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Abstract—We aim to build robots that frame the task learning
problem as goal inference so that they are natural to teach and
meet people’s expectations for a learning partner. The focus
of this work is the scenario of a social robot that learns task
goals from human demonstrations without prior knowledge of
high-level concepts. In the system that we present, these discrete
concepts are grounded from low-level continuous sensor data
through unsupervised learning, and task goals are subsequently
learned on them using Bayesian inference. The grounded concepts
are derived from the structure of the Learning from Demon-
stration (LfD) problem and exhibit degrees of prototypicality.
These concepts can be used to transfer knowledge to future
tasks, resulting in faster learning of those tasks. Using sensor
data taken during demonstrations to our robot from five human
teachers, we show the expressivity of using grounded concepts
when learning new tasks from demonstration. We then show how
the learning curve improves when transferring the knowledge of
grounded concepts to future tasks.

I. INTRODUCTION

Our research focuses on the scenario of a social robot
learning about everyday tasks demonstrated by a human.
Although the robot may be capable of some skills a priori,
such as pick-and-place manipulation, the exact task demands
are ultimately determined by user preferences and the novel
target environment. For example, cleaning a room or putting
away groceries can vary significantly across different homes.
In this situation, the robotics paradigm of Learning from
Demonstration (LfD) allows naive users to convey the desired
task to the robot without any knowledge of programming
[1], [2]. Users are able to teach the robot by demonstrating
examples of the task.

What the robot learns about one task is generally only
applied when performing that specific task. Transferring some
knowledge to a future task could make the new task faster to
teach. To achieve successful transfer, however, the robot must
organize its sensory experiences from the demonstrations into
grounded concepts — not arbitrary partitions of the sensory
space, but ones that are semantically meaningful to the human.
Such grounding has been explored computationally in [3] and
with respect to word learning in [4]. In this paper, the approach
we present does not rely on any linguistic structure but rather
accomplishes such a grounding by leveraging the structure of
the LfD process and the structure of human concepts. In our
evaluation on data collected from naive human subjects, we
show that our system generalizes concepts that improve the
efficiency of learning future tasks. Importantly, we also show
that similar concepts are learned from different demonstrators.

Fig. 1. Simon robot with human demonstrator at the tabletop workspace
used in our experiments.

A. The Structure of Learning from Demonstration

How can the robot learner achieve the correct bias for
grounding concepts when an infinite number of partitions of
the sensory space are available? For one, observations about
the world are not randomly distributed; for example, wings
and the ability to fly frequently occur together (a property
known as correlational structure [5]). But more significantly,
the entire process of Learning from Demonstration offers a
bias: the goal of the task, and the process of achieving it. In [6],
Rosch discusses how levels of abstraction of objects fall out of
their roles in achieving everyday goals. Goals and intentions
form the basis of how humans interpret others’ actions [7],
[8], even in infants as young as nine months old [9], so it
is sensible for a robot to interpret human demonstrations in
terms of goal inference. Specifically in this interpretation, the
robot learner should examine state changes and the resulting
goal states as candidate grounded concepts.

We focus on goal learning rather than action execution in
this paper. Our goal learning approach is compatible with LfD
approaches that focus on trajectory learning [10], [11], action
abstraction [12], [13], or action sequencing [14], [15]. Each of
these levels of learning offers something unique to the robot,
and they will be most powerful when used together.

B. The Structure of Grounded Concepts

One premise of our approach is that a robot’s concept that
is similar in structure to a human’s concept will better match
the human’s expectations in interactions and task executions.



One key characteristic of human concepts is that they ex-
hibit graded structure [16], [17]. That is, human concepts
have a central tendency, and people can identify prototypical
examples as well as examples of higher or lower similarity.
Typical category members are faster for category membership
verification [18] and category member listing [19], and are
also weighted more for induction [20].

There are several reasons that typicality could be important
to a robot learner. The answer to whether the robot correctly
executed the task could be better characterized as “almost” or
“barely”’; for example, a robot could place an object perilously
close to the edge of a table. Another is that typicality could
play a role in the sequence of examples that naive human
users naturally choose to teach to the robot. To capture the
graded structure of human concepts, our approach supports
a continuous representation at the lowest feature level and a
Bayesian framework for learning the goal state.

Another important aspect of human concepts is their hier-
archical nature. The basic level, describing entities such as
“eggs” and “chairs,” has been argued to be the most effi-
cient level for clustering attribute information by maximizing
within-category similarity against between-category similarity
[6]. This stands in contrast with levels that are subordinate
(“scrambled eggs” and “Windsor chairs”) or superordinate
(“food” and “furniture”). At a higher level, a special type
of superordinate category called ad hoc categories describes
groupings like “things to take on a camping trip,” which can
be imposed in the presence of goal contexts [21].

