
Mixed-Initiative Active Learning

Maya Cakmak and Andrea L. Thomaz {maya,athomaz}@cc.gatech.edu

School of Interactive Computing, Georgia Institute of Technology, 801 Atlantic Dr., Atlanta, GