed or determined from context. For intimate detail with the state of a system: to diagnose and
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repair a system failure and to monitor the system for signs of mate goal is to allow a user to type in answers to these ques-

upcoming failure. tions, or change the answers to suit changed circumstances,
Properly speaking, as we have defined futzing, diagnosis without needing much training or specialized knowledge.
is not futzing; rather than experimentally adjusting state to It should now be clear that question formulation is crucial

achieve a result, diagnosis properly involves analyzing exist- — not just their wording, although that is significant, but what
ing state. Sometimes, however, one needs to experiment toquestions are asked, how interconnected they are with each
interpret the existing state. And additionally, a common other, how they're grouped, etc.

method for recovering from a system failure is to futz until the What this means is that, once all the easier issues are
obvious signs of the failure have disappeared and the systemaddressed, the organization of the state space of the system is
appears to be working again. (Rebooting is a drastic example the most significant factor determining how much futzing the
of this technique, and it works because much system state is system will demand.

not persistent across reboot.) Itis crucial to analyze this state space in detail and deter-

The reason this method works is that many system prob- mine how to best decompose it into a set of variables (and
lems involve the failure of supposedly automatic state man- thus questions). In the best such decomposition, the variables
agement mechanisms; tweaking the state tickles the statewill be as simple and as orthogonal to each other as possible.
management mechanism, and with some luck it will start It will be clear what answering each question entails and who,
functioning again. The reason it is common is that actual in any of several typical environments, ought to decide the
diagnosis by inspection usually amounts to debugging and answer. Then the questions need to be written in such a man-
requires an extremely high level of expertise. ner that the people who typically fill these roles can, in fact,

If the system can diagnose problems itself, like our copier answer the questions without needing an excessive amount of
can, this futzing becomes unnecessary. Even if it can only training, and the software needs to be written so that questions
diagnose a small number of the most common problems, a will not be posed to the wrong people.
good deal of mandatory futzing can be eliminated. Self-diag- For example, in almost all cases, the person sitting at the
nosis in software systems is an important research area. Wecomputer should be the one to choose the desktop back-
believe a good deal of progress is possible. ground. However, it is not necessarily the case that this person

Monitoring for signs of upcoming failure, including mon-  should be asked “What is the IP address of your web proxy?”
itoring for security problems, does not, itself, involve futzing. — this question may need to be posed, but if so it should be
However, failure to perform monitoring can lead to huge posed in a context where itis clear that the answer is the local
amounts of futzing later on - recovering from a server dying network administrator’'s responsibility.
can easily take as much futzing as installing a new one, We believe this is the key. It is not an easy problem; in the
whether the death took place because of hardware failure or absence of any useful decomposition theorems for state
because of hackers. Therefore, automatic monitoring is also spaces or state machines, it must be solved by manual inspec-
crucial to building true no-futz systems. This is another tion and ad-hoc heuristic analysis. Worse, one has to address
important research area. the complete state space of the entire system at once; if one

Ultimately, all of these things - monitoring, diagnosis, leaves some state out of the analysis and tacks it on later, it is
and configuration - involve interaction with the system state. almost guaranteed to be a poor fit.

We believe that research and engineering in the areas outlined At first glance this might seem to mean that all applica-
above can tame a good proportion of the typical system state tion software must be designed into the system. This is not the
space. However, policy state, cryptographic keys, and proba- case. However, whas necessary is for the sorts of state appli-
bly some leftover bits of state in the other categories, are not cations may need to use to be anticipated; that is, one needs an
going away. More is required; we need to be able to manage abstract model of what an application is and does. Such a

this state. model should be reasonably general without going overboard:
applications that fail to fit will still work, but may require
4 Futz and State M anagement increased amounts of futzing. Allowing for these applications

din the general design might result in even more futzing in the
common case. There will be a trade-off, and that trade-off will
need to be explored.

The less state a system has, the easier it is to organize an
present to users in a coherent manner.

As outlined in the previous section, one can design out
some state and automate the handling of a lot more. This will
take care of a good deal of futz. However, a great deal of state 5  Research Directionsin No-Futz Computing

remains, and it requires editing, and undoubtedly, futzing. If the systems community is to ever build no-futz sys-
One cannot eliminate the editing. But one may be able to tems, we must embark on a research program that addresses
eliminate the futzing. the key issues in no-futz computing. This section defines

The leftover state consists mostly of policy state, manual those areas.
config state, and autoconfig state. This state can be thought of  The first step on the path to no-futz computing is deter-
as a list of configuration questions and their answers. The ulti- mining how to measure a system’s futz. We wholeheartedly
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endorse the term “FutzMark” coined at the last HotOS and
challenge researchers to define it.
We believe the central issue in no-futz computing is state

modities. However, this does not eliminate the administration
cost. Sunray servers are complicated systems and not easy to
administer: once, in our department, one of the junior system

management. We must reduce system state to a manageabl@edministrators broke all the Sunrays for three days just by try-

level, isolate each state variable so that it is orthogonal to
other state variables, and make it impossible to specify invalid

ing to install a new utility on the Sunray server.
Microsoft's Zero Administration initiative is an effort to

states. Where possible, we should replace state with dynamicreduce the administration needs of Windows installations and

discovery. Where possible, we should devise ways to turn

thus the cost of ownership. Central to Zero Administration is

static state into dynamically discoverable state (e.g., autoconf the IntelliMirror product, which helps an administrator (a)

data, manual config state). Achieving orthogonality is perhaps
the most difficult aspect of this task, but also the most essen-
tial. Without orthogonality, the problems of management and
testing grow factorially. If we can achieve orthogonality, it
becomes a manageable linear problem.

In lieu of total orthogonality, we need better mechanisms
to identify inconsistent state and remedy it. We need to iden-
tify (or avoid) version skew among software components and
do more extensive runtime cross checking and analysis.

Coping with failure requires a great deal of futzing; thus
we need to achieve cleaner failure models. In the fault-toler-
ance community, “failstop” behavior (ceasing operation as
soon as a fault occurs) is considered desirable so that failing
systems do not corrupt state or data. In the context of no-futz,
failstop behavior could permit the precise identification of
failure causes. If systems can diagnose their own failures, it's
conceivable that they can then direct users to perform recov-

ery, as our copier does. In general, we need to make progress

in the areas of self-diagnosis and automatic monitoring.

Finally, there are areas outside of systems research where
progress is necessary. In particular, improvements in user

interfaces and data presentation will reduce futz. Collabora-

tive interfaces, which act as intermediaries between users and

their machines that enable them to work together, hold great
potential if applied to no-futz computing. Security manage-
ment is sometimes considered outside the realm of systems
but insecurity is a major contributor to current futz and
improvement is needed. Improvements in content indexing
will reduce the futz associated with user data management.

6 Reated Work

There have been a number of efforts to reduce futz in
computer systems. In a distributed setting, Sun’s Sunray [4],
as well as Microsoft’'s Zero Administration initiative and the
associated IntelliMirror [7] product, are projects to centralize
futzing.

less I/O devices with no administration needs. Sunray relies
on modern off-the-shelf interconnection technology and a
simple display update protocol (SLIM) to support good inter-
active performance. In addition to eliminating client adminis-
tration, the Sunray model offers client mobility. Client session

state is entirely stored on the server and can be associated[6]

with a smart card that can be inserted in any Sunray client

connected to the same server. Sunrays are anonymous com ]
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. . (3]
The Sunray system'’s desktop machines are simple, state-

manage user data, (b) install and maintain software through-
out an organization, and (c) manage user settings. Manage-
ment of user data requires knowledge of properties and
locations of users’ files so that the data is available both
online and offline from any computer. Manual installation,
configuration, upgrades, repair and removal of software
across an organization requires large management effort.
IntelliMirror automates this: it offers remote OS installation, a
service allowing a computer connected on a LAN to request
installation of a fresh copy of the Windows OS, appropriately
configured with applications for that user and that computer.
Sun’s Jini [5] for Java is an example of a system that tries
to eliminate administration in a decentralized (“federated”)
manner. Jini provides a distributed infrastructure for services
to register with the network and clients to find and use them.

7 Conclusion

Leading systems researchers identified no-futz comput-
ing as an important research area two years ago [3], but to the
best of our knowledge, there has been no significant research
activity in this area. We believe one reason is that the problem
is enormously complex and may not be solvable within the
constraints of legacy systems. Regardless, until we identify
the important research questions, no progress can be made. In
this paper, we have identified some, if not all, of the important
areas in which research must be conducted if we are ever to
“solve” the problem of high-futz systems.
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Abstract

All too often, decisions about whom to trust in com-
puter systems are driven by the needs of system manage-
ment rather than data security. In particular, data storage
is often entrusted to people who have no role in creating or
using the data—through outsourcing of data management,
hiring of outside consultants to administer servers, or even
collocation serversin physically insecure machine roomsto
gain better network connectivity.

This paper outlines the design of SUNDR, a network
file system designed to run on untrusted servers. SUNDR
servers can safely be managed by people who have no per-
mission to read or write data stored in the file system. Thus,
people can base their trust decisions on who needs to use
data and their administrative decisions on how best to man-
age the data. Moreover, with SUNDR, attackers will no
longer be able to wreak havoc by compromising servers
and tampering with data. They will need to compromise
clients while legitimate users are logged on. Since clients
do not need to accept incoming network connections, they
can more easily be firewalled and protected from compro-
mise than servers.

1 Motivation and significance

At the same time, another trend is developing: people
increasingly need to share information with a population of
users that cannot be confined by firewalls. Web servers out-
side of firewalls distribute software and information to the
general population. People collocate servers in foreign ma-
chine rooms to get better network connectivity. Such out-
side servers have proven quite vulnerable to attack. While
many attacks merely involve defacing web pages to prove
a machine has been penetrated, the consequences of a com-
promise could be much more serious—for instance when a
server distributes software many people download and run.

To address these problems, we are building SUNDR—
the secure untrusted data repository. SUNDR is a novel
distributed data storage system in which the functions of
data storage and management can be performed by some-
one who has no ability to read or modify the data. On client
machines, SUNDR behaves like an ordinary network file
system, providing reasonable performance and semantics.
However, the client cryptographically protects and verifies
all data it exchanges with the server. An attacker with com-
plete control of a SUNDR server can accomplish little more
than a simple and very noticeable denial of service attack.
For any attack to go undetected, the perpetrator would need
to compromise a client while an authorized user is logged
in.

SUNDR will be the first general-purpose network file

system to provide strong data integrity guarantees without
trusting the server. Previous work has shown how to protect

People are increasingly reliant on outside organizationsgata secrecy on untrusted servers, or how to protect the in-

to manage their data. From data warehouses that store gqyrity of data that is read and written by the same person. In

company’s crucial data to consultants performing system practice, however, many files on a system are readable but
administrative duties like backups, more and more data ispot writable by ordinary users. Thus, to replace an existing,

being left in the hands of people who have no role in creat- general-purpose file system with one that eliminates trust

ing or using the data. Unfortunately, those who manage datap the server, one must support read-only access to shared
also have the ability to read it or even change it in subtle, qata.

difficult to detect ways. Thus, organizations end up placing SUNDR's design exploits the fact that on modern pro-

;L?:gffs?jleg };uos:t;nnoéjrti\slfr?r; \rfnvggiebyets’ t;i:qeﬁ::\f: tec:cessors, digital signatures have become cheap enough to
ment needs as by concern for data secur)i{t y g compute on every file close. Whenever a client commits a

y Y- change to the file server, the client effectively digitally signs
This research was supported in part by National Science Foundation Carethe entire contents of the file system (though in an efficient,
award CCR-0093361. incremental way).
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SUNDR will not only protect data integrity, but also The Byzantine fault-tolerant file system, BFS [3], uses
make assurances about the recentness of data. Ensuring thegplication to ensure the integrity of a network file system.
users see each others’ updates to a file system is a challengAs long as more tha/3 of a server’s replicas are uncom-
ing problem when the server is untrusted and the users maypromised, any data read from the file system will have been
not simultaneously be on-line. SUNDR introduces a new written by a legitimate user. SUNDR, in contrast, will not
notion of data consistency calledlative freshness. Two require any replication or place any trust in machines other
SUNDR users will either see all of each others changes tothan a user’s client. However, SUNDR and BFS provide
a file system or none. If two users can communicate with different freshness guarantees.
each other (for instance, if they are on the same local Eth- The proposed OceanStore file system [1] names file ob-
ernet when accessing a remote SUNDR server), they willjects with secure “GUID” handles. For archival objects,
be guaranteed traditional close-to-open consistency. Otherwhich are immutable over all time, the GUID is simply a
wise, if the server violates consistency, the users can nevecollision-resistant cryptographic hash of a file's contents,
again see each others’ updates to the file system, thus maxallowing clients to verify the contents directly from the
imizing the chances of their detecting the attack. GUID. For mutable objects, the GUID is the hash of a pub-

SUNDR’s security model makes remote data storagelic key and username. Data returned as part of the file must
useful where it previously was impractical. However, re- be digitally signed by the private key corresponding to the
mote network bandwidth is typically lower than LAN band- GUID. File names are mapped to GUIDs using SDSI [14]
width. SUNDR will therefore employ large client caches (effectively using SDSI as a file system).
and exploit commonality between files to reduce network  We actually built a file system (the old read-only file sys-
traffic. Thus, one can easily “outsource” file service to or- tem, described in [10]) in which files are individually signed
ganizations across the network without heavily penalizing like mutable OceanStore objects. We subsequently rejected
performance, but while also achieving several benefits. Thethe design for several reasons, however, the most important
local organization will no longer need to worry about back- of which was security. There is no way to guarantee the
ups (no harm is done if the local cache is lost). Moreover, freshness of files when they are individually signed. If a file
when several sites share a file system over the wide areavas signed a year ago, is that because an attacker wants us
network, they will see considerably better performance thanto accept a year-old version, or has the user user simply not
with traditional file systems. Finally, because SUNDR does resigned the file in the past year? To address this problem
not trust servers, it will allow cooperative caching amongst SUNDR signs file systems rather than individual files, and
mutually distrustful clients, and will allow client caches to it introduces the notion of relative freshness.
be used in the reconstruction of server state in the event of SUNDR uses hash trees, introduced in [12], to verify a

a failure. file block’s integrity without touching the entire file system.
Duchamp [4], BFS[3], SFSRO [6] and TDB [9] have all
2 Reated work made use of hash trees for comparing data or checking the

integrity of part of a larger collection of data.

Whil ber of fil ‘ h d N hi The CODA file system [7] saves network bandwidth
e a number ot ilé systems have used cryptographic by operating in a disconnected mode, saving changes lo-

storage_ln the past, none has provu_jed strong integrity guar-ca”y and later reconciling the changes over a fast network
antees in the face of a compromised server. The swal-

| 131 distributed fil . 4 client-sid i link. SUNDR, too, must save bandwidth for people to use
ow [13] distributed file system used client-side cryplogra- oo\ orq over the wide area network. However, SUNDR is
phy to enforce access control. Clients encrypted files be-

fore writing them to the server. Any client could read any designed for constant, Iower_—bandvyidth conngctivity g,
file. but could only decr tthé file aiven the appropriate a T1), rather than an intermittent high-bandwidth connec-
klee, Unfortunatel yone gopuld not re?nt read-onlppacgess totion' Like CODA, SUNDR reduces read bandwidth with a

Y. 4 9 y large client-site cache. In addition, SUNDR exploits com-

igli.et,\l/_\vgritﬁcgli ' s\,lt\;l:\r/le:eiﬁbﬁﬁﬁtss ;:E)Liltl:ja{rb):j;t%n;g?”;;]g monality between files to compress data exchanged between
' y Y clients and servers. The approach is similar to one used by

version of a file. . -
. . , the rsync [16] file transfer utility.
CFS [2] allows users to keep directories of files that get yne [16] 4

transparently encrypted before being written to disk. CFS .

does not allow sharing of files between users, nor does it3 De€sign

guarantee freshness or integrity of data. It is intended for

users to protect their most sensitive files from prying eyes, SUNDR has several design goals. The server must not
not as a general-purpose file system. Cepheus [5] adds insee any private file data in the clear. Clients should never be
tegrity and file sharing to a CFS-like file system, but trusts tricked into believing a file contains data that wasn’t written
the server for the integrity of read-shared data. there by an authorized user. Furthermore, SUNDR should
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provide an easy way to recover if a server is indeed compro-the server key, used for authentication of the server to
mised. Finally, SUNDR should provide the best guaranteesclients. It may seem odd to authenticate a block server that
it can on the freshness of data. is supposedly untrusted anyway. However, SUNDR does
Unfortunately, because SUNDR assumes so little aboutnot guarantee that servers will not misbehave. It only guar-
security, there are two attacks it cannot protect against. Anantees that bad behavior will be detected, and facilitates re-
attacker can destroy data, wiping or even physically de-covery. The operator of a block server can then be held
stroying a disk. We call this amashing attack. Second,  accountable, and any damage repaired from backups and
if users only ever communicate with each other through the client caches. The server key's role is therefore to assure
file system, an attacker can clone the server, show each usetlients they are communicating with a responsible server.
a separate copy, and prevent each user from finding out thaOther parties cannot impersonate the server, so users can
the other has updated the file system. We call thisrle squarely pin the blame on the operator if anything goes
ing attack. These vulnerabilities inherently result from let- wrong.
ting attackers control a file server. Fortunately, SUNDR can
make the attacks easy to detect and recover from. 3.2 The SUNDR block server

31 Architectural overview Both for efficiency and because it is not trusted to op-
erate on high-level file constructs, the SUNDR server im-
SUNDR will use a two-level architecture reminiscent of plements a simple block protocol. The server stores two
Frangipani [15] on Petal [8]. At the lowest level is the types of state: user metadata, and file system blocks. The
SUNDR block server, a network server that stores chunksuser metadata consists of a table of user public keys and a
of data for users. The block server neither understands norsignedversion structure for each user, described further in
interprets the blocks it is stores for users. This, in large Section 3.3. The superuser’s public key is the public key
part, is what lets the block server be managed by someonef the file system (the one embedded in the file system’s
who does not have access to the file system itself. How-pathname on clients). Note that the term “user” here really
ever, the maintainer of the block server can still perform designates a user or a group in the traditional UNIX sense.
traditional administrative tasks such as making backups andA group is just a SUNDR user with a zero-sized quota (so
adding more disk space. it cannot allocate space) and a private key known to several
The actual file system in SUNDR is built on top of people.
the block server and is implemented entirely by clients.  The main function of the block server is to store and
A SUNDR file system is effectively a collection of hash serve blocks of data that clients can interpret as a file sys-
trees—one per user—mapping per-user inode numbers tdem. The server indexes blocks of data by their crypto-
the contents of files. The nodes of the hash trees are storedraphic hashes. A client can store a block at the server and
at the block server. Given the root directory and the proper later request the contents of the block by its cryptographic
decryption keys, a client can, using the block server, fetch hash. For each block stored, the block server also records
and verify the contents of any file in the system. a list of users “requiring” the block, and a reference count
Every SUNDR file system has a public key, known to all for each user. When no one requires a block any more, the
clients accessing the server. SUNDR will use the SFS [11] server garbage collects it and recycles the disk space. Users
file naming scheme, which embeds file system public keysmay have a quota limiting the amount of data they can re-
in the file namespace. Thus, users can employ any of SFS'sjuire a server to store.
key management techniques to obtain a file server’s public Clients and servers communicate over an authenticated
key. Unlike the current SFS file system, however, a SUNDR link. They negotiate a session key using the server key and
server will not know its own private key. The private key the user’s public key, and authenticate requests and replies
will be known only to those with superuser privileges on using the session key for a symmetric message authentica-
the file system. tion code (MAC). Thus, the server knows that a request to
Each user of a SUNDR file system also has a public key. store or delete a block really comes from a particular user,
Users’ public keys serve two purposes. They authenticateand the user knows that an acknowledgment of a store re-
users to the block server, to prevent an unauthorized persomuest comes from a server that knows the private half of the
from consuming space or deleting blocks still in use. They appropriate server key.
are also used to digitally sign any changes to the file sys- While the client can send the server an entire block to
tem, so that other clients can verify the updated contents.store, it can also send a description of the block based on
The superuser’s public key is the one embedded in the fileexisting blocks stored by the server—for instance, to store
namespace. a new block that is identical to an existing block but for a
Each SUNDR block server also has a public key, called 20 byte region, or to create a new block by appending the
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beginning of one block to the end of another. This protocol provided a consistent view of the file system to all clients.

makes it particularly bandwidth efficient to update all the The SUNDR server is responsible for assigning an order
blocks in a hash tree stored at the server, as a client carto all file open and close operations (excluding closes of
simply transmit a new leaf node along with a bunch of small unmodified files). The order assigned by the server must

deltas to the parent blocks. preserve the order of each individual client’s operations.
Each user of a SUNDR file system has a version number,
3.3 The SUNDR file system incremented each time the user updates the file system. The

basic principle behind the SUNDR consistency protocol is

The SUNDR file system is implemented by clients on that each user signs not only his own i-handle and version
top of the block server. The fundamental data structure in NUmber, but also what he believes to be the version num-
the file system is theirtual inode, shown in Figure 3.3 bers of all other users. Thus, each user’s version structure
with which one can efficiently retrieve and verify any por- Contains a version number for every other user as well.
tion of a file. The virtual inode contains a file's metadata ~ When a user opens a file, the client incremeniss
and the size and cryptographic hashes of its blocks. If theOWn VErsion number and signs amipdate certificate with
file is not world-readable, the metadata also includes an in-the user's private key{UPDATE,v + 1}, 1. When a
dex into a table of symmetric encryptions keys to designatelient closes one or more modified files (more in the case
the key with which file contents has been encrypted. The Of directory operations such as rename), the update cer-
table entry can only be decrypted by users with the appro_tificate contains the inode numbers of the modified files,
priate private keys. For large files, the inode also contains {UPDATE, v+ L, ]1, .. .} 1. The client sends the update
the hash of aimndirect block. which in turn contains hashes certificate to the server. The server assigns the operation a
and sizes of file blocks. The inode further contains the sizePlace in the order of operations, and sends back any new

of all data pointed to by the indirect block. For larger files, Signed version structures the client has not yet seen. It also
an inode can point to double-, triple-, or even quadruple- S€Nds back other users’ update certificates if they are more

indirect blocks. recent that those users’ version structures.

For every user there is an ordered list, known asithe pefinition 1 If z and y are two version structures, we say
table, mapping 64-bit per-user inode numbers to the cryp- that » > y iff for all usersu, (u,v,) € z and (u,v,) € y
tographic hashes of virtual inodes. The i-table is broken jypjiesy, > v,.

into blocks, converted to a hash tree, and each node stored . . . .
at the block server. The hash of the tree’s root is known as  The client uses the signed messages it receives to update
the user's-handle. The data pointed to by a directory inode ItS OWN version structure. For each version structusé

is a list of (file name usetinode numbertriples, sorted by ~ that the client sees, it verifies that either- s’ or s" > .
file name. If not, the client declares that a forking attack has occurred.

handle a set ofuser versior) pairs, one for each user of ~Structure and uploads it to the server. _
the system. The entire version structure is digitally signed ~ When a client is determining each user’s latest version
using the user's private key. Thus, given a user’s Signednumber, it considers both signed version structures and up-
version structure, a client can obtain the file contents of anydate certificates forwarded by the server. The client accepts
tographic hash. Inode number 2 in the superuser’s i-tablein the certificate is not the one being opened. Otherwise, it
has special significance. It is the root directory of the file must wait for the version structure (thereby also obtaining
system. the file owner’s new i-handle, and ultimately the new file
To update the file system, a client first uploads new CONtents).

bIo_cks to the file server (sending only deltas_ for blocks in pefinition 2 User u; has close-to-open consistency with
which only a hash has changed). It then brings the user’s s

4 ) : respect to us iff:
version structure up to date, putting in the new i-handle and . .
updating version numbers, signing the new structure and 1 There exists a partial order, happens beforeon all
sending it to the server. Finally, the client decrements the open and close operations such that any two opera-

reference count on any blocks no longer needed. tions by the same user are ordered, and any close of a
fileisordered with respect to all opensand other closes

3.4 Consistency protocol of that samefile.

2. When u, opensfile F', and thelast close of F' to happen
The goal of SUNDR'’s consistency protocol is to make it before the open was performed by us, u; will seethe
as easy as possible to detect if the server has not faithfully contents written by us.
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Figure 1. The SUNDR virtual inode structure

Application | savings to achieve dramatic compression of file blocks sent to the
dvips | 84% server under many realistic workloads. The most obvious

g++ | 59% workload is that of a text editor. When one edits and saves

ar| 97% a large file, the editor generally creates and writes a new file

. o ] substantially similar to the old one.
Figure 2. Redundancy in files written by var-

ious programs after small changes in the
source.

Many other workloads generate substantially redundant
file system traffic, however. To give a sense for this, Fig-
ure 2 lists the savings in bandwidth one could obtain from
using delta-compression on three typical workloads. The
dvips workload consisted of generating a postscript file for

Definition 3 A file system provides relative freshness iff, this paper twice, with some minor edits in between. 84%

whenever user u, sees the effects of an open or close oper- (by space) of the write calls made by dvips the second time
ation O by us, then at least until u, performed O, u, had around were for 8KB blocks that already existed in the first
close-to-open consistency with respect to us. output file (albeit at different offsets). The g++ workload

consisted of recompiling and linking a 1.3MB C++ program
after adding a debugging print statement. 59% of the writes
clients of two users can communicate on-line, they can could have saved using delta compression between the two

achieve close-to-open consistency with respect to eqchVersions. ar consisted of regenerating a 3.9MB C++ library

other. The clients need only keep each other up to dateafter modifying one of the source files. 97% of the writes

about their users’ latest version numbers. When each ofCOUIOI have been saved.

two users does not know if the other will be on-line, a cor- ~ SUNDR can use the rsync algorithm [16] to reduce band-
rupt SUNDR server can mount a forking attack. However, width when one file is very similar to another. However, that
once such an attack has occurred, the server can never agafill leaves the problem of actually pairing up old files with
show either user another update by the other. The corrupl€w ones. In some cases this is easy. For example, dvips
server can therefore partition the set of users and give eachust truncates the old file and writes out the new one. Since
partition its own clone of the file system, but when parti- allocating and freeing of blocks in SUNDR is controlled by
tioned users have any out-of-band communication—for in- the client and decoupled from the file system’s structure,
stance one user in person telling the other to look at a newthe client can, space permitting, temporarily delay remov-

The SUNDR consistency protocol guarantees relative
freshness (proof omitted). Given this property, when the

file—the forking attack will be detected. ing truncated or deleted files from the server and its local
cache in order to use them for delta compression. In other
35 Low-bandwidth protocol cases, however, the relation between old and new files may

be less obvious. The emacs text editor, for instance, saves
The SUNDR block protocol lets clients use delta- @ file by creating and writing out new file with a different
compression to avoid sending an entire metadata block tohame, forcing that file's contents to be committed to disk,
the server when the new block is identical to an old one @nd only then renaming the new file to replace the old.
but for a small hash value. The same protocol can be used Fortunately, the SUNDR client can index its local file
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cache. Using Rabin fingerprints, the client can efficiently
compute a running checksum of every (overlapping) 8K
block in a file. The client can then index cached files by
their n lowest valued checksums for some smallMany

of these checksums will likely appear in a new version of
the file to be written out to the server. Thus, the client can
pick a file against which to run the rsync algorithm by look-
ing up a small number of fingerprints in its index.

The encryption of blocks slightly complicates delta com-
pression. SUNDR will encrypt data with a block cipher us-
ing the combination OFB/ECB mode of [2], but each block
stored at the server will have a randomly chosen IV pre-
fixed to the block. When updating internal nodes of the file

system, this encryption scheme allows a 20 byte hash in an 6

encrypted block to be updated by changing only 32 bytes of
ciphertext.

The situation is more complicated on leaf nodes, when
the client is attempting to apply differences between two
files in its local cache to an encrypted version of the file on
the server. It is for this reason that the SUNDR virtual in-
ode structure permits variable size data blocks and contains
the sizes of those blocks. The client can preserve intact any
blocks from the old file that are present in the new file, and
glue those blocks together with odd-sized fragments. Per-
forming write compression in this way will automatically
give other clients the same factor in read compression, as
it will maximize the number of the new file’s blocks that
already exist in their local caches.

4 Summary

The SUNDR file system securely stores data on un-

trusted servers. Thus, people can base trust decisions on
who needs to use data and administrative decisions on how{12]
best to manage the data. While some attacks simply cannot

be prevented—for instance physical destruction of the hard
disk—SUNDR makes it easy to detect and recover from
such problems. For instance, after restoring a server from

backup, recent changes can securely be merged in from thélg]

caches of untrusted clients. SUNDR also introduces the no-
tion of relative freshness—the guarantee that users will see
all of each other’s changes or none. While weaker than tra-

ditional file system consistency guarantees, relative fresh-[14]

ness easily lets clients verify tighter consistency guarantees
through client-to-client communication.

