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Abstract— The scale, reliability, and cost requirements of en-
terprise data centers require automation of center management.
Examples include provisioning, scheduling, capacity planning,
logging and auditing. A key component of such automation
functions is online monitoring. In contrast to monitoring systems
designed for human users, a particular concern for online
enterprise monitoring is Quality of Service (QoS). Since breaking
service level agreements (SLAs) has direct financial and legal
implications, enterprise monitoring must be conducted so as
to maintain SLAs. This includes the ability to differentiate the
QoS of monitoring itself for different classes of users or more
generally, for software components subject to different SLAs.
Thus, without embedding notions of QoS into the monitoring
systems used in next generation data centers, it will not be
possible to accomplish the desired automation of their operation.

This paper both demonstrates the importance of QoS in
monitoring, and it presents a QoS-capable monitoring system,
termed QMON. QMON supports utility-aware monitoring while
also able to differentiate between different classes of monitoring,
corresponding to classes of SLAs. The implementation of QMON
offers high levels of predictability for service delivery (i.e.,
predictable performance), and it is dynamically configurable to
deal with changes in enterprise needs or variations in services
and applications. We demonstrate the importance of QoS in
monitoring and the QoS capabilities of QMON in a series of
case studies and experiments, using a multi-tier web service
benchmark.

I. I NTRODUCTION

Modern enterprises are characterized by growing dynamism,
heterogeneity, complexity, and scale. It is widely accepted that
next generation enterprises will increasingly require automated
management [16], [31]. Management tools include commercial
products like Tivoli [27] and HP’s Openview [22] and aca-
demic efforts such as those focused on scientific workflows [2],
[7]. Control systems and services may concern specific sub-
systems (e.g., database backend [17], [12] or carry out general
tasks such as job scheduling [15], resource allocation [25],
and problem diagnosis [11]. Regardless of their specific tasks
and purposes, all such tools and services base their decisions
on the online monitoring of the services, systems, or IT
infrastructure they manage. Further, each of them will have
different monitoring requirements in terms of the types of

monitoring data to be acquired, the lifespan of that data, its
timeliness or staleness properties, its precision or granularity,
or even the jitter experienced during data acquisition (e.g.,
when controlling iterative or multimedia systems).

When applications must meet certain Service Level Objec-
tives (SLOs), then the monitoring actions required for online
application management must themselves meet certain levels
of Quality of Service (QoS). For example, a front-end web
request scheduler making online scheduling and dispatching
decisions in a multi-tier web service [6] requires real-time data
about the utilization levels experienced by backend servers,
with timeliness requirements that are typically in the range
of seconds. In comparison, a performance manager tracking
an enterprise application’s behavior by displaying data in a
GUI will require levels of timeliness varying from seconds to
minutes, depending upon the importance and SLO of the appli-
cation or application component being monitored. A resource
allocation system managing a large pool of compute servers
may be subject to hourly shifts in usage due to west/east coast
time differences, for example. Finally, a long term problem
diagnosis program may use historical performance data to
do root cause analysis. The deadlines associated with the
monitoring data it requires may be in terms of days or weeks.

Monitoring requirements not only differ across applications
or application components, but they also change over time.
For example, the performance monitor of a ‘silver’ service
requires monitoring data in the range of seconds, but when this
service is upgraded to ‘golden’, the QoS demands imposed on
its monitoring data become more stringent time-wise and in
the level of detail required. Another example is an online job
scheduler. It may not need fine-grained monitoring information
under normal operating conditions, but when the workload
rate increases, the scheduler will require more detailed and
uptodate information about current resource availability and
consumption.

While QoS in monitoring is a necessity for online man-
agement, most current commercial enterprise monitoring and
tools [24], [27] are targeted at relatively static or slowly chang-
ing environments and therefore, do not provide the necessary



mechanisms to support adaptive monitoring and dynamic QoS
guarantees. Finally, the management of monitoring systems
in prior work has often relied on manual methods. Exam-
ples include the extensive monitoring facilities constructed
for computer networks, enabling rich methods for manually
changing the data capture, collection, and analysis methods
applied to networks [32]. In comparison, automated techniques
for changing the way in which systems are monitored have
often focused on specific domains or applications (e.g., real-
time systems [10], [28]), or they provide limited methods for
configuring or self-configuring monitoring actions [1].

