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1 Introduction

There is currently a surge of interest in service robotics—a desire to have robots
leave the labs and factory floors to help solve critical issues facing our society, rang-
ing from eldercare to education. A critical issue is that we cannot preprogram these
robots with every skill they will need to play a useful role in society—they will need
the ability to interact with ordinary people and acquire new relevant skills after they
are deployed.

Using human input with Machine Learning systems is not a new goal, but we
believe that the problem needs reframing before the field will succeed in build-
ing robots that learn from everyday people. Many related works focus on machine
performance gains; asking, “What can I get the person do to help my robot learn
better?” In an approach we call, Socially Guided Machine Learning (SG-ML), we
formulate the problem as a human-machine interaction; asking, “How can I improve
the dynamics of this tightly coupled teacher-learner system?”

With the belief that machines meant to learn from people can better take advan-
tage of the ways in which people naturally approach teaching, our research aims
to understand and computationally model mechanisms of human social learning in
order to build machines that are natural and intuitive to teach.

In this paper we focus on a particular aspect of SG-ML. When building a robot
learner that takes advantage of human input, one of the design questions is “What is
the right level of human guidance?” One has to determine how much and what kind
of interaction to require of the human.

We first review prior work with respect to these questions, and then summarize
three recent projects. In the first two projects we investigate self versus social learn-
ing and demonstrate ways in which the two are mutually beneficial. In the third
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project we investigate a variety of social learning strategies, implementing four bi-
ologically inspired ways to take advantage of the social environment. We see com-
putational benefits with each strategy depending on the environment, demonstrating
the usefulness of non-imitative social learning. Taken together these projects argue
that robots need a variety of learning strategies working together, including self and
several types of social mechanisms, in order to succeed in Socially Guided Machine
Learning.

2 Background

Enabling a human to efficiently transfer knowledge and skills to a machine has
inspired decades of research. In this section we situate our research with respect to
this prior work.

2.1 The Guidance-Exploration Spectrum

When prior work is viewed along a Guidance-Exploration spectrum, an interest-
ing dichotomy appears. Prior works that incorporate human input into a Machine
Learning process tend to maintain a constant level of human involvement.

Several are highly dependent on Guidance, learning nothing without human in-
teraction (e.g., learning by demonstration [9, 6, 14, 2], learning by imitation [29],
learning with natural language [20], and via tutelage [25, 21]). In these, the learner
does little if any exploration. The teacher must learn how to interact with the ma-
chine and know precisely how it needs to perform the task.

Other approaches are almost entirely Exploration based. For example, the human
may control the reward signal given to a reinforcement learner [33, 15, 12, 31],
provide advice [10, 22], provide animal training inspired clicker feedback [4, 17,
28], or control the agent’s actions during training [30]. These approaches have the
benefit that learning does not require the human’s undivided attention. However,
they strongly limit how the human can assist the learner and usually require the
human to learn how to interact with the machine.

This highlights an important question for systems that learn with human input.
What is the right level of human involvement? How much should the system rely on
(or require from) the teacher? On the guidance end of the spectrum is a system that is
completely dependent on human instruction, and on the exploration end is a system
that learns through self exploration with little input from a human partner. Taking
inspiration from human learning, we observe that a social learner should be able to
operate flexibly along this Guidance-Exploration spectrum. Children explore and
learn on their own, but in the presence of a teacher they can take advantage of social
cues and communication to accomplish more. Thus, we posit that a robot should
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be able to explore and learn on its own, but also take full advantage of a human
partner’s guidance when available.

2.2 Social Learning and Robotics

Robotics research has long been inspired by human social learning, and this work
has largely focused on one aspect—imitation. This has been called Learning by Im-
itation or Demonstration and works toward robots capable of reproducing demon-
strated motor actions [29], learning generalized task representations [26], poli-
cies [9] or a proto-language about actions [3].