[15]
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Abstract Many active networking publications discuss the ben-

In this paper we argue thabntent distribution in the .efi.ts of facilitat.ing _deployment of new protocols over ex-
face of censorship is a compelling and feasible applica- isting networking mfra_structure._ Overlay netwgrks s_uch
tion of active networking. In the face of a determined®S Freenet [6, 7] that aim to provide a censorship-resistant

and powerful adversary, every fixed protocol can becomgocument publishing mechanism seem a good fit for such

known and subsequently monitored, blocked, or its merr@ Protocol update system: once in place, it is possible
ber nodes identified and attackd®apid and diverse pro- that hostile governments, ISPs, or network administrators

tocol changeis key to allowing information to continue to might attempt to monitor Qr_blocl_< Free?‘et ”nks' One way

flow. Typically, decentralized protocol evolution is also to make th!s task more difficult is to dlver5|fy the proto-

an important aspect in providing censor-resistance.  C°IS by which two peer nodes can communicate. Ideally,
A programmable overlay network can provide thesdather than expanding the size of the set of protocols spo-

two features. We have prototyped such an extension Ken from one to a small finite number, the size of the pro-

Freenet, a storage and retrieval system whose goals iiocol set would be theoretically unbounded, to prevent an

clude censor resistance and anonymity for informatioftttacker from learning every member of the set.
publishers and consumers. The keys to making this strategy successful are to allow
and encourage the deployment of new hop-by-hop proto-
. cols at any time, even after the system is in wide use, and
1 Introduction to allow any user of the system to introduce new proto-
The ability to communicate effectively—even in the cols. The system should be able to evolve rapidly to react
face of censorship attempts by a hostile party, such ast@ changes in its environment. There should be no cen-
repressive government—is important to maintaining thé&ral source of new protocols to become vulnerable. Any
values held by many societies. As The New York Timegnember of the network should be able to decide upon
reported [17], just last week a corrupt head of state wag new protocol to use, and “teach” its neighbors to use
toppled from power, “due in no small part” to 100,000the new protocol when communicating with it. Thus, any
people responding to a “blizzard” of wireless text mes-hode is able quickly to take action if it deems that a proto-
sages summoning them to demonstrations. But what &l change is desirable. Such adaptive, evasive protocols
the government had deployed a powerful jamming signainay—and probably will—be inefficient, but above some
or simply taken over the cell phone company? threshold, that is not a significant concern. Like other
The fundamental rationale for active network-projects (e.g., Oceanstore)we explicitly choose to exploit
ing [16]—allowing the network itself to be pro- the ever-growing supply of network bandwidth and pro-
grammable or extensible by less than completely truste@essing power for benefits other than speed.
users—is to ease the deployment of new protocols |f the publishing system’s core is implemented in
throughout the network infrastructure. Active network-Java [1] or similar typesafe language, or if the core can
ing’s flexibility is its only real virtue, since any one interface with such typesafe code, then such evolution
protocol can be more efficient, more robust, and havean be implemented by using mobile bytecode that imple-
fewer troubling side effects if it is part of the fixed ments a new node-to-node protocol. When a node wishes
network infrastructure. Thus it has proven difficult toto change the protocol spoken with one of its peers (either
demonstrate even a single compelling application obecause of suspected attack, or as a matter of course), it
active networking, as it is really thgpace of applications  can send the peer bytecode that implements the new pro-

that is compelling. tocol. We call this passed bytecode a Protocol Object. In
Rob Ricci, a fulltime undergraduate student, is the primary authofU" experiment, we call the result of extending Freenet
Jay Lepreau is the contact author. with Protocol Objects, “Agile Freenet.”
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2 Related Work Freenet is decentralized; requests are propagated through

Outside of active networks, mobile code has often beefl ser_ies _of peer-to-peer links. When a file is transferred,
used to support heterogeneous environments and pldft€ file is cached by all nodes on the route between

forms (pervasive computing [12] and Sun’s Jini), datd"€ requesting node and the node where a copy of the

transcoding and proxies [15], moving computation tofile is found. Frequently requested files are thus repli-

data (Mobile Agents), or towards more abundant compu£ated atmany points on the network, making the removal
tational or I/0 resources (e.g., applets in Web browsersl2! ¢ensorship of files infeasible. A peer forwarding a
In the wireless realm there is a long history of elec. T€€net message from one of its peers is indistinguish-
tronic response to jamming, either accidental or purposé@Pl€ from a peer originating the message, providing a
ful, often using spread-spectrum techniques. Software r&€9ree of anonymity for the suppliers and requesters of
dios [3] and other more traditional approaches provid&at@- Freenet is only as good, however, as the network it
adaptive physical-layer protocols. All of these wirelesdS Puilt upon; underlying networks hostile to Freenet can
efforts emphasize improved performance by seeking les@0tentially block or monitor its connections, preventing
used parts of the spectrum, or by using spectrum in Ereenet from fulfllllng its goalo. Agile protocols, there-
more sophisticated manner. Ad-hoc networks, whethdPT®: €an provide many potential benefits.
mobile or not, apply adaptive protocols in a more exten- Other systems incorporate _S|m|Iar |oeas in ohfferent
sive manner [14], and although they must sometimes cogPNtexts.  Gnutella [11] provides a file sharing and

sider issues of trust, have so far also focused on efficiendfarch system that is decentralized across widely dis-
and performance. persed nodes, but does not maintain endpoint anonymity.

“Radioactive networks” [4], in which active network- Publius [19] offers anonymity for publishers, and plausi-

ing is proposed as a way to extend a software radio irRle deniability for servers. The FreeHaven [8] design—

frastructure, comes closest to the ideas in this paper. TI§@ far unimplemented and known to be inefficient—has

authors' goals are primarily the traditional goals of adap_similar goals to Freenet, but uses a wider variety of tech-

tive wireless protocols: better performance through bette!dues to offer stronger guarantees of anonymity and doc-
use of spectrum and energy. However, they do mentioHMent persistence. o ,
security as a potential benefit, and suggest a software ra-/n @l of the above systems, monitoring can reveal in-

dio system that can vary its spectrum spreading codes fgrmation, even if it cannot directly discover the con-
avoid jamming. tents of a message, or identify its endpoints [5]. Large

It is interesting that the first known active network, duantities of cover traffic, many participating nodes, and
Linkoping Technical Institute’s Softnet [21], also in- Widespread routine use by others of end-to-end encryp-
volved radio, though in a different manner. Softnet, intion are required for many of the publishing networks to
1983, implemented a programmable packet radio nefunction effectively. Recognizing thataglven data otreom
work, building upon a special Forth environment. It al-belongs to one of these networks is not necessarily diffi-

lowed users to extend the network with their own service§UIt: and can give an attacker information on the usage,
and protocols above the physical layer. behaviors or identities of network users. In addition, once

In terms of censor-resistance, a user-programmabfy!Ch communications are recognized, they can be selec-
collection of wireless nodes would have strengths thdfvely blocked. Using agile protocols for communication
a wired network does not possess. In the latter, typi€@n make this task much more difficult for an attacker.
cal users are almost entirely vulnerable to their sole ISP.
Wireless nodes, partic.ularly if they haye software-definegf Agile Protocols
waveforms and a multitude of accessible peer nodes, pro-
vide a large set of diverse paths to the broader network.The Case for Agile Protocols
In our content-distribution application area, there are An agile protocol, as we define it, is a protocol whose
an increasing number of censor-resistant and anonymodstails can be changed arbitrarily and quickly while the
publishing efforts, some of which are outlined in the nextsystem is running. The most flexible way to do this is
section. To our knowledge, none of them use activéhrough mobile code.
code. If the goal of Agile Freenet were simply tabscure
Freenet connections, then it would probably be sufficient
. - simply to encrypt them, headers and all. It is desirable,
3 Censor-resistant Publishing Networks however, to be able tdisguise Freenet connections as
Freenet employs a variety of techniques aimed at cravell, by communicating over a protocol that is similar
ating a censorship-free, anonymous environment. Celin appearance to some well-known application-level pro-
tral to Freenet’s strategy is the distribution of data acroswcol, such as HTTP, SMTP, etc. Statically including
a large number of independently-administered nodesome set of these protocols in each release of the software
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would be a solution, but would give a potential attackeias possible. A given file transfer could be accomplished
a small set of protocols to understand. Additionally, thiswith as many different Protocol Objects as there are links
would create problems with peer nodes running differenin the route it takes. This eliminates the necessity for
versions of the software, as they would all be under sepa more complicated “capsule” system like ANTS [20],
rate administrative control. Instead, by allowing nodes tavhich ensures that each hop on a given route has the
exchange protocol implementations, we make the set @froper (and identical) code to run a given protocol.
protocols spoken on the network dynamic, regardless of Second, file sharing overlay networks such as Freenet
the version of the software nodes are running, and makingnd to be systems where data being searched for is ex-
an attacker’s job very difficult. tremely likely to be available from many sources. This
New Protocol Objects could implement steganographiessens the importance of a single point-to-point link, as,
[13], proxying through third parties, tunneling through even if an individual link goes down or misbehaves, data
firewalls and proxy servers, and other techniques to make likely to be available through some other route. Addi-
them difficult to monitor and block. Most importantly, tionally, such networks involve some user interaction, so
using agile protocols allows us to take advantage of suckome classes of problems can be addressed by the users.
technologies and others yet to be discoveasdsoon  Thus, we do not require strong guarantees about the cor-
as they are developed. Users can write Protocol Obrectness or efficiency of each Protocol Object.
jects to suit their own network situation (for example,
if they are behind a firewall that allows only certain .
ports i/hrough, or wish to tunnel their connectior¥s throughS Agile Freenet
some unusual proxy service) and distribute it easily td.1 Basics
their Freenet peers and other users without having to galentification: Identifying protocol objects can be
through any central or even local authority. In response tdone simply by computing a cryptographic hash of the
a determined adversary, new protocols might be writteprotocol bytecode—this eliminates any need for a cen-
and deployed daily or hourly, all on a decentralized andralized naming scheme, and allows hosts to distinguish

demand-driven basis. between Protocol Objects that they already have, inde-
pendent of any identifier they may be given. When a
Issue: Level of Programmability node wishes to change the protocol it is speaking on a

Allowing any user to introduce new protocols into apoint-to-pointlink with a peer, it sends its peer a message
censor-resistant network presents clear threats. The cegentaining this hash. If the peer does not have the byte-
sors themselves will certainly have the means and m@ode matching the hash, it can request that the originating
tivation to introduce malicious protocols. We cannotnode send it. A similar but more complicated method is
therefore, allow arbitrary programmability, but must re-employed in the ANTS toolkit.
strict the API available to the active code. There is an

obvious and permanent tension between constraining tiBootstrapping: Bootstrapping an agile protocol can be
active code and allowing it space to diversify. In addi-problematic—when a node wishes to contact a new po-
tion, it is useful to draw a distinction between the overtential peer, it must be assured that there is a common pro-
all architecture of a content-distribution network, i.e., itstocol that both it and its peer speak. This problem, how-
global invariants and central algorithms, and the detailgver, is shared by the base Freenet system itself—joining
of its hop—by—hop communication protocol. It is clearlythe network requires learning the network addresses and
safer to allow programmability of the latter than the for-ports of potential peers through some out-of-band mech-
mer. Wetherall's retrospective on active networking [20Janism. These mechanisms could be extended to encom-
reaches an analogous conclusion: under complete prpass more information—users wishing to join the Agile
grammability, it is feasible to assure the safety of individFreenet could obtain files from their prospective peers

ual nodes, but not of the overall network. containing network address, port numbers, public keys
_ N _ _ (whose purpose will be discussed later), and one or more
Comparison to Traditional Active Networking Protocol Objects that are in use by that node.

The issues that confront agile protocols in general, and
Agile Freenet in particular, differ in some ways from the5.2 Potential Dangers
problems that traditionally have been the target of active Protocol Objects help to thwart listeners or attackers
networking research. in some ways, but also have the potential to be a tool
First, new protocols need not be spoken along an entifer them. Here, we outline potential dangers. The next
data path, only on individual point-to-point links. In fact, section addresses solutions.
it is desirable to have a very diverse set of different pro- Compromise of Local Information: A malicious
tocols spoken, in order to make the system as dynamlkerotocol Object inserted into Agile Freenet could attempt
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to discover information about nodes that it is spread tathe Protocol Object, using a key unknown to it. In this

such as the files in their cache and their list of peer nodesiay, we can prevent Protocol Objects from discriminat-

Discovery of such information could lead to the compro4ing based on the data being transferred, as they do not

mise of some of Freenet’s core goals, such as anonymityave the ability to read it. Also, we can send separately-
Disclosureto an outside source: A malicious Proto- encrypted checksums or digital signatures to verify that

col Object could contact a third party and disclose adthe data has not been corrupted.

dresses of nodes, keys being searched for, data beingResource Management: Agile Freenet can be run

transferred, etc. in a Java Virtual Machine that supports resource man-
Failure.  Protocol Objects could fail, either mali- agement between different Java “applications,” using fea-

ciously or through poor programming. This failure couldtures such as those available in KaffeOS [2] or Janos [18].

be total or intermittent. However, just as in Web browsers running untrusted Java
SelectiveFailure: This is a more insidious instance of code, simpler mechanisms should suffice for initial de-

failure, in which a Protocol Object fails only for certain ployment. E.g., existing OS mechanisms can limit the

requests or data transfers, to prevent them from servinyM to a fixed share of memory and cpu, and the node

requests for certain files, or certain types of data. user or administrator can be notified if a limit is consis-
Corruption: Protocol Objects could corrupt the datatently reached.

passing through them to disrupt the integrity of the in-

formation stored in Agile Freenet, or to somehow “tag”5.4 Encryption

transfers for tracing. Encryption is useful at several different points in Agile
Resource Usage: A malicious or poorly written Pro-  Freenet. First, as already discussed, it can prevent Proto-

tocol Object could consume excessive system resource| Objects from discovering what data they are transmit-

degrading its performance ting or receiving, and can ensure that data transferred has
_ not been tampered with or otherwise altered.
5.3 Combating the Dangers Second, if two peer nodes wish to exchange a new Pro-

Given the dangers outlined above, it is easy to sewcol Object, this transfer should be encrypted, even if the
that some precautions will be necessary when adoptirgormal” data they are sending is not. If switching proto-
our Agile Protocol. Here, we outline ways of protectingcols is done because of a suspicion that communications
the core Freenet system from malicious or poorly writterare being monitored, then transferring a new Protocol
Protocol Objects. Object unencrypted would give the listener the bytecode

Namespace | solation: With current Java Virtual Ma- necessary to continue listening when the new protocol is
chines, it is possible to limit which classes a given objectised, or at least a means to determine which protocol is
can resolve references to, through ClassLoader objectseing used. Encrypting Protocol Objects as they are be-
This can be used to restrict access to parts of the Freeriag transferred denies a listener this advantage.
node, system classes, etc, that are not necessary for a Pro-
tocol Object to use, and prevent compromise of local in5.5 Experience

formation. _ _ _ _ We have implemented the basic framework described
Network Isolation:  Using the namespace isolation in this paper by modifying the current Freenet implemen-
technique discussed above, we can force Protocol Olation [10] to incorporate Protocol Objects. Since our ex-
jects to use a network API that we define, which can pefensions to Freenet were different than those envisioned
form checks to insure that a Protocol Object is not makingy its developers, we found it moderately difficult to ex-
unauthorized network access or contacting a third partytend. However, once the framework was in place, we
~ Rating of Protocol Objects: To combat Protocol Ob- \vere pleased with the resulting extensible system.
ject failure, each node can maintain a rating system for ouyr prototype sends the bytecode for Protocol Objects
each Protocol Object it uses, evaluating each one’s effegyer the network and loads it into a restricted Java execu-
tiveness based on factors like success rate for searchggn environment using standard Java ClassLoader mech-
dropped connections, and detected corruption (discussgdisms; sensitive Freenet and system APIs are hidden.
below.) It can then decide not to use Protocol Objectgyve implemented three different Protocol Objects. One
that have too low of a rating. Note that this may makqmplements the standard Freenet protocol, another mim-
perfectly good Protocol objects look bad—the peers theyes HTTP syntax to facilitate tunneling through HTTP,
are used with may not have much data cached, may hgd a third implements TCP “port-hopping.” Nodes can,
unstable, etc. This is acceptable—the primary goal is to
prevent the spread of “bad” Protocol Objects 1we will soon demonstrate HTTP tunneling via passage through a
) stock Web proxy. Doing so awaits our extending Freenet internals in a

Data Encryption: Se|ef3tive failure and corrgptiqn minor way, so that “in-bound” connections can fake the Web’s “client-
can be solved by encrypting data before passing it teide-initiates” behavior.
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at the behest of their peers, change Protocol Objects gt7] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet:
any Freenet “message” (file) bounddryThis diversity

is on a per-peer basis, allowing a node to speak an arbi-
trarily different protocol, on a different port, at different
times, to each of its peers.

The prototype was developed and tested on our scal-
able Network Emulation facility [9]. We plan to continue [8]
development of our prototype as a test platform for re-
search on agile protocols.

6 Conclusion

9]

Censor-resistant content distribution networks provide
a compelling application of active networking technol-
ogy. Agile protocols seem likely to improve significantly 10

such networks’ resistance to monitoring and blocking 11]
without an unduly large increase in the potential dam-

age from malicious protocols. We have demonstrate(ﬂ,lz]
in the Freenet system, that such an extension is feasible.
What remains as future work is evaluating the extent of
improvement, increasing the range of protocol variants
and ultimately deploying and evaluating agile protocolJB]
in the live Freenet. It should be easy to interest students

in such a contest between publishers and censors.  [14]
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Abstract

Even after decades of software engineering research, complex
computer systems still fail, primarily due to nondeterministic
bugs that are typically resolved by rebooting. Conceding that
Heisenbugs will remain a fact of life, we propose a systematic
investigation of restarts as “ high availability medicine” In this
paper we show how recursive restartability (RR) — the ability of
a system to gracefully tolerate restarts at multiple levels — im-
proves fault tolerance, reduces time-to-repair, and enables sys-
tem designers to build flexible, highly available software infras-
tructures. Using several examples of widely deployed software
systems, we identify properties that are required of RR systems
and outlinean agenda for turning the recursive restartability phi-
losophy into a practical software structuring tool. Finally, we de-

1. Restarting works around Heisenbugs.

Most software
bugs in production quality software are Heisenbugs [27, 8,
17, 2]. They are difficult to reproduce, or depend on the
timing of external events, and often there is no other way
to work around them but by rebooting. Even if the source
of such bugs can be tracked down, it may be more cost-
effective to simply live with them, as long as they occur
sufficiently infrequently and rebooting allows the system to
work within acceptable parameters. The time to find and
deploy a permanent fix can sometimes be intolerably long.
For example, the Patriot missile defense system, used dur-
ing the Gulf War, had a bug in its control software that could
be circumvented only by rebooting every 8 hours. Delays in
sending a fix or the reboot workaround to the field led to 28
dead and 98 wounded American soldiers [34].

scribe infrastructural support for RR systems, along with initial

ideas on how to analyze and benchmark such systems. 2. Restarting can reclaim stale resourcesand clean up cor-

rupt state. This returns the system to a known, well-tested
state, albeit with possible loss of data integrity. Corrupt or
stale state, such as a mangled heap, can lead to some of
the nastiest bugs, causing extensive periods of downtime.
Despite decades of research and practice in software engineer- Even if a buggy process cannot be trusted to clean up its
ing, latent and pseudo-nondeterministic bugs in complex soft- own resources, entities with hierarchically higher supervi-
ware systems persist; as complexity increases, they multiply fur- sory roles (e.qg., the operating system) can cleanly reclaim
ther, making it difficult to achieve high availability. It is common any resources used by the process and restart it.
for such bugs to cause a system to crash, deadlock, spin in an
infinite loop, livelock, or to develop such severe state corruptionRebooting is not usually considered a graceful way to keep a
(memory leaks, dangling pointers, damaged heap) that the osyggtem running — most systems are not designed to tolerate unan-
high-confidence way of continuing is to restart the process or resunced restarts, hence experiencing extensive and costly down-
boot the system. time when rebooted, as well as potential data loss. Case in point:
The rebooting “technique” has been around as long as codiNIX systems that are abruptly halted without calliggnc () .
puters themselves, and remains a fact of life for substantiallyThe Gartner Group [31] estimates that 40% of unplanned
all nontrivial systems today. Rebooting can be applied at vatiewntime in business environments is due to application failures;
ous levels: Deadlock resolution in commercial database syste28%6 is due to hardware faults, of which 80% are transient [8, 25],
is typically implemented by killing and restarting a deadlockeuence resolvable through reboot. Starting from this observation,
thread in hopes of avoiding a repeat deadlock [15]. Major Intexe argue that in aappropriately designed system, we camnm-
net portals routinely kill and restart their web server processa®ve overall system availability through a combination of re-
after waiting for them to quiesce, in order to deal with knowactively restarting failed components (revival) and prophylacti-
memory leaks that build up quickly under heavy load. A majamally restarting functioning components (rejuvenation) to prevent
search engine periodically performs rolling reboots of all nodstate degradation that may lead to unscheduled downtime. Cor-
in their search engine cluster [3]. Although rebooting is ofterespondingly, we present initial thoughts on how to design for
only a crude “sledgehammer” for maintaining system availabilecursive restartability, and outline a research agenda for system-
ity, its use is motivated by two common properties: atic investigation of this area.

1 Introduction
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The paper is organized as follows: In section 2, we explaamd each great-grandchild a kernel-level process thread. This
how the property of being recursively restartable can improverae captures the tradeoff that, the closer to the root a restart oc-
system’s overall availability. In section 3, we present examplesafrs, the more expensive the ensuing downtime, but the higher
existing restartable and non-restartable systems. Section 4 idba-confidence that transient failures will be resolved. In the
tifies some required properties for recursively restartable systesb®ve example, processes are fault-isolated from each other by
and proposes an initial design framework. Finally, in section the hardware-supported virtual memory system, which is gener-
we outline a research agenda for converting our observations ially a high-confidence field-tested mechanism. The same mech-
structured design rules and software tools for building and evahism also allows parents to reclaim process resources cleanly.
uating recursively restartable systems. Many of the basic idé&sdes are fault-isolated by virtue of their independent hardware.
we leverage have appeared in the literature, but have not b&émen a bug manifests, we can use a cost-of-downtime/benefit-
systematically exploited as a collection of guidelines; we wilif-certainty tradeoff to decide whether to restart threads, pro-
highlight related work in the context of each idea. cesses, nodes, or the entire cluster.

RR enables flexible availability tradeoffs. The proposed re-
. L juvenation/revival regimen can conveniently be tailored to best
2 Recursive Restartability Can Improve suit the application and administrators: it can be simple (reboot
Availability periodically) or sophisticated (differentiated restart treatment for
each subsystem/component). ldentical systems can have differ-
“Recursive restartability” (RR) is the ability of a system to tolefent revival and rejuvenation policies, depending on the appli-
ate restarts at multiple levels. An example would be a softwasgtion’s requirements and the environment they are in. Sched-
infrastructure that can gracefully tolerate full reboots, subsystefied non-uniform rejuvenation can transform unplanned down-
restarts, and component restarts. An alternate definition is plime into planned, shorter downtime, and it gives the ability
vided by the following recursive construction: the simplest, bas@- more often rejuvenate those components that are critical or
case RR system is a restartable software component; a genatak prone to failure. For example, a recent history of revival
RR system is a composition of RR systems that obeys the guidsstarts and load characteristics can be used to automatically de-
lines of section 4. In the present section we describe properiite how often each component requires rejuvenation. Simpler,
of recursively restartable systems that lead to high availability.coarse-grained solutions have already been proposed by Huang

RR improves fault tolerance. The unannounced restart of &t al. [21] and are used by IBM’s xSeries servers [22].
software component is seen by all other components as a tempo-
rary failure; systems that are C!e5|gned to tolerfite sgch restart%areEXisti ng Systems
inherently tolerant to all transient non-Byzantine failures. Since

most manifest software bugs and hardware problems are sSRR#L, fe\y systems today can be classified as being recursively
lived [25, 27, 8], a strategy of failure-triggered, reactive COMPQagtartaple. Many systems do not tolerate restarts at all, and we
nent restarts will mask most faults from the outside world, thﬁﬁ?ovide some examples in this section. Others, though not nec-
making the system as a whole more fault tolerant. essarily designed by following an existing set of RR principles,
RR can make restarts cheap. The fine granularity of recur- fotitously exhibit RR-friendly properties. Our long term goal
sive restartability allows for a bounded portion of the system to ke, gerive a canon of design rules, including tradeoffs and pro-

restarted upon failure, hence reducing the impact on other CoRamming model semantics, so that future efforts will be more
ponents. This way, the system’s global time-to-repair is mi@%stematic and deliberate.

mized (e.g., full reboots are replaced with partial restarts), whic
increases avallablll_ty. Similarly, RR_aIIows for compongnts ar}gl. Poorly Restartable Systems
subsystems to be independently rejuvenated on a rolling basis;
such incremental rejuvenation, unlike full application reboots software systems not designed for restartability, the transient
makes software rejuvenation [21] affordable for a wide range fafilure of one or more components often ends up being treated
24 x 7 systems. as a permanent failure. Depending on the system’s design,
RR providesa confidence continuum for restarts. The com- the results can be anywhere from inconvenient to catastrophic.
ponents of a recursively restartable system are tied togetheNIsS [30] exhibits a flavor of this problem in its implementa-
an abstract “restartability tree,” in which (a) siblings are welion of locking: a crash in the lock subsystem can result in an
isolated from each other by the use of simple, high-confiderioeonsistent lock state between a client and the server, which
machinery, and (b) a parent can unilaterally start, stop, or s@metimes requires manual intervention by an administrator to
claim the resources of any of its children, using the same kirepair. The result is that many applications requiring file locks
of machinery. For example, in a cluster-based network servitest whether they are running on top of NFS and, if so, perform
the root of the tree would be an administrator, each child of thieeir own locking using the local filesystem, thereby defeating
root would be a node’s OS, each grandchild a process on a nable,NFS lock daemon’s purpose.
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As a more serious example, in July 1998, the USS Yorktowh The Restart Scalpel: Toward Structured
battleship lost control of its propulsion system due to a string Recur sive Restartability
of events started by a data overflow. Had the overall system

been recursively restartable, its components could have beer],iﬂproposing RR, we are inspired by the effect of introducing
dependently restored, avoiding the need to have the entire MiSAt8D (atomic, consistent, isolated, durable) transactions [16]
cruiser towed back to port [10]. as a building block many years ago. Not only did transactions
Many UNIX applications use th¢tmp directory for tempo- greatly simplify the design of data management systems, but they
rary files. Should/ tmp become unavailable (e.g., due to a disk|so provided a clean framework within which to reason about the
upgrade), programs will typically hang in the 1/O system callgsror behavior of such systems. Our goal is for recursive restarta-
Consequently, these monolithic, tightly coupled applications biitity to offer the same class of benefits for systems where ACID
come crippled and cannot be restarted without losing all the wag&mantics are not required or are expensive to engineer, given the
In progress. system’s availability or performance goals. In particular, we ad-
Tightly coupled operating systems belong in this category @gess systems in which weaker-than-ACID requirements can be
well. For example, Windows NT depends on the presence of cekploited for tradeoffs that improve availability or simplicity of
tain system libraries (DLLS); accidentally deleting one of thegbnstruction.
can cause the entire system to hang, requiring a full reboot angh, this section we make some observations about the properties
the loss of all applications’ work in progress. In the ideal casgy RR-friendly systems, and propose guidelines for how RR sub-
an administrator would be able to replace the DLL and restaffstems can be assembled into more complex RR systems. The
the dependent component, allowing the system to continue rgijararching theme is that of designing applications as loosely
ning. If the failed component was, say, the user interface onxgupled distributed systems, even if they are not distributed in
machine running a web server, RR would allow availability ¢{ztyre.
the web service to be unaffected. The ability to treat OperatingAccepting No for an answer . Software components should be

syste_m services as sep_arate components can avoid these fa”HE%?gned such that they can deny service for any request or call.
as evidenced by true microkernels [1, 24]. Then, if an underlying component can 4y, applications must
be designed to takdo for an answer and decide how to proceed:

3.2 Restartability Winners give up, wait and retry, reduce fidelity, etc. Such components can

. ) i . . then gracefully tolerate the temporary unavailability of their peer,
The classic replicated Internet server configuration has- 55 evidenced in the cluster-based distributed hash table described
stances of a server for a populatiomotisers, with each servery,, G ipple et al. [19]. Dealing withNo answers in the callers, as
being able to handle in excess @fn users. In such systems,,, se t0 trying to cope with them in the server, closely follows
node reboots result simply in a transieit. throughput 10SS. 6 end-to-end argument [29]. Moreover, Lampson observes that

Moreover, read-only databases can be striped across theseiy, error handling is absolutely necessary for a reliable system
stances such that each node contributes a fixed fractidn(pf anyway [23].