This paper proposes an approach to adaptive program mon-
itoring with dynamic QoS guarantees. The QMON monitoring
infrastructure described and evaluated in our research builds on
a publish/subscribe monitoring paradigm, to provide monitor-
ing capabilities to both local and remote management tools or
services. Single or multiple users can dynamically subscribe to
(or unsubscribe from) monitoring channels, thereby providing
a rich infrastructure for both local and remote enterprise
monitoring. More importantly, a set of programmable APIs
enable the dynamic configuration of QMON channels: to
change data collection, aggregation, correlation, and schedule.
Specifically, QMON monitoring channels can be configured
at runtime to change data collection parameters (i.e., what
data to collect), the frequency of such data collection, the
choices made for local data aggregation (i.e., the precision
of monitoring data delivered to remote managers), the ways
in which data is delivered to remote managers (i.e., monitoring
granularity), and other QoS metrics associated with online
monitoring. Furthermore, by associating QoS attributes with
individual monitoring channels, different channels can have
different attributes, thereby providing to higher level managers
the ways to differentiate QoS levels for different monitoring
tasks. Finally, by enabling dynamic channel creation, new QoS
requirements and methods for attaining them can be deployed
whenever or wherever needed in the enterprise.

While QMON may be used and configured explicitly, its
interfaces are designed for interaction with higher level policy
engines. These engines use enterprise-level policies to auto-
matically manage channel creation, the assignments of users
to channels, and similar higher level tasks. Further, the manner
in which online monitoring is carried out is driven by current
application needs, or, stated more precisely, monitoring is
performed so as to continuously maximize the utility attained
by the application being monitored and managed.

II. M ONITORING AND QOS

Automated management in next generation enterprise sys-
tems must consider multiple facts, including that system
services must meet well-defined SLOs while also adapting to
application and workload changes. Further, some workloads
may be more important than others, with different associated
business values or utilities [31]. Figure 1 shows the utility
achieved from an application server of the Airline Reservation
System run by one of our industrial partners. In this system,
utility(∪) is defined as follows:
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Fig. 1. Utility obtained from a server of our partner’s Airline Reservation
System

∪ ∝ Number of results returned for a query
Response T ime

Here, the utility of the result is dependent not only on raw
performance (i.e., response time), but also on the quality of
the data returned. The overall utility averaged over a 3 minute
time window turns out to be “acceptable” ($15.49). But if the
result is analyzed more carefully, we find that 75% of the
transactions generated utility below the average. The average
utility in the first minute of the time window is just $10.36
(66% of the total time window average!) From a business point
of view, this is clearly unacceptable, as it may cause a business
class passenger to experience low performance, which means
less revenue for the company. In fact, previous research has
shown that the average user’s tolerance for delay in an e-
commerce transaction is less than 11 seconds [5]. The study
showed that an user has more tolerance towards low latency
interactive response than high latency detailed response.

The above discussion demonstrates that enterprise systems
like these must be designed and monitored in a way that allows
‘micro’ resource management, to ensure that achieved utility
is high even on short time scales. This presents challenges
to online management and monitoring, in part due to the
overheads both impose on underlying systems. Factors on
which overheads depend include the frequency with which a
system is monitored, the metrics being collected, the number
of network messages generated by the monitoring system,
etc. Aggregation and correlation of monitoring data incur
additional processing, storage and network bandwidth costs.

A concrete example of the overheads associated with mon-
itoring appears in Table I, which shows the number of mon-
itoring messages generated by the OVTA monitoring system
in a sample installation of RUBiS. HP OpenView Transaction
Analyzer (OVTA) [24] is a widely used commercial product
based on the ARM specification [3], able to measure and
analyze end-to-end transaction responses for WEB, J2EE, and
COM applications. RUBiS is an open source multi-tier online
auction benchmark from Rice University [8]. It implements the



TABLE I

OVTA M ONITORING OVERHEAD

Levels
Monitoring records
generated /min

CPU Utilization
(in %)

Light
workload

Heavy
workload

Light
workload

Heavy
workload

No moni-
toring

0 0 17.70 28.88

Level 1 30 27 26.54 40.37
Level 2 443 735 28.07 45.88
Level 3 592 951 27.01 42.56
Level 4 4312 7347 27.46 43.32

core functionalities of an auction site like selling, browsing and
bidding. Table I shows different levels of monitoring for two
different types of workload. Each level produces a different
number of end-to-end transactional records. In this experiment,
these levels are created by manually configuring OVTA and
selectively enabling its monitoring features. Increases indicate
improvements in the levels of detail collected from the RUBiS
system. As indicated in the table, these numbers can vary
widely, so that determining the appropriate level of monitoring
becomes an important issue. In production environments, in
particular, there will be some scalability limit beyond which
the measurement servers start losing monitoring messages,
become irresponsive, and fail to meet users’ monitoring QoS
requirements. In the case of OVTA, this limit is 7200
records/minute [24]. Furthermore, an increased level of mon-
itoring also implies additional overhead at the application
servers being monitored. For example, Table I shows the rise
in CPU utilization due to different levels of monitoring in one
of our servers running RUBiS business logic.

The basic insight from the experiments discussed above
is that it is important to monitor end-to-end transaction per-
formance, but at the same time, too much monitoring may
compete with the application and other services for CPU,
networking, and storage resources, thereby negatively affecting
system performance. The outcome is that in order to provide
QoS guarantees for monitoring, we must dynamically control
monitoring itself, restricting to acceptable levels the volume
of monitoring data produced and the extent to which they are
analyzed.

So far, the key messages in this paper are that (i) enterprise
system monitoring must itself be controlled, and (ii) that
such monitoring must offer different levels of QoS. The third
important insight is that to attain (i) and (ii), QoS in monitoring
must be closely coupled with system utility. This is because
utility directly relates monitoring and management actions to
the value a business derives from its IT infrastructure. In
datacenter environments, business utility (∪) or revenue earned
by an IT service is usually related to the monitoring cost (C)
as follows:

∪ ∝ a · C − b · C × C
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Fig. 2. Utility - Monitoring Cost Relationship

Figure 2 shows the above relationship. Monitoring cost is
directly proportional to the QoS level. Utility increases up
to a certain point, beyond which monitoring costs dominate.
In Section IV, we experimentally verify the above relationship
and show the effects of different QoS levels on the total utility
achieved.

To summarize, a QoS-aware monitoring infrastructure must
support the following features:

• Flexible: a wide variety of monitoring requirements must
be accommodated, addressing the needs of different on-
line management tasks.

• Configurable: runtime customizability must be supported,
to match monitoring behavior and overheads to current
management needs.

• Utility-aware: monitoring must be driven by the utility
achieved by the end user application being monitored and
managed.

• Scalable: the perturbation introduced by monitoring must
be kept low.

For the QMON QoS-aware monitoring system, the next
section describes how it meets the requirements articulated
above.

III. QMON D ESIGN AND ARCHITECTURE

QMON provides mechanisms and APIs to achieve dif-
ferential quality-of-service, and it is also able to adapt to
changes in requirements. Specifically, its programmable APIs
expose multipleknobsto switch to different QoS levels and/or
to tune selected parameters dynamically. Theseknobs are
controlled by a policy engine driving the monitoring system’s
management. This paper will mostly focus on the mechanisms
and APIs offered by QMON. The policy engine and suitable
policies are described in [26].

The list below summarizes the basic mechanisms in QMON
available to higher level policies:

• What to monitor(i.e., which resources, services)?
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• How much to monitor(i.e., level of detail, frequency,
threshold, richness, granularity)?

• How to deliver(i.e., which communication transport (e.g.
UDP, TCP), transport attributes (push/pull))?

• How to filter (i.e., pre-defined or custom filters)?
• How to aggregate/correlate/process monitored data?
• How to tune/control monitoring systems?

The resulting framework for monitoring with differential
QoS has multiple advantages. First, the monitoring system can
prioritize between what to monitor for which data recipient,
depending upon the need and the corresponding business value
or utility associated with that data and recipient. Second,
monitoring costs can be controlled by quantifying it in terms
of the additional utility achieved from said monitoring data.
Third, given these quantifications, policies can be formulated
that dynamically adapt monitoring to system changes like
shifts in workload.

The basic abstraction QMON uses to achieve differential
QoS is the monitoring ‘channel’ (Figure 3). The channel
notion is based on our earlier work on publish-subscribe
middleware [14], where monitoring information is ‘pushed’
by data publishers (or producers) into channels, and data
consumers subscribe to these channels. QMON extends this
basic notion with QoS primitives that permit each channel
subscriber to state its own QoS goals, to control the rate and
granularity of the information flowing to it. This extension
therefore, causes different channel subscribers to be treated
differentially. The implementation of this functionality uses
pre-defined or dynamically created channel operators – termed
‘filters’ – using E-Code (a language similar to C) [13] or
using dynamic linking. In addition, channels can be dynami-
cally created, deleted, and configured, the latter including the
specification and use of dynamic ‘attributes’ associated with
channels.

QMON channels enable the functionality sought from a
QoS-aware monitoring system listed above. First, the asso-
ciation between data users and the channels that produce
data is dynamic and can be changed depending on current
requirements (i.e., what and how to monitor). Second, built
into channels is the ability to perform the data analyses needed
to provide differential monitoring, such as computing averages

over multiple monitoring records (i.e., how to monitor, filter,
aggregate, etc.). Third, these analyses can be dynamic (spec-
ified in the form of e-code) and can be enabled or disabled
as required (i.e., how to tune/control). Finally, QoS attributes
may be used to control monitoring. To address data delivery,
we next present additional detail about the QMON system.
System-level resources.QMON captures system-level moni-
toring information via ‘dproc sensors’ [1]. Dproc is a kernel-
level monitoring toolkit for Linux-based distributed systems,
such as cluster servers. The toolkit provides a single uniform
user interface available through /proc, which is a standard
feature of the Linux operating system.Dproc extends the local
/proc entries of each of the cluster machines with relevant
information from all other participating nodes within the
cluster. Kernel-level data capture permitsdproc to capture
the joint behavior of multiple system resources. Kernel-level
communications enable the exchange of monitoring informa-
tion across participating nodes with predictable delays. Toward
this end,Dproc uses a binary messaging system with out-
of-band meta-information and very low marshalling overhead,
which makes it suitable for use in high end enterprise systems.
Despite its kernel-level operation,dproc can be dynamically
extended with new monitoring functionality. Plug-and-play
monitoring modules can be added at run-time to permitdproc
to deal with new devices or resources and/or to offer new
performance models of resources to applications.
ARM Extension to dproc: End-to-End performance
measurement is necessary for effective management of
enterprise applications. QMON uses the ARM (Application
Response Measurement) standard [3] to define a common way
to describe transaction-level information that can be analyzed
to detect SLA violations, bottlenecks and other performance
problems. ARM agent running on each application node (e.g.,
web server, application server, and database server) collects
and summarizes the end-to-end performance for transactions
starting from this machine. An ARM agent can provide
data about each individual transaction instance (i.e., trace)
or summarize data across many transaction instances (e.g.,
sample). There may be additional ARM servers that collect
and correlate monitoring data from ARM agents on different
application components. Many commercial applications have
been instrumented with ARM, particularly in J2EE, such
as the IBM WebSphere Application Server, and IBM DB2.
Plug-ins have also been written for widely used components,
such as the Apache HTTP server and Microsoft’s Internet
Information Services. As a result, the application’s EJB
programs and Servlets are measured without the application
source code being changed.

For precise resource information, we extend thedproc
monitoring system to gather and analyze ARM metrics.
Application-level ARM instrumentation invokes thedprocAPI
to log information about their transactions.Dproc logs and
marks them with their associated resource usage, such as the
CPU time consumed during the duration of the transaction.
This information is very useful for accounting purposes and



typedef struct ARM{
int type, ID, starttime, endtime;

} ARM;

int ARM filter{
int i,sum[TOTAL TYPES],count[TOTALTYPES];

for (i = 0; i < TOTAL TYPES; i++){
sum[i] = 0;
count[i] = 0;

}
for (i = 0; i < input.arm.count; i++){

type = input.arm.data[i].type;
sum[type] = input.arm.data[i].endtime -

input.arm.data[i].starttime;
count[type] ++;

}
for (i = 0; i < TOTAL TYPES; i++)

output.avg[i] = sum[i]/ count[i];

return SENDFILTERED DATA;
}

Fig. 4. ARM Filter E-Code

to detect malicious or faulty behavior.Dproc maintains a
pool of internal buffers in which ARM statistics are stored.
Application or services can register to receive ARM data and
subscribe to a standard filter or specify custom ones. Figure 4
shows an example configuration of ARM data and adproc
filter that calculates the average time taken by different types
of transactions.

IV. EXPERIMENTAL EVALUATION

We evaluate QMON with a set of microbenchmarks and
with application-level measurements. While QMON can sup-
port arbitrary monitoring channels with rich associated meth-
ods of QoS, in the remainder of this paper, we experiment
with a simple notion of QoS widely used in existing exterprise
platforms (e.g., in IBM’s Websphere XD):
Gold Channel: monitors at higher priority than any other
types of channels. It carries dproc exported system usage
information (i.e., CPU, memory, network, block I/O) and
application-level performance data in the form of ARM
transactions. Monitoring data is buffered and broadcasted to
subscribers of gold channels every two seconds. This kind of
QoS is required by the front-end server scheduler in a multi-
tier web service for making online scheduling and dispatching
decisions.
Silver Channel: monitor at a lower granularity than gold
channel, transporting system resource information at an in-
terval of 30 seconds. Instead of sending raw ARM data, it
condenses them by calculating their mean and variance and
publishes condensed information every 1 minute. Figure 4
shows a simplified version of the filter applied to ARM data
in silver channel.

Bronze Channel: provides best-effort service, collecting the
same data as the silver channel, however, publishes it every
5 minutes. This kind of QoS is generally required for offline
auditing and analyses purposes.

The remainder of this section first uses microbenchmarks to
assess the ability of QMON to provide the different levels of
QoS required for gold, silver, and bronze service levels. Then,
these notions are used to monitor and manage a representative
web services application.

A. Microbenchmarks

The first set of experiments evaluate the overheads associ-
ated with the three different kind of channels described above.
All the experiments are performed on a cluster of 16 Intel
Xeon 2.8 GHz nodes, each with 512KB cache and 512MB
RAM, and connected via a 1 Gbit LAN. Each node runs the
RedHat Linux 9 (kernel version 2.4.19). The monitoring in-
frastructure of the QMON system is implemented as loadable
kernel modules.
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We run QMON on a node (publisher) and vary the number
of subscribers connecting to that node. The aim of this
experiment is to calculate the scalability of the QMON system
by measuring the CPU overhead at the node that publishes
monitoring data. We create agold channelwith the speci-
fication as described earlier and let all the nodes subscribe
to it and receive monitoring information. A simple script
generating 100 ARM messages every second runs at user-
level to mimic the behavior of an actual ARM agent (like
OVTA). We run this setup for over a minute and capture CPU
usage with thesar utility. The same experiment is repeated
for silver and bronzechannels. Figure 5 shows the results of
this experiment. The overhead is less than 10% even when the
number of subscribers is 16. There is a very slight difference
between the overheads of the three channels. This is because
the instrumentation overhead remains the same in the three
cases. The difference lies in the rate and the granularity of the
data that is broadcast to the subscribers. The high bandwidth



low latency link used bydproc together with its in-kernel data
analysis contribute to the system’s low overheads.
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Fig. 6. Microbenchmark: Subscriber CPU Overhead

The next experiment evaluates the cost of receiving mon-
itoring data from publishers. The setup remains the same as
in the earlier experiment. The subscriber (or theanalyzing
node) registers with up to 16 different publishers and starts
receiving information from them periodically. A user-level
script reads all data from system-level QMON every 30
seconds, emulating the behavior of a GUI client used by the
system administrators to analyze enterprise performance. As
the number of publishers increases, the amount of data to
be processed also increases. The experiment establishes the
fact that such a user-level client can consume substantial CPU
cycles copying data from the monitoring channels via QMON
to user-space. Further, there is a significant difference in CPU
usage between different channels because of the different
quality(/quantity) of data carried by them.

The experiments in this section demonstrate QMON’s abil-
ity to provide different levels of QoS in monitoring and its
ability to switch between them in a cost-efficient manner.
Although the cost at the measurement node remains relatively
constant with the change in number of subscribers (see Fig-
ure 5), the cost at the analyzing node increases rapidly with
the increase in the number of publishers (see Figure 6). This is
where QMON’s flexibilty becomes important, as the analyzer
can choose the type of monitoring information it wants to
receive and the QoS associated with them so that it can scale
to larger number of messages and more complex enterprise
scenarios.

B. Application Benchmark

As discussed earlier, we employ RUBiS to illustrate the
efficacy of QMON. We use the Servlets version of RUBiS
with Apache 2.0.40 web server at the front end, two Jakarta
Tomcat 5.5.9 servelet server, and a database server running
MySQL 4.1.14. All servers are hosted on dual Intel Xeon 2.8
GHz servers with 512KB cache and 4GB RAM, and connected

via 1 Gbit ethernet. Each of the machines runs RedHat Linux
9.0 (kernel version 2.4.19) with QMON extensions.

The servers run in their default configuration, except for the
following settings:

• MaxSpareServersof the Apache web server is increased
to 50 so that the server doesn’t spend too much time
in forking threads at the beginning of each experiments,
thereby affecting our readings;

• Initial Heap Size for the Servlet Container (−Xms):
128MB;

• Maximum Heap Size for the Servlet Container (−Xmx):
768MB; and

• Stack Size of each Servlet’s Thread (−Xss): 128KB.
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Fig. 7. Throughput degradation due to QMON

The first experiment evaluates the change in performance of
RUBiS due to QMON. We test the raw throughput obtained
from RUBiS by running a stream ofuser registrationrequests,
first without QMON, and then enabling QMON and publishing
the monitoring data to other nodes. Figure 7 shows the result
of this analysis. As soon as we enable QMON, there is a 3%
reduction in performance. The degradation is just 6% even
when the number of nodes subscribed to receive monitoring
information increases to 16. This is because of the low-level
kernel implementation of QMON, which maintains a list of all
subscribers inside the kernel and does a fast network transfer
to all of them without copying any data from the user level
for each transfer.