Any of these levels can be elicited during LfD and can be
useful for future tasks. In grounding a concept at a certain
level, the concept could later be construed as a discrete
feature (with an underlying continuous representation) at the
level of the task; for example, the presence or absence of a
grounded “food” concept could be important to the task. By
connecting concepts that share a sensory subspace in the order
of increasing specificity or generality, a hierarchy of concepts
can be constructed within our framework.

II. APPROACH

Although our work is motivated by human concept learning,
our aim is not to create a computational model that attempts to
explain all phenomena discovered by psychology, but rather to
develop a robotics system with an awareness of these issues.

A. System Overview

Our learning system is implemented within the C6 software
framework [22]. In this paper, we describe an extension to the
C6 system in which concepts are grounded by constructing
new percept functions online. The system learns from observed
world state changes. Thus, the sensory-perception pipeline and
state representation are the relevant aspects of the C6 system
to this paper. In short, a world state in our system is a snapshot
of a set of beliefs that exists at a certain time. A belief is a
collection of activated percepts, each of which is a function
of one or more sensory inputs.

Next we formalize these terms. At every time step ¢, the
robot’s sensory system represents a set S(¢) of data from its
various sensory processes, where each s, € S is a vector of
any length. The perception system at time ¢ describes a set
of percepts P(t), where each percept p; € P represents a
tuple structure p;(t) = {fv;(S®)) = vj, fa;(v;) = a;}.
This tuple comprises an m;-dimensional value v; returned
by evaluating a percept-specific value function fy; on the
sensory set, and a match probability a; € [0, 1] returned by
evaluating an activation function f4; on the percept value.
Percept functions can vary significantly in structure, from
simply returning the value from a sensor to being a complex
function of multiple sensor values.

Percepts can also be continuous or discrete in value. Our
system starts with an initial fixed set of continuous base
percepts Pr C P. From P;, a growing set of discrete grounded
percepts P;’ C P is derived through the grounding process
described later. For p; € Py, the value v; is continuous and
the activation a; is equal to 1. For p; € P;’, the value is 1 or
0, and the activation a; is graded.

A belief B(t) is a list of percepts that are activated at time ¢.
The belief system maintains a belief set by integrating these
percepts into discrete object representations using similarity
metrics or tracking mechanisms. A world state W (t) is the
input to the task learner and refers to a snapshot of all beliefs at
t. When analyzing state changes and modeling a task, activated
percepts in these beliefs serve as features for the learner.

There has been debate about whether there is a difference
between perceptual and conceptual categories. They have been
described as contrasting mechanisms of object categorization
in infants [23], but they could also form a single process
that gets enriched over time [24]. Alternatively, conceptual
categories might be learned via a bootstrapping mechanism
starting with perceptual categories [25]. Because our concepts
are created from percepts and operate at the perception system
level, our system is akin to such a bootstrapping mechanism.

B. Goal Learning from Demonstration

Our system learns task goals from human demonstrations.
Goals represent what must hold true about particular objects
(beliefs) to consider the task achieved. In modeling the task
goal, the robot needs to identify what percepts are relevant
for inclusion as beliefs in the task, and what percepts need to
change state to fulfill the goal. We define a set E for potential
expectations, which describe percept changes required to fulfill
the task goal, and a set C' of potential criteria, the necessary
prerequisites percepts for inclusion in the task. Thus, a learned
task is executed by planning actions that fulfill percept expec-
tations on objects that meet the percept criteria.

The start time tg,, and end time tg,, of the nth demon-
stration to the robot are demarcated using a graphical user
interface or speech commands. For goal learning, the robot
observes the world states at tg,, and tg,, to represent the nth
demonstration d,, = {W(ts,), W(tg, )}, and adds d,, to the
demonstration set D. In our LfD setup, objects that changed
during the demonstration are considered noteworthy. In this



paper, we consider demonstrations in which a single object
is moved. First, beliefs and percepts are matched between
W (ts,,) and W (tg,,). The belief that changed, Ba, is found
by identifying percepts that changed in value between ¢ and
ts: [fv;j(S(te,)) — fv;(S(ts,))| > €, where the predeter-
mined constant ¢; is a percept-dependent noise threshold. For
each p; € Ba for which this holds true, p;(tg,) is added to
E. Then all percepts in Ba(ts,) are added to C'.