(data/queryx queries/unit time) [4]. Independent node reboots
or transient node failures result solely in decreased data/query,Subsystems should make their interface guarantees suffi-
while keeping overall queries/unit time constant. Such a design ciently weak, so they can occasionally restart with no|ad-
makes “rolling rejuvenation” very affordable [3]. vance warning, yet not cause their callers to hang/crash.
At major Internet portals, it is not uncommon for newly hired
engineers to write production code for the system after little moreUsing reconstructable soft state with announce/listen pro-
than one week on the job. Simplicity is stressed above all eltggols. Soft state and announce/listen have been extensively used
and code is often written under the explicit assumption thatait the network level [37, 9] as well as the application level [12].
will necessarily be killed and restarted frequently. This affordsnounce/listen makes the default assumption that a component
programmers such luxuries as never callingee () in their C is unavailable unless it says otherwise; soft state can provide
code, thereby avoiding an entire class of pernicious bugs.  information that will carry a system through a transient failure
Finally, NASAs Mars Pathfinder illustrates the value off the authoritative data source for that state. The use of an-
coarse-grained reactive restarts. Shortly after landing on Mareunce/listen with soft state allows restarts and “cold starts” to
the spacecraft identified that one of its processes failed to cdve-treated as one and the same, using the same code path. More-
plete execution on time, so the control software decided to res@wer, complex recovery code is no longer required, thus reducing
all the hardware and software [28]. Despite the fact that the sdfte potential for latent bugs and speeding up recovery.
ware was imperfect — it was later found that the hang had beerUnfortunately, sometimes soft state systems cannot react
caused by a hard-to-reproduce priority-inversion deadlock — theickly enough to deliver service within their specified time
watchdog timers and restartable control system saved the mis§iame. Use of soft state implies tolerance of some state incon-
and helped it exceed its intended lifetime by a factor of three. sistency, and sometimes the state may never stabilize. For exam-
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ple, in a soft-state load balancer for a prototype scalable network “Glue” protocols should enforce fine grain interactians
server [14], the instability manifested as alternating saturation| between subsytems. They should provide hooks for gom-
and idleness of workers. This was due to load balancing decisionsputing the cost of a subsystem’s restart based on th¢ ex-
based on worker load data that was too old. Mitzenmacher [26] pected duration of its current task and its children’s tasks.
derives a quantitative analytical model to capture the costs and
benefits of using such stale information, and his model's predic-
tions coincide with behavior observed in practice. This type of Using orthogonal composition axes. Independent subsys-
problem can be addressed by increasing refresh frequency, altegits that do not require an understanding of each other’s func-
with additional bandwidth and processing overhead. tionality are said to be mutually orthogonal. Compositions
of orthogonal subsystems exhibit high tolerance to component
restarts, allowing the system as a whole to continue function-
State shared among subsystems should be mostly SOlfting (perhaps with reduced utility) in spite of temporary failures.
The extent of soft state depends on (a) the application's ey s a strong connection between good modular structure
convergence and response-latency requirements and (bnq the ability to exploit orthogonal mechanisms; systems that
the refresh frequency supported by the inter-component gy p|6it them well seem to go even further: their control flows
communication substrate (which is a function not only of 5.6 completely decoupled, influencing each other only indirectly
‘raw” bandwidth and latency but also of “goodput”). through explicit message passing. Examples of orthogonal mech-
anisms include deadlock resolution in databases [15], software-
based fault isolation [35], as well as heartbeats and watchdogs

Automatically trading precision or consistency for avail- sed by process peers that monitor each others’ liveness [14, 7
ability. Online aggregation [20], harvestlyield tradeoffs [13]L,J yp P [14. 71

and distributed databases such as Bayou [33] are examples of dySplit functionality along orthogonal axes. Each corre-

namic or adaptive trading of some property, usually either consis- sponding subsystem should be centered around an jnde-

tency or precision, for availability. Recently, TACT [36] showed | pendent locus of control, and interact with other subsys-

how such tradeoffs could be brought to bear on systems em;tems via events posted using an asynchronous mechanism.

ploying replication for high availability, by using a framework

in which consistency degradation is measured in application-

specific units. The ability to make such tradeoffs dynamically Research Agenda and Evaluation

and automatically during transient failures makes a system much

more amenable to RR. After refining the above design guidelines, evaluation of a RR
research agenda will consist of answering at least three major

categories of questions:
e What classes of applications are amenable to RR? What

model would capture the behavior of these applications and
allow them to be compared directly?

e How do we quantify the improvements in availability and the
possible losses in performance, consistency or other function-
ality that may result from the application of RR?

e What software infrastructure and tools are necessary to exe-
cute the proposed automatic revival/rejuvenation policy?

Inter-component “glue” protocols should allow compo-
nents to make dynamic decisions on trading consis-
tency/precision for availability, based on both applicatipn-
specific consistency/precision measures, and a consis-
tency/precision utility function (e.qg., “a perfectly consjs-
tent answer is twice as good as one missing the last two
updates,” or “a 100% precise answer is twice as good|as a
90% precise answer”).

_Structuring applicat_ions arpund fine grain Wprkloads A 51 Building RR Systems

primary example of fine grain workload requirements comes

from HTTP: the Web’s architecture has challenged applicati®ome existing applications, most notably Internet services, are
architects to design mechanisms for state maintenance and akeady incorporating a subset of these techniques (usually in an
sion identification, some more elegant than others. The resulag hoc fashion) and are primary candidates for systematic RR.
that the Web as a whole exhibits the desirable property that 8imilarly, many geographically dispersed systems can benefit if
dividual server processes can be quiesced rapidly, since HTthEy tolerate weakened consistency, due to the potential lack of
connections are typically short-lived, and servers are extremedjiability in their communication medium. We suspect the spec-

loosely bound to their clients, given that the protocol itself isum of applications that are amenable to RR is much wider, but
stateless. This makes them highly restartable and leads direstily needs to be explored.

to the simple replication and failover techniques found in large Loosely coupled architectures often exhibit emergent proper-
cluster-based Internet services. ties that can lead to instability (e.g., noticed in Internet rout-
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ing [11]) and investigating them is important for RR. There 8.3 RR Infrastructure Support

also a natural tension between the cost of restructuring a system . . L
for RR and the cost (in downtime) of restarting it. Fine mo Recursively restartable systems rely on a generic execution in-

ule granularity improves the system’s ability to tolerate parti F\structure (EIl) which is charged with instantiating the restarta-

restarts, but requires the implementation of a larger number 6lfty tree mentioned in section 2, monitoring each individual

internal, asynchronous interfaces. The paradigm shift requireocgfnpon:am apd/or subsystslm, and promﬁt'rg Lestar;[s whgn nec-
system developers could make RR too expensive in practice a ary. n e?qstlng rggtarta © §y§tems, the OMOologue IS Usu-
when affordable, may lead to buggier software. In some ca Y application-specific and built into the system itself.

RR is simply not feasible, such as for systems with inherent tii%_ht-rhe execution infrastructure relies on a combination of pe-

coupling (e.g., real-time closed-loop feedback control system ggd\igr;;)iﬂéc?r:f?;%et)crgz Ft)(;():evjeﬁ-nkdngvcg-fqoljggl(; fgi‘;ﬁ:rﬁi‘:}?

Finally, the key to wide adoption of recursive restartability akgnether a component is making progress or not. In most cases,
tools that can aid the software architect in deciding when to USSplication-specific probes are implemented by the components
a RR structure and how to apply the RR guidelines. themselves via callbacks. When the El detects an anomaly, it ad-

vises the faulty component that it should clean up any pending
state because it is about to be restarted by its immediate ancestor
in the restartability tree. An analogy would be UNIX daemons
5.2 Quantifying Availability and the Effects that understand theki1l -TERM; sleep 5; kill -9”
of Recursive Restartability idiom. If restarting does not eliminate the anomaly, a restart at a
higher level of the hierarchy is attempted, similar to the return up

A major contribution of the transaction concept was the em&!€cursive call struct_ure_._ _ .
gence of a model, TP systems, that allowed different imple-NOte how the availability problem itself becomes recursive:

mentations of data management systems to be directly compdt§d"0W need a highly available infrastructure that cares for the
(e.g., using TPC benchmarks [18]). We are seeking an analogBi SyStém. Medusa [6], our EI prototype, is functionally much

model that characterizes applications possessing RR properidapler than most applications, making it possible to design and
and that can serve in quantifying availability. implement it with care. Medusa is built out of simple, highly
restartable segments that run on different hosts, use multicast

Availability benchmarking has been of interest only for thgeartheats to keep track of each other and their activity, and self-
past decade [32, 5]. It is considerably more difficult than pefsinstantiate to replace dead segments.

formance benchmarking, because a fault model is required in ad-

dition to a workload, and certain aspects, such as software aging, )

cannot even be captured reliably. Performance benchmark §e- Conclusion

sults that ignore availability measurements, such as “our system ) ) ) ) )
obtained 300,000 tpmC”, are dishonest — a fast system thalﬂéh'sf paper we tookthe view that transient failures will continue
hung or crashed is simply an infinitely slow system. The coRlaguing the software infrastructures we depend on, and thus re-
verse holds for avalability benchmarks as well, so we seek a UpOtS are here to stay. We proposed turning the reboot from a

fied approach to the measurement of RR systems. demonic concept into a reliable partner in the fight against sys-

) o tem downtime, given that it is a time-tested, effective technique
Given an application amenable to RR, a model, and a syjf: circumventing Heisenbugs.

gble benr::hmark, we r_nu]:st q“?‘”“fly_ the improvemen_t i_n availabil-\ye gefined recursively restartable (RR) systems as being those
ity and the decrease in functionality (reduced precision, weak®iems that tolerate successive restarts at multiple levels. Such
consistency, etc.) when specific RR rules are applied. We ex

X ) ems possess a humber of valuable properties that by them-
that work such as TACT [36] and Mitzenmacher's models {5 improve availability. For instance, a RR system’s fine

usefulness c_>f stalg inf_ormation [26] will provide a starting po"&ranularity permits partial restarts to be used as a form of
for quantitative validation of RR. bounded healing, reducing the overall time-to-repair, and hence
We will identify application classes that, compared to their cuncreasing availability. On top of these desirable intrinsic proper-
rent implementations, are more tolerant of our guidelines (e.ties, we can employ an automated, recursive policy of component
trading precision for availability). We will restructure the applirevival/rejuvenation to further reduce downtime.
cations incrementally, while maintaining their semantics largelyBuilding RR systems in a systematic way requires a frame-
intact. Availability will be evaluated at different stages: (1) initialvork consisting of well-understood design rules. A first attempt
application; (2) recursively restartable version of the applicatioat formulating such a framework was presented here, advocat-
(3) RR version using our execution infrastructure (described beg the paradigm of building applications as distributed systems,
low), with revival restarts; (4) RR version using the executiceven if they are not distributed in nature. We set forth a research
infrastructure with both revival and rejuvenation restarts. agenda aimed at validating these proposals and verifying that re-
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cursive restartability can be an effective supplement to existifig] J. Gray. Why do computers stop and what can be done about
high availability mechanisms. With recursive restartability, we

hope to add a useful item to every system architect’s toolbox.
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Abstract

This position paper argues that the operating system and
applications currently running on a real machine should
relocate into a virtual machine. This structure enables ser-
vices to be added below the operating system and to do so
without trusting or modifying the operating system or
applications. To demonstrate the usefulness of this struc-
ture, we describe three services that take advantage of it:
secure logging, intrusion prevention and detection, and
environment migration.

1. Introduction

First proposed and used in the 1960s, virtual machines
are experiencing a revival in the commercial and research
communities. Recent commercial products such as
VMware and VirtualPC faithfully emulate complete x86-

machine. Because these services are implemented in a
layer of software (the virtual machine monitor or the host
operating system), they can be provided more easily and
flexibly than they could if they were implemented by mod-
ifying the hardware. In particular, we can provide services
below the guest operating system without trusting or mod-
ifying it. We believe providing services at this layer is
especially useful for enhancing security and mobility.

This position paper describes the general benefits and
challenges that arise from running most applications in a
virtual machine, then describes some example services
and alternative ways to provide those services.

2. Ben€fits

Providing services by modifying a virtual machine has
similar benefits to providing services by modifying a real

based Computersl These products are W|de|y used (e_g,machine. These services run Separately from all processes

VMware has more than 500,000 registered users) for pur-
poses such as running Windows applications on Linux and
testing software compatibility on different operating sys-

in the virtual machine, including the guest operating sys-
tem. This separation benefits security and portability.
Security is enhanced because the services do not have to

tems. At least two recent research projects also use virtual trust the guest operating system; they have only to trust the

machines: Disco uses virtual machines to run multiple
commodity operating systems on large-scale multiproces-
sors [4]; Hypervisor uses virtual machines to replicate the
execution of one computer onto a backup [3].

Our position is that the operating system and applica-
tions that currently run directly on real machines should
relocate into a virtual machine running on a real machine
(Figure 1). The only programs that run directly on the real
machine would be the host operating system, the virtual
machine monitor, programs that provide local administra-
tion, and additional services enabled by this virtual-
machine-centric structure. Most network services would
run in the virtual machine; the real machine would merely
forward network packets for the virtual machine.

This virtual-machine-centric model allows us to pro-
vide servicesbelow most code running on the computer,
similar to providing services in the hardware of a real
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virtual machine monitor, which is considerably smaller
and simpler. Trusting the virtual machine monitor is akin
to trusting a real processor; both expose a narrow interface
(the instruction set architecture). In contrast, services in an
operating system are more vulnerable to malicious and
random faults, because operating systems are larger and
more prone to security and reliability holes. Separating the
services from the guest operating system also enhances
portability. We can implement the services without need-
ing to change the operating system, so they can work
across multiple operating system vendors and versions.
While providing services in a virtual machine gains
similar benefits to providing services in a real machine,
virtual machines have some advantages over the physical
machines they emulate. First, a virtual machine can be
modified more easily than a physical machine, because the
virtual machine monitor that creates the virtual machine



guest guest guest ocal
application application application
PP PP PP administrative
guest operating system tool
virtual machine monitor + proposed services host operating system + proposed services

host machine

Figure 1: Virtual-machine structure.  In this model, most applications that currently run on real machines re-
locate into a virtual machine running on the host machine. The virtual machine monitor and local administrative
programs run directly on the host machine. In VMware, the virtual machine monitor issues I/O through the host
operating system, so services that manipulate 1/O events can be implemented in the host operating system [2].

abstraction is a layer of software. Second, it is much easier system integrity without knowledge of on-disk structures.
to manipulate the state of a virtual machine than the state Some services do not need any operating system abstrac-
of a physical machine. The state of the virtual machine can tions; secure logging (Section 4.1) is an example of such a
be saved, cloned, encrypted, moved, or restored, none of service. For services that require higher-level information,
which is easy to do with physical machines. Third, a vir- one must re-create this information in some form. Full
tual machine has a very fast connection to another comput- semantic information requires re-implementing guest OS
ing system, that is, the host machine on which the virtual abstractions in or below the virtual machine. However,
machine monitor is running. In contrast, physical there are several abstractions—virtual address spaces,
machines are separated by physical networks, which are threads of control, network protocols, and file system for-
slower than the memory bus that connects a virtual mats—that are shared across many operating systems. By

machine with its host. observing manipulations of virtualized hardware, one can
reconstruct thesgeneric abstractions, enabling services
3. Challenges that require semantic information.

Providing services at the virtual-machine level holds 4- Example services
two challenges. The first is performance. Running all
applications above the virtual machine hurts performance  In this section, we describe three services that can be
due to virtualization overhead. For example, system calls provided at the virtual-machine level. Others have used
in a virtual machine must be trapped by the virtual virtual machines for many other purposes, such as prevent-
machine monitor and re-directed to the guest operating ing one server from monopolizing machine resources,
system. Hardware operations issued by the guest must beeducation, easing the development of privileged software,
trapped by the virtual machine monitor, translated, and re- and software development for different operating systems
issued. Some overhead is unavoidable in a virtual [10].
machine; the services enabled by that machine must out-
weigh this performance cost. Virtualizing an x86-based 4.1. Secure logging
machine incurs additional overheads because x86 proces-

sors don't trap on some _instructions that must be virtual- Most operating systems log interesting events as part of
!zed (e.0. read; of certain .syst.em registers). One way to tneir security strategy. For example, a system might keep a
implement a virtual machine in the presence of these record of login attempts and received/sent mail. System
“non-virtualizable” instructions is to re-write the binaries  ggministrators use the logged information for a variety of
gt run tirne.t.o force these instructions to trap [13], but this purposes. For example, the log may help administrators
incurs significant overhead. _ o understand how a network intruder gained access to the
The second challenge of virtual-machine services is the system, or it may help administrators know what damage
semantic gap between the virtual machine and the service. the intruder inflicted after he gained access. Unfortunately,
Services in the virtual machine operate below the abstrac- e logging used in current systems has two important
tions provided by the guest operating system and applica- shortcomings: integrity and completeness. First, an
tions. This can make it difficult to provide services. For  attacker can easily turn off logging after he takes over the
example, it is difficult to provide a service that checks file system; thus the contents of the log cannot be trusted after
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the point of compromise. Second, it is difficult to antici-
pate what information may be needed during the post-
attack analysis; thus the log may lack information needed

sent message data [11]. If all computers on the same local
network cooperate during logging and replay, then only
messages received from external sites need to be logged.

to discern how the intruder gained access or what actions For an important class of servers (e.g. web servers), the

he took after gaining access.

Virtual machines provide an opportunity to correct both
shortcomings of current logging. To improve the integrity
of logging, we can move the logging software out of the
operating system and into the virtual machine monitor.
The virtual machine monitor is much smaller and simpler

volume of data received in messages is relatively small
(HTTP GET and POST requests). Last, as disk prices con-
tinue to plummet, more computers (especially servers
worthy of being logged) will be able to devote many
gigabytes to store log data [20].

A second research direction is designing tools to ana-

than the guest operating system and hence is less vulnera-lyze the behavior of a virtual machine during replay. Writ-

ble to attack. By moving the logging software into the vir-
tual machine monitor, we move it out of the domain that
an intruder can control. Even if the intruder gains root

ing useful analysis tools in this domain is challenging
because of the semantic gap between virtual machine
events and the corresponding operating system actions.

access or completely replaces the guest operating system,The analysis tool may have to duplicate some operating

he cannot affect the logging software or the logged data.
Logged data can be written quickly to the host file system,
taking advantage of the fast connection between the virtual
machine monitor and the host computer.

To improve the completeness of logging, we propose
logging enough data to replay the complete execution of
the virtual machine [3]. The information needed to accom-
plish a faithful replay is limited to a checkpoint with
which to initialize the replaying virtual machine, plus the
non-deterministic events that affected the original execu-
tion of the virtual machine since the time of the saved
checkpoint. These non-deterministic events fall into two
categories: external input and time. External input refers to

system functionality to distill the log into useful informa-
tion. For example, the analysis tool may need to under-
stand the on-disk file system format to translate the disk
transfers seen by the virtual machine monitor into file-sys-
tem transfers issued by the operating system. Translating
virtual machine events into operating system events
becomes especially challenging (and perhaps impossible)
if the intruder modifies the operating system. One family
of analysis tools we hope to develop trace the flow of
information in the system, so that administrators can ask
questions like “What network connections caused the
password file to change?”.

data sent by a non-logged entity, such as a human user or4.2, Intrusion prevention and detection

an external computer (e.g. a web server). Time refers to
the exact point in the execution stream at which an event

Another important component to a security strategy is

takes place. For example, to replay the interleaving pattern getecting and thwarting intruders. Ideally, these systems

between threads, we must log which instruction is pre-
empted by a timer interrupt [17] (we assume the virtual
machine monitor is not running on a multi-processor).
Note that most instructions executed by the virtual
machine do not need to be logged; only the relatively
infrequent non-deterministic events need to be logged.
Using the virtual machine monitor to perform secure

prevent intrusions by identifying intruders as they attack
the system [9]. These systems also trydébect intrusions
after the fact by monitoring the events and state of the
computer for signs that a computer has been compromised
[8, 12]. Virtual machines offer the potential for improving
both intrusion prevention and intrusion detection.

Intrusion preventers work by monitoring events that

logging raises a number of research questions. The first anter or occur on the system, such as incoming network
question regards the volume of log data needed to support packets. Signature-based preventers match these input
replay. We believe that the volume of data that needs to be gyents against a database of known attacks; anomaly-
logged will not be prohibitive. Local non-deterministic  pased preventers look for input events that differ from the
events, such as thread scheduling events and user inputsnorm. Both these types of intrusion preventers have flaws,
are all small. Data from disk reads can be large, but these phowever. Signature-based systems can only thwart attacks

are deterministic (though the time of the disk interrupts are
non-deterministic). The largest producer of log data is
likely to be incoming network packets. We can reduce the

that have occurred in the past, been analyzed, and been
integrated into the attack database. Anomaly-based sys-
tems can raise too many false alarms and may be suscepti-

volume of logged network data greatly by using message- pje to re-training attacks.

logging techniques developed in the fault-tolerance com- A more trustworthy method of recognizing an attack is
munity. For example, there is no need to log message data tg simply run the input event on the real system and seeing
received from computers that are themselves being logged, how the system responds. Of course, running suspicious
because these computers can be replayed to reproduce theyents on the real system risks compromising the system.
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However, we can safely conduct this type of test afoae are separate from the guest operating system and applica-
of the real system. Virtual machines make it easy to clone tions. Unlike network intrusion detectors, however, vir-
a running system, and an intrusion preventer can use this tual-machine intrusion detectors can see all events
clone to test how a suspicious input event would affect the occurring in the virtual machine they monitor. Virtual-
real system. The clone can be run as a hot standby by machine intrusion detectors can use this additional infor-
keeping it synchronized with the real system (using pri- mation to implement new detection policies. For example,
mary-backup techniques), or it can be created on the fly in it could detect if the virtual machine reads certain disk
response to suspicious events. In either case, clones admitblocks (e.g. containing passwords), then issues a burst of
more powerful intrusion preventers by looking at the CPU activity (e.g. cracking the passwords). Or it could
response of the system to the input event rather than look- detect if the virtual machine has intense CPU activity with
ing only at the input event. Because clones are isolated no corresponding keyboard activity.

from the real system, they also allow an intrusion preven- As with secure logging, a key challenge in post-intru-
ter to run potentially destructive tests to verify the sys- sion detection in a virtual machine is how to bridge the
tem’s health. For example, an intrusion preventer could semantic gap between virtual machine events and operat-
forward a suspicious packet to a clone and see if it crashes ing system events. This challenge is similar to that encoun-
any running processes. Or it could process suspicious tered by network-based intrusion detectors, which must

input on the clone, then see if the clone still responds to
shutdown commands.

A potential obstacle to using clone-based intrusion pre-
vention is the effect of clone creation or maintenance on
the processing of innocent events. To avoid blocking the
processing of innocent events, an intrusion preventer
would ideally run the clone in the background. Allowing
innocent events to go forward while evaluating suspicious

parse the contents of IP packets.
4.3. Environment migration

Process migration has been a topic of interest from the
early days of distributed computing. Migration allows one
to package a running computation—either a process or
collection of processes—and move it to a different physi-

events implies that these events have loose ordering con- ca| machine. Using migration, a user's computations can

straints. For example, a clone-based preventer could be move as he does, taking advantage of hardware that is
used to test e-mail messages for viruses, because orderingmore convenient to the user's current location.

constraints between e-mail messages are very loose.
Intrusion detectors try to detect the actions of intruders
after they have compromised a system. Signs of an
intruder might include bursts of outgoing network packets
(perhaps indicating a compromised computer launching a
denial-of-service attack), modified system files [12], or
abnormal system-call patterns from utility programs [8].
As with system logging, these intrusion detectors fall short
in integrity or completeness. Host-based intrusion detec-
tors (such as those that monitor system calls) may be
turned off by intruders after they compromise the system,
so they are primarily useful only for detecting the act of an
intruder breaking into a system. If an intruder evades
detection at the time of entry, he can often disarm a host-
based intrusion detector to avoid detection in the future.
Network-based intrusion detectors can provide better
integrity by being separate from the host operating system
(e.g. in a standalone network router), but they suffer from
a lack of completeness. Network intrusion detectors can

The earliest systems, including Butler [15], Condor
[14], and Sprite [6], focused on load sharing across
machines rather than supporting mobile users. These load-
sharing systems typically left residual dependencies on the
source machine for transparency, and considered an indi-
vidual process as the unit of migration. This view differs
from that of mobile users, who consider the unit of migra-
tion to be the collection of all applications running on their
current machine.

Recently, migration systems have begun to address the
needs of mobile users. Examples of systems supporting
mobility include the Teleporting system [16] and SLIM
[18]. These systems migrate the user interface of a
machine, leaving the entire set of applications to run on
their host machine. In the limit, the display device can be a
stateless, thin client. This approach provides a better
match to the expectations of a migrating user, and need not
deal with residual dependencies. However, these systems
are intolerant of even moderate latency between the inter-

see only network packets; they cannot see the myriad other tace device and the cycle server, and thus support only a

events occurring in a computer system, such as disk traffic,
keyboard events, memory usage, and CPU usage.
Implementing post-intrusion detection at the level of a
virtual machine offers the potential for providing both
integrity and completeness. Like a network-based intru-
sion detector, virtual-machine-based intrusion detectors
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limited form of user mobility.

Migration based on virtual machines solves these prob-
lems. Since the entire (virtual) machine moves, there are
no residual dependencies. A user’s environment is moved
en masse, which matches a user’s expectations. By taking
advantage of the narrow interface provided by the virtual



machine, very simple migration code can relocate a guest
operating system and its applications.

There are several challenges that must be overcome to
provide migration at the virtual-machine level. The first is
that a machine has substantial state that must move with it.
It would be infeasible to move this state synchronously on
migration. Fortunately, most of this state is not needed
immediately, and much may never be needed at all. We
can predict which state is needed soon by taking advantage
of temporal locality in disk and memory accesses. This
prediction is complicated by the guest operating system'’s
virtual memory abstraction, because the physical
addresses seen by a virtual machine monitor are related
only indirectly to accesses issued by applications. We can
reconstruct information about virtual to physical mappings
by observing manipulation of virtualized hardware ele-
ments such as the TLB.

After identifying the state likely to be needed soon, we
need a mechanism to support migration of that state to the
new virtual machine. If migration times are exposed, one
can take advantage of efficient, wide-area consistency con-
trol schemes, such as that provided by Fluid Replication
[5]. Fluid Replication provides safety, visibility, and per-
formance across the wide area identical to that offered by
local-area file systems such as NFS. It depends on typical
file system access patterns, in particular a low incidence of
concurrent data sharing. Machine migration, with coarse-
grained, sequential sharing, fits this pattern well, allowing
for migration without undue performance penalty.

To provide the most benefit, we must also support
migration between physical machines that are not entirely
identical. This is difficult because most virtual machine
monitors improve performance by accessing some hard-
ware components directly (e.g. the video frame buffer).
This direct access complicates matters for the guest oper-
ating system when migrating between machines with dif-
ferent components. There are two approaches to solving
this kind of problem. The first is to further virtualize the
component, at a performance cost. The second is to mod-
ify the guest operating system to adapt to the new compo-
nent on the fly. The right alternative depends on the
resource in question, the performance penalty of virtual-
ization, and the complexity of dynamic adaptation.

Migration is only one of several services that leverage
the easy packaging, storage, and shipment of virtual
machines. Clone-based intrusion detection is one example.
One can also extend services that apply to individual
resources across an entire virtual machine. For example,
cryptographic file systems protect only file data; once an
application reads sensitive data, it cannot be made secure.
However, suspending a virtual machine to disk when its
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user is away provides process-level protection using only
the virtual machine services plus file system mechanisms.

5. Alternative structures

Each of the above services can be implemented in other
ways. One alternative is to include these services in the
operating system. This structure makes it easier for the
service to access information in terms of operating system
abstractions. For example, an intrusion detector at the
operating system level may be able to detect when one
user modifies files owned by another user. A virtual
machine service, in contrast, operates below the notions of
users and files and would have to reconstruct these
abstractions. In addition, including these services in the
operating system reduces the number of layers and re-
directions, which will likely improve performance relative
to a virtual machine.

However, including services in the operating system
has some disadvantages. First, such services are limited to
a single operating system (and perhaps a single operating
system version), whereas virtual-machine services can
support multiple operating systems. For example, a secure
logging service in a virtual machine can replay any operat-
ing system. Second, for security services such as secure
logging and intrusion detection, including the service in
the operating system depends critically on the integrity of
the operating system. Because operating systems are typi-
cally large, complex, and monolithic, they usually contain
security and reliability vulnerabilities. For example, the
Linux 2.2.16 kernel contained at least 7 security holes [1].
In particular, secure logging is challenging to provide in
the operating system, because an intruder may try to crash
the system to prevent the log tail from being written to sta-
ble storage.

Some of the disadvantages of including services in the
operating system can be mitigated by re-structuring the
operating system into multiple protection domains [19]
and placing security-related services in the most-privi-
leged ring. This approach is similar to kernels that include
only the minimum set of services [7]. However, this
approach requires re-writing the entire operating system,
and frequent crossings between multiple protection
domains degrade performance.

A different approach is to add services to a language-
specific virtual machine such as Java. Language-specific
virtual machines potentially have more information than
the operating system, which may be helpful for some ser-
vices. However, these services would be available only for
applications written in the target language. For the system-
wide services described above, the entire system would
have be written in the target language.
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Abstract

We argue that existing OS designs are ill-suited for the
needs of Internet service applications. These applications
demand massive concurrency (supporting a large number
of requests per second) and must be well-conditioned to
load (avoiding degradation of performance and predictabil-
ity when demand exceeds capacity). The transparency and
virtualization provided by existing operating systems leads
to limited concurrency and lack of control over resource us-
age. We claim that Internet services would be far better
supported by operating systems by reconsidering the role of
resource virtualization. We propose a new design for server
applications, the staged event-driven architect{@&EDA).
In SEDA, applications are constructed as a set of event-
driven stagesseparated by queues We present the SEDA
architecture and its conseguences for operating system de-
sign.

1. Introduction

day; Yahoo has over 900 million page views daily. The peak
load experienced by a service may be many times that of the
average, and services must deal gracefully with unexpected
increases in demand.

A number of systems have attempted to remedy the prob-
lems with OS virtualization by exposing more control to
applications. Scheduler activations [1], application-specific
handlers [29], and operating systems such as SPIN [3], Ex-
okernel [12], and Nemesis [17] are attempts to augment lim-
ited operating system interfaces by giving applications the
ability to specialize the policy decisions made by the ker-
nel. However, the design of these systems is still based on
the multiprogramming mindset, as the focus continues to be
on safe and efficient resource virtualization.