A body of research is devoted to finding ways to learn the imitative behavior
itself, rather than hard-coding it [24, 11]. Some focus on task- or goal-level im-
itation, reproducing the task not through imitative behavior, but with it’s own ac-
tions [18, 23, 16].

Other work focuses on adjusting a robot’s actions while imitating a human
demonstration. This can involve extracting trajectory representations in joint and
task space [7], dynamical equations to control the robot’s movements [27] or a se-
quence of primitive actions [1].

We are interested in taking a broader view of social learning and exploring the
variety of ways that a social partner influences learning, in addition to imitation.

3 Motivation

Our approach is Socially Guided Machine Learning, exploring the ways in which
Machine Learning agents can exploit human social learning. This work claims that
computational learning systems should make use of human social learning princi-
ples because:

1. Itis better for the human: To learn from people without experience in robotics
or machine learning, it is a working hypothesis of this approach that using char-
acteristic aspects of human learning will be the most natural interface. Several
studies show that humans inherently and dynamically provide social scaffold-
ing for learners, and do not realize they are engaging in structuring the learn-
ing process. Greenfield describes studies, of children learning language and girls
learning to weave [13], where the teachers engage in a complex process of dy-
namically adjusting their support of the learner based on skill level and success.
The entire time the teachers are unconscious of the process or method by which
they are teaching. Thus, the partnership of social learning is an interaction that
people fall into intuitively.

2. Itis better for the machine: This point is generally less intuitive, but one way to
think of it is that social interaction provides biases and constraints that simplify
the problem for the machine. Thus, social learning leads to a more efficient and
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robust machine learning process. We have shown examples of this in our prior
work [33], and one of the claims in this paper involves the mutually beneficial
relationship (from a Machine Learning perspective) of self and social strategies.

Human development provides insight into how to approach this sizable SG-ML
problem. Children naturally interact with adults and peers to learn new things in so-
cial situations. Throughout their development, children’s learning is aided in crucial
ways by the structure and support of their environment and especially their social
environment.

Situated learning is a field of study that looks at the social world of a child
and how it contributes to their development [19]. In a situated learning interac-
tion, a good instructor maintains a mental model of the learner’s understanding and
structures the learning task appropriately with timely feedback and guidance. The
learner contributes to the process by expressing their internal state via communica-
tive acts (e.g., expressing understanding, confusion, attention, etc.). This reciprocal
and tightly coupled interaction enables the learner to leverage instruction to build
the appropriate representations and associations.

This situated learning process stands in contrast to typical scenarios of machine
learning which are often not interactive nor intuitive for the human partner. As de-
scribed in the previous section, prior work often resides at a static point along the
Guidance-Exploration spectrum, whereas human social learning is a dynamic pro-
cess of interactive scaffolding. Additionally, the human social learning process in-
cludes much more than imitation, which has been the focus of robotics research.

In this paper we explore both of these issues. We present two projects that show
the mutually beneficial relationship of self and social learning, and argue that a suc-
cessful social robot learner will actually need multiple mechanisms to operate along
the full Guidance-Exploration spectrum. We present a third project that illustrates
the benefits of several non-imitation social learning mechanisms, showing ways that
a robot can take advantage of the multitude of ways that a social partner can influ-
ence the learning process.

4 Self versus Social Learning

Much of our work to date in SG-ML has focused on comparing self and social
robot learning, to prove that social learning with an everyday human (not a system
designer) provides a performance benefit over self learning. The conclusion we have
been able to draw multiple times is that “self” and “social” learning strategies are not
diametrically opposed. From a computational perspective, each provides different
benefits for the robot learner. In this section we present two projects that illustrate
this point, each with a different robot platform and learning approach.
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Fig. 1 The MIT Leonardo
robot has more than 65 de-
grees of freedom and its
expressive capability was
specifically designed for so-
cial interaction. Pictured here,
is Leo with a human partner
exploring the toy puzzle box.