For each continuous-valued p; € FE, a model Mg; is
constructed using an unsupervised learning method. We use
principal components analysis (PCA) to reason about the
data invariant to the directions selected for the original axes.
So for all continuous-valued m;-dimensional p; € E, the
percept values v;,...v; —in the demonstration set D are
taken to form m; x m matrix M. The covariance matrix of
the mean-subtracted demonstration data is then constructed:
C; = 2 (M; —M;) - (M, — M;)T), on which the eigenvalue
decomposition VjCjV]T = Dj is performed to get eigen-
vectors (components) in the rows of m; X m; matrix V; that
correspond to eigenvalues in the m; X m; diagonal matrix D;.
The same procedure is done for all continuous-valued p; € C.

This transformation of vector data maximizes the variability
along the components, allowing one to reason about the data
invariant to the directions selected for the original axes. For
example, this approach can model variation in object locations
along directions that don’t align with the axes of the robot’s
world coordinate frame. The components in V; corresponding
to the highest eigenvalues in D; indicate directions of higher
freedom, and components that have small eigenvalues indicate
tight constraints in the task. M ; can be interpreted as the most
representative or prototypical example of percept p;.

The task goal is represented by two conjunctive hypotheses,
he and hp. Before any grounding occurs, he is the con-
junction of all models Mc; for all p; € C, and hg is the
conjunction of all models Mg for all p; € E. When executing
a task, beliefs are selected that satisfy hc and actions are
selected to cause percept changes that satisfy hg. Although
the models are continuous, the decision to include a belief
in the task is binary and is determined by thresholding on
the goodness of fit. A value v being tested for fit is first
projected into the model space, yielding new value v’. Assume
the values along the diagonal in D; are ordered, each being an
eigenvalue matching an eigenvector e; from the corresponding
row ¢ in V. The ith entry of v’ is defined as:

vi = (fv;(S(t) — M) - e (1)
The threshold for model membership 7; at dimension ¢ is
defined on the ith standard deviation o; of the reprojected

demonstration data V;IM]‘ and a constant ¢, which we have
empirically set to 2.5:

T =C-0; 2

The binary fit in a criterion model M¢ is determined by:

1 if Vi, vl <,
0 otherwise.

Mo, (v') = { 3)
Such binary values are used for the evaluation of ho and
hg during task execution.

C. Grounding Concepts

The necessity of the binary decision on including a percept
for task execution is the basis of grounding discrete concepts.
These higher-level concepts are grounded from continuous
percepts after a teacher finishes teaching a task. The represen-
tations are then reused for future task learning. For each model
ME ; and each model Mc ; of continuous-valued p; € E,C, a
grounded percept p’ is constructed from p; with a pointer back
to p;. Each grounded percept contains a new value function
fv' and a new match function f,’. The new value function
simply uses Equation 3 to produce a binary value from the
model. The new match function f4’(v’) produces a graded
activation that represents the value’s prototypicality:

“4)

L) = { S-S i Vi <7
0 otherwise.

Each new discrete grounded percept p’ is added to the

derived percept set P;’. When learning occurs in the new

task, any p’ with o’ > 0 is included. The task goal is

still represented by the conjunctive hypotheses heo and hpg.

However, any grounded percept p’ derived from a base percept

p; is exclusive with and preferred over p; based on consistency

with demonstrations. Consistency is defined on the Bayesian

maximum likelihood probability of inclusion of the grounded
percept as expressed by:

P(D1._.|p")P(p)

P(p/|D1...n) = P(Dln)

o a-P(Dy_,|p")P®)

&)

Equation 5 describes the probability that grounded percept
p’ is part of the task, given all of the demonstration data.
P(D;.. nlp') is calculated as the fraction of demonstrations
that are consistent with a hypothesis that includes p’, based
on the percepts activated during each demonstration. When
P(D1. n|p') = 1 for some p’, the condition of maximal
consistency, p’ suppresses the p; from which it was derived
because it can explain D. If there exist multiple p’ derived
from p; that are maximally consistent with the demonstrations,
then this set of p’ forms a version space V. The prior P(p’)
describes any biases about which percepts can be preferred;
for LfD, we prefer more specific concepts, since they are the
most conservative. If the demonstrations cause all grounded
percepts to be removed from V' because none can account for
D, then the fallback p; is used to capture the task structure.
The grounding of p; from this task will then capture a different
aspect of that sensory data than previous groundings. For
example, a concept of “red” grounded from a base color
histogram percept might not be useful in a task that requires




Fig. 2. Objects included books, tea bags, markers, and pill bottles.

Objects

Fig. 3. Output of the vision system used for task demonstrations.