We argue that the design of most existing operating sys-
tems fails to address the needs of Internet services. Our
key premise is that supporting concurrency for a few tens of

users is fundamentally different than for many thousands of
. o ) o service requests. This paper proposes a new architecture for
The design of existing operating systems is primarily de- services, which we call thataged event-driven architecture
rived from a heritage of multiprogramming: allowing mul- (SEDA). SEDA departs from the traditional multiprogram-
tiple applications, each with distinct resource demands, tOming approach provided by existing OSs, decomposing ap-
safely and efficiently share a single set of resources. Asplications into a set oftages connected by explicievent
such, existing OSs strive to virtualize hardware resources,queues. This design avoids the high overhead associated
and do so in a way which is transparent to applications. Ap- with thread-based concurrency, and allows applications to
plications are rarely, if ever, given the opportunity to par- pe well-conditioned to load by making informed decisions
ticipate in system-wide resource management decisions, Olhased on the inspection of pending requests. To mitigate
given indication of resource availability in order to adapt the effects of resource virtualization, SEDA employs a set

their behavior to changing conditions. Virtualization funda- of gynamic controllers which manage the resource alloca-
mentally hides the fact that resources are limited and sharedijon and scheduling of applications.

Internet services are a relatively new application domain

which presents unique challenges for OS design. In contrast In this paper, we discuss the shortcomings of existing OS
to the batch-processing and interactive workloads for which designs for Internet services, and present the SEDA archi-
existing operating systems have been designed, Internet setecture, arguing that it is the right way to construct these
vices support a large number of concurrent operations andapplications. In addition, we present a set of OS design
exhibit enormous variations in load. The number of concur- directions for Internet services. We argue that server op-
rent sessions and hits per day to Internet sites translates interating systems should eliminate the abstraction of trans-
an even higher number of I/O and network requests, placingparent resource virtualization, a shift which enables support
great demands on underlying resources. Microsoft’s webfor high concurrency, fine-grained scheduling, scalable 1/0O,
sites receive over 300 million hits with 4.1 million users a and application-controlled resource management.
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2. Why Internet Services and Existing OS management and scheduling decisions. While it is possible
DesignsDon’t Match to control the prioritization or runnable status of an indi-
vidual thread, this is often too blunt of a tool to implement
This section highlights four main reasons that existing effective load conditioning policies. Instead, it is desirable
OS designs fail to mesh well with the needs of Internet to control the flow of requests through a particular resource.
services: inefficient concurrency mechanisms, lack of scal-  As an example consider the page cache for a Web server.
able I/O interfaces, transparent resource management, angio maximize throughput and minimize latency, the server
coarse-grained control over scheduling. might prioritize requests for cache hits over cache misses;
this is a decision which is being made at the level of the
cache by inspecting the stream of pending requests. Such
a policy would be difficult (although not impossible) to im-
r plement by changing the scheduling parameters for a pool
a limited set of resources. Given the extreme degree ofo!c thr_eads each representing a_d|fferent requestin the server
pipeline. The problem is that this model only provides con-

concurrency required, services are often willing to sac- trol over scheduling of individual threads. rather than over
rifice transparent virtualization in order to obtain higher Ver < uiing ot individual t ’ v
the ordering of requests for a particular resource.

performance. However, contemporary operating systems
typically support concurrency using the process or thread
model: each process/thread embodies a virtual machine2.2. Traditional Event-Driven Programming
with its own CPU, memory, disk, and network, and the
O/S multiplexes these virtual machines over hardware. Pro-
viding this abstraction entails a high overhead in terms of
context switch time and memory footprint, thereby limit-
ing concurrency. A number of studies have shown the scal-
ability limitations of thread-based concurrency models [6,
11, 21, 32], even in the context of so-called “lightweight”
threads.

2.1. Existing OS Design Issues

Concurrency limitations. Internet services must effi-
ciently multiplex many computational and 1/O flows ove

The limitations of existing OS designs have led many de-
velopers to favor an event-driven programming approach, in
which each concurrent request in the system is modeled as
a finite state machine. A single thread (or small number
of threads) is responsible for scheduling each state machine
based on events originating from the OS or within the ap-
plication itself, such as I/O readiness and completion notifi-
I/O Scalability limitations: The I/O interfaces exported cations.
by existing OSs are generally designed to provide max- Event-driven systems are generally built from scratch
imum transparency to applications, often at the cost of for particular applications, and depend on mechanisms not
scalability and predictability. Most I/O interfaces employ well-supported by most operating systems. Because the
blocking semantics, in which the calling thread is sus- underlying OS is structured to provide thread-based con-
pended during a pending I/O operation. Obtaining high currency using blocking 1/0, event-driven applications are
concurrency requires a large number of threads, result-at a disadvantage to obtain the desired behavior over this
ing in high overhead. Traditional I/O interfaces also tend imperfect interface. Consequently, obtaining high perfor-
to degrade in performance as the number of simultaneousnance requires that the application designer carefully man-
I/O flows increases [2, 23]. In addition, data copies on age event and thread scheduling, memory allocation, and
the I/O path (themselves an artifact of virtualization) have 1/0 streams [4, 9, 10, 21]. This “monolithic” event-driven
long been known to be a performance limitation in network design is also difficult to modularize, as the code imple-
stacks [24, 27, 28]. menting each state is directly linked with others in the flow

. . of execution.
Transparent resource management: Internet services . . .
must be in control of resource usage in order to make in- . Nonblockm_g /O is provided by most OSs, but these
formed decisions affecting performance. Virtualization im- intérfaces typically do not scale well as the number of
plies that the OS will attempt to satisfy any application re- /O flows grows very large [2, 14, 18]. Much prior work
quest regardless of cost (e.g., a request to allocate a page dias investigated scalable 1/O primitives for servers [2, 5,

virtual memory which requires other pages to be swapped’3: 16, 22, 23, 25], but these solutions are often an af-
out to disk). However, services do not have the luxury of t€rthought lashed onto a process-based model, and do not

paying an arbitrary penalty for processing such requests undlways perform well. To demonstrate this fact, we have

der heavy resource contention. Most operating systems hiddneasured the performance of the nonblocking socket inter-
the performance aspects of their interfaces; for instance,/ace in Linux using the/dev/poll [23] event-delivery
the existence of (or control over) the underlying file system Mechanism, which is known to scale better than the stan-
buffer cache is typically not exposed to applications. Stone-dard UNIX select() andpoll() interfaces [14]. As Figure 1

braker [26] cites this aspect of OS design as a problem forSNOWs, the performance of the nonblocking socket layer de-
database implementations as well. grades when a large number of connections are established;

despite the use of an efficient event-delivery mechanism,
Coarse-grained scheduling: The thread-based concur- the underlying network stack does not scale as the number
rency model yields a coarse degree of control over resourceof connections grows large.
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Figure 1:Linux socket layer performance: This graph shows
the aggregate bandwidth through a server making use of either
asynchronous or blocking socket interfaces. Each client opens a
connection to the server and issues bursts of 1000 8 KB packets;
the server responds with a single 32-byte ACK for each burst. All
machines are 4-way Pentium |11 systems running Linux 2.2.14 in-
terconnected by Gigabit Ethernet. Two implementations of the
server are shown: one makes use of nonblocking sockets along
with the /dev/poll mechanismfor event delivery, and the other
emulates asynchronous behavior over blocking sockets by using
threads. The latter implementation allocates one thread per socket
for reading packets, and uses a fixed-size thread pool of 120
threads for writing packets. The threaded implementation could
not support more than 400 simultaneous connections due to thread
limitations under Linux, while the nonblocking implementation de-
grades somewhat due to lack of scalability in the network stack.

3. The Staged Event-Driven Architecture

Event O
& %% %% \ 1]

Thread Pool O—T

o

Figure 2:A SEDA Stage: A stage consists of an incoming event
gueue a thread poaland an application-supplied event handler
The stage’s operation is managed by the controller, which adjusts
resource allocations and scheduling.

Controller

itives that expose I/O completion and readiness events di-
rectly to applications by placing those events onto the queue
for the appropriate stage.

A stage is a self-contained application component con-
sisting of anevent handler, anincoming event queue, and
athread pool, as shown in Figure 2. Each stage is man-
aged by acontroller which affects scheduling and resource
allocation. Threads operate by pulling events off of the
stage’s incoming event queue and invoking the application-
supplied event handler. The event handler processes each
task, and dispatches zero or more tasks by enqueuing them
on the event queues of other stages. Figure 3 depicts a sim-
ple HTTP server implementation using the SEDA design.

Event handlers do not have direct control over queue op-
erations and threads. By separating core application logic
from thread management and scheduling, the stage’s con-
troller is able to manage the execution of the event handler
to implement various resource-management policies. For
example, the number of threads in the stage’s thread pool is
adjusted dynamically by the controller, based on an obser-

In this section we propose a structured approach to eventvation of the event queue and thread behavior. Details are
driven programming that addresses some of the challengedeyond the scope of this paper; more information is pro-
of implementing Internet services over commodity operat- vided in [30].

ing systems. This approach, ttaged event-driven archi-

tecture (SEDA) [30], is designed to manage the high con- 3.2. SEDA Benefits
currency and load conditioning demands of these applica-

tions.

3.1. SEDA Design

The SEDA design yields a number of benefits which di-
rectly address the needs of Internet services:

High concurrency: As with the traditional event-driven

As discussed in the previous section, the use of event-design, SEDA makes use of a small number of threads to

driven programming can be used to overcome some (butprocess stages, avoiding the performance overhead of us-
not all) of the shortcomings of conventional OS inter- ing a large number of threads for managing concurrency.
faces. SEDA refines the monolithic event-driven approach The use of asynchronous I/O facilitates high concurrency by
by structuring applications in a way which enables load con- eliminating the need for multiple threads to overlap pending
ditioning, increases code modularity, and facilitates debug- /O requests.
ging. In SEDA, the number of threads can be chosen at a
SEDA makes use of a set of design patterns, first de-per-stage level, rather than for the application as a whole;
scribed in [32], which break the control flow of an event- this approach avoids wasting threads on stages which do
driven system into a series efages separated byueues. not need them. For example, UNIX filesystems can usu-
Each task in the system is processed by a sequence of stagesdly handle a fixed number (between 40 and 50) concurrent
each representing some set of states in the traditional eventread/write requests before becoming saturated [6]. In this
driven design. SEDA relies upon asynchronous I/O prim- case there is no benefit to devoting more than this number
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Figure 3: Staged event-driven (SEDA) HTTP server: The application is decomposed into a set of stagesseparated by queues Edges
represent the flow of events between stages. Each stage can be independently managed, and stages can be run in sequence or in parallel,
or a combination of the two. The use of event queues allows each stage to be individually load-conditioned, for example, by thresholding
its event queue.

of threads to a stage which performs filesystem access. Té4. Operating System Design Directions

shield the application programmer from the complexity of

managing thread pools, the stage’s controller is responsi- While SEDA aids the construction of highly-concurrent

ble for determining the number of threads executing within applications over conventional OS interfaces, these inter-

each stage. faces still present a number of design challenges for Internet
o . L services. In particular, we argue that the goal of transpar-

Application-specific load conditioning:  The use of ex-  ant resource virtualization is undesirable in this context, and

plicit event queues allows applications to implement load that server operating systems should eliminate this abstrac-

conditioning policies based on the observation of pend- tion in favor of an approach which gives applications more

ing events. Backpressure can be implemented by havingcontrol over resource usage. This fundamental shift in ide-

a queue reject new entries (e.g., by raising an error condi-g|ogy makes it possible to implement a number of features
tion) when it becomes full. This is important as it allows \hich support Internet services:

excess load to be rejected by the system, rather than buffer-
ing an arbitrary amount of work. Alternately, a stage can Concurrency and scheduling: Because SEDA uses a
drop, filter, or reorder incoming events in its queue to im- small number of threads for driving the execution of stages,
plement other policies, such as event prioritization. During much of the scalability limitation of threads is avoided. Ide-
overload, a stage may prioritize requests requiring few re- ally, the code for each stage should never block, requiring
sources over those which involve expensive computation orjust one thread per CPU. However, for this approach to be
I/0. These policies can be tailored to the specific applica- feasible every OS interface must be nonblocking. This is
tion, rather than imposed by the system in a generic way. unproblematic for I/O, but may be more challenging for
) ) other interfaces, such as demand paging or memory syn-

Code modularity and debugging support: The SEDA  chronization. The goal of a SEDA-oriented operating sys-
design allows stages to be developed and maintained indetem js not to eliminate threads altogether, but rather to sup-
pendently. A SEDA-based application consists of a network port interfaces which allows their use to be minimized.
of interconnected stages; each stage can be implemented as o Sepa-based OS should allow applications to specify
a separate code module_in isolation from _other stages. Theheir own thread scheduling policy. For example, during
operation of two stages is composed by inserting a queUegyerioad the application may wish to give priority to stages
between them, thereby allowing events to pass from oneyhich consume fewer resources. Another policy would be
to the other. This is in contrast to the “monolithic” event- 5 gelay the scheduling of a stage until it has accumulated
driven design, in which the states of the request-processinganough work to amortize the startup cost of that work, such
state machine are often highly interdependent. as aggregating multiple disk accesses and performing them

Few tools exist for understanding and debugging a com- || at once. The SEDA approach can simplify the mech-
plex event-driven system, as stack traces do not represeninism used to implement application-specific scheduling,
the control flow for the processing of a particular request. sjnce the concerns raised by “safe” scheduling in a multi-
SEDA facilitates debugging and performance analysis, asprogrammed environment can be avoided. Specifically, the
the decomposition of application code into stages and ex-system can trust the algorithm provided by the application,

pllClt eV.ent deIiVery m-eChanisms prOVide a means for direct and need not Support mu|t|p|e Competing applications with
inspection of application behavior. For example, a debug- their own scheduling policies.

ging tool can trace the flow of events through the system and

visualize the interactions between stages. Our prototype ofScalable 1/0: SEDA's design should make it easier to
SEDA is capable of generating a graph depicting the set ofconstruct scalable 1/O interfaces, since the goal is to sup-
application stages and their relationship. port a large number of 1/O streams through a single appli-
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cation, rather than to fairly multiplex 1/O resources across within a queue, locality is enhanced leading to greater per-
multiple applications. A SEDA-oriented asynchronous 1/0O formance.

layer would closely follow the internal implementation of The Click modular packet router [19] and the Scout op-
contemporary filesystems and network stacks, but do awayerating system [20] use a software architecture similar to
with the complexity of safe virtualization of the I/O inter- that of SEDA; packet processing stages are implemented by
face. For example, rather than exporting a high-level socketseparate code modules with their own private state. Click
layer, the OS could expose the event-driven nature of themodules communicate using either queues or function calls,
network stack directly to applications. This approach also while Scout modules are composed intgath which is
facilitates the implementation of zero-copy 1/0, a mecha- used to implement vertical resource management and in-
nism which is difficult to virtualize for a number of reasons, tegrated layer processing. Click and Scout are optimized

such as safe sharing of pinned network buffers [31]. to improve per-packet latency, allowing a single thread to
o call directly through multiple stages. In SEDA, threads are
Application-controlled  resource  management: A isolated to their own stage for reasons of safety and load

SEDA-based operating system need not be designed to alconditioning.

low multiple applications to transparently share resources. Extensible operating systems such as Exokernel [12] and

Internet services are highly specialized and are not designedPIN [3] share our desire to expose greater resource con-

to share the machine with other applications: it is plainly trol to applications. However, these systems have primarily

undesirable for, say, a Web server to run on the samefocused on safe application-specific resource virtualization,

machine as a database engine (not to mention a scientifigather than support for extreme concurrency and load. For

computation or a word processor!). While the OS may instance, Exokernel’s I/O primitives are blocking, necessi-

enforce protection (to prevent one stage from corrupting thetating a thread-based approach to concurrency. Our pro-

state of the kernel or another stage), the system should noposal is in some sense more radical than extensible operat-

virtualize resources in a way which masks their availability ing systems: we claim that the right approach to support-

from applications. ing scalable servers is to eliminate resource virtualization,
For instance, rather than hiding a file system buffer cacherather than to augment it with application-specific function-

within the OS, a SEDA-based system should expose a low-ality.

level disk interface and allow applications to implement

their own caching mechanism. In this way, SEDA fol- 6. Conclusion

lows the philosophy of systems such as Exokernel [12],

which promotes the implementation of OS components as We argue that traditional OS designs, intended primar-

libraries under application control. Likewise, a SEDA- ily for safe and efficient multiprogramming, do not mesh

based OS should expose a virtual memory interface whichwell with the needs of highly-concurrent server applica-

makes physical memory availability explicit; this approach tions. The large body of work that has addressed aspects

is similar to that of application-controlled paging [7, 8]. of this problem suggests that the ubiquitous process model,
along with the attendant requirement of transparent resource
5. Related Work virtualization, is fundamentally wrong for these applica-

tions. Rather, we propose tstaged event-driven architec-

. . ture, which decomposes applications into stages connected
The SEDA design was derived from approaches to man-by explicit event queues. This model enables high concur-

a?mgf h'g? r(_:nonc%rqrerll?y anv(\j/ lgnpr(re\;mr:tz;blle lr?g?hmf' \:Sr"trency and fine-grained load conditioning, two essential re-
ety of systems. The Flash web server [21] a € Harves guirements for Internet services.

web cache [4] are based on an asynchronous, event-driven :

; . We have implemented a prototype of a SEDA-based sys-
model which closely resembles the SEDA architecture. In tem, described in [30]. Space limitations prevent us from
Elash, each component of the web server responds to parbroviding details here, although our experience with the
ticular events, such as s_ocket connections or f|Iesyst¢m acgepa prototype (implemented in Java on top of UNIX in-
cess requests. The main server process is responsible fi

continually dispatching events to each of these com onentgerfaces) has demonstrated the viability of this design for
y aisp 9 P implementing scalable Internet service applications over

;U;g‘ ggz::gr?bgdplggﬁitehre &%gﬂgg'iefé ?Qtl'/dcg'vgne?;%g'rtgciincommodity OSs. Sitill, Internet services necessitate a fun-
. ) ’ p . damental shift in operating system design ideology. We be-
this case, filesystem accesses) do not have asynchronous i
terfaces, the main server process handles these events
dispatching them tbelper processesvia IPC.
StagedServer [15] isa platform_ wh_lch bears some re- References
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Abstract

Pervasive computing, with its focus on users and their tasks
rather than on computing devices and technology, provides
an attractive vision for the future of computing. But, while
hardware and networking infrastructure to realize this vi-
sion are becoming a reality, precious few applications run
in this infrastructure. We believe that this lack of applica-
tions stems largely from the fact that it is currently too hard
to design, build, and deploy applications in the pervasive
computing space.

In this paper, we argue that existing approachesto dis-
tributed computing are flawed along three axes when ap-
plied to pervasive computing; we sketch out alternatives
that are better suited for this space. First, application data
and functionality need to be kept separate, so that they can
evolve gracefully in a global computinginfrastructure. Sec-
ond, applications need to be able to acquire any resource
they need at any time, so that they can continuously pro-
vide their services in a highly dynamic environment. Third,
pervasive computing reguires a common system platform,
allowing applications to be run across the range of devices
and to be automatically distributed and installed.

1. Introduction

Pervasive computing [10, 26] promises a computing infras-

tions are email for communication and the World Wide Web
as a medium for electronic publishing and as a client inter-
face to multi-tier applications.

This lack of applications is directly related to the fact that
it is difficult to design, build, and deploy applications in a
pervasive computing environment. The pervasive comput-
ing space has been mapped as a combination of mobile and
stationary devices that draw on powerful services embedded
in the network to achieve users’ tasks [9]. The resultis a gi-
ant, ad-hoc distributed system, with tens of thousands of de-
vices and services coming and going. Consequently, the key
challenge for developers is to build applications that con-
tinue to provide useful services, even if devices are roaming
across the infrastructure and if the network provides only
limited services, or none at all.

As part of our research into pervasive computing, we
are buildingone.world, a system architecture for pervasive
computing [14]. Based on our experiences with this archi-
tecture, we believe that existing distributed computing tech-
nologies are ill-suited to meet this challenge. This is not to
say that discovery services [1, 2, 8] or application-aware
adaptation [19] are not useful in a pervasive computing en-
vironment. On the contrary, we consider them clearly ben-
eficial for pervasive computing applications. However, they
are not sufficient to successfully design, build, and deploy
applications in the pervasive computing space.

Moreover, we argue that current approaches to building

tructure that seamlessly and ubiquitously aids users in ac-distributed applications are deeply flawed along three axes,

complishing their tasks and that renders the actual com-

puting devices and technology largely invisible. The basic
idea behind pervasive computing is to deploy a wide va-
riety of smart devices throughout our working and living

which — to express their depth — we call fault lines. In
the rest of this paper, we explore the three fault lines in de-
tail; they are summarized in Table 1. First, Section 2 makes
our case against distributed objects and outlines a more ap-

spaces. These devices coordinate with each other to providgropriate approach to integrating application data and func-
users with universal and immediate access to informationtionality. Next, Section 3 discusses the need to write appli-
and support users in completing their tasks. The hardwarecations that continuously adapt in a highly dynamic envi-
devices and networking infrastructure necessary to realizeronment. Finally, Section 4 argues for a common pervasive

this vision are increasingly becoming a reality, yet precious
few applications run in this infrastructure. Notable excep-

computing platform that spans the different classes of de-
vices. We conclude this paper in Section 5.
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Problem \ Cause Proposed Solution ‘

Objects do not scale well acrog
large, wide-area distributed sys
tems

‘SEncapsuIation of data and function-Keep data and functionality sein-
P"ality within a single abstraction rate

Programming for change: Applica
Ctions need to be able to acquire any
resource they need at any time

Availability of application serviceg Transparency in a highly dynami
is limited or intermittent environment

Programming and distributing ap
plications is increasingly unman
ageable

- : . . Common system platform with a
Heterogeneity of devices and sys- . :
g y yp integrated API and a single binany

" tem platforms
format

-

Table 1. Overview of the three fault lines discussed in this paper, listing the problem, cause, and
proposed solution for each fault line.

2. Data and Functionality ready rely on mobile code for their services. For exam-
ple, Bayou propagates updates as procedures and not sim-
The first fault line concerns the relationship between data ply as data [23]. The Oracle8@atabase not only supports
and functionality and how they are represented. Several dis-SQL stored procedures, but also includes a fully featured
tributed systems, such as Legion [16] or Globe [25], are tar- Java virtual machine [11]. On the other hand, mobile code
geted at a global computing environment and have exploredsystems have seen limited success in the absence of a stan-
the use of objects as the unifying abstraction for both data dard data model and the corresponding data management
and functionality. We are skeptical about this use of objects solutions. For example, while many projects have explored
for distributed computing for two reasons. mobile agents [18], they have not been widely adopted, in
First, objects as an encapsulation mechanism are basegart because they lack storage management. Java, which
on two assumptions: (1) Implementation and data layout was originally marketed as a mobile code platform for the
change more frequently than an object’s interface, and (2) Internet, has been most successful in the enterprise, where
it is indeed possible to design interfaces that accommo-access to databases is universal [21].
date different implementations and hold up as a system The result is considerable tension between integrating
evolves. However, these assumptions do not hold for a data and functionality too tightly — in the form of objects
global distributed computing environment. Increasingly, — and not integrating them tightly enoughne.world re-
common data formats, such as HTML or PNG, are specified solves this tension by keeping data and functionality sep-
by industry groups or standard bodies, notably the World arate and by introducing a new, higher-level abstraction to
Wide Web Consortium, and evolve at a relatively slow pace. group the two. In our architecture, data is represented by tu-
In contrast, application vendors compete on functionality, ples, which essentially are records with named and option-
leading to considerable differences in application interfaces ally typed fields, while functionality is provided by compo-
and implementations and a much faster pace of innovation. nents, which implement units of functionaly. Environments
Second, it is preferable to store and communicate dataserve as the new unifying abstraction: They are contain-
instead of objects, as it is generally easier to access passivers for stored tuples, components, and other environments,
data rather than active objects. In particular, safe access tgroviding a combination of the roles served by file system
active objects in a distributed system raises important is- directories and nested processes [5, 12, 24] in more tradi-
sues, notably system security and resource control, that ardional operating systems. Environments make it possible to
less difficult to address when accessing passive data. Thiggroup data and functionality when necessary. At the same
is clearly reflected in today’s Internet: Access to regular time, they allow for data and functionality to evolve sepa-
HTML or PDF documents works well, while active content rately and for applications to store and exchange just data,
results in an ever continuing string of security breaches [17]. thus avoiding the two problems associated with objects dis-
Based on these two realizations, we argue that data andcussed above.
functionality should be kept separate rather than being en- To summarize, we are arguing that data and functionality
capsulated within objects. need to be supported equally well in large distributed sys-
At the same time, data and functionality depend on eachtems, yet also need to be kept separate. We are not arguing
other, especially when considering data storage and mo-that object-oriented programming is not usetule.world is
bile code. On one hand, data management systems alimplemented mostly in Java and makes liberal use of object-
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oriented language features such as inheritance to provide itgheir data between nodes. Checkpointing and migration are
functionality? At the same time, our architecture clearly useful primitives for building failure resilient applications
separates data and functionality, using tuples to representand for improving performance in a distributed system. Fur-

data and components to express functionality. thermore, migration is attractive for applications that follow
a user as she moves through the physical world.
3. Programming for Change Checkpointing and migration affect an environment and

its contents, including all nested environments. Checkpoint-

o ing captures the execution state of all components in an
The second fault line is caused by transparent access 0 rezvironment tree and saves that state in form of a tuple,

mote resources. By building on distributed file systems or ,ying it possible to later restore the saved state. Migra-
remote procedure call packages, many existing distributedy;o, moves an environment tree, including all components
systems mask remote resources as local resources. Thi§,g stored tuples, from one device to another. Since ap-
transparency certainly simplifies application development. plications already need to be able to dynamically acquire

From the programmer’s viewpoint, accessing a remote re- reqqrces they need, both checkpointing and migration es-
source is as simple as a local operation. However, this oy transparency and are limited to the resources con-
comes at a cost in failure resilience and service av_a|lab|I|ty. tained in the environment tree being checkpointed or mi-
Network connections and remote servers may fail. Some g ated. As a result, their implementationdne.world can
services may not be available at all in a given environ- ay4iq the complexities typically associated with full pro-

ment. As a result, if a remote service is inaccessible or un-cegg checkpointing and migration [18], and migration in the
available, distributed applications cannot provide their ser- \\iqe area becomes practical.

vices, because they were written without the expectation of 15 summarize. the main idea behind programming for

change. _ o o change is to force developers to build applications that bet

We believe that this transparency is misleading in & per- o1 cope with a highly dynamic environment, while also pro-
vasive computing environment, because it encourages a prov;iging primitives that make it easier to implement applica-
gramming style in which a failure or the unavailability of a  jons.

resource is viewed as an extreme case. But in an environ-
ment where tens of thousands of devices and services come
and go, the unavailability of some resource may be the com—4' The Need for a Common Platform
mon (or at least frequent) case. We are thus advocating a
programming style that forces applications to explicitly ac- The third fault line is rooted in the considerable and inher-
quire all resources, be they local or remote, and to be pre-ent heterogeneity of devices in a pervasive computing en-
pared to reacquire them or equivalent resources at any time vironment. Computing devices already cover a wide range
In oneworld, applications need to explicitly bind all  of platforms, computing power, storage capacity, form fac-
resources they use, including storage and communicationtors, and user interfaces. We expect this heterogeneity to
channels. Leases are used to control such bindings andincrease over time rather than decrease, as new classes of
by forcing applications to periodically renew them, provide devices such as pads or car computers become widely used.
timeouts for inaccesible or unavailable resources. While  Today, applications are typically developed for specific
leases have been used in other distributed systems, such a@asses of devices or system platforms, leading to separate
Jini [2], to control access to remote resources, we take themversions of the same application for handhelds, desktops,
one step further by requiring thatl resources be explic-  Or cluster-based servers. Furthermore, applications typi-
itly bound and leased. Furthermore, resource discovery in cally need to be distributed and installed separately for each
one.world can use late binding, which effectively binds re- class of devices and processor family. As heterogeneity
sources on every use and thus reduces applications’ expoincreases, developing applications that run across all plat-
sure to failures or changes in the environment [1]. forms will become exceedingly difficult. As the number of
This style of programming for change imposes a strict devices grows, explicitly distributing and installing appli-
discipline on applications and their developers. Yet, pro- cations for each class of devices and processor family will
gramming for Change also presents an Opportunity by en- become Unmanageable, espeCia”y in the face of migration
abling system services that make it easier to build applica- across the wide area.
tions. one.world provides support for saving and restoring ~ We thus argue for a single application programming in-
application checkpoints and for migrating applications and terface (API) and a single binary distribution format, includ-
1Though, for several features, including the implementation of tuples ing a single mstr.uctlo.n set, that -Can be Imp-lement-ed across
mixin—based inheritance [4] and ’multiple dispatch as provided by Multi—’ the range of devicesina pervasive computing environment.

Java [7] would have provided a better match than Java's single inheritance® S.ingle’ common AP_I makes it possiblle to develop appli-
and single dispatching of methods. cations once, and a single, common binary format enables
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the automatic distribution and installation of applications. It development, data and functionality should be kept separate
is important to note that Java does not provide this commonfor pervasive computing applications as they typically need
platform. While the Java virtual machine is attractive as to evolve independently. Second, applications need to be
a virtual execution platform (and used for this purpose by explicitly programmed to gracefully handle change. While
one.world), Java as an application platform does not meet this style of programming imposes a strict discipline on ap-
the needs of the pervasive computing space. In particular,plication developers, it also enables system services, such
Java’s platform libraries are rather large, loosely integrated, as checkpointing and migration, previously not available in
and often targeted at conventional computers. Furthermore distributed systems of this scale. Third, pervasive comput-
Java, by itself, fails to separate data and functionality and ing requires a common system platform, so that applications
does not encourage programming for change, as discussedan run across (almost) all devices in this infrastructure and
in Sections 2 and 3 respectively. can be automatically distributed and installed.