4.1 Self and Social Reinforcement Learning

Our first example of self versus social robot learning uses a hierarchical Reinforce-
ment Learning (RL) approach [32]. Through exploration the robot builds a repre-
sentations of tasks (temporally extended actions) for bringing about various novel
states/events in the environment. As this task set grows with experience, the system
has mechanisms for generalizing the state representations of its tasks. For example,
if it learns a task about pressing a button to turn a light on. As it learns the policy
(value function) for this task, it may see other trajectories to the goal that allow it
generalize that the color feature of the button is not important for the task.

The system has several mechanisms for incorporating human input to this RL
process (e.g., attention direction, action suggestion, and positive/negative feedback).
This project was completed on the MIT Leonardo platform (Fig. 1).

4.1.1 Experiment

We conducted an experiment with people teaching the Leonardo robot, and compare
this to the robot learning on its own in the same environment. The experimental
scenario is a playroom, in which Leo has toy puzzle boxes. The boxes have a button
a slider and a switch as inputs, and they are able to change color, open/close, and
play a song. These effects come about after the correct sequence of actions are done
to the box (e.g., pressing the button until the light is white and then moving the
switch left will open the lid).

To show experimentally which aspects of the learning process are influenced
by a non-expert human partner’s interaction we collected data from two types of
learning sessions: SELF—the robot learning on its own; and GUIDED—the robot
learning with a human teacher. We collect several independent measures during the
learning sessions with nine human subjects. We then compare means between the
two groups with t-tests in order to understand some specific details of how guidance
and self learning differ.

Experimental subjects were shown the functionality of the puzzle box and told
that their goal is to help Leo learn about the box. They are told the robot is able to
do some actions on the toy puzzle box, and once turned on, it will start exploring
what it can do with the box. They are told they can help Leo by making action
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Table 1 Differences between Self and Guided Learning

Measure Mean Mean T-Test Results
(SELF) (GUIDE)

# Actions to first goal in learning session 11.2 3.56 1(19) =2.11; p< 05
Size of resulting Tasks set 10.4 7.55 t(19) =7.18; p < .001
# Tasks for Tgyy, 0.833 1.333 1(19)=—-2.58; p< .01
# Tasks for Topen 1 1.77 t(19)=—1.83; p < .05
# States can reach To., in post-experiment .58 1.56 1(19)=—-2.88; p < .01
# Actions to reach Tpy,,. in post-experiment  2.66 1.69 1(19) =2.19; p < .05

suggestions, by naming aspects of the box, and by testing that these named aspects
have been learned. Their goal is to make sure that Leo learns to do three specific
things: Ty, Make the light blue; Tp,e,, Make the lid open; Ts,,,, Make the song
play. None of the human teachers focused on Ts,,, (the most complex task), thus
these results center on the tasks that people tried to teach, gy, and Topen.

4.1.2 Results

During the learning session, we log several measures to analyze the effect of guid-
ance on the learning process. Additionally, the efficacy of the learned task sets was
tested in simulation afterwards (detailed below). The differences between the self
learning (SELF) and guided learning (GUIDE) cases are summarized in Table 1. In
all we tested 12 hypothesized differences between the two groups, and we detail the
six significant differences found.

The human partner is able to guide the robot to the desired goal states faster than
happens on its own. This is seen in the difference between groups in the number
of actions to the first encounter of any of the experiment goals. The average for
GUIDE, 3.56, is significantly less than the average for the SELF condition, 11.2.
Thus, people were able to utilize the social scaffolding mechanisms to focus the
robot on aspects of the environment that they wanted it to learn. This is also sup-
ported by qualities of the resulting task set that is learned. In the GUIDE condition,
the resulting task sets were more related to the experiment goals (i.e., one of the
three experimental goals is true in a task’s goal state). We see a significant differ-
ence in both the number of tasks related to Tp;,, and Tope, (see Table 1).