“orange,” so the fallback percept of the color histogram would
be used for the current task, and the concept of “orange” would
then be grounded from the color histogram for future tasks.

III. EXPERIMENT WITH HUMAN TEACHERS

To evaluate our interactive learning approach, we tested
our learner with five human teachers recruited from the
campus community. Each subject was told to provide multiple
demonstrations of five pick-and-place tasks to our upper-torso
humanoid social robot “Simon” (Figure 1). In this particular
experiment, the robot mostly functions as a passive observer
except to structure the interaction with the human teacher
using speech and eye gaze feedback. In other work, we focus
more on the role that embodiment plays in interactive learning.

Each task demonstration involved moving a single object,
and subjects provided eight demonstrations of each task. The
tasks involved arranging various objects or classes of objects
in the robot’s tabletop workspace, analogous in structure to
the scenario of teaching a robot how to tidy up a room. The
tabletop workspace contained a transportable shelf as well as
a variety of objects used in the tasks, including tea bags, pill
bottles, books, and markers (see Figure 2). Prior to each task,
the initial configuration of the workspace was randomized by
an experimenter.

Subjects were asked to teach the following tasks:

o T1: Place markers on the shelf.

o T2: Place green tea bags on the right side of the table.

o T3: Place green tea bags on the shelf.

o T4: Place tea bags on the right side of the table.
o T5: Place objects from the shelf to the left side of the
table.

Our system can be used with a variety of perceptual features,
although the quality of the learned concepts naturally follows
the quality of the features chosen. For this experiment, we
used a number of simple features. Objects were detected
through a fixed overhead camera, segmented using background
subtraction, and localized in robot world coordinates using a
fixed homography from the image plane to the table plane.
The shelf in the workspace was detected and localized using
a small bright-colored marker. The features computed for each
segmented object were: (i) the height and the width of the best-
fitting ellipse; (ii) the number of corners and the area of the
simplified polygon contour of the segmented blob; and (iii)
the hue histogram over the segmented blob. Each object used
in learned tasks is represented by percepts on these low-level
features as well as its location relative to the robot and relative
to the shelf. Thus, | P;| = 7 for this experiment. Figure 3 shows
sample output of the perception system.

The data collected was post-processed to select the object
that changed most significantly in each example, although
this procedure can be performed online. Due to noise and
obstructions, some examples did not contain information. The
resulting data sets included 25, 35, 37, 44, and 40 examples
for T1-T5 respectively.

We used T1 and T2 as sources of continuous data for
grounding discrete concepts. The concepts we hoped to obtain
included representations for “green,” “tea bags,” “on the shelf,”
“right side of the table,” and “left side of the table.” We used
the concepts grounded from T1 and T2 to evaluate if there
was a change in learning speed for tasks T3-T5.

IV. RESULTS

In this section, we show that discrete concepts grounded
from demonstrations of a set of tasks can be used as percepts in
the hypotheses for future tasks. The grounded concepts match
the expressivity of continuous models when the same concept
is important to the task. Their discrete nature also reduces
the minimum number of examples required for learning an
adequate representation.

A. Concepts Grounded

Figure 4 shows visualizations for some of the concepts
grounded from T1 and T2. Figure 4(a) shows concepts
grounded from the location percepts. The gray border in each
diagram shows the extent of the table or shelf, and the colored
squares demarcate locations of objects in the demonstrations.
For each pair of diagrams, the top row shows data from
all demonstrators, and the bottom shows data from a single
demonstrator. The gray region shows the learned concept
model. Even the limited number of demonstrations given by an
individual approximates the target concept almost as well as
the combined data for the more basic-level concepts (“left”,
“right”, “on shelf”), while having a poorer estimate for the
superordinate concept of “anywhere on the table.”
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Fig. 4. Visualizations of demonstration data from T1 and T2. (a) Grounded
location concepts. Colored squares show object locations from the demon-
strations. For each pair of diagrams, the top row shows data from all
demonstrators, and the bottom row shows data from a single demonstrator. The
filled gray region demonstrates the concept learned. (b) Grounded concepts
for number of corners, width, and height. Tea bags are squarish, and markers
are long and thin, which is reflected in these models. (c) Grounded concepts
for color. The color histogram for “any color” is much more varied than for
the model of “green.”

Figure 4(b) shows concepts derived from several other base
percepts. The number of corners detected is tightly centered
at 4 for the rectangular tea bags, but varies more for the
cylindrical markers. The width and height models for tea bags
are similar because of the relatively square proportions, but the
markers have high variance since the width model is affected
by orientation and perspective. The color histogram for “any
color” is much more varied than for the model of “green”
(Figure 4(c)).

The “left of table” concept was an interesting side effect
that occurred in T2, in which green tea bags needed to go
to the right side of the table. In order to show this, the
human demonstrators selected green tea bags that were well
on the left side of the table; none of the starting points were
on the right side because those green tea bags were already
fulfilling the necessary expectations. This bias from human
teachers heightened the contrast for demonstrating the goal
state, allowing the “left side of the table” concept to emerge

TABLE I
COVERAGE WITH AND WITHOUT GROUNDED CONCEPTS

Continuous Percepts | Grounded Concepts
T1 88.00% -
T2 85.71% —
T3 83.78% 86.49%
T4 75.00% 77.27%
TS 72.50% 75.00%

as a criterion of T2 in addition to the “right side of the table”
expectation that was the stated instruction to the subjects. This
grounded T2 criterion could then be leveraged in learning TS.

B. Goals Learned

Next we characterize how well concepts grounded from T1
and T2 could be transferred to the new tasks T3-T5 that relied
on the same underlying concepts. Note that although the tasks
in this experiment were designed for transfer, the question
that we pose here is whether or not demonstrations from
naive humans can generate grounded concepts that transfer
to subsequent learning tasks.

Table I shows how well the goal learned actually fit the
data with respect to matching both hc and hg in the goal
representation. The “Continuous Percepts” column shows the
percentage of data points that are accounted for by the
continuous models using the threshold specified in Equation 2
as a cutoff, from only unsupervised learning. The “Grounded
Concepts” column shows the percentage of data points that
are accounted for using the highest-ranked grounded concepts
in V for all p’ derived from T1 and T2.

For tasks T3-TS5, the fit percentages are roughly comparable
between learning using only continuous models and learning
using grounded concepts. This indicates that the discrete repre-
sentation using grounded concepts does not result in an overall
loss of expressivity for the hypothesis space, as would usually
occur from discretizing continuous spaces. This suggests that
our approach produces a meaningful discretization.

Of course, if the coverage between two representations is
comparable, there is no benefit to be seen from either over the
other in terms of how well they capture task goals. The actual
reason for performing the discretization of concepts from the
continuous sensor data is for the speed of learning future tasks,
which we discuss in the next section.

C. Effect of Grounding New Features While Learning

Figure 5 shows the effect of grounding on the learning
curve for task T5. The x-axis is the number of examples
demonstrated, and the y-axis is coverage of all data for TS.
The red dotted line indicates progress over number of samples
using only continuous models, and the blue solid line indicates
progress over number of samples using concepts grounded
from T1 and T2.

The chart in the upper left shows the curve over all
teachers’ demonstrations, and the other charts show progress
for individual teachers. Progress is achieved more quickly
using grounding, making it a useful way to gain efficiency in
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Fig. 5. Learning curve for combined data (top left) and three sample

individual teachers on the transfer task T5. The x-axis is the demonstration
number n, and the y-axis is the coverage. The coverage of the combined
data is the average across 20 random orderings. The dashed line shows
learning without grounded concepts, and the solid line shows learning using
grounded concepts. In the combined data, the two approaches converged after
approximately 17 examples (out of a total of 40).

teaching and learning. This is especially visible in the smaller
sample sizes for individual teachers. This result makes sense
when the discretization matches ground truth. For example, the
shelf is a rectangular object, so the concept of “on the shelf”
requires a minimum of four data points in order to form an
accurate model. However, matching a previously grounded “on
the shelf” concept only requires a single data point that fits
inside the learned model.

The grounded goal for TS included concepts like “on the
shelf” and “left side of the table.” However, not all of the
grounded features are necessarily interesting or important. In
fact, some of them are so varied that they can basically be
described as “anywhere on the table” or “any color,” which are
concepts that get matched too easily. Because this presents a
scaling issue, an important direction for future work is pruning
concepts that don’t have valuable meaning. One method is to
consider the relationship between the variance of the data and
the limits of the feature values. Another way could be through
active learning, as we have previously explored in [26].

V. CONCLUSION

We present a robot goal learning system that can ground
discrete concepts from continuous perceptual data using unsu-
pervised learning. The higher-level grounded concepts enable
our robot Simon to represent and reason about new tasks more
quickly. Using data collected from five human demonstrators,
we show that this system and representation are appropriate
when learning from demonstrations provided by human teach-
ers who are non-experts in robotics. We also show that the
ability to ground concepts results in increased efficiency when
transferring this knowledge to learning future tasks.
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