Given current hardware trends and advances in virtual ~We are exploring how to address these fault lines with
execution platforms, such as the Java virtual machine orone.world, a system architecture for pervasive computing.
Microsoft's common language runtime [22], we can rea- In an effort to better understand the needs of application
sonably expect that most devices can implement such a perdevelopers, we have taught an undergraduate course that
vasive computing platform. Devices that do not have the leveragesne.world as the basis for students’ projects. We
capacity to implement the full platform, such as small sen- are also building pervasive applications within our archi-
sors [15], can still interact with it by using proxies or em- tecture and are collaborating with other researchers in the
ulating the platform’s networking protocols. Furthermore, department to implement additional infrastructure services
legacy applications can be integrated by communicating on top of it. Further information onne.world, including
through standard networking protocols, such as HTTP or a source distribution, is available attp://one.cs.
SOAP [3], and by exchanging data in standard formats, suchwashington.edu/.
as XML.
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Abstract multiple ASes, and see different routes through the Inter-
net. RON nodes cooperate with each other to forward data
on behalf of any pair of communicating nodes in the RON,
thus forming aroverlay network. Because ASes are indepen-
dently administered and configured, underlying path failures
between communicating nodes usually occur independently.
Thus, if the underlying topology has physical path redun-
dancy, it is often possible for a RON to find paths between
RON nodes even if Internet routing protocols such as BGP
(that are optimized for scalability) cannot find them.

This paper makes the case for Resilient Overlay Networks
(RONS5s), an application-level routing and packet forwarding
service that gives end-hosts and applications the ability to
take advantage of network paths that traditional Internet rout-
ing cannot make use of, thereby improving their end-to-end
reliability and performance. Using RON, nodes participat-
ing in a distributed Internet application configure themselves
into an overlay network and cooperatively forward packets
for each other. Each RON node monitors the quality of the
links in the underlying Internet and propagates this informa- Nodes in a RON self-configure into the overlay by exchang-
tion to the other nodes; this enables a RON to detect anding information across the underlying Internet paths. Each
react to path failures within several seconds rather than sev-RON node has “virtual links” to all other RON nodes, which
eral minutes, and allows it to select application-specific paths it uses to maintain connectivity and exploit the underly-
based on performance. We argue that RON has the potentiaing IP network’s redundancy. When a RON node receives
to substantially improve the resilience of distributed Internet @ packet destined for another, it looks for the destination

applications to path outages and sustained overload. in an application-specific forwarding table, encapsulates the
packetin a RON packet, and ships it to the next RON node. In
1 Introduction this way, the packet moves across the overlay via a sequence

. . ) . of RON nodes until it reaches the intended destination.
Today’s wide-area Internet routing architecture organizes the

Internet into autonomous systems (ASes) that peer with each 10 find and use alternate paths, a RON monitors the health of
other and exchange information using the Border Gateway the un.derlylng Internet pa}ths between its nodes, dynamically
Protocol (BGP), Version 4 [10]. This approach scales well Sélecting paths that avoid faulty or overloaded areas. The
to a large number of connected networks, but this scalabil- 90@l is to ensure continued communication between RON
ity comes at the cost of the increased vulnerability to link or N0des despite failures due to outages, operational errors, or
router failures. Various recent studies have found that path attacks in the underlying network. RON nodes infer the qual-
failures are common and that the convergence time after alty Of virtual links using active probing and passive observa-
problem is detected is usually on the order of several min- tion of traffic, and exchange this information using a routing
utes [5], and that path outages, routing anomalies, and activeProtocol- Each node can use a variety of performance met-
denial-of-service attacks cause significant disruptions in end- "CS, such as packet loss rate, path latency, or available band-
to-end communication [1, 8]. This reduces the reliability of Width to selectan appropriate application-specific path. This
end-to-end communication over Internet paths and therefore @PProach has potential because each RON is small in size
adversely affects the reliability of distributed Internet appli- (1€SS than fifty nodes), which allows aggressive path moni-
cations and services. toring and maintenance.

We proposeResilient Overlay Networks (RONSs) as an ar- A RON ensures that as long as thereais available path
chitecture to improve the reliability of distributed applica- 1N the underlying Internet between two RON nodes, the
tions on the Internet. Each application creates a RON from its RON application can communicate robustly even in the face
participating nodes. These nodes are typically spread acros<®f Problems with the “direct” (BGP-chosen) path between
them. The limited size of each independent RON is not a se-

, __rious limitation for many applications and services. A video
This research was sponsored by Defense Advanced Research Projects f . link inst a RON lib f
Agency (DARPA) and the Space and Naval Warfare Systems Center sancOnierencing program may ink againsta lorary, rorm-

Diego under contract N66001-00-1-8933. ing a routing overlay between the participants in the con-
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ference. Alternatively, a RON-based application-aware IP g e 2:The details of Internet interconnections. Dot-

packet forwarder may be located at points-of-presence in dif- e jinks are private and are not announced globally.
ferent ASes, forming an “Overlay ISP” that improves the re-

liability of Internet connectivity for its customers.

This paper presents the case for developing distributed ap-lationships almost always involve some form of settlement.

plications using RON (Section 2), outlines an approach by Figure 2 redraws Figure 1 to reflect reality. MIT is connected
which RONs may be architected (Section 3), relates RON tg the Internet via BBN, and to Internet2. It has a private
to previous work (Section 4), and concludes with a research peering link to MediaOne in Cambridge (MA), so students
agenda for future work (Section 5). can quickly connect to their MIT machines from home. Utah

is connected to the Internet via Qwest, to Internet2, and to
2 TheCasefor RONs a local ISP, ArosNet, via a private peering link. ArosNet
A common, but incorrect, view of the topology of the Inter- is connected to the Internet via UUNET, and MediaOne is
net is that institutions and companies connect to “The Great connected to the Internet via AT&T. In this example, several
Internet Cloud.” Figure 1 illustrates an example of four sites, desirable paths are unavailable globally: the private peering
MIT, Utah, ArosNet, andM ediaOne, connected to the In-  links for financial reasons (the parties have no apparent in-
ternet cloud. In this view, the Internet is very robust, rapidly centive to provide transit for each other) and the Internet2
routing packets around failures and traffic overload, and pro- connections because it is a research network.

viding near-perfect service. These interconnections show two reasons BGP is unable

Unfortunately, this ideal view of the Internet cloud is far to ensure “best"—or sometimes even “good"—routes, and
from reality. The Internet Service Providers (ISPs) consti- route around problems even when different physical paths
tuting the Internet exchange routing information using BGP, are available. The first reason, explained above, is a conse-
which is designed to scale well at the expense of main- quence of the economics and administration of peering rela-
taining detailed information about alternate paths between tionships. The second relates to scalability.

networks. To avoid frequent route changes that may prop- o communication costs to scale well, BGP must simplify
agate through many other ASes, frequent route announce-, ting data enormously; for computational scalability, its
ments and withdrawals are damped; furthermore, CONVer- 4o ision metrics must be both simple and stable. BGP pri-
gence times on route changes take.many minutes [5] with marily uses its own hop-counting mechanism to determine
currently deployed BGP implementations. Last but notleast, .o e and it exports a single “best” route for forwarding
there are numerous financial, political, and policy considera- 5 yets. This causes three important problems: first, as noted
tions that influence the routes announced via BGP. in the Detour study [11], BGP may make suboptimal routing
ISPs typically provide two types of connectivity: “transit” decisions. Second, BGP does not consider path performance

and “peering.” If the ISP providesansit for a customer, when making routing decisions, and so cannot route around
it tells other ISPs that they may reaghthrough the ISP. If a path outage caused by traffic overload. The result is that
an ISP has peering relationship withA, it keeps this knowl- path outages can lead to significant disruptions in commu-
edge to itself; the ISP and its customers can redefa this nication [1]. Third, BGP may take several minutes to stabi-

link, but the rest of the Internet may not. Peering relation- lize in the event of a route change or link failure [5]. The

ships are often free, because they enable the more efficientresult is that today’s Internet is easily vulnerable to router
exchange of packets without placing the burden of hauling faults, link failures, configuration or operational errors, and
packets on either partner, but globally announced transit re- malice—hardly a week goes by without some serious prob-
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Figure 3:The upper right figure shows the loss rate with Figure 4RON vs. direct samples. The samples are tem-
and without RON between MIT and ArosNet. RON porally correlated; the latency via RON is plotted on
was able to improve the loss rate considerably by rout- the Y axis, and the latency via the Internet is on the X
ing through Utah. The upper left figure shows the MIT axis. 0.5% of the outlying samples (215 /51395) are not
to Utah loss rate, and the lower right shows the Utah shown for readability. The dataset represents 62 hours
to ArosNet loss rate. of probes taken roughly 4 seconds apart.

lem affecting one or more backbone service providers [6]. 2.2 Performance

Many of the restrictions of peering can be overcome. An We 0ok measurements between the four sites using
organization that has Internet service in multiple ASes can tcping, a TCP-based ping utility that we created. We
run an application that is distributed across nodes located S€Nt Onétcping flow over the direct Internet and another
in the ASses, and use a RON to provide routing between through the lowest-latency indirect path as estimated by the
these nodes. By explicitly constraining the size of any given "€Sults of recentcping probes. If the direct IP path had
RON to be small (under, say, 50 nodes), the aggressive ex-lower Iatent_:y that th_e best indirect path, then the direct one
ploration of alternate paths and performance-based path seWas used since that is what RON would do as well.

lection can be accomplished. Thus, RON's routing and path Figure 4 shows the latency results between MIT and Aros-
selection schemes emphasize failure detection and recoveryNet, gathered over 62 hours between January 8 and January
over scalability, improving both reliability and performance 11 2001. In 92% of the samples, the latency of the pack-
of the RON application. ets sent over a RON-like path was better than the Internet

To obtain a preliminary understanding of the benefits of us- !atency. The average latency over the measurement period
ing RON, we evaluated the effects of indirect RON-based decrgased from 97ms to 68ms; indirect hops through both
packet forwarding between the four sites mentioned in our MediaOne and Utah were used, and some packets were sent
examples: The University of Utah, MIT, ArosNet, and a Me- directly. The benefit in this case arose partly from using the
diaOne cable modem in Cambridge, MA. The interconnec- high-speed Internet2 connection, but more from avoiding the
tions between these nodes are as shown in Figure 2. In this€Xxchange between MediaOne and Qwest, which frequently
topology, RON is able to provide both reliability and perfor-  Went through Seattle!

mance benefits for some of the communicating pairs.
gp 2.3 Case Summary

2.1 Réiability These observations argue for a framework that allows small
numbers of nodes to form an overlay that can take advan-
Figure 3 shows the 30-minute average packet loss rates betage of these improved paths. By pushing control towards
tween MIT and ArosNet. In these samples, the loss rate be-the endpoints, or even directly to the application, the RON
tween MIT and ArosNet ranged up to 30%, but RON was architecture achieves four significant advantages. (1) More
able to correct this loss rate to well below 10% by routing efficient end-system detection and correction of faults in the
data through Utah (and occasionally through the cable mo- underlying routes, even when the underlying network layer
dem site). This shows that situations of non-transitive Inter- incorrectly thinks all is well. (2) Better reliability for applica-
net routing do occur in practice, and can be leveraged by tions, since each RON can have an independent, application-
a RON to improve the reliability of end-to-end application specific definition of what constitutes a fault. (3) Better per-
communication. formance, since a RON’s limited size allows it to use more
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Traffic Forwarding sive measurement of the results achieved by data transfers
mRmRREREI, over the virtual links. Because our goal is to provide better
“‘ service than the default paths, we must measure links that

* may not be in use by data transmissions, necessitating the
use of active probes. Passive measurements, however, can
provide more information with less bandwidth cost by using
traffic that must already flow over the network. This is why
we use both forms of monitoring.

MIT
"
.

D

g

Q
Q
0
g
0

Measurements may either lsgstem-defined, e.g., “the la-

o tency between two hosts,” or they may lgplication-
defined, e.g., “the time to download this object from a mirror
site,” similar to the approach taken in SPAND [12]. The de-
signers of an overlay network cannot be omniscient about
the desires and metrics that are important to future users; a
well-designed system must provide both a rich set of system-

ArosNet \ / defined metrics for ease of use, and the ability to import and
route based on application-defined metrics to accommodate
B Cable Modem unforeseen applications.

It is impractical to send days of detailed performance his-
tory to all other participants in the network so that they can

Figure 5: The general approach used in the RON decide on the best path over which to transfer data. Further-
system. Nodes send probes to determine the net- more, a reliable system must handle participating nodes that
work characteristics between each other. Using their crash, reboot, or rejoin the RON. Measurement data, partic-
knowledge of the network, they potentially route traffic ularly network probe data, is often extremely noisy and must
through other nodes. In this example, traffic from Utah be smoothed before it is of use to clients. The RON system
to the Cable Modem site is sent indirectly via MIT. must therefore have a mechanism ﬁ]mrna”zng the per-

formance data it collects, before transmitting it across wide-

. . . area network paths to other RON nodes.
aggressive path computation algorithms than the Internet. (4) P

Application-specific path selection, since RON applications Hosts on the same LAN will frequently experience similar

can define their own routing metrics. network conditions when communicating with other hosts.
To reduce the impact of network probe traffic and increase
3 Approach the base of information available to the routing system, hosts

on the same LAN should be able to share information about
the performance of remote paths and sites. From these re-
quirements, we conclude that the RON system should sup-
port a sharegerformance database that local hosts can use

to share and aggregate performance data. To avoid introduc-
ing more points of failure into the system, both the perfor-
mance database and its clients must treat the data stored in it
assoft state. Clients must not fail if information they want is

not in the database. The correct functioning of the database
We designed the RON software as libraries, usable by un- must not depend on the presence of information about par-
privileged user programs. The components of the RON soft- ticular clients or remote networks.

ware provide the mechanisms necessary for application-

layer indirect routing. RON needs (1) methodsnteasure 3.2 Routing and Forwarding

the properties of the paths between nodesaggdegate this
information; (2) an algorithm tooute based on this informa-
tion; and (3) a mechanism tend data via the overlay. We
describe each of these components below.

The RON approach is conceptually simple. Figure 5 out-
lines this approach: The RON software sepibesbetween
RON nodes to determine the network characteristics between
them. Application-layeRON routers share this information
with the other RON nodes, and decide on next hops for pack-
ets. When appropriate, the traffic between two RON nodes is
sent indirectly through other RON nodes, instead of going
directly over the Internet.

Indirect hops through the network require additional band-
width, time, and computation. We believe that we can
achieve the major benefits of an overlay using only a few in-
direct hops. Our design currently calls for computing paths
o . only with single indirect hops. To send packets indirectly, the
3.1 Monitoring Path Quality RON architecture should use UDP, not IP or some new pro-
RON nodes measure path quality using a combination of ac- tocol, to permit implementation as an unprivileged process.
tive probing by sending packets across virtual links, and pas- The small size of each RON allows us to exchange topol-
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ogy and performance information using a link-state routing be sent to the MIT RON node, and from there, relayed to the
protocol. requesting host over the overlay.

Intermediate forwarding nodes should not require Another use of RONSs is to implement multi-path forwarding
application-specific knowledge about the packets they of flows. TCP performs poorly when subject to the large jitter
handle. We take the idea fibw labels from IPv6 [7] and and packet reordering that is often imposed by splitting one
MPLS [4]: The RON endpoints should tag their flows with  flow between multiple paths, but sendidi¢ferent TCP flows

an appropriate routing hint (“Minimize latency”) and with  between the same two hosts (or two networks) poses few
a flow identifier, permitting downstream routers to handle problems. The flow labeling component of a RON provides
the packets without needing to understand the protocols the first handle necessary to achieve this goal, and a routing
contained in the encapsulated packets. For instance, a vidleaomponent that performs flow assignment would provide the
conferencing application may send its audio and video data other part.

as logically separate streams of data, but may want them ©O\whena cooperating RON system either controls the majority
be routed along the same path to keep them synchronized.y¢ g ayailable bandwidth on its links, or is given quality of

By pushing flow labeling as close to the application as gopice (QoS) guarantees on individual links of the network
possible, these decisions can be made at the right place,imin 5 single ISP, it may be possible to then use the over-
Early flow labeling also reduces the load on the intermediate lay network to provide global QoS guarantees to individual
nodes, by simplifying their routing lookups. flows that traverse the overlay

3.3 Sending Data

The basic RON data transmission APl is simple: The con-
duit that provides the input and output for the RON must
provide a function to call when there is data to be delivered,
and must either notify the RON forwarder explicitly pro-
vide aselect-like mechanism for notifying the forwarder
when data is available for insertion into the RON. Both of
these alternatives are appropriate for use in the libraries im-
plementing the RON functionality; the needs of the applica-
tion should determine which is used.

3.5 Routing Palicies and Deployment

As with any overlay or tunneling technique, RONSs create the
possibility of misuse, violation of Acceptable Use Policies
(AUPs), or violation of BGP transit policies. At the same
time, RONs also provide more flexible routing that e
hancethe ability of organizations to implement sophisticated
policy routing, which is the ability to make routing decisions
based upon theource or type of traffic, not just its destina-

tion address. This is an old idea [2], but its use in backbone
routers have been scarce because of the increased CPU load

3.4 Applicationsand Extensions it frequently imposes.

The components of RON described thus far are necessary forRONS interact with network policies in two ways. Because
a basic user-level packet forwarding system, but applications RONS are deployed only between small groups of cooperat-
that integrate more tightly with the routing and forwarding N9 entities who have already purchased the Internet band-

decisions are capable of more complex behavior. We discussWidth they use, they cannot be used to find “back-doors”

a few usage scenarios below, considering how they interactNto networks without the permission of an authorized user
with the base RON functionality. of those networks. The upholding of an organization’s AUP

L ) is primarily due to cooperation of its employees, and this re-
RONs can be deployed on a per-application basis, but they ,5ins unchanged with the deployment of RONSs.
may also be deployed at a border router. There, they can

be used to link entire networks with Overlay Virtual Private More importantly, the smaller nature of RONs running atop
Networks. An Overlay ISP might even buy bandwidth from Powerful desktop computers can be used to implement pol-

a number of conventional ISPs, paying them according to a ICY routing on a per-application basis. One of our goals is
Service-Level Agreement, and selling “value-added” robust the creation of a policy-routing aware forwarder with which
networking services to its own customers. administrators can easily implement policies that dictate. For

instance, one policy is that only RON traffic from a particular
research group may be tunneled over Internet2; traffic from
the commercial POPs must traverse the commercial Internet.

When used to encapsulate network-level traffic, RONs can
be combined with Network Address Translation (NAT) to

permit the tunneling of traffic from remote sites not enabled
with overlay functionality. For example, consider the net- 3.6 Status
work from Figure 2. A RON node located in the EECS de-
partment at MIT could be used by the other sites to proxy
HTTP requests taww . mit . edu, accelerating Web brows-
ing for off-site collaborators. Traffic would flow through the
overlay to the MIT RON node, from which an HTTP reques
would be sent to the Web server. The HTTP response would  1This possibility was suggested by lon Stoica.

We have implemented a basic RON system to demonstrate
the feasibility of our end-host based approach and are con-
tinuing to refine our design and implementation. We are de-

t ploying our prototype at a few nodes across the Internet and
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are measuring outages, loss rates, latency, and throughput t&. How do we choose routes? Route selection involves sum-
quantify the benefits of RON. We have built one RON ap- marizing link metrics, combining them into a path metric,
plication, an IP forwarder that interconnects with other such and applying hysteresis to come up with an estimate of the

clients to provide an Overlay ISP service. route quality. How do we best perform these actions for dif-
ferent link metrics? How do we filter out bad measurements,
4 Related Work and perform good predictions? How do we combine link

The Detour study made several observations of suboptimal metrics (such as loss and latency) to meet application needs?

Internet routing [11]. Their study of traceroute-based mea- 3. How frequently do we probe? The frequency of probing
surements and post-analysis of Paxson’s [8, 9] data showstrades off responsiveness and bandwidth consumption. The
that alternate paths may have superior latency or loss ratesspeed with which failed routes can be detected will deter-
These studies used traceroutes scheduled from a centramine how well RONs will improve end-to-end reliability.

server, which may undercount network outages when the 4 \hat routing policies can RON express? RONs may allow
scheduler is disconnected. Our research builds on their anal-mgre expressive routing policies than current approaches, in

ysis by elucidating an approach for an architecture to exploit part because of their application-specific architecture.
these properties. The Detour framework [3] is an in-kernel q . > What h if RONS b
packet encapsulation and routing architecture designed to2- How do RONs interact? What happens if RONS become

support alternate-hop IP packet routing for improved per- W#dly popular 'E It'hi Internet? H,Oxv do mdep;:-nden(tj ROle
formance. In contrast, RON advocates tighter integration of sharing n_etwor INks interact with one anot 1er and wou
the application and the overlay, which permits “pure appli- the. resqltlng network be stable? Understanding these inter-
cation” overlays and allows the use of application-defined actions is a long-term goal of our future research.

quality metrics and routing decisions. Furthermore, the main Refer ences
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Position Summary: Toward arigorousdata type model for HTTP
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Abstract quibble, but the lack of such a term, and the failure to recog-
The HTTP protocol depends on a struciure of several ;Irz% It:ri Sconcepts importance, has led to a several difficult

data types, such as messages and resources. The current ad
hoc data type model has served to support a huge variety
of HTTP-based applications, but its weaknesses have been
exposed in attempts to formalize and (especially) to extend
the protocol. These weaknesses particularly affect the se-
mantics of caching withinthe HTTP distributed system.

In particular, what does an HTTP cache entry store?
Clearly not the resource itself (think of a CGl-generated
resource). Not a Web “document,” since these are often
composites of multiple resources with differing cachability
properties. Instead, HTTP caches are currently defined as
storing “response messages.” (l.e., an HTTP cache entry
1. Introduction does not store what a resource is; it stores what the resource
¢ says.) As aresult, it is difficult to define precisely what
an HTTP cache must do in many circumstances, since the

ity of caches at many points. An unambiguous and extens-Same resource coluld say two different things in response
ible specification of HTTP caching has proved difficult, be- to two appa_”?”t'Y identical re_quests. Th? lack of a clear
cause HTTP lacks a clear and consistent data type model fofPfMmal specification for caching causes implementors to
the primitive structures of the protocol itself. This is partly Make guesses. This leads to non-interoperability, because
a consequence of a conceptual faultline between “protocolCONtENt providers cannot predict what caches do.

designers” and “distributed system designers,” and a failure It.also makes itvery hard to gxtend the protoco.l to handle
to meld the expertise of both camps partial updates (e.gdelta encoding) or even to define pre-
' cisely how to combine existing HTTP/1.1 features (e.g., the

2. Problemswith the current data model ability to request aange of bytes and also to apply com-

Every HTTP request operates omesource and results pression). The current model does not even provide a useful
in aresponse. HTTP adopted the MIME terrentity, defined ~ framework to discuss these questions.
as “The information transferred as the payload [headers an3 A better model
body] of a request or response ...” HTTP/1.1 addetity
tags, used in cache validation. The server may attach an
entity tag to a response; a client can then validate the cor-
responding cache entry by including this entity tag in its re-
request to the server If it matches the current entity tag, the
server can respond with a “Not Modified” message instead

of sending the entire entity. . . .
X _ In this model, HTTP cache entries are defined to store
Wh"."t is the _data typ_e ofthe result of a simple HTTP GET instances (or partial instances). An entity tag is tied to an
operation? Is it an entity? The attempted analogy between

instance, because it must be assigned prior to any instance
MIME messages and HTTR data types treats the message ?f?anipulations. It is clearly not tied to the “entity” (and
the central concern, which is true for MIME (an email pro-

toco! that t ¢ but not for HTTP ; IWould better have been called an “instance tag”). Therefore,
ocolthatfransters messages) but not for (a protoco a cache can tell that two partial pieces of the same instance
for remote operations on resources). Also, HTTP allows the

o . —may be combined, because they have the same entity tag.
transmission of subranges of the bytes of a result, or of just y y y'ag

) ) . . The implications of the new model (necessary protocol
the metainformation without the associated body, so the res- P ( yp

. changes; the ability to more rigorously define existing
ult might span several HTTP-layer messages. Therefore, an 4 new HTTP features) require a longer writeup. (See
HTTP “entity” is merely an ephemeral, and perhaps partial,

: research.compagq.com/wrl/people/mogul /hotos8).
represent_atlon of one aspect of a resource. But it should be clear that the long-term success of a pro-
SO while HTTP has reasonably weII-deflned terms andtocol such as HTTP depends on clear definitions that
concepts for resources and messages, it has no CIearIderess distributed-systems issues, and on a better dialog

dgfmed term to desgrlbe_ the result.of applying an opera-panyeen protocol designers and operating systems people.
tionto a resource. This might seem like a mere terminology

HTTP is a network protocol, but it is also the basis o
a large and complex distributed system, with the possibil-

We could solve these problems by adding a new data
type, theinstance. One can think of an instance as a com-
plete snapshot of the current result of applying a GET to the
resource. The instance can then be the input to a series of
instance manipulations, which can include range selection,
delta encoding, and compression.
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Position Summary: The Conquest File System—L ife after Disks

An-1 A. Wang, Peter Reiher, and Gerald J. Popek
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The cost of paper and film has been a critical barrier to
cross for a storage technology to achieve wide deploy-
ment and better economy of scale. By 2003, the declining
cost of persistent RAM (e.g., battery-backed DRAM) wiill
break this barrier, signifying the arrival of the persistent-
RAM-based storage era.

Persistent RAM will not fully replace disks for many
years. However, as RAM becomes cheap, memory can
assume more roles of file systems. In particular, by 2005
high-end desktops can afford to be equipped with 4 to 10
Gbytes of persistent RAM for storage; this is sufficient to
deliver nearly all aspects of file-system services, with the
single exception of high-capacity storage.

The Conguest file system is designed to provide a tran-
sition from disk- to persistent-RAM-based storage. Ini-
tially, we assume 2 to 4 Gbytes of persistent RAM and the
popular single-user desktop environment. Unlike other
memory file systemsConquest can incrementally assume
more responsibility for in-core storage as memory prices
decline. TheConquest approach realizes most of the
benefits of persistent-RAM-based file systems before
persistent RAM becomes cheaply abundar@onquest
also benefits from the removal of disks as the primary
storage by identifying disk-related complexities and iso-
lating them from the critical path where possible.

Unlike cache, which treats main memory as a scarce
resource,Conquest anticipates the abundance of cheap
persistent RAM. Conquest uses disk to store only the
data well suited for disk characteristics. Reducing the

Geoffrey H. Kuenning
Computer Science Department
Harvey Mudd College
geoff@cs.hmc.edu

as complex layout heuristics intended to reduce fragmen-
tation or average seek times.

Conquest also speeds up computing by allowing easy
reuse of previously computed results. With an expanded
API, Conquest allows direct storage of runtime data struc-
tures, states, or even processes that interact with the envi-
ronment in constrained ways. Unlike memory-mapped
files, storing runtime states und€onquest requires no
compaction or alignment to page boundaries, which bene-
fits many data representations. Direct storage of runtime
states relieves developers of the need for serialization and
deserialization. Applications can also take advantage of
storing runtime data in the most appropriate form for
processing. For example, network applications can store
outbound data in the format of network packets to bypass
both disk-to-memory and memory-to-network transla-
tions.

Storing data in core inevitably invites the question of
reliability and data integrity. However, conventional
techniques of sandboxing, access control, checkpointing,
fsck, and object-oriented self-verification still apply. For
example,Conquest still needs to perform frequent system
backups. Conguest uses common memory protection
mechanisms by having a dedicated memory address space
for storage (assuming a 64-bit address space). A periodic
fsck is still necessary, but it runs at memory speed. We
are also exploring the object-store approach of having a
“typed” memory area, so a pointer can be verified to be of
a certain type before dereferencing.

range of access patterns and characteristics anticipated by Various areas ofConquest are under investigation.

the file system translates into simpler disk optimizations.
Our initial Conquest implementation uses core mem-
ory to store all metadata, small files (currently based on a
size threshold), executables, and dynamically linked Ii-
braries, leaving only the content of the large files on disk.

Memory underConquest is a shared resource among exe-
cution, storage, and buffering for disk access. Finding the
“sweet spot” for system performance requires both mod-
eling and empirical investigation. The ability f&on-

quest to store runtime states has the flavor of wide-

All accesses to in-core data and metadata incur no data address-space computing, which can be applied and ex-

duplication or disk-related overhead, and executions are
in-place. For the large-file-only disk storage, we can use
a larger access granularity to reduce the seek-time over-

head. Because most accesses to large files are sequential2.4.2.

we can relax many historical disk design constraints, such

* Gerald Popek is also associated with NetZero, Inc.
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tended to the distributed environment and database sys-
tems.

The Conguest prototype is operational under Linux
It is POSIX compliant and supports both in-core
and on-disk storage. The source consists of 3,800 lines of
kernel code, 1,400 lines of file-system-creation code, and
3,600 lines of testing code. Initial deployment and per-
formance measurements are under way.
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While adaptation is widely recognized as valuable, adalpests and gracefully switches between algorithmic alterna-
tations in most existing systems are limited to changing etes on each host. This protocol uses agreement, barrier syn-
ecution parameters in a single software module or on a samronization, and message tagging to ensure that hosts reach
gle host. Our position is that the true potential of adapteensistent adaptation decisions and change between alterna-
tion can only be realized if support is provided for more getive algorithms with minimal disruption.
eral solutions, including adaptations that span multiple hostsThese techniques are being prototyped using Cactus, a de-
and multiple system components, aalgiorithmic adapta- sign and implementation framework for constructing config-
tions that involve changing the underlying algorithms usedrable services in networked systems. The graceful adap-
by the system at runtime. Such a general solution must, haation protocol and adaptation controller are currently being
ever, address the difficultissues related to these types of adaptotyped separately using different versions of Cactus. The
tations. Adaptation by multiple related components, for egontroller is being implemented using the C version of Cactus
ample, must be coordinated so that these adaptations workx®-. The initial focus is on coordinating layers for a test con-
gether to implement consistent adaptation policies. Likewidgyuration consisting of a streaming video application layered
large-scale algorithmic adaptations need to be coordinatada configurable transport protocol, CTP [3]. Initial experi-
using graceful adaptation strategies in which as much namental results suggest that the controller is indeed successful
mal processing as possible continues during the changeowecoordinating adaptation between multiple components. An
Here, we summarize our approach to addressing these piofifal version of the graceful adaptation protocol has been
lems in Cactus, a system for constructing highly-configurattempleted using the C++ version of Cactus 1.1. Preliminary
distributed services and protocols [2]. experimental results using an adaptive group communication

When multiple related system components can adaptservice suggest that the protocol does indeed provide a grace-
changes in the system state, the adaptations performedytransition from one adaptation aware module to another,
these components must be coordinated to achieve a cand demontrate the overall value of adaptive strategies. Fur-
sistent adaptation policy. To achieve this, we have impl#ter details on the graceful adaptation protocol can be found
mented aradaptation controller architecture that is responsi-in [1].
ble for making adaptation decisions for related adaptive com-
ponents. Adaptation policies are specified on a componep{-
by-component basis using sets of fuzzy logic rules, and thE{]eferenceﬁ
composed along with rules '_[o coordinate the actions of diffgfy \, Chen, M. Hiltunen, and R. Schlichting. Constructing
ent components to form a single controller. The challenge, o 4qaptive software in distributed systems.Pioceedings of the

course, is designing a set of fuzzy rules that reflect the best 214 |nternational Conference on Distributed Computing Sys-
adaptation strategies for a given situation. tems, Phoenix, AZ, Apr 2001.

Even when co'ordlr'1ated adaptatlon'deCIS|onS are.rr'laf&‘j:, M. Hiltunen, R. Schlichting, and G. Wong. Cactus system soft-
large-scale algorithmic adaptations still present a difficult’ \are release. http:/www.cs.arizona.edu/cactus/software.html,
challenge. Without special provisions, for example, an adap- pec 2000.
tive system may be unable to process normal application trﬁsi]' G. Wong, M. Hiltunen, and R. Schlichting. CTP: A configurable
fic while it is changing between different algorithms. To a-~ extehsibletransp’ort protocol. Rroceedings of the 20th An-
leviate this problem, we have designed and implemented & 5 Conference of IEEE Communications and Computer Soci-
graceful adaptation protocol that coordinates changes across etjes (INFOCOM 2001), Anchorage, Alaska, Apr 2001.

*This work supported in part by DARPA under grant N66001-97-C-8518
and NSF under grants ANI-9979438 and CDA-9500991.
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Abstract

Middleware solutions for wired distributed systems can-
not be used in a mobile setting, as mobile applications im-
pose new requirements that run counter to the principle of
transparency on which current middleware systems have
been built. We propose the use of reflection capabilities and
meta-data to pave the way for a new generation of middle-
ware platforms designed to support mobility.

1. The Rationale

The increasing popularity of wireless devices, such as

2 Research Directions

We believe that reflection and metadata can be success-
fully exploited to develop middleware targeted to mobile
settings. Through metadata we obtain separation of con-
cerns, thatis, we distinguish what the middleware does from
how the middleware does it. Reflection is the means that we
provide to applications in order to inspect and adapt mid-
dleware metadata, that is, influence the way middleware be-
haves, according to the current context of execution.

We have developexiMIDDLE [3], a middleware for mo-
bile computing that focuses on synchronization of repli-
cated XML documents. In order to enable application-
driven conflict detection and resolutio’xMIDDLE sup-
ports the specification of conflict resolution policies through

mobile phones, personal digital assistants and the like, is €n-yeta-data definition using XML Schema.

abling new classes of applications that present challenging The following step has been the definition of a global
problems to application designers. These devices face teMygdel for the design of mobile middleware systems, based
porary loss of network connectivity when they move; they o, the principles mentioned above. In [1], we have dis-
discover other hosts in an ad-hoc manner; they are likely ¢,ssed a reflective conceptual model and a reflective archi-
to have scarce resources, such as low battery power, slowecyre of middleware systems targeted to support mobile
CPU speed and small amounts of memory; and they are re-ypjications that call for context-awareness, where by con-
quired to react to frequent and unannounced changes in thggyt we do not mean only location but everything in the
environment, e.g. variable network bandwidth. physical environment that can influence the behaviour of

Middleware technologies [2] have been designed and the application, such as memory and battery power.
successfully used to support the development of stationary

distributed systems built with fixed networks. Their success
has been mainly due to their ability of making distribution References
transparent to both users and software engineers, so that

) ) . e [1] L. Capra, W. Emmerich, and C. Mascolo. Reflective Middle-
systems appear as single integrated computing facilities.

ware Solutions for Context-Aware Applications. Technical

However, completely hiding the implementation details
from the application becomes both more difficult and makes
little sense in a mobile setting. Mobile systems need to
quickly detect and adapt to drastic changes happening in

Report RN/01/12, UCL-CS, 2001. Submitted for Publication.
[2] W. Emmerich. Software Engineering and Middleware: A

Roadmap. IfThe Future of Software Engineering - 22*¢ Int.

Conf. on Software Engineering (ICSE2000), pages 117-129.

ACM Press, May 2000.

[3] C.Mascolo, L. Capra, and W. Emmerich. XMIDDLE: A Mid-
dleware for Ad-hoc Networking. 2001. Submitted for Publi-
cation.

the environment. A new form ciwareness is needed, as
opposed to transparency, to allow application designers to
inspect the execution context anablapt the behaviour of
middleware accordingly.

142



Position Summary: Separating Mobility from Mobile Agents

Kare J. Lauvset , Kjetil Jacobsen and Dag Johansen
Dept. of Computer Science, University of Tromsg, Tromsg, Norway

Keith Marzullo
Dept. of Computer Science, University of California San Diego, La Jolla, USA.

Mobile agents, like processes, are separate units of
concurrent execution. They differ in how they view the
processor upon which they run. For processes, the proces-
sor is abstracted away: each process can consider itself to
be running on an independent virtual machine. For mobile
agents, the processor upon which they run is not abstract-
ed away: it is a first-class entity that is under program
control. A mobile agent can move from one processor to
another in order to profit from the details - such as fast
access to local data, use of computational resources and
I/O devices, and so on - of the new processor.

The reasons for using mobile agents are well-known:
moving computation to data to avoid transferring large
amounts of data; supporting disconnected operation by,
for example, moving a computation to a network that has
better connectivity; supporting autonomous distributed
computation by, for example, deploying a personalized
filter near a real-time data source. Many mobile agent
systems have been constructed and are in the public do-
main. But, despite these well-known advantages and
widely available software, mobile agents are not yet being
used as a common programming abstraction.

We have been working since 1993, under the name of
TACOMA, on operating system support and application of
mobile agents. We have addressed issues including fault-
tolerance, security, efficiency, and runtime structures and
services. We have built a series of mobile agent middle-
ware systems and evaluated them by building realistic and
deployed applications. We have found that mobile agents
are especially useful for large-scale systems configuration
and deployment, system and service extensibility, and
distributed application self-management.

The programming model ACOMA supports has
changed over these years to reflect our experience with
writing real applications. Like other mobile agent sys-
tems, TACOMA started with a programming model that
resembled the characterization given above of mobile
agents being processes with explicit control over where
they execute. We call this theaditional model of mobile
agents. Using the traditional model leads to several prob-
lems including: the complexity of code that contains an
explicit and dynamic trajectory; the overhead of implicit

This work was supported by NSF (Norway) grants No.
112578/431 and 126107/431 (Norges Forskningsrad,
DITS program).
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state capture; and the temptation to support only a single
programming language (which is typically Java, whose
use presents yet other problems).

More fundamentally, we have found that mobile
agents are best thought of as one of several tools used
together to build distributed applications. A distributed
application has, in addition to ifanction, nonfunctional
aspects such as its deployment, monitoring, adaptation to
a changing runtime environment, and termination. We
call this thefactored model of distributed applications.
This model separates the functional aspect of the appli-
cation from itsmobility and management aspects. Mobile
agent platforms can be used to implement the mobility
aspect, and the mobile agents themselves to implement
the management aspects.

Legacy and COTS software constitute a significant
portion of the function of many real-world distributed
applications. The mobility aspect provides the mechan-
isms and structures necessary for deploying the function
and for its adaptive reconfiguration. The management
aspect manages both function and mobility at a higher
level. More specifically, it implements polices fahen,
where, and how to execute the function. Examples of
management policies of applications include fault-
tolerance, server cloning to accommodate increased
demand, and invoking security countermeasures in
response to intrusion detection alarms.

We have redesignedATomA to only directly pro-
vide the mobility aspect of distributed applications. This
version, calledvTOS, provides less than full-fledged
mobile agent systems and more than remote execution
facilities such assh, rsh andrexec. It is rather small:
it consists of approximately 90 lines of Python code.
Despite its diminutive size, it can be used to implement
itinerant mobile agents that move over encrypted network
channels.

We have usedTOS to construct some simple but
realistic distributed applications such as a parallel image
renderer based on COTS components. We are now
building a personal computational grid call@den Grid.
Doing so is making concrete issues of deployment,
security, fault-tolerance, and adaptation.

Further details on theTOS project can be found at
http://tacoma.cs.uit.no.
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The fundamental abstractions and mechanisms usedRlmws are named by FlowIDs which represent a collection
deliver communications within distributed systems have ref resources used to provide a communications stream in
mained essentially unchanged for a considerable time. Withe same manner that process IDs represent resources associ-
very few exceptions, operating systems implement a simated with a computational task. By providing distinct names
ple, socket-based approach to communications in which tfier these multicast streams, services become decoupled from
host’s involvement in a particular communication streametwork endpoints. This single property provides sweeping
ends at the network interface. TCP/IP provides an envirobenefits for mobility, fault tolerance, and resource location.
ment in which the notion of a data stream does not actually In addition to naming, we have implemented three prop-
exist within the network, but rather is an abstraction made srties of flows which we feel are beneficial to distributed ap-
‘connected’ endpoints. plications. First, flow messages almnded. Each flow has

Above the network, significant developments have beehlabel space of 128 bands within which messages may be
made to advance the state of distributed systems technologgnt. This allows an external separation of concerns for mes-
Many sizeable middleware infrastructures have been devéRges within a stream, and also provides an effective means to
oped and are actively being used in the construction of corfie administrative and fault messages to a stream from points
mercial distributed applications. Despite the benefits pravithin the network. Second, flows support a notionlo¢al-
vided by these packages, they remain dependent on an i Locality acts as an extension of TTL that allows message
sufficient infrastructure, which may be considered accordirigansmission to be scoped according to criteria such as geo-
to three fundamental flaws: 1. TCP/IP simply does not pr@raphic area, available bandwidth, or latency. Finally, flow
vide adequate network functionality for distributed systemgnessages are delivered from the network to client-defined
The shortcomings of the protocol provide a list of ongoinglueues. These queues allow local delivery options, such as
research problems including mobility, quality of service, anérop strategy and message ordering, to be defined and imple-
group collaboration. 2. The primary OS abstraction for aented at the application. Queues may be attached to various
stream, the socket, is inflexible and represents a poor cdeands of a flow, providing a great degree of flexibility in how
pling between the network and the OS. 3. Remote procedu&gd where the message stream is used.
calls, which are thede facto approach to distributed invoca- ~ We have finished an initial implementation of flows as a
tion almost universally attempts to hide the network, obscupretwork middleware and have become convinced that they
ing failures (and features) from overlying applications. are an interesting and useful communications abstraction.

Within the network TCP/IP also proves problematic. ConYVe are currently extending our definition to allow the recur-
siderable research efforts exist in the ongoing attempts &€ embedding of flows, providing a hierarchy of streams.
carry a legacy protocol well beyond the scope of its initial deVVe feel that this property will be very beneficial bothin terms
sign. Traffic management, congestion control, and resourgétraffic management and software design. Additionally, we
reservation all remain largely unsolved problems due to t€ investigating methods of typing individual data streams in
difficulties of managing data streams within the network. order that the format of their content may be advertised to de-

The existing infrastructure successfully provides a servYiC€S along the transmission path. Our investigation of these
cable network. We feel that the ongoing functionality of théWO Properties coincides with efforts to implement flows ef-
existing system explains the thrust of research towards a¢eiently at the network layer.
dressing individual deficiencies rather than addressing tiefer ences
system as a whole. However, there is an opportunity to re-
alize substantial benefits through the development on an gy Flows project web page. www.cs.ubc.ca/spider/andy/flows!.
straction that is understood and supported by both the OS and
the network routers. Our work to date has been in the design
and development of a stream-centric model for communicgﬁ
tions which we have called thﬁaoyv [1]. Aflow is a ur_nquely that of recursive flows.
named, message-based, multicast communications stream.

We would like to acknowledge Alexander Fraser and Glenford
app at AT& T research for their support and ideas, in particular
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As users and companies increasingly depend on shared, nite necessary information and flexibility is available even
worked information services, we continue to see growth invith storage interfaces designed for local resources.

data centers and service providers. This happens as servigggchanisms for maintaining consistency across global sites
and servers are consolidated (for ease of management aighge from expensive pessimistic approaches with multiple
reduced duplication), while also being distributed (for fault-round trips of locking overhead, to low latency optimisitic
tolerance and to accommodate the global reach of custorgpproaches that allow occasional inconsistencies or require
ers). Since access to data is the lifeblood of any organizatiops|lback. To evaluate the cost of such schemes, we analyzed
a global storage system is a core element in such an infrgaces for a number of applications, including email, soft-
structure. Based on success in automatically managing locghkre development, databases, and web browsing. At the
storage, we believe that the key attribute of such a systemdsorage level - after cache accesses have been eliminated -
the ability to flexibly adapt to a variety of application seman-he results do not seem very promising. A high fraction of
tics and requirements as they arise and as they change oygguests are updates, the ratio of metadata to data is high, and
time. Our work has shown that it is possible to automatically h|gh fraction of requests are synchronous_ However, con-
design and configure a storage system of one or more disfidering individual applications in isolation, these metrics
arrays to meet a set of application requirements and t@ary widely, making adaptive consistency that uses different
dynamically reconfigure as needs change, all without humagechanisms as appropriate attractiwe have also begun

intervention. Work on global data placement expands thﬁ) quantify how much Sharing takes p|ace, and see the frac-
scope of this system to a world of distributed data centers.tion of “hard” sharing in a large store is promisingly Bw.

Data location Security

Ensuring that data is available in the right location is a keyata must be secure, especially in a system where facilities
challenge as data and applications go global. Due to speed#te shared amongst many different organizations. This
light and congestion, network performance will always be @equires strong authentication, authorization and encryption
bottleneck. The system will have to transparantly migratgnechanisms, none of which are necessary in the context of
data to have the data that each application needs co-locatedal storage systems. Initial analysis shows that large stores
with the servers that are currently operating on it. Whetheguickly encompass large numbers of objects to be protected
data follows a particular user as they travel around the globgnd principals requiring authentication, posing scalability
supports a global design team in its daily work; or handleproblems. However, if we consider the number of objects
customer data or inventory for a global corporation, the indithat an individual user handles - their “shadow” on the entire
vidual data “shadows” of all types of users and applicationstore - and the commonality among access patterns to these
must be supported efficiently. Such a system can be vieweshjects, the scope of security quickly becomes more tracta-
as a network of “cache” devices — each data center providgge. The question then becomes which levels of abstraction

a pool of storage that at any one time is caching a subset @f provide for different classes of users and data.
the global store. The key problem is deciding when to move

data from one to another, when to keep multiple copies, and/Stem management and control
how many copies to keep — automating data placement suéir local management system can determine appropriate
that load is balanced both within and across data centers. placement in the local case with local information. We antic-
L ) ipate a hierarchy in the global setting, with some optimiza-
Data replication and consistency tion best done within the data center, and a more global view
For many applications, the most efficient solution will be tocontrolling movement across centers, all informed by the
have multiple replicas of the same data. Along with the coreshadow” that supports a particular coherent data set or user.
requirement of avallablhty in the event of local fa”Ures, theSuch a System must Opera’[e at a range of time scales and
makes it necessary to store the same data in multiple globgfanularities, and will critically depend on the ability to
locations and keep it consistent. The ability to adapt consigccurately and efficiently model and predict the behavior of

tency levels within the storage system to the varying requires|| the components within and the links across the system.
ments of individual applications is a key enabler for global

data placement. Ideally this would be done transparently. Technical mema{PL-SSP-2001-1, HP Labs, March 2001.
without changes to existing application code, and much of2-“When local becomes globa?0th IPCCC, April 2001.
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Zero-Code Composition For many years, people have impediments are avoided by allowing services to only name
been trying to develop systems from modular, reusable their own input and output ports. The data flow model is de-
components[2]. The ideal izro-code composition: build- fined by the data dependencies between services, and pro-
ing applications out of components without writing any new vide an explicit description of the composition. A generic
code. By investigating zero-code composition, our goal is run-time system handles passing data from one compo-
to make composition easy enough to be of practical use tonent’s output port to another’s input port according to the
systems researchers and developers. We are focusing odata flow description of the composition.
identifying and removing systemic impediments to compo-  Explicitly exposing the structure of applications enables
sition, and on exploiting composition to achieve system- systematic inspection, manipulation, and augmentation of
wide properties, such as performance, scalability, and re-applications. We can inspect the data flow composition for
liability. bottlenecks in performance, and strategically move, repli-
cate or replace parts of a composition which are performing

Impedimentsto Composition Today, even when compo-  Poorly. For example, one simplistic strategy is to dynami-
nents are designed to be reused, software developers haveally place caches around strings of expensive services in a
difficulties composing them into larger systems. We be- composition to improve performance. We can similarly ma-
lieve the problem lies with the methods and fundamen- hipulate a composition to increase its fault-tolerance, scala-
tal abstractions used to package and compose componentdility and reliability.
For example, abstractions such as function calls work well
when building small systems, however, they actually en- Current Status We have implemented a prototype com-
force properties on components that significantly impede position architecture [3], and are beginning to implement
composition and reuse generally. These impediments candynamic manipulations of compositions, and explore the
be classified into two categories: relationships between these manipulations, system-wide
properties and various service attributes such as determin-

e Control flow impediments relate to the ordering of ex- g or idempotency.

ecution of components [1]. For example, two compo-
nents cannot be used together when they make differ-
ent assumptions about the sequencing of computation
and passing of control between them.
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_____. codefor code for
. .. . ' _--z27 prefetching prefetching
Operating system structure is important — it leads to Uf-**" &= iscatered is localized
; ; [ ) < and and
derstandable, maintainable, ‘pluggable’ code. But dgsgﬁélayer @ T OSSOULS attaches
our best efforts, some system elements have been diffigylt, ., <=~  thelayers toa path

to structure. We propose a new analysis of this problem, =
and a new technology that can structure these elements. (@ ©riginal structure
Primary functionality in system code has a well defined Figure 1:Prefetching and primary functionality.

structure as layered abstractions. Other key elements Rafa i, structure of the prefetching code and its interac-
urally defy these structural boundaries —we say that t_hﬁéfn with the overall VM and FFS activity are explicitly
crosscut the layered structure. For example, prefetchingufineq as a sequence of activities that occur at well de-
for mapped files involves coordinated activity at three 'e\ﬁ'ned pointsalong a page-fault path, rather than being
fals: predicting the pattern of access z_and. allocating Pag§8ken into layers (Figure 1b). The AOP implementa-
in the VM layer, determining the contiguity of blocks inyq, is designed to allow us to see precisely how low-level
the disk layer, and reconciling the costs of retrieval igreferching code acts in service of high-level prefetching
the file system layer. Because of its inherent crosscuttifgye Primary page fault handling functionality no longer

structure, the _implementation_of_prefetching is Scatte_r?ﬁjcludes prefetching code, nor does it explicitly invoke
through the primary functionality in each of the layers 'np')refetching functionality.

volved (Figure 1a). , o In the AOP implementation, one aspect captures how
In FreeBSD v3.3, prefetching for mapped files is apsrefetching plays out over page-fault handling for sequen-
proximately 265 lines of code, grouped into 10 differsig|ly accessed mapped files: first the page map is locked
ent clusters, sc_attered over 5 functions from VM and FEg, pages are pre-allocated according to a prediction, then
alone. Dynamic context, such as flagging VM-based rgjese and possibly other pages are synchronously brought
quests, is passed as parameterg from high Ieve! functighy$) the file buffer cache and page-flipped where appro-
down through lower ones. Portions of prefetching coqgiate and finally further pages may be asynchronously
violate layering by accessing high level abstractions ffop}efetched into the cache. We can clearly see how this
lower level functions, such as freeing and page-flippingtrers from the prefetching aspect for the non-sequential
VM pages from within FFS. In this form, there is no strucéase, where pages may be de-allocated if it is not cost-
ture to the implementation of prefetching —itis hard t0 Unstective to retrieve them, the file buffer cache is not in-
derstand, hard to maintain, and certainly hard to unplug,g|yed, and further asynchronous prefetching is not ap-
Aspect-oriented programming (AOP) [3, 2] uses lingjied. Structured this way, prefetching gains context, is
guistic mechanisms to support the separation of Croggpre tractable to work with, and is even unpluggable.
cutting elements, oaspects of the system, from primary e pelieve that other key elements of operating sys-
functionality. Aspects declare code to exedogore, af-  tems are crosscutting and that their unstructured imple-
ter or wrappedaround existing primary function calls, mentation is excessively complex. We are currently de-
within the execution flow of other function calls, and With/eloping AspectC, and plan to use it to further explore the
access to specific parameters of those calls. AOP iycture of elements such as paging in layered system ar-

proves the comprehensibility of crosscutting elements @iyjtectures, consistency in client-server architectures, and
two ways: it allows small fragments of code that WOU'@cheduling in event-based architectures.

otherwise be spread across functions from disparate parts

of the system to be localized; and it makes the locakeferences

ized code more coherent, because interaction with pri-

mary functionality is declared explicitly and within sharedt! AspectC. www.cs.ubc.ca/labs/spl/aspects/aspectc.html.
context. [2] Aspect]. www.aspectj.org.

_of- i ] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
We have developed a proof-of-concept AOP Implemeﬁi Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-

tation of prefetching in FreeBSD [1]. In our implementa- gramming. InEuropean Conference on Object-Oriented
tion, we have been able to modularize prefetching. The Programming (ECOOP), 1997.

(b) Aspect-oriented structure
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Abstract

Timely transfer of long, continuous data streams and
handling data omission are stringent requirements of mul-
timedia applications. To cope with these reguirements, we
extend well known mechanismsfor inter-address-space data
transmission, such as zero-copy and fast IPC, by the notion
of time. Therefore, we add a time track to data streams and
add mechanisms to limit the validity of data. For cases of
overload we add notification and revocation techniques.

Inadequacies of current IPC mechanisms Efficient in-
terprocess communication schemes for long data transfer
in non real-time applications [2, 5, 6] address the problem
of copy avoidance by using shared memory. But they do not
cover issues of time, such as data loss due to CPU shortag

In hard real-time systems data loss does not occur, be-

&

mate the resources needed for a given stream, e.g. buffer ca-
pacity. On stream creation, DSI uses these estimates when
establishing the shared data buffers. If the communication
peers behave conforming to their specification, no buffer
shortage and no data loss occurs.

In cases of resource shortages, the communication peers
cannot always meet their traffic specification. To cope with
this at the sender, DSI adds timestamp information to the
transferred data packets. To cope with resource shortage at
the receiver, DSI limits the validity of data by time. This
means, the data packets produced at the sender will expire
after a certain time, even they were was not consumed by

She receiver. For both techniques, DSI uses virtual time,

which is assigned to and stored together with each data
acket. The virtual time corresponds to the position of the
data in the entire stream. The mapping of virtual time to
real-time is the responsibility of the communication part-

cause the entire system is designed for the worst case relers

garding resource needs during execution. However, this re-
sults in poor resource utilization and is therefore not prac-

tical. Designing the system for the average case improves

the overall resource utilization [4, 1], at the cost of quality.
Resource shortages during execution can happen and lea
to data loss then. To cope with this, data loss should be
expressed at the communication layer.

Tolerating occasional resource shortages allows multiple

applications to share resources, e.g. memory pools for com-

@e

A problem arises when the expiration of data must be
enforced. It must not impose any blocking, but the sender
must know for sure, that the receiver will not continue to
ccess old data anymore. Thus sending a message to the re-
iver and waiting for an answer is not an option. To enforce
the expiration of data DSI uses virtual memory techniques.
For this, the sender can request retraction of shared mem-
ory pages from the receiver. When the receiver noticed the
retraction, it requests re-establishing the memory mapping.

munication buffers. This in turn requires retracting these re- This allows an immediate notification without blocking.
sources in overload situations and hence must be supported.

The DROPS Streaming Interface  The DROPS Stream-
ing Interface (DSI) is our approach to a real-time inter-
process communication subsystem. It defines a user-leve
timed packet-oriented zero-copy transport protocol between

real-time components. The data flows are represented by

streams with assigned traffic specifications.

For actual data transfer, DSI uses a consumer-producer]

scheme on a ring buffer containing packet descriptors. The

packet descriptors provide an indirection for data access ands,

allow a flexible use of the shared data buffers.
The specifications of streams in DSI base on jitter-
constrained periodic streams (JCS) [3]. JCS allow to esti-
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We believe that achieving the benefits of a resource
economy, which supportsthe execution of services wherever
and whenever is most convenient, cost-effective, and
trustworthy, represents the next big computer systems
research opportunity. That is, the emphasisin the operating
research community should move away from extracting a
few more percentage points of speed from individual
computing resources, and focus instead on how to size,
provision, and manage those resources to serve the needs of
arapidly diversifying set of services. HP Laboratories are
embarking on a major endeavor to pursue this, and are
actively seeking research partnersto collaborate with us.

Thevision

Scene: a Corporate I T director’s office, the day before a
company board meeting. The COO, Chris, knocks on the
door, and comes in without waiting.

checked out the effects of migrating the data back to Prague
and the computations to Singapore.

Chris: But wouldn't that have been a huge hassle to get
right? Moving all that data?

Jean: Not at all—I didn’t even find out until 2 days after it
had happened!

Chris: What do you mean? You let it make a decision like
that?

Jean: Sure! It even reported that the average response time
for our OLTP jobs were 30% better than usual—they
usually get hammered by the decision support people at the
end of the month. Probably because of the time-zone
effects. If you look, I think you'll find we even saved money
- we used to have a team of people doing this stuff, trying to
keep one step ahead of the next wave of demands. They
could never keep up, so the customers were always
unhappy—and they were people who we couldn’t really
afford to have spending their time on that when there were

Chris: Jean: what's all this about us getting billed for more important things they could do for us, like rolling out
computing resources in Singapore? How am | going tonew services.

explain that? We don't have a facility there! What's going  Chris: But what about the users while things were being

on here?
Jean: Calm down! It's ok—really.

changed?
Jean: They hadn't even noticed! My biggest headache is

Chris: Not good enough. You know I have to give a bullet- oyr accounting systems: they make the resource location

proof answer tomorrow ... so you don'’t have much time.

visible at your level—but nobody else cares.

Jean: Ok, ok. Do you remember the end of the last month? chyis: You didn’t even have to come up with this solution
We had the R&D guys needing to do their protein shapeyoyrself?

calculations to meet an FDA deadline ...

Jean: Nope. | didn’t do a thingOS did it all!

Chris: Yes—but weren't they using some cheap compute

cycles in Prague that you'd found for them?
Jean: ...

What we'reup to

and then the marketing team wanted a new
computer-generated-graphics commercial in time for

The proliferation of computers and the Internet into all

Comdex that included film of our Malaysian manufacturing aspects of commerce and society is well under way. Many

plant as a backdrop ...

Chris: Yes—but you said that wouldn’t be a problem ...

of the fundamental technical issues to do with the
components of modern computing systems are either

Jean: ... and the financial results that you are holding, bysolved, or well in hand. It is our position that the next wave
the look of it, needed some decision analysis that we don’tof innovation—and hence research opportunities—lies in

usually do, in collaboration with our Japanese partners ...

Chris: Yes—but you told me ...
Jean: Please—if | could finish?
Chris: Sorry. It's been a bit hectic today.

the field of aggregating pools of computing resources in
support of the explosion in scale, complexity, and diversity
of computing services. The eOS program at HP Labs is
aimed at removing the technical barriers to this happening.

Jean: No way could the Prague facility keep both the eOS is not a single artifact: it is better thought of as a set
chemists and the video team happy: both the computatiorof related research activities that are striving towards
needs and storage space requirements were way over ttechieving the vision described above over the next few
top. And the Malaysian plant has nothing, really, so it years. Itis akin to other research efforts (e.g., Oceano, Grid,
looked like it would cost us a fortune. ... All because those OceanStore) in large scale systems in its scope. The
geeks couldn’t get their timing right. research focus in eOS is to discover methods to abstract and

Chris: [Sigh.] | must have told them a dozen times ... virtualize computing and storage resources and make them

Jean: But then our eOS system discovered that we are cavailable upon demand at a global scale.
buying storage space for the Malaysian lot-failure analysis A fuller version of this paper is obtainable from the URL
data with our Hong Kong subsidiaries in Singapore; and ithttp://www.hpl.hp.com/personal/John_Wilkes/papers
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We advocate a transport layer protocol for highly- ated application-level state, transfer of in-kernel TCP con-
available network services by means of transparent migra-nection state reconciles the TCP layer of the new server with
tion of the server endpoint of a live connection between co- that of the client.
operating servers that provide the same service. The cur- Our proposed solution provides a minimal interface to
rent connection-oriented transport layer protocol of the In- the OS for exporting/importing a per-connection application
ternet (TCP) reacts to what it perceives as lost or delayedstate snapshot by a server. The origin server executes the
segments only by retransmitting to the same remote end-export operation in order t@) define an execution restart
point of the connection. TCP provides no means to alleviate point for the stateful service on the connection in case of
a performance degradation (low throughput, many retrans-its migration, andii) synchronize the service state (reached
missions etc.) caused by adverse factors like server over-as a sequence of reads/writes on the connection) with the
load or failure, or network congestion on a given path. At in-kernel TCP state. The new server executes the import
the same time, TCP creates an implicit association betweerpperation to reinstate the connection at the restart point, and
the server contacted by a client and the service it provides.resumes service on it, transfering data without altering the
This is overly constraining for today’s Internet service mod- TCP exactly-once semantics.
els, where the end user of a service is concerned more with  We intend to integrate this mechanism in a general mi-
the quality of the service rather than with the exact identity gration architecture in which theient side TCP initiates
of the server. connection migration, in response to variduggers that

We propose a transport protocol tifgtoffers a betteral-  can reside either at the client or at the server(s). Triggers
ternative than the simple retransmission to the same serverare events like a degradation in perceived traffic quality (on
which may be suffering from overload or a DoS attack, may the client side), failure, DoS attack, a load balancing deci-
be down, or may not be easily reachable due to congestion sion etc. (on the server side).
and (ii) decouples a given service from the unique/fixed  The features of our protocol ardi) It is general and
identity of its provider. Our protocol can be viewed as an flexible, in that it does not rely on knowledge about a given
extension to the existing TCP, and compatible with it. To server application or application-level protocdli) It al-
start a service session, the client establishes a TCP connedews fine-grained migration of live individual connections,
tion with a preferred server, which supplies the addressesunlike a heavy-weight process migration scheitiig) It is
of its cooperating servers, along with authentication infor- symmetric with respect to and decoupled from any migra-
mation. At any point during the lifetime of the session, the tion policy.
server endpoint of the connection may migrate between the We have implemented an operational prototype of our
cooperating servers, transparent to the client application.protocol in FreeBSD. We are currently building several ap-

The current and the new server hosts nugiperate by plications that can take advantage of the protocol, including
transferring supporting state in order to accommodate thea transactional database application with migration support.
migrating connection. Issues that we plan to address in the future are: ex-

We assume that the state of the server application canplore and evaluate various migration trigger policies, eval-
be logically split among the connections being serviced, so uate the two options for connection state transfer (ea-
that there exists a well-defined state associated with eaclger vs. lazy), develop support to implement fine-grained
service session. Transfer of this state ensures that a nevault tolerance, and explore the performance tradeoffs of
server can resume service to the client in the presence ofour scheme. More details can be found at our site:
other concurrent service sessions. In addition to the associ-http://discolab.rutgers.edu/projects/mtcp.htm.
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Abstract

In this paper we present work in progress on a
worldwide, scalable multi-agent system, based on a
paradigm of hyperlinked rooms. The framework of-
fers facilities for managing distribution, security and
mobility aspects for both active elements (agents) and
passive elements (objects) in the system. Our frame-
work offers separation of logical concepts from phys-
ical representation and a security architecture.

1 TheMansion Paradigm

Our framework consists of a world (or possibly
multiple disjoint worlds), each containing a set of hy-
perlinked rooms. Each room contains agents and ob-
jects. At any instant, an agent is in one room, but
agents can move from room to room and they can take
objects with them.

In essence, a room forms a shared data-space for
agents with regard to visibility. Agents can interact
only with objects in the same room, but can send mes-
sages to agents anywhere in the world. However, nor-
mally an agent will do most of its business with other
agents in the same room.

Entities in a room can be agents, objects, or hyper-
links. Each agent is a (possibly multithreaded) pro-
cess running on one host. No part of the internal pro-
cess state of an agent can be accessed from the out-
side by other agents. Objects are strictly passive: they
consist of data and code hidden by an interface. Hy-
perlinks determine how rooms are connected.

Every world also has aattic. The attic contains
global services and is directly accessible to agents
in any room. Through the attic, an agent can obtain
world-scoped information, for example, the topology
(hyperlink layout) of a world, directory services, or a
bulletin board service (e.g., for publishing agent in-
formation.)

An agent enters a world by entering a room. Once
in an entry room, an agent may move to any other
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room to which that room is hyperlinked. Directly
moving to internal rooms (behind an entry room) is
not allowed; agents can only follow hyperlinks. Ex-
cept for following hyperlinks, a mobile agent may
also move to a different host. However, our frame-
work also allows for remote access to rooms, so that
immobile (static) agents may also use our system.

All mechansims for moving to rooms, obtain-
ing (binary) interfaces to objects or for inter-agent
communication, as well as security mechanisms are
hidden inside the middleware layer of our system.
Agents can in principle be written in any program-
ming language. A world designer should provide sup-
port for this language in the middleware.

2 Examples

As an example of the Mansion paradigm, consider
a world designed for buying and selling raw materials
for industry. An entry room is set up where interested
parties can obtain information about the products for
sale. Hyperlinks from this room lead to rooms for
specific products, such as ore, water, and electricity.

Agents for users that want to buy or sell certain
products can be launched into the system and go to an
appropriate room where they can meet other agents
that offer or want products.

An offer may be negotiated, after which an agent
can either return to its owner with the current offer,
or communicate with other agents to try to negoti-
ate a package deal (e.g., optimizing for the cheap-
est combination of ore, water, and electricity). Some
global information such as up-to-date currency ex-
change rates, freight rates, etc., may be available to
all agents through the attic.

In short, the Mansion paradigm replaces the World
Wide Web paradigm of a collection of hyperlinked
documents that users can inspect with that of a collec-
tion of hyperlinked rooms in which agents can meet
to do business.
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An increasing number of distributed applications aim to that streamlets can be dynamically deployed and efficiently
provide services to users by interacting with a correspond- executed across heterogeneous environments. Application
ingly growing set of data-intensive network services. Such evolution and/or a relatively coarse form of adaptation is
applications, as well as the services they utilize, are gen-obtained by the attachment/detachment of streamlets that
erally expected to handle dynamically varying demands on operate on and change data streams’ properties. Finer grain
resources and to run in large, heterogeneous, and dynami@daptation involves tuning an individual streamlet’s behav-
environments, where the availability of resources cannot beior through parameters remotely updated via a push-type
guaranteed priori — all of this while providing acceptable  operation, and by re-deploying streamlets to best leverage
levels of performance. the available resources over the datapath.

To support such requirements, we believe that new ser- Active Streams are realized by mapping streamlets and
vices need to be customizable, applications need to be dy-Streams onto the resources of the underlying distributed
namically extensible, and both applications and services platform, seen as a collection of loosely coupled, intercon-
need to be able to adapt to variations in resource availabil-nected computational units. These units make themselves
ity and demand. A comprehensive approach to building new available by running as Active Streams Nodes (ASNs),
distributed applications can facilitate this by considering the where each ASN provides a well-defined environment for
contents of the information flowing across the application Streamlet execution. Active Streams applications rely on
and its services and by adopting a component-based modeft push-based customizable resource monitoring service
to application/service programming. It should provide for (ARMS) to collect resource information and trigger adap-
dynamic adaptation at multiple levels and points in the un- tation. Through ARMS, applications can select a subset of
derlying platform; and, since the mapping of components the data made available by distributed monitors. These data
to resources in dynamic environment is too complicated, Streams can be integrated to produce application-specific
it should relieve programmers of this task. We propose Views of system state and decide on possible adaptations.
Active Streams [1], a middleware approach and its asso- As is common in distributed systems, a directory service
ciated framework for building distributed applications and provides the “glue” that holds the Active Streams frame-

services that exhibit these characteristics. work together. The dynamic nature of most relevant objects
With Active Streams, distributed systems are modeled asin Active Streams makes the passive client interfaces of
being composed applications, services, anddata streams. classical directory services inappropriate. Thus, the Active

Services define collections of operations that servers canStreéams framework includesproactive directory service
perform on behalf of their clients. Data streams are se- with a publish/subscribe interface through which clients can
quences of self-describing application data units flowing register for notification on changes to objects currently of
between applications’ components and services. They ardnterest to them. The levels of detail and granularity of these
madeactive by attaching application- or service-specific notifications can be dynamically tuned by the clients.
location-independent functional units, callstteamlets. The implementation of Active Streams is mostly com-
Streamlets can be obtained from a number of locations; Pléte, and we plan on making it available by December
they can be downloaded from clients or retrieved from a 2001.

streamlet repository. The Active Streams C-based frame-

work employs dynamic code generation in order to insure References

*Active Streams is part of the Infosphere Project, partially supported by [1] F. E. Bustamante and K. Schwan. Active Streams: An ap-

DARPA/ITO under the Information Technology Expeditions, Ubiquitous proach to adaptive distributed systems. Tech. report, College
Computing, Quorum, and PCES programs, by NSF/CISE under the CCR ~ Of Computing, Georgia Institute of Technology, Atlanta, GA,
and ANIR programs, and by Intel. June 1999.
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We propose a system architecture and a computing
model, based offmart Messages (SMs) , for computation
and communication in large networks of embedded sys-
tems. In this model, communication is realized by send-
ing SMs in the network. These messages are comprised of
code, which is executed at each hop in the path of the mes-
sage, and data which the message carries in the network.
The execution at each hop determines the next hop in the
message’s path — SMs are responsible for their own routing.

The nodes that support the execution of SMs are termed Figure 1. Smart Message Model Example
Cooperative Nodes (CNs). The primary logical components
of these nodes are a virtual machine that provides a hard-delete, read or write tags, either on the CN or in its own data
ware abstraction layer for executing SMs, arithg Space component, subject to access restrictions and tag lifetimes.
that provides a structured memory region consisting of tags AN SM may also create and send new SMs, building them
persistent across the execution of SMs. Tags are used t®ut of its constituent code and data components, or it may
store data that can be used for content-based addressinghigrate itself to another CN.
routing, data sharing, or synchronization between SMs. An  The Smart Message architecture is meant to provide a
SM consists of code and data components. Upon admis-pervasive computing infrastructure for networks of embed-
sion at a CN, a task is created out of these components andled systems, such as sensor networks and computational
executed on the virtual machine. fabrics —woven tetiles with embedded computing ele-
ments. These networks will be inherently heterogeneous

Figure lillustrates a network consisting of three types of in their hardware architectur nd inter-networking tech
nodes, represented with squares, circles and triangles. Thd! their hardware architectureés and inter-networking tech-
ologies, since each node will typically be specialized for

nodes represented by squares are nodes of interest to an S . o .
which is launched from the circular node in the lower left performing a specific function, hence the need for a hard-

of Figure 1. The goal of the application implemented by ware abstraction layer such as a virtual machine, and will

this SM is to visit the five square nodes and to propagate a?e VOIT:!GJ dutt;to nOdf mOIE'“tty an(: node fa}nLtl)rel.tApkpllca-t
local data item of each node to the next one visited in order, 'O"S Utllizing these networks to periorm a global task mus

The SM may use other nodes in the network, the circular be willing to accept partial results, or executions that satisfy

and triangular nodes, as intermediates hops as it navigateél specificQuality of Result (Q.OR)' . . )
through the network. Issues to be addressed in the architecture include: eval-

. . , . uating tradeoffs between flexibility and overhead of migra-
' Admission at a CN is restricted based on tag availabil- tion, defining a QoR for a partially successful execution,
ity, and resource demands of an SM. Tags can be used foryng CN security. A prototype implementation using Blue-
synchronization between SMs executing on a CN : an SM y40th technology for networking, and Sun Microsystem’s

may be de-scheduled on a read of a tag, pending a writeiy/\ for the virtual machine is under development. More
on that tag by another SM, or the expiration of the tag in jhformation can be found at:

question. CNs employ a simple scheduling policy to accept
and run multiple SMs. Once executing, an SM may create,

Before execution of SM in network After execution of SM in network

http://discolab.rutgers.edu/projects/sm.htm.
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A hot-swappable component is one that can be replaced
with a new or different implementation while the system
is running and actively using the component. For exam-
ple, a component of a TCP/IP protocol stack, when hot-
swappable, can be replaced—perhaps to handle new denial-
of-service attacks or improve performance—without dis-
turbing existing network connections. The capability to
swap components offers a number of potential advantages
such as: online upgrades for high availability systems, im-
proved performance due to dynamic adaptability and sim-
plified software structures by allowing distinct policy and
implementation options to be implemented in separate com-
ponents (rather than as a single monolithic component) and
dynamically swapped as needed.

In order to hot-swap a component, it is necessary to
(¢) instantiate a replacement componei),éstablish a qui-

(v) deallocate the old component. In doing so, three fun-
damental problems need to be addressed:

e The first, and most challenging problem, is to estab-
lish a quiescent state when it is safe to transfer state
and swap components. The swap can only be done
when the component state is not currently being ac-
cessed by any thread in the system. Perhaps the most
straightforward way to achieve a quiescent state would
be to require all clients of the component to acquire
a reader-writer lock in read mode before any call to
the component. Acquiring this external lock in write
mode would thus establish that the component is safe

Although the state could be converted to some canon-
ical, serialized form, one would like to preserve as
much context as possible during the switch, and handle
the transfer efficiently in the face of components with
potentially megabytes of state accessed across dozens
of processors.

The final problem is swapping all of the references
held by client components so that the references now
refer to the new one. In a system built around a sin-
gle, fully typed language, like Java, this could be done
using the same infrastructure as used by garbage col-
lection systems. However, this would be prohibitively
expensive for a single component switch, and would be
overly restrictive in terms of systems language choice.

We have designed and implemented a mechanism for
escent state in which the component is temporarily idle, supporting hot-swappable components that avoids the prob-
(i44) transfer state from the old component to the new com- lems alluded to above. More specifically, our design has the
ponent, {v) swap the new component for the old, and following characteristics:

zero performance overhead for components that will
not be swapped

e zero impact on performance when a component is not

being swapped

e complete transparency to client components

minimal code impact on components that wish to be
swappable

zero impact on other components and the system as a
whole during the swapping operation

good performance and scalability; that is, the swapping
operation itself should incur low overhead and scale
well on multiprocessor systems.

for swapping. However, this would add overhead in Our mechanism has been implemented in the context of

the common case, and cause locality problems in the
case of multiprocessors.

the K42 operating system (www.research.ibm.com/K42),in
which components in the operating system and in applica-

e The second problem is transferring state from the old tions that run on K42 have been made hot-swappable. Our
component to the new one, both safely and efficiently. design and implementation, preliminary performance num-

tUniversity of Toronto, Dept of Computer Science
fIBM T. J. Watson Research Center

bers with respect to swapping overhead, and some of the
performance benefits such a facility can provide are pre-

§University of Toronto, Dept of Electrical and Computer Engineering  S€Nted in www.research.ibm.com/K42/full-hotos-01.ps.
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1 Introduction dynamically define reconfiguration policies to process adaptations,
The VVM (virtual virtual machiné) is a systematic approach while preserving the cache contents and delaying request for a few

to adaptability and reconfigurability for portable, object-oriented #S: -
applications based on bytecoded languages such as Java and !N order to evaluate the flexibility of our cache we made both
Smalltalk [FP+00]. quantit_ative_ and qualitative_ r_neasureménfEiming the principgl
The main objectives of the VVM are (i) to allow adaptation of opera_tlons in C/NN was trivial because of the use of the hlghly-
languageand system according to a particular application domain; reflexive VVM2 at the Iovyest level. We were able to “wrap” timers
(ii) to provide extensibility by allowing a “live” execution environ- ~ around the functions without even stopping the cache. Results
ment to evolve according to new protocols or language standards@'® Very promising : handling a hit (the main bottleneck for the
and (iii) to provide a common substrate on which to achieve true cache itself) takes less than 260 switching from one policy to
interoperability between different languages [FPR98,Fol00]. another takes less than/ at least defining a new policy and re-
On the way to implement a VVM we already implemented evaluating 5,000_docur_m_apts takes acouplg of tens of ms. It seems
VVML1 (and it's application to active networks [KF00]) and VVM2 clear that dynamlc fI_eX|b|I|ty does not _penahse the performance of
(and it's application to flexible web cache and distributed obser- the cache. Itis also important to consider the ease of use of recon-
vation). The VVM2 is a highly-flexible language kernel which flgura_ltlon in our cache : typlcal rt_aplacement gnd reconfiguratoin
consists of a minimal, complete programming language in which func’quns are short and quickly written (a few minutes for a system
the most important goal is to maximise the amount of reflective administrator).
access and intercession that are possible—at the lowest possiblg ~qnclusions

“software level”. .
This paper presented and evaluated shortly, due to lack of

2 Our architecture space, the benefits of using a highly-flexible language kernel, the
The VWM2 contains adynamic compiler front-end/back-end, ~VVM2, to solve a specific computer science problem : flexible
which converts input into optimized native code and an object- WP caching. The resulting web cache, C/NN, demonstrates that
oriented environment (with automatic, transparent memory man-éconfigurability can be simple, dynamand have good perfor-

agement) used internally by the VVM2 (this work is under consid- Mance.

eration for publication). We finished to incorporate Pandora[PM00a] into VVM2. Pan-
dora is a system for dynamic evaluation of the performance of web
3 Example application: flexible web caches cache configurations: this opens the way for “self-adapting” web

F|ex|b|||ty in Web Caches come from the ab|||ty to Configure a CaCheS, were the pOliCieS are Constantly re-evaluated and modified

large number of parametérthat influence the behaviour of the asand when needed.
cache (protocols, cache size, and so on). What's more, som of
. ) erences

of these parameters cannot be determined before deploying th?FoIOO] B. Folliot, The Virtual Virtual Machine Project, Invited talk at the
cache, like: user behaviour, change of protocol or the “hot-spots- : Lo '

! ! L SBAC’2000, Brasil, October 2000.
of-the-week” [Sel96]. However, reconfiguring current web caches [FPRO8] B. Folliot, 1. Pi d F. Ricardh D cally Corf
involves halting the cache to install the new policy and then restart- - Folliot, 1. Plumarta and F. Ricardh Dynamically Config-
ing it, therefore providing only “cold” flexibility. Our flexible ;‘meig"g‘g“a”g“age Execution Platform SIGOPS European Work-
cache architecture is built directly over the VVM2 and so provides (FP+00] B. Folliot, 1. Pi . L Seinturier. C. Bail ¢ and G
“ ” [P . fal + . Folliot, I. Plumarta, L. Seinturier, . balllarguet an .
warm” replacement of policies, without compromising the ease ; ) :

" . . Kh ,Highly Configurable Operat stems: The VVM A h,
of writing new protocols found in existing web caches. Other ad- oury, Highly Configurable Operating S © hproac

. o . In ECOOP’2000 Workshop on Object Orientation and Operating Sys-
vantages include the ability to tune the web cache on-line, to add  tems, cannes, France, June 2000.

arbltrary new functlonalllty (observat}on protocols, performapce [KFOO] C. Khoury and B. FolliotEnvironnement de programmation acti
evaluation, protocol tracing, debugging, and so on) at any time, pour la mobilit, Proceedings of Jeunes Chercheurs en Systemes, GDR
and to remove them when they are no longer needed. ARP et ASF, Besanon, France, June 2000.

Qur approach S‘_JPPO“S bo_th initial Conf'gyrat'on' bgsed on sim- [PM0Oa] S. Patarin and M. MakpangoBandora: a Flexible Network
ulation, and dynamic adaptation of the configuration in response = vionitoring Platform Proceedings of the USENIX 2000 Annual Tech-

to observed changes in real traffic as they happen. nical Conference, San Diego, June 2000.
This approach is highly reflexive because the dynamic Manage-seio6] Margo SeltzerThe World Wide Web: Issues and Challenges |,
ment of the cache is expressed in #aee language that is used Presented at IBM Almaden, July 1996.

to lmple.n.]ent the Ca(?he'_ The resulj[lng (.:aChe’ Ca".e.d CNban . [ZMF+98] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and
be modified at any time: new functionality and policies can be in- ™y, j5c0nsonAdaptive Web Caching: towards a new global caching

troduced and activated during execution. It is therefore possible to  architecture, Computer Networks and ISDN Systems, 30(22-23):2169-
2177, November 1998

1vVM is both a concept, an implementation and the project’s name.
2See the configuration file for Squid...
3The Cache with No Name. 40n a G3 233MHz, running LinuxPPC 2000
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Position summary: Hinting for goodness’ sake

David Petrou, Dushyanth Narayanan, Gregory R. Ganger, Garth A. Gibson, and ElizabethShriver
Carnegie Mellon University antBell Labs, Lucent Technologies

Modern operating systems and adaptive applications offerrelationship between parameter values and resource usage.
an overwhelming number of parameters affecting applica- We create this mapping offline with controlled experiments
tion latency, throughput, image resolution, audio quality, to explore the parameter space, and update it online based
and so on. We are designing a system to automatically tuneon dynamic behavior.

resource allocation and application parameters at runtime, Given the resource usage and allocation of an applica-
with the aim of maximizing user happinessgmodness. tion, we predict its performance using simple models. E.g.,

Consider a 3-D graphics application that operates at vari- & Processor-bound computation requiring 10°cycles and
able resolution, trading output fidelity for processor time. allocated 2< 10°cycles will have a latency of. Bsec. More
Simultaneously, a data mining application adapts to net- complex applications will use multiple resources, perhaps
work and processor load by migrating computation between concurrently. We will use machine learning techniques to
the client and storage node. We must allocate resources bespecialize our models to particular applications.
tween these applications and select their adaptive parame- Finally, given some resource allocation, an application
ters to meet the user's overall goals. Since the user lacks thénust pick adaptive parameter values that maximize its
time and expertise to translate his preferences into paramegoodness. Aroptimizer searches the parameter space to
ter values, we would like the system to do this. find the optimal values. By embedding the optimizer in the

Existing systems lack the right abstractions for applica- goodness h'nt’ th,e opgratlng system is also _made aware of
tions to expose information for automated parameter tuning. what the app_l|c_at|on V\.”” _choose_. The operating system_ It
Goodness hints are the solution to this problem. Applica- self uses a s.|m.|lar optimizer to find the resource allocation
tions use these hints to tell the operating system how re-that will maximize goadness across appllcatlons.
source allocations will affect their goodness (utility). E.g., a We are building a prototype to validate these concepts.
video player might have no goodness below some allocation Currently, the prototype supports two resources: processor

threshold and maximum goodness above another. Goodnes§nd netv_vork. To map adaptive parameters to resource usage
hints are used by the operating system to make resource gl Ve use linear least squares regression. To search through the

location decisions and by applications to tune their adaptive space of apphcanpn par_ameters a”‘?' resource aII_ocat!ons,
parameters. Our contribution is a decomposition of good- we use a stochastic version of Ppwell S CO”JL!gat,e direction-
ness hints into manageable and independent pieces and get mgthod. We_ have t\_/vo very different applications: a 3-D
methodology to automatically generate them. graphics radiosity application [Narayanan, et al., WMCSA
e . 2000], and an Abacus data mining application [Amiri, et al.,
One half of a goodness hint isgaiality-goodness map-

. . o = . USENIX 2000].
ping which tells us how application qualities translate into Our initial results are encouraging. Our system gener-
user happiness. Qualities are measures of performance (Iaétes accurate resource-quality mappings for both applica-
tency, throughput) or of fidelity (resolution, accuracy). We tions. (The quality-goodness half was constructed by hand.)
hope to leverage user studies from the human-computer in-

¢ i it t te th ) Th In simulation, our resource allocator is always able to maxi-
eraction community to generate these mappings. 1N€ SyS+yj;q gyerg)| goodness, which is a weighted sum of applica-
tem will also use user feedback to dynamically tailor the

. o tion goodnesses. However, the overhead of the search algo-
mappings to specific users. rithm is prohibitive, and we are investigating alternatives.

A resource-quality mapping forms the other half of a This work raises several research questions: How can we
goodness hint; our current research focusses on this halfiz|k about resource usage and allocation in a platform inde-
This mapping describes the relationship between an appli-pendent way? What is the best way to combine individual
cation’s resource allocation and its qualities. To do this, we application goodnesses into user happiness? What kind of
first map adaptive parameters to resource usage by monitoryn|ine feedback can we expect from a typical user, and how

ing the application, logging its resource usage for various can we use it to dynamically refine goodness hints?
parameter values, and using machine learning to find the
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Position Summary: Censorship Resistant Publishing Through
Document Entanglements

Marc Waldman and David Magies
Computer Science Department, NYU
{waldman, dm}ecs.nyu.edu

Today, most documents available over the the Internet retain these blocks, some of which belong to other collec-
are easy to censor. Each document can usually be tracedions. Notice that this implies that each block may belong
back to a specific host or even the individual responsible to several collections and that each block can be used to
for publishing the document. Someone wishing to censor a reassemble more than one collection.
document can use the courts, threats, or some other means Tangler’s local caching policy causes the replication of
to force the host administrator or author to delete a partic- these dependent blocks which, at some point in the future,
ular file. Certainly, there are some high profile documents may be reinjected into the distributed file system. This
that are widely mirrored across the internet, however this is caching policy and reinjection mechanism helps make the
not an option for most published documents. published collection difficult to censor.

Clearly, a censorship resistant system must replicate a Tangler consists of a dynamic group of file servers that
published document across many hosts. However, no stancan publish documents to a distributed file system. Each file
dard naming convention exists that allows one to easily server donates local disk space to the system. Servers can
specify several hosts via a single name. Even if such ajoin or leave the system at will. The participating servers
naming convention existed it merely makes the censor’s job collectively form a MIX based network that is used for un-
somewhat harder — the censor still knows exactly which traceable communication among the servers.
hosts contain the content and therefore which hosts to at- Our block entanglement algorithm is based on
tack. Shamir’s secret sharing scheme. In this scheme a secret,

Currently, there is little incentive or justification for a s, can be split inton pieces, called shares, such that any
server administrator to store documents that he is beingk < n of them can be combined to fors In our cases is
pressured into deleting. We propose a system, named Tanthe collection block we wish tentangle.
gler, that we believe provides some incentive to retain such  Theentangle algorithm takes three parameters, a collec-
documents and solves the document naming problem. tion blockb and two blocks from previously publish collec-

Tangler is a censorship resistant distributed file systemtions. Call these two blocks, andp- respectively. These
that employs a unique document storage mechanism. Atwo blocks will becomeentangled with b. Block b will
group of documents, called a collection, can be published therefore depend gn andp,. Each block has the same for-
together under a single name. This collection is named by mat; it essentially consists of anandy value. The points
a public key,K. Only the individual possessing’s cor- implied by p;, p» and (0,b) uniquely define a quadratic
responding private key can publish a collection under the equation. This quadratic is then evaluated at two random
nameK . By naming the published collections in a host and z values. This produces two new blocks which we will call
content independent manner we allow the publisher to se-¢; andgs. Blockspy, p2, ¢1 andgs are cached and copied to
curly update the collection at some point in the future. This the distributed file system. Notice that we have not cached
naming convention also allows a collection to include point- or copied blockb. Block b can be reconstructed from any
ers, called soft links, to other collections. These collections three of the four stored blocks, namely, p», ¢1 or ¢-.
may be owned and updated by other individuals. Theentanglement process has defined a (3,4) threshold

In order to publish a collectior(’, one runs a program  secret sharing scheme where 3 of any 4 shares can recover
that fetches random blocks of previously published collec- the secret (block). Our publish algorithm is essentially
tions andentangles these blocks with those @f'. Once Shamir’s secret sharing scheme with a slight twist. Rather
entangled, collectionC is dependent on the randomly cho- than randomly selecting the coefficiants of a quadratic equa-
sen blocks. Without these blocks, collectiGhcannot be tion we create the quadratic equation from blocks of pub-
reassembled. Therefore the publisher has some incentive tdished collections and the block we wish to publish.

157



Position Summary: Architectures For Adaptation Systems

Eyal de Lard, Dan S. Wallach, and Willy Zwaenepoél
Departments of Electrical and Computer Engineering™ andComputer Science*
Rice University

{delara,dwallach,willy@cs.rice.edu

1 Introduction 2 Experience

We observe that many “component-based” applications
Modern systems need support for adaptation, typically already support interfaces for external programs to manip-
responding to changes in system resources such as availy|ate their components as the application is running. Tak-
able network bandwidth. If an adaptation System is imple- |ng advantage of thisy we developed a system called Pup_
mented strictly at the system layer, data adaptations can bgyeteer [1], as it “pulls the strings” of an application.
added within the network or file system. This makes the = puyppeteer currently supports Microsoft Word, Power-
adaptation system portable across applications, but sacripoint, and Internet Explorer, as well as their StarOffice
fices opportunities to change an application’s behavior. It's equivalents. In terms of implementation complexity, Pup-
not possible, for example, to first return a low-quality ver- peteer has roughly 8000 lines of Java code shared across
sion of an image and later upgrade it should excess networkapplications. The Internet Explorer drivers are 2700 lines
capacity be available. On the flip side, the adaptation logic and the PowerPoint drivers are 1800 lines of code.
could be built into each and every application, with the sys-  our current system supports adaptation for read-only
tem providing information to the applications in order to fijles. We achieve significant improvements in user-

help them adapt their behavior. This becomes impractical perceived |atency at a modest cost in System overhead.
because many applications will never be written to perform

adaptation, and an application writer may not be able to 3  Future Work
foresee all possible adaptations that may be desirable.

We argue that adaptation systems should be centralized, Building on the base Puppeteer system, we are working
where they can make global observations about system uson a number of extensions. We are investigating a “thin
age and resource availability. We further argue that applica- client” version of Puppeteer to minimize the client mem-
tions shouldnot be written to perform adaptation. Instead, ory footprint — an important consideration on PDAs. We
applications should support an interface where the adapta-are designing a special-purpose language to express adapta-
tion system can dynamically modify an application’s behav- tion policies at a high-level. We are investigating alternative

ior as it runs. network transmission protocols and hierarchical scheduling
How would such an interface work? Largely, we would of network transmissions to better reflect the priorities of
like applications to make visible theilocument object the adaptation policy. We are also working on extensions to

model (DOM) — the hierarchy of documents, containing Puppeteer to support writes, dealing with issues like cache
pages or slides, containing images or text, etc. Likewise, coherence and conflict resolution. So far, the Puppeteer ar-
we would like a standard way to know what portions of a chitecture has proven flexible enough to accommodate such
document are on the user’s screen. Finally, it's quite helpful a wide variety of extensions without sacrificing its portabil-
when the file formats are standardized, such that the systenity or core architecture.

can see and manipulate the components within a file.

In order to support adaptation while documents are being References
edited, we would like a standard way to learn which compo-
nents are “dirty” and to compute diffs between those dirty [1] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
components and their original contents. Likewise, it would ~ Component-based adaptation for mobile computingPrior

be helpful for applications to support conflict detection and ~ ceedings of the 3rd USENIX Symposium on Internet Technolo-
resolution between components. gies and Systems, San Francisco, California, Mar. 2001.
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Position Summary: Anypoint Communication Protocol

Ken Yocum, Jeff Chase, and Amin Vahdat
Department of Computer Science, Duke University
{grant, chase, vahdat}ecs.duke.edu

It is increasingly common to use redirecting intermedi- trol. However, ACP defines some protocol properties as
ary switches tovirtualize network service protocols. Re- end-to-edge rather thanend-to-end. A critical respect in
guest redirection enables an intermediary to represent a dywhich ACP is end-to-edge is that it does not define the de-
namic set of servers as a unified service to the client. Ser-livery order for requests routed to different servers, or for
vices virtualized in this way include HTTP (using L4-L7 responses returned from different servers. Ordering con-
switches), NFS, and block storage protocols. straints and server coordination are the responsibility of the

Virtualization using intermediaries is a powerful tech- Service protocol and its routing policy.
nique for building scalable cluster-based services while in-  An Anypoint intermediary orchestrates the movement of
sulating clients from the details of server structure. How- requests and responses at the transport layer. To this end,
ever, intermediaries are controversial and difficult to imple- ACP frames service protocol requests and responses at the
ment in part because transport protocols are not designedransportlayerina manner similar to SCTP. Transport-level
to support them. For example, intermediaries compromiseframing allows an Anypoint switch to identify frames from
the end-to-end guarantees of point-to-point transports suchthe network stream in a general way. The switch applies the
as TCP. Current service intermediaries are constrained toservice-specific routing policy to each inbound frame, and
either route requests at a connection granularity (L4-L7 merges outbound frames into a single stream to the client.
switches for HTTP), use weak transports such as UDP, or While ACP is fundamentally similar to other reliable
terminate connections at the intermediary. These limitationsInternet transports, a central design challenge is that ACP
compromise performance and generality. In particular, in- connection endpoint state and functions are distributed be-
dependent routing of requests is necessary for any contenttween the intermediary and the end server nodes. ACP is
based routing policy, but we know of no efficient interme- designed to enable fast, space-efficient protocol intermedi-
diary scheme that supports independent routing for multi- aries with minimal buffering. Acknowledgment generation,
ple requests arriving on the same transport connection. Thebuffering of unacknowledged frames, and retransmission
challenges are increasingly evident as designers attempt t@re the responsibility of the end nodes, thus reliable deliv-
build intermediaries for commercially important protocols €ry is guaranteed end-to-end rather than end-to-edge. The
such as HTTP 1.1 and iSCSI. Anypoint switch maintains a mapping between sequence

These difficulties motivate consideration of new trans- NUMber spaces seen by the client and end server nodes for
port protocols with more decentralized notions of what con- €aC¢h connection, for a bounded number of unacknowledged
stitutes a connection “endpoint”. We are developing such frames_. The switch a_ls_o coorqllnates congestion stqte across
a transport called the Anypoint Communication Protocol € active set of participants in each ACP connection. The
(ACP). ACP clients establish connections to abstract ser-CONgestion scheme assumes that the bottleneck transit link

is between the switch and the client, or that the ACP stream

vices, represented at the network edge by Anypointinterme- ;
diaries. The intermediary is an intelligent network switch May be throttled to the bandwidth to the slowest end server

that acts as an extension of the service: it encapsulateS€!ected by the routing policy. ,

a service-specific policy for distributing requests among 1 he Anypoint abstraction and ACP protocol enable vir-
servers in thective set for each service. The switch routes tualization using intermediaries for a general class of wide-
incoming requests on each ACP connection to any active2'¢@ network services based on request/response communi-

server at the discretion of the service routing policy, hence cation over persistent transport connections. Potential ap-
the name *Anypoint”. plications include scalable IP-based network storage proto-

The ACP transportis similar to SCTP and TCP in that it cols and next-generation Web services.
provides reliable, sequenced delivery with congestion con-

159



Position Summary: Secure OS Extensibility Needn't Cost an Arm and aLeg

Antony Edwards and Gernot Heiser

University of NSW, Sydney 2052, Australia
{antonye,gerngt@cse.unsw.edu.au

Abstract ate protection model, it also makes it easy to expose system
resources, to make them accessible to extensions.
This position paper makes the claim that secure exten- The security of the extension model is ensured by a pro-

sibility of operating systems is not only desirable but also tection system that combines discretionary access control
achievable. We claim that OS extensibility should be done (via password capabilities), with mandatory access con-

at user-level to avoid the security problemsinherent in other trol. The former supportkeast privilege while the latter is
approaches. We furthermore claim (backed up by some ini- used to enforce system-wide security policies. These secu-
tial results) that user-level extensibility is possible at a per- rity policies are defined by user-level security objects that
formance that is similar to in-kernel extensions. Finally, are themselves extensions. Both aspects of the protection
user-level extensions allow the use of modern software en- model are used to restrict the data the extensions can ac-
gineering techniques. cess, as well as who can access the extensions. Mandatory

security supports the confinement of extensions, to prevent
Extensibility is a way to build operating systems that are them from leaking data, even between different clients in-
highly adaptable to specific application domains. This al- voking the same extension.
lows, for example, the use of subsystems that are highly
tuned to a particular usage patterns, and thus should be abl
to outperform more generic systems.
In the past, user-level extensibility in systems like Mach

and Chorus has qud to poor performance. Thls.has. M9~ The table compares invocation costs (microseconds) var-
ger.ed apprpaches like Ioadaple kernell modules in Linux, ious extensible architectures. These are to be taken with
Wh'c.h require complete _trust n exten_smns, or secure ex- grain of salt, as they have been measured on different
te:'nS|bIe §ystems like Spm or Vino, Wh'Ch use trusted COM- Kardware and normalised according to SPECint-95 ratings.
pilers or in-kernel protection domains to achieve security. However, these results clearly show that Mungi's perfor-

We believe that secure extensibility is possible, with good mance is, superior to existing component architectures, and
performance, at user level. at least equivalent to existing extensible operating systems.

We think that extensibility will only work if they are se- ¢ is heing achieved while providing full protection, and
cure, minimal restrictions are imposed, performance is not .kt relying on type-safe languages.

degraded, and modern software engineering techniques are =, \ore information see [,
supported.

We have developed an extension system basemion
ponents [2] for our Mungi single-address-space operating References
system. The component model provides interfaces based
on CORBA, and supports modularisation and reuse to make [1] A. Edwards_a_n_d G. Heise_r. A component architecture for sys-
is suitable for building large systems. It supports dynamic €M extensibility. Technical Report UNSW-CSE-TR-0103,
binding of extensions, and independent customisation (dif- School Comp. Sci. & Engin., University NSW, Sydney 2052,

ferent users can invoke different, even mutually incompati- Australia, Mar 2001. URLItp:/ftp.cse.unsw.edu.au/pub/
. ! y P doc/papers/UNSW/0103.pdf.
ble extensions).

[2] C. Szyperski.Component Software: Beyond Object-Oriented
The single address space helps to achieve performance  programming. Addison-Wesley/ACM Press, Essex, England,

goals, as it minimises the payload sizes and the amount of  1997.

marshaling required for component invocations (data is usu-

ally passed by reference). In combination with an appropri-

" Mungi | Spin | Vino | COM | omniORB | ORBacus
100 | 101 | 885 | 1993 768 9319
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Position Summary: The Lana Approach to Wireless Computing

Chrislain Razafimahefa  Cian'Bryce Michel Pawlak
Object Systems Group — University of Geneva
Switzerland

Wireless communication is revolutionizing computer  umbrella program which is moved. Method calls between
systems. On the one hand, long-distance technologies likgprograms are asynchronous; thus, a caller is never blocked
GSM, UMTS, or satellite facilitate access to existing infor- awaiting a reply that might never come. Each method call
mation services. It is expected that wireless Internet accesgenerates a uniquey object that is used by a program to
in Europe will exceed fixed line access by the year 2005 [4]. locate the reply message or exception if ever the program
Further, short-distance wireless (SDW), e.g., Bluetooth or momentarily leaves the network. Return messages — or se-
wireless LAN, permit ad hoc aspontaneous systems com-  curity or mobility exceptions provoked by the call — have
posed of people carrying PDAs. These networks can offerthis key value bound to them. Any program that is dele-
new kinds of services, e.g., micro-payments, localization of gated the key by the caller may therefore service the reply
offers at a market place. The hardware infrastructure for message. Thus a node may leave a network yet safely dele-
these systems exists, and it is expected that there might bgate its pending jobs to other nodes.

700 billion Bluetooth enabled devices by the year 2004 [4].  Concerning coordination, each environment contains a

There are three major issues that SDW application pro-Linda like message board [3] that is used by devices that
grammers have to be aware offisconnected operation, meet to exchange an initial set of program or object refer-
security and coordination. The composition of SDW net-  ences. The board is also used to store orphan communica-
works can be very dynamic, so disconnections have to betion replies (if the caller node disappears during a call).
planned for. This requires mechanisms that enable a node Concerning security, the language prohibits a program
application to continue running despite changes in its net- from gaining access to objects stored outside of its scope.
work configuration. Coordination covers activities such as Keys are another security mechanism. As seen, keys are
service announcementand lookup in a network. Thus, whenused to identity method returns; this also prevents a rogue
a node joins a network, its programs can locate other pro-program from intercepting replies destined at other pro-
grams and services. Security is required so that sensitivegrams. Entries in a message board are also locked with

exchanges between two devices are not attacked. keys_. An entry can _only be read if the requesting program
The goal of the_ana project is to develop system sup-  furnishes the matching key.
port for SDW application's We chose danguage-based The language approach to wireless is useful because the

approach: mechanisms like scoping and typing are used tcapplication programmer has control over the security and

enforce system properties. The Lana language is stronglyhoarding policies. For hoarding, mechanisms implemented

influenced by Java [1] — it contains interfaces, packages,in an OS kernel can be inefficient since the lack of applica-

Sing|e inheritance etc. — though is designed with Support tion behavior information can lead to the wrong data being

for disconnected operation, coordination and security. hoarded [2]. Security also requires application knowledge
Lana supports concurreptograms. The language se- SO that meaningful security constraints can be enforced.

mantics states that all memory locations transitively reach-

able from a program object must be moved along with the References

program. Further, the set of programs is organized into a

hierarchy. When a program moves between nodes then al[1] K. Arnold and J. GoslingThe Java Programming Language.

of its sibling programs are moved along with it. This fea- The Java Series. Addison-Wesley, Reading, MA, 1998.

ture is used by applications to specify hoarding policies: all [2] B.D.N.etal. Agile application-aware adaptation for mobility.

; In ACM SOSP, pages 276-287, Oct. 1997.
related programs and objects are grouped under a Commorfg] D. Gelernter. pGgenerative Communication in LindsAhCM

" - - Trans. Prog. Lang. Syst., 7(1), Jan. 1985.
{razafima,bryce pawlgi@cui.unige.ch [4] The-Wireless-World-Research-Forum. The Book Of Visions.

1This work is supported by the Swiss National Science Foundation ;
RFC draft, The Wireless World Research Forum., Jan. 2001.
(FNRS 2100-061405.00). ’ ’
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Position Summary: A Backup Appliance Composed of High-capacity Disk Drives

Kimberly Keeton and Eric Anderson
Hewlett-Packard Labs Storage Systems Program
{kkeeton,anderse}@hpl.hp.com

Disk drives are now available with capacity and price cleaned with special cartridges and periodically serviced
per capacity comparable to nearline tape systems. Becausdo ensure that head drift doesn’t render a tape unreadable.
disks have superior performance, density and maintain- In contrast, disk drives are enclosed media, which don’t
ability characteristics, it seems likely that they will soon require cleaning and don’t suffer head drift problems.
overtake tapes as the backup medium of choice. In this Lifetime. Empirical evidence suggests that disks could
position summary, we outline the potential advantages of a have a longer shelf life than tapes, implying that disks may
backup system composed of high-capacity disk drives and ultimately be better archival media. System administration
describe what implications such a system would have for experts advise re-recording tape data every three years.
backup software. Disks come with warranties for three to five years, and

In the past, magnetic tape had higher capacity and disk experts believe that lifetimes over ten years are possi-
lower price/GB than magnetic disk; however, technology ble for backup-optimized disks.
trends are reversing this relationship. Tape’s capacity lead The characteristics of disk-based backup have impli-
over magnetic disks has shrunk over the last 15 years, andcations for the creation of backup software:
disk capacity is how on par with tape capacity. Further- Design for reliability. Backup software protects data
more, disk media price is within a factor of 3X of tape by maintaining a read-only copy that cannot be inadvert-
media price, and disks cost less per GB than tapes, onceently corrupted, and by providing an alternate, simpler
the tape drive and the tapes supported by the enclosure aresoftware path than a snapshotting file system. Further-
taken into account. Given these trends, it is time to rethink more, we can design the backup system to trade off reli-

tape’s role as the backup medium of choice. ability for performance, by using self- and peer-checking
Disks confer tremendous hardware-related benefits code, storing checksums with each data block and verify-
for a backup system: ing those checksums periodically and when the data is

Performance. Disks’ 5X faster sequential perfor- accessed, and pro-actively testing the system.
mance suggests that disks are better for creating and fully Design for sharability. A backup system that keeps a
restoring backup volumes, allowing easier verification and fraction of its disks online may be able to approximate the
more efficient data scrubbing. Furthermore, disk band- performance of an online snapshot using hierarchical stor-
width scales more cheaply, since each disk adds band-age management techniques, allowing greater simulta-
width, whereas only expensive tape drives add tape neous sharing, while still maintaining the data protection
bandwidth. Disks’ superior random access performance properties of a backup.
implies that disk-based backup will be better at partial res- Design for longevity. A final opportunity for backup
torations and at satisfying simultaneous restore requests. software is to automatically convert data formats com-
Density. Designing the appliance so that only a frac- monly used today into formats that will be easy to read
tion of the drives are simultaneously powered on reduces many years in the future, either automatically, or through
power and cooling requirements, allowing denser packing. user control.
Back-of-the envelope calculations indicate that a disk- Key challenges lie in designing backup software for
based backup appliance could provide roughly 2X more optimizing reliability and data integrity, scheduling the
capacity per unit volume than a tape-based system [1]. resources of the backup appliance, and developing APls
Support for legacy devices. Restoring data from tape  for giving users and applications more control over how
requires finding a matching tape drive, which can be diffi- backups are performed.
cult since tapes come in many formats. Disks include their
own read/write heads, eliminating the need to search for a[1] K. Keeton and E. Anderson. “A Backup Appliance Com-
separate drive to retrieve data. posed of High-capacity Disk Drives,” HP Laboratories SSP

P - . P Technical Memo HPL-SSP-2001-3, available from http://
Maintainability. Tape drives need to be periodically www.hpl.hp.comiresearchiitc/cslissp/papers/. P
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The Internet service infrastructure is a major energy con- power management (e.g., ACPI) to step some servers to
sumer, and its energy demands are growing rapidly. Forlow-power states. The servers may be reactivated from the
example, analysts project that 50 million square feet of datanetwork using Wake-On-LAN, in which network cards lis-
center capacity will come on line for third-party hosting ser- ten for special wake packets in their low-power state.
vices in the US by 2005. These facilities have typical power  Our premise is that servers are an appropriate granularity
densities of 100 watts per square foot for servers, storagefor power management in clusters. Although servers con-
switches, and cooling. These new centers could require 40sume less energy under light load, all servers we measured
TWh per year to run 24x7, costing $4B per year at $100 draw 60% or more of their peak power even when idle.
per MWh; price peaks of $500 per MWh are now common Simply “hibernating” idle servers provides adequate control
on the California spot market. Generating this electricity over on-power capacity in large clusters, and it is a simple
would release about 25M tons of né&W), annually. alternative to techniques (e.g., voltage scaling) that reduce

The central point of this position paper is that energy server power demand under light load. Since load shifts oc-
should be viewed as an important element of resource man-cur on the scale of hours, power transitions are not frequent
agement for Web sites, hosting centers, and other Internegenough to increase long-term hardware failure rates.
server clusters. In particular, we are developing a system Dynamic request redirection provides a mechanismto al-
to manage server resources so that cluster power demantbw changes to the set of active servers. Our system is based
scales with request throughput. This can yield significant on reconfigurable switches that route request traffic toward
energy savings because server clusters are sized for peathe active servers and away from inactive servers. This ca-
load, while traces show that traffic varies by factors of 3-6 pability extends the redirecting server switches (L4 or L7
or more through any day or week, with average load often switches) used in large-scale Web sites today. It enables the
less than 50% of peak. We propcsergy-conscious ser- system to concentrate request traffic on a subset of servers
vice provisioning, in which the system continuously mon- running at higher utilizations.
itors load and adaptively provisions server capacity. This Like other schemes for dynamic power management,
promises both economic and environmental benefits. energy-conscious service provisioning may trade off ser-

Server energy management adds a new dimension tovice quality for energy savings. Servers handle more re-
power-aware resource management [1], which views power quests per unit of energy at higher utilizations, but latency
as a first-class OS resource. Previous research on powelficreases as they approach saturation. This fundamental
management (surveyed in [1]) focuses on mobile systems,tradeoff leads to several important research challenges. For
which are battery-constrained. We apply similar concepts €xample, it motivates load estimation and feedback mech-
and goals to Internet server clusters. In this context, energy-anisms to dynamically assess the impact of resource allot-
conscious policies are motivated by cost and the need to tol-ments on service quality, and a richer framework for Service
erate supply disruptions or cooling failures. Levql Agreements (SLAS) to specify tradeoffs of service

Our approach emphasizes energy management in théqual!ty a'md cost. This would gnable data centers to d'egrade
network OS, which configures cluster components and co- Service intelligently when available energy is constrained.
ordinates their interactions. This complements and lever-
ages industry initiatives on power management for servers.References
Individual nodes export interfaces to monitor status and ini-
tiate power transitions; the resource manager uses theséll A. Vahdat, A. R. Lebeck, and C. S. Ellis. Every joule is pre-
mechanisms to estimate global service load and react to ob- ~ ¢ious: The case for revisiting operating system design for en-
served changes in load, energy supply, or energy cost. For ~ €r9 efficiency. InProceedings of the 9th ACM SIGOPS Eu-
example, under light load it is most efficient to use server ~ "°PeanWorkshop, September 2000.
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Emerging computing models and applications are con- A VS is a loadable kernel module that controls the
tinuously challenging the operating system scheduler. Mul- execution of a set of processes. A VS manages processes by
timedia applications require predictable performance and selecting a process for execution and determining its CPU
stringent timing guarantees. Embedded systems need taquantum. To permit the coexistence of multiple and inde-
minimize power consumption. Network routers demand pendent schedulers, VSs can be stacked, forming a tree hi-
isolated execution of active network programs. Meeting all erarchy as in [1]. A VS also provides anterface. This
these requirements requires specialized scheduling policiesinterface consists of a list of functions and events that can
which traditional scheduling infrastructures are unable to be used in the specification of an ASP. An ASP uses inter-
provide. face functions to exchange data with a VS. These functions

While itis clear the need for customized scheduling poli- provide a local view of the process state stored by a VS.
cies, there is a lack of tools that capture the design singula- An ASP is a Bossa program that specializes the behavior
rities of schedulers to ease the development process. Moreof a VS with respect to specific application needs. An ASP
over, writing schedulers requires deep OS knowledge andis organized into two parts: (i) a list of global variable
involves the development of low-level OS code, which fre- declarations and (ii) a collection of event handlers. Event
guently crosscuts multiple kernel mechanismg.(process handlers are executed either periodically or in response to
synchronization, file system and device driver operations, specific OS events.
system calls). To improve robustness, we perform static and dynamic

We present a framework for easing the development of verification on Bossa code. By construction, Bossa pro-
adaptable process scheduling infrastructures. This frame-grams are not allowed to have unbounded loops and recur-
work permits the development and installation of ba- sive functions. This constraint ensures that event handlers
sic scheduling policies, which can be specialized using terminate.
application-specific policies. We are currently implementing Bossa in Linux. To pro-

We base our approach on a Domain-Specific Languagevide flexibility while retaining acceptable performance, we
(DSL) named Bossa. A DSL is a high-level language that are implementing a JIT compiler that runs in the kernel. The
provides appropriate abstractions, which captures domainJIT compiler translates ASP code into machine code, which
expertise and eases program development. Implementings then executed in the kernel. We plan to assess our frame-
an OS using a DSL improves OS robustness because codevork by conducting experiments on scheduling infrastruc-
becomes more readable, maintainable and more amenabléures using real workloads. We will evaluate Bossa by
to verification of properties [2]. Our target is to specialize analyzing the behavior of soft real-time applications, such
process schedulers for an application with soft-real time re- as video players.
guirements that is able to specify adequate regulation strate-
gies for its CPU requirements. References

Our framework architecture relies on two basic compo-
nents_:_ 0 V!rt_ual Schedulers (VSS.) and (ii) Application- [1] B. Ford and S. Susarla. CPU Inheritance Scheduling. In
Specific Policies (ASPs). We consider a process to be the OSDI'96, pages 91-105, Oct. 1996.

minimal schedulable entity. Every process in the system is [2] G. Muller, C. Consel, R. Marlet, L. Barreto, F.dvllon, and

associated with a VS. During initialization, a process regis- L. Réveillere. Towards robust oses for appliances: A new ap-
ters with a VS either by joining an existing VS or by loading proach based on domain-specific language&adk SIGOPS
a new VS and joining it afterwards. European Workshop (EW2000), pages 19-24, Sept. 2000.
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Abstract 2 Human identification and confidence

“ Over the Internet, no one knowsyou'readog,” goesthe
joke. Yet, in most systems, a password submitted over the In-
ternet gives one the same access rights as one typed at the
physical console. e promote an alternate approach to au-
thentication, in which a system fuses observations about a
user into a probability (an authentication confidence) that
the user is who they claim to be. Relevant observationsin-
clude password correctness, physical location, activity pat-
terns, and biometric readings. Authentication confidences
refine current yes-or-no authentication decisions, allowing
systemsto cleanly provide partial access rights to authenti-
cated users whose i dentities are suspect.

Identity verification in most systems accepts any user
presenting a predetermined secret (e.g., password) or token
(e.g., ID card). The conventional wisdom is that, since they
are private, no additional information about the likelihood
of true identity is necessary or available. We disagree. For
example, a system’s confidence in the provided password
could certainly depend upon the location of its source. As
well, a gap of idle time between when the password was
provided and a session’s use mightindicate that the real user
has left their workstation and an intruder has taken the op-
portunity to gain access.

A controversial emerging authentication mechanism
compares measured features of the user to pre-recorded val-
o ] ues, allowing access if there is a match. Commonly, phys-
1 The Casefor Authentication Confidences ical features (e.g., face shape or fingerprint) are the focus

of such schemes, though researchers continue to look for

Access control decisions consist of two main steps: au- identifying patterns in user activity. ldentifying features
thentication of a principal’s digital identity and authoriza- are boiled down to numerical values called “biometrics” for
tion of the principal’s right to perform the desired action. comparison purposes. Biometric values are inherently var-
Well-established mechanisms exist for both. Unfortunately, ied, both because of changes in the feature itself and be-
authentication in current computer systems results in a bi- cause of changes in the measurement environment. For ex-
nary yes-or-no decision, building on the faulty assumption ample, facial biometrics can vary during a day due to acne
that an absolute verification of a principal’s identity can be appearance, facial hair growth, facial expressions, and am-
made. In reality, no perfect (and acceptable) mechanismbient light variations. Similar sets of issues exist for other
is known for digital verification of a user’s identity, and physical features. Therefore, the decision approach used is
the problem is even more difficult over a network. Despite to define a “closeness of match” metric and to set some cut-
this, authorization mechanisms accept the yes-or-no deci-off value — above the cut-off value, the system accepts the
sion fully, regardless of how borderline the corresponding identity, and below it, not.
authentication. The result is imperfect access control. Confidence in identity can be enhanced by combining

Using authentication confidences, the system can re-multiple mechanisms. The simplest approach is to apply the
member its confidence in each authenticated principal’'s mechanisms independently and then combine their resulting
identity. Authorization decisions can then explicitly con- confidences, but more powerful fusing is also possible. For
sider both the “authenticated” identity and the system’s con- example, merged lip reading and speech processing can be
fidence in that authentication. Explicit use of authentication better than either alone. Note that if the outcomes conflict,
confidences allows case-by-case decisions to be made for dhis will reduce confidence, but will do so appropriately.
given principal’s access to a set of objects. So, for example,

a system administrator might be able to check e-mail when Refer ences
logged in across the network, but not be able to modify sen-
sitive system configurations. This position paper discusses [1] Gregory R. GangerAuthentication Confidences. CMU-CS-01-123.

identity indicators, and our full white paper [1] completes Technical Report, Carnegie Mellon Univeristy School of Computer
the case Science, April 2001.
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1. Summary Integrated awareness support: The reconciliation
. . . among concurrent streams of activity is often performed
The increasing popularity of portable computers opens \yhen users are no longer connected to the system. In
the possibility of collaboration among multiple distributed poEORS, awareness information may be generated and
and disconnected users. In such environments, collaboraygcessed during the reconciliation phase — this approach
tion is often achieved through the concurrent modification akes it possible, for example, to provide shared feed-
of shared data. DOORS s a distributed object store 10 pack about data evolution and/or to explore off-system

support asynchronous collaboration in distributed systems communication infrastructures, such as the use of SMS
that may contain disconnected computers. In this sum- pegsages.

mary we focus on the mechanisms to support discon-
nected operation.

The DOORS architecture is composed by servers that
replicate objects using an epidemic propagation model.
Clients cache key objects to support disconnected opera-
tion. Users run applications to read and modify the shared
data (independently from other users) — a read any/write
any model of data access is used. Modifications are
propagated from clients to servers and among servers as

sub-objects

Application

Awareness

Concurrenc!
control

Attributes

sequences of operations — the system is log-based. Capsul J
Objects are structured according to an object frame- apsuie

work that decomposes object operation in several compo- %Sy—st%

nents (figure 1). Each component manages a different ) i

aspect of object execution. Each object represents a data- Figure 1. DOORS object framework.

type (e.g. a structured document) and it is composed by @  partial caching: As caching a full data object is some-
set of sub-objects. Each sub-object represents a subpart ofimes impossible for resource-poor mobile devices,
the data-type (e.g. sections). DOORS allows sub-objects to be cached independently.

A new object is created composing the set of sub-  Blind operation invocation: When some sub-objects
objects that store the type-specific data with the adequateare not present in the cache, a disconnected user is still

implementations of the other components. allowed to execute operations on them. A replacement
The following main characteristics are the base to sup- sub-object may be created to present the tentative result of
port disconnected operation in DOORS. these operations.
Multiple concurrency control/reconciliation strate- Adaptation: The adaptation component allows the use

gies: To support the different requirements posed by mul- of different strategies to adapt to variable network condi-
tiple data-types we rely on the flexibility provided by the tions — as a result, operations may be performed immedi-
DOORS object framework. The concurrency control ately on a server or on the local copy.

component allows the use of different log-based recon-  The interested reader may find more information on

ciliation strategies. The capsule component allows the the DOORS system in [1] (including an extended version
definition of different data configurations — e.g. the tenta- of this summary). This work was partially supported by

tive and committed versions of an object can be easily FCT, project number 33924/99.

maintained duplicating the adequate components under

the control of the capsule. 2. References

[1] http://dagora.di.fct.unl.pt
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Abstract

In this position paper we unify three essential features
for flexible system software: a component oriented ap-
proach, self-adaptation and separation of concerns. We
propose DiPS (Distrinet Protocol Stack) [5], a component
framework, which offers components, an anonymous inter-
action model and connectors to handle non-functional as-
pects such as concurrency. DiPS has effectively been used
inindustrial protocol stacks[8] and device drivers[6].

Position Statement

This position statement explains why component frame-
work technology is needed for flexible system software
(such as device drivers, protocol stacks and object request
brokers) and how we are using DiPS (Distrinet Proto-

col Stack) [5], a component framework, to build complex

vice drivers.

We state that there are three essential features for flexi-

unifies component support, self-adaptability and separation
of concerns in one paradigm, which is a strong combina-

tion for system software. DiPS is not a complete operating

system, but rather a component framework to build system

software. We are convinced that other operating system ab-
stractions, such as interrupt handling or memory manage-
ment, can benefit from the DIPS approach. Our research is
also heading in that direction.
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