Finally, the GUIDE group learns a better task set for achieving the experiment
goals. In the post analysis of the learned tasks, we tested each task set from a test
suite of initial states, and measured their ability to achieve the experimental goals.
Each experiment goal has a different test suite of five initial states. For each of the
learned task sets, we record the number of actions needed to reach each of the exper-
imental task goals from each of the test states. We see some significant differences
in the generality of the learned tasks. The average number of states that the GUIDE
task sets could reach the Toppe, goal, 1.56, was significantly better than the SELF
condition, 0.58. And though we didn’t find this difference for the Tp;,, goal, we do
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Fig. 2 Junior is a Bioloid
robot configured as an up-
per torso humanoid with a
Webcam head. It is approxi-
mately 10 inches high. It has
8 degrees of freedom, which
enables arm movements, torso
rotation and neck tilt.

see that the GUIDE condition is significantly faster at achieving Tpy,. in the post
analysis than the SELF condition, 1.69 versus 2.66. Thus, human guidance leads
to task sets that are better at achieving the experimental goals at a later time. Fo-
cused and repeated experience with these goals resulted in more generalized task
representations.

In self-learning on the other hand, the robot had a broader experience, serendipi-
tously learning aspects of the environment that the human was not focused on teach-
ing. While not what the human had in mind today, this knowledge about the envi-
ronment could be advantageous in the future. Thus, we conclude that self and social
learning are mutually beneficial in this learning context.

4.2 Self and Social Supervised Learning

While Leo used high-level task learning and an RL approach, in our second exam-
ple the Junior robot (Fig. 2) learns about object affordances through a supervised
learning approach (Support Vector Machines) [34].

4.2.1 Experiment

Junior learns about a set of five simple objects with different geometrical shapes
and bright, distinct colors. It has two actions it can perform on the objects—a single
arm poke action, and a double arm grasp action. When an object is detected in
the workspace, Junior will try one of its actions on the object. Action effects are
perceived by the robot as changes in the object state. The set of possible affordances
for the five objects is: lifted, opened, rolled, moved, tipped, or no effect. A two-class
SVM is trained for each type of effect, using the state of the object as the feature
space and the affordance as the target value.

Our experiments with Junior focus on comparing self and social learning of ob-
ject effect classifiers, using two modes of affordance learning: social and non-social.
In the non-social case the workspace and the object configuration space are exhaus-
tively explored with both actions. Each object is moved at 0.25 inch intervals on
the workspace in several possible orientations. This results in 756 object interaction



8 Andrea L. Thomaz and Maya Cakmak

Fig. 3 Learning results: Pre- .Systematic . Everyone DRandom subsets Dlndividuals
diction success of classifiers
trained with the systematic

(non-social) data and the so- 80
cial data, on (Top) social test 60|
data and (Bottom) systematic 40
test data. Values averaged 20
over 10 randomly sampled 0
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100
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samples. In the social case, a human teacher controls which objects the robot in-
teracts with, and decides where and how to place the object in the workspace. We
collected data in this social case from 14 subjects. In the experiment introduction,
subjects were told that their goal is to help Junior learn what it can do with the five
objects. They were asked to place one object at a time in the workspace, and the
experiment duration (number of interaction samples) was the subjects’ decision.

4.2.2 Results

This experiment lets us compare the effect of social data collection on a supervised
learning process. Separate SVMs are trained with the data sets collected from the
social and non-social process of exploring the five objects.

Fig. 3 compares the average successful prediction rate for classifiers with four
different training data sets: (i) systematic: the complete set of examples collected
non-socially, (ii) everyone: the combination of examples provided by all 14 individ-
uals, (iii) random subsets of the systematic data (size equal to the average number
of examples given by one subject), and (iv) individuals: the data sets obtained by
individual subjects in the experiment. Two test data sets (social and non-social) are
created by randomly sampling equal numbers of positive and negative examples
from either the non-social or the social data set.