The front end server has to perform request scheduling and
dispatching, the purpose of which is to ensure load balancing
and provide quality of service. For our evaluation, we use
a simple black-box scheduling algorithm calledDWCS[30].
DWCS was originally developed for streaming multimedia
applications, to schedule their processes and/or perform mes-
sage scheduling [29]. In this paper, we use it in enterprise
domain where different workloads must be multiplexed in a
shared utility infrastructure (like a multi-tier web service).
These workloads are often associated with some performance
goals (like minimum throughput or best response time) and
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may have certain real-time requirements, the latter typically
expressed in the form of SLAs. For example, abiddingrequest
in an online auction site like RUBiS has real-time deadlines,
while acommentposted by a user has a less stringent deadline.

We apply DWCS to schedule two different request classes in
the RUBiS with QMON disabled. These requests are generated
usinghttperf [20] on a separate client machine with the same
configuration as other server machines. Thebidding request
is computation intensive and consumes substantial CPU at the
servlet server processing it. In contrast, thecommentrequest
generates significant network traffic. The scheduler runs on the
same node as the client, and request dispatching is facilitated
by prefixing the request’s URL path with the appropriate
servlet server’s name. The Apache server is configured to mul-
tiplex the requests to the different backend server depending
on these prefixes.1

The purpose of the experiments described below is to
demonstrate the ability of QMON to deliver QoS in moni-
toring, and next, to show the importance of monitoring QoS
when delivering improved utility to end user applications.

1) Application Interference:Consider a scenario in which
RUBiS components are operating correctly, but the utility
derived from their operation is suddenly diminished. One
cause for such a reduction in utility is undue resource con-
sumption by a foreign application running on a machine
used by a RUBiS component. To maintain high levels of
utility, the enterprise must quickly re-schedule the foreign
application to a different machine. This requires monitoring
support that can promptly identify the foreign application, the
fact that it consumes the resources required by RUBiS, and
then notify administrators or higher level policy engines to
take appropriate actions. Undue delays in such actions result
in queue buildups and similar issues with backlogged requests
that can quickly spread to other components of a distributed
enterprise application [18].

1The scheduler could have been implemented in the front-end web server,
but for simplicity, we choose to emulate all client sessions withhttperf and
schedule their requests with DWCS on the same machine.

We demonstrate the effect of application interference by
creating 60 client sessions, half of which are high priority
bidding requests, the other half being low prioritycomment
requests. Each request class has aPoissonarrival distribution
with a mean rate equal to 150 requests/sec. In the middle of
the experiment, a perturbation is introduced by starting four
linpack processes.

The performance of both classes is reduced by more than
15% (Figure 8). In Figure 9, we enable QMON, which
resulted in the higher prioritybidding requests exhibit only a
small drop in performance because these requests are routed
to the server that is lightly loaded. Online monitoring with
QMON, therefore, provides the resource-awareness required
for scheduling to attain high utility, that is, better service
for bidding vs. other requests. In comparison, a non-aware
algorithm simply performing round-robin scheduling does not
perform well.

2) Component Misbehavior:QoS in monitoring refers
much more than just monitoring latency or delay. Consider
applications that exhibit temporary misbehavior, perhaps due
to garbage collection or poison messages [18]. This results in
a sudden reduction in performance of a particular component,
from which it recovers after some time, or its behavior is
permanently affected. An example is the behavior observed
in our partner’s Airline Reservation system (see Section II),
where certain components exhibit reduced performance from
which they recover after some time. A concrete illustration of
this behavior is realized with a modified RUBiS application,
which delays request processing by a few milliseconds every
alternate minute such that the first tomcat servlet server delays
every odd minute and the second server delays every even
minute. Both recover in the subsequent minute.

Monitoring QoS in scenarios like these refers to the gran-
ularity of monitoring information. Low QoS means that a
system is observed over a long time period, and administrators
or policies receive only occasional reports on average system
behavior. In that case, erratic behaviors like those described



above would not be detected. Stated more precisely and draw-
ing a parallel from the classicalNyquist-Shannon sampling
theorem, it is apparent that in the RUBiS case, monitoring
must be done at least once every minute to detect the emulated
server misbehavior.