Our first observation is that the complete data sets (systematic and everyone)
generally perform better than the smaller data sets (random subsets and individuals).
Thus, the number of samples given by one individual in a single session may not be
sufficient for learning everything. This points to the importance of self exploration
(for collecting large data sets with systematic experiments) as well as long-term
training by individuals (multiple sessions) or by multiple teachers. Nonetheless, the
variance in the individuals’ performance indicates that some individuals were able
to get close to the performance of the complete data sets.
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A second observation is that social learning provides the opportunity to see rare
affordances; outcomes that occur in very few object configurations. For example,
one of the objects is a box with a lid Junior can open. However, this occurs for
the grasp action in only one orientation and limited locations. Depending on the
resolution with which the objects are displaced in during the systematic exploration,
the opening effect could easily be left out of the non-social data set. On the other
hand if resolution is increased to insure the effect is seen, the number of opening
examples becomes relatively very few since the number of non-opening samples
increases. Hence it is hard to learn a rare affordance from systematic data.

A social setting can provide the adaptive resolution to overcome this problem.
Humans experiment with the box object by varying the distance in very small steps
within the range that it can be opened, but they provide sparse samples outside
this range. Similarly, they provide more examples of the box being in its normal
orientation compared to other orientations in which it cannot be opened.

This leads to better performance for the social training sets on rare affordances
(e.g., opening and rolling), for both test cases. Since these affordances are rare in the
non-social data set, it results in pessimistic classifiers that mostly predict a negative
outcome. With more frequent affordances such as lifting and moving, the social data
set is on par with the non-social training set.

On the other hand, social experiments may fail to capture affordances that occur
in the non-social case. For example 29% of the subjects did not notice the tipping
effect of the poking action on some objects, thus providing no examples of it. Simi-
larly, most subjects did not notice that Junior could grasp objects placed very close
to it. They placed objects at a comfortable distance at which a more natural grasp
would occur. These oversights may occur due to people’s inexperience with the
robot as well as the inexperience with the objects. Self-exploration can therefore be
important in discovering affordances that are not predicted by the human. Again,
this points to the mutually beneficial relationship between self and social learning.

5 Varieties of Social Learning

Convinced from these previous studies that a robot needs both self and social learn-
ing working side-by-side, the third project investigates a range of social learning
strategies. This work was completed on a team of Junior-like robots we call the
Robot Playmates (Fig. 5) [5].

We are interested in the variety of ways that a social partner influences learning.
Inspired by biological systems [35, 8], we implemented the following four social
learning mechanisms: Stimulus (local) enhancement is a mechanism through which
a learner is drawn to objects others interact with. Emulation is a process where the
learner witnesses someone produce a result, but then employs their own action reper-
toire to produce the result. Mimicking corresponds to the learner copying the actions
of others without an appreciation of their purpose. Imitation refers to reproducing
the actions of others to obtain the same results with the same goal.
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Fig. 4 The Robot Palymates
are upper torso humanoids on
wheels built from Bioloid kits
and Webcams. Their 8 de-
grees of freedom enable arm
movements, torso rotation and
neck tilt. The wheels are used
to navigate the workspace.

5.1 Experiment

Similar to the Junior project, the learning problem is affordance classifiers. In this
case there are objects with discrete attributes: color, size and shape, and one hidden
property of sound-maker that is apparent only when the object is moved. Again the
robots have two actions poke and grasp, which now have the discrete parameters (i)
acting distances and (ii) grasp width or (iii) poking speed.

We conducted a series of experiments, each collects a data set of experience
which is then used to train a sound-maker SVM classifier. The SVM inputs are
the perceived object features and the actions parameters performed. The prediction
target is whether or not this context/action produces sound.

In each experiment the learner uses a particular exploration strategy. A strategy
is implemented as an attention mechanism, where each object attribute and action
parameter has a corresponding saliency. The robot always performs the most salient
action on the most salient object. Each strategy has a different rule for updating
saliencies after every interaction:

e Stimulus Enhancement: The robot prefers to interact with objects the playmate
has interacted with. After every observed interaction, it increases the saliency of
attributes of the object the social partner has interacted with and decreases others.

e Emulation: The robot prefers objects seen to have given the desired effect. If an
observed interaction produces sound, the saliencies of the attributes of the object
used are increased. Otherwise, the saliencies are set randomly.

e Mimicking: This strategy involves copying the actions of the social partner. We
implement a version in which the learner mimics every action (blind) and one
where it mimics only after observing the goal.

e Imitation: The learner focuses on the objects used by its social partner and copies
the actions of the social partner. Again, there are two versions: the learner always
imitates its social partner (blind) or only after observing the target goal.

In order to compare these mechanisms we use a controlled learning environment
and investigate two dimensions of the space. (1) The rarity of the learning target
(sound-making). This can be due to the object (feature) space or the action space,
and we differentiate between these two in our analyses. (2) The behavior of the
social partner. In these experiments the social partner is another robot, which allows
us to systematically change the behavior of the social partner to explore the effect
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Fig. 5 Comparison of social learning mechanisms for 5(a) different sound-maker object frequen-
cies and 5(b) different sound producing action frequencies. The social partner has the same goal.

this has on the different strategies. The social partner behaviors that we focus on
here are same-goal (where the partner demonstrates sound-making in 60% of its
interactions) and different-goal (sound occurs in only 20% of the interactions).

5.2 Results

We see that each strategy leads to different learning performance in different en-
vironments. When the rareness of the target is due to the object space, then the
mechanisms related to object saliency (stimulus enhancement, emulation, and imi-
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tation) perform best. In Fig. 5(a), the mimicking performances drops off with object
rareness while performance of the other strategies remain high. These three all do
equally well with the same-goal social partner. However, if the partner is demon-
strating other goals, or only one aspect of the goal (either action or object), then
emulation and goal-based imitation outperform stimulus enhancement because they
pay attention to the effects of the partner’s action to ignore demonstrations unrelated
to the target learning goal.

Alternatively, in an environment where only a few specific actions produce the
goal, then action oriented mechanisms (mimicking and imitation) are best (Fig.
5(b)). Again, when the social partner is demonstrating the goal, both do equally
well. Otherwise, imitation is preferred since it pays attention to effects.

Thus, it is not surprising that nature endows humans and animals with a variety
of mechanisms for taking advantage of social partners in the learning process. Our
computational analysis finds that each serve a different purpose, and have benefits
over the others depending on the rareness of the learning goal and the behavior of
the social partner.

6 Conclusion

Our research in Socially Guided Machine Learning aims to understand and compu-
tationally model mechanisms of human social learning in order to build robots that
are natural and intuitive to teach. In this paper we have summarized three recent
projects to this end.

In the first two projects we compare self and social learning and find that the two
are mutually beneficial. This confirms that rather than remain at a static point on
the Guidance-Exploration spectrum, what is desired is a system that dynamically
operates along this range. We want a robot with self and social learning working in
concert, that learns on its own but is able to take advantage of a social partner when
they are present.

Additionally, we have shown the computational benefits of taking advantage of
a social partner in a variety of ways. In the third project we implemented four bio-
logically inspired ways to leverage the social environment. We see benefits of each
strategy depending on the environment.

Perhaps not surprisingly, imitation is robust across all the test environments.
Thus, one might conclude that it is best to only equip a robot learner with the imita-
tion strategy. However, there are a number of reasons that imitation-only is not the
best approach to robot social learning. Imitation is not always possible, for example
when the partner has a different morphology. Additionally, requiring full demon-
strations may be a burden for the teacher. The learner should be able to make use
of full demonstrations when available, but as our results have shown social learn-
ing is more than just demonstrations. In various environmental and social contexts,
simpler mechanisms can provide benefits that are on par with imitation. Using non-
imitative mechanisms in conjunction with imitation learning can let a robot use
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more of the teacher’s input, benefitting from their presence and interactions in the
environment even when they are not actively giving demonstrations.

Taken together these projects argue that robots need a variety of learning strate-
gies, including self and several types of social mechanisms, in order to succeed in
Socially Guided Machine Learning. Our future work is exploring ways to incorpo-
rate all of these mechanisms into a single robot learning framework.
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