We study three scenarios. In the first, the front-end web
server subscribes to abronze channelto receive monitoring
information from the two tomcat servers. In the second, it
subscribes to asilver channel. In the third scenario, we define
a new type ofplatinum channelwhich offers a level of QoS
in which details are collected at a granularity finer than the
gold channeldescribed earlier. That is, it not only collects
application-level end-to-end ARM transaction information, but
it also captures packet level details and sends digests to the
scheduler every 100 milliseconds. The workload used in this
experiment consists of a stream of RUBiS requests from two
different clients and has aPoissonarrival distribution with a
mean rate equal to 150 requests/sec. Concerning utility, Client
1 pays twice the price than Client 2, according to the following
utility formulation:

∪ ∝ 1
latency , and ∪client1 = 2× ∪client2

Figure 10 shows the total utility obtained by processing
requests from two clients for 10 minutes. The utility is
higher when monitoring is done more frequently via thesilver
channel. The bronze channeldoes monitoring at lower rate
(every 5 minutes) because of which it fails to capture the
misbehavior of the two servers (because the average latency
over the two minute window remains almost same). Thesilver
channel, on the other hand, publishes performance information
every 30 seconds, which permits the front-end web-server to
detect the change in latency of the two backend servers. This
enables the front-end to make more appropriate request routing
decisions. Basically, it dispatches the requests from Client 1
to the server with lower delay because it earns more revenue
(i.e., higher utility). Further, although the utility of Client 2
goes down by 11%, the utility of Client 1 goes up by 30%,
improving total utility by 16.7%.
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Fig. 10. Change in Utility due to QoS in monitoring

Note that the average throughput (i.e., responses per second)
remains the same for both clients when monitoring is done
with either silver or bronze channels. This is because the
capacity of the system is larger than the workload. As latency
is the major factor in determining utility, the details obtained
from thesilver channelhelped the scheduler route judiciously.
However, when the scheduler switches to aplatinum chan-
nel, throughput goes down because of increased monitoring
overheads. This decrease in throughput is also reflected in the
response time of the servers. Hence, total utility is reduced
as compared to thesilver channel. These results demonstrate
two important facts about online monitoring: (1) fine-grain
frequent monitoring is necessary to achieve higher utility and
to adapt to time-varying resource availability, but (2) overly
aggressive monitoring can have negative effects, including
reducing the overall utility derived from the enterprise appli-
cation.

V. L ESSONSLEARNED

QoS imposes unique requirements on monitoring:in
terms of classes of users, time granularity, and the amounts of
monitored data. Since there will always be tradeoffs between
the quality of data collected and the costs involved, our work
attempts to quantify the cost of providing QoS in monitoring
from the business perspective.

The first lesson from QMON is thateven a carefully
designed monitoring system will still impose coststhat can
notably affect the maximum raw throughput of applications
or services. For instance, QMON microbenchmarks establish
that despite low data collection and transmission overheads
in our uses of QMON, there are still substantial overheads
experienced by monitoring data recipients, causing scalability
issues. This is one motivation for offering enterprise users
different levels of QoS in monitoring. Another motivation is
that there is a need for different levels of QoS in terms of
the quality of monitoring data captured by the system and
provided to applications. There are no issues with scalability
in the experiments shown in Sections IV-B.1 and IV-B.2,
which use only two application servers, but the front-end
scheduler will at different times require different levels of data
granularity, in order to scale to large number of application
servers.

Monitoring must be programmatically configurable in
order to support QoS. As discussed earlier, traditional mon-
itoring systems rely on the system administrators to configure
different parameters. With the increasing trend towards auto-
mated management and with the increase in the complexity of
monitoring itself, the process of manual configuration becomes
acutely slow, costly, and error-prone. Furthermore, dynamic
changes in users’ requirements, system workloads, and plat-
form resources require that the monitoring system adapt itself
to those changes automatically. Toward these ends, QMON
provides rich methods for creating, deleting, and configuring
“Monitoring Channels”. The use of programmable APIs make
it easy for applications to switch between multiple QoS levels



of monitoring in order to receive the required ‘quality’ of data
and maintain low overheads.

QoS in monitoring should be closely coupled with
business objectives (i.e., application utility).This is most
evident from the results in Section IV-B.2, where infrequent
updates of monitoring information and aggregation over large
time windows fail to provide sufficient levels of detail to
permit appropriate request scheduling actions. By tuning the
granularity of monitoring, undesirable changes in component
performance could be recognized. While this increases the
raw cost of monitoring at back-end application servers, the
resulting improvements in scheduling at the front-end still
increase total utility. The lesson is that rather than attempting
to minimize monitoring overhead for individual subsystems or
components, monitoring should be managed so as to maximize
overall utility (or business revenue).

Finally, although this paper shows positive results about the
importance of QoS in monitoring for automated management,
it remains up to future work to better quantify the exact
relationship between the cost of QoS in monitoring and the
utility achieved from an enterprise application. That is, this
paper’s simple bronze, silver, gold characterization of moni-
toring QoS should be refined to take into account the large
variety of metrics capturing QoS in monitoring, ranging from
data volume, to data precision, to methods of data delivery,
etc.

VI. RELATED WORK

We are not aware of other research on system monitoring
that specifically focuses QoS issues. As a result, past work
has not delivered the programmable APIs and frameworks for
monitoring that support dynamic monitoring reconfiguration or
provide QoS guarantees for enterprise-scale applications and
systems. Further, the formulation of QoS differs for monitoring
compared to past work in the multimedia [4] and more
recently, in the mobile domain [9], where QoS is expressed
in terms of metrics like delay, jitter, bandwidth, throughput,
etc. In the enterprise domain, monitoring poses additional chal-
lenges, including taking into account its costs (i.e., overheads),
the tradeoffs between the quality of monitoring data generated
and the perturbation introduced in the system being monitored,
and the fact that QoS is determined not only by data delivery,
but also by data generation and the analyses applied.

There is rich prior work in the area of distributed mon-
itoring. Ganglia [19] is a scalable distributed monitoring
system for high performance computing systems. MonAL-
ISA [21] provides a distributed monitoring service based on
a scalable dynamic distributed architecture. ACME [23] is a
flexible infrastructure for Internet-scale monitoring, analysis,
and control. Compared to these systems, our work differs
in two key respects. First, since these systems are designed
mainly for monitoring distributed systems and Grids, they
do not address the requirements of enterprise monitoring,
such as dealing with service level SLOs, providing end-to-
end transaction information, performing real-time and dynamic
service monitoring, and supporting the interactions between

the monitoring system and online management components
(e.g., a request scheduler). In particular, none of them address
real-time monitoring with QoS guarantees. Second, these sys-
tems focus mainly on data collection, delivery, and scalability,
but they do not address the dynamism in monitoring systems
in terms of changes of users’ monitoring requirements and
changes in monitored environments. As a result, they do
not provide programmable APIs and dynamic mechanisms to
support runtime monitoring configuration.

HP and IBM have developed their own monitoring so-
lutions in the enterprise domain. HP’s OpenView monitor-
ing products [22] (performance agent, transaction analyzer,
network node manager, performance manager, etc.) imple-
ment a flexible distributed monitoring solution for enterprise
management. IBM’s Tivoli monitoring [27] is an enterprise-
class monitoring solution, which monitors the availability of
the IT infrastructure, end-to-end, across distributed and host
environments. Both provide rich configurability to control
monitoring, such as what to monitor, how much to monitor,
etc. However, such configuration must be done manually. This
makes it difficult to support dynamic reconfiguration, adapt
to changes in the computing environment, or perform the
custom monitoring needed to deal with complex behaviors in
enterprise applications and environments.

VII. C ONCLUSIONS ANDFUTURE WORK

Runtime monitoring is key to the effective management of
enterprise and high performance applications. At the applica-
tion and middleware level, service execution must be contin-
uously monitored to ensure that the service level objectives
defined by administrators are continuously met. At the system
level, service resource usage must be monitored, to ensure
sufficient resources for meeting SLOs (i.e., resource provision-
ing and capacity planning), to detect and deal with system
bottlenecks due to dynamic service and platform behaviors,
and to enable dynamic optimization or weaker properties like
performance isolation.

This paper demonstrates the need for explicit support of
quality of service (QoS) in monitoring for enterprise systems.
QoS must be dynamically configurable to obtain a balance
between monitoring overheads and the improvements in appli-
cation utility derived from online monitoring and management.
Further, we describe the design and architecture of a QoS-
aware monitoring system called QMON. QMON provides
the abstraction of “Monitoring Channels” as a means to
implement differential QoS in monitoring. QMON is evaluated
on a deployment of a multi-tier web service benchmark, and
evaluations shown that multiple and different levels of QoS
in monitoring are necessary to obtain high application utility.
Results also demonstrate that insufficient or excessive gran-
ularity of monitoring are both detrimental to overall system
utility. The key is finding a balance. A configurable, flexible
monitoring system providing guaranteed QoS is a first step
toward that goal.

Our future work will make more sophisticated use of QoS
in QMON, generalizing our current relatively simple bronze,



silver, golden notions of QoS. In addition, a clearer linkage
will be established between monitoring QoS and overheads
and the utility derived from monitoring, using formal tech-
niques to quantify and link both. Another interesting direction
of our research is one that extends the predictable methods
for system-level monitoring designed in our work ondproc to
also capture end-to-end application behaviors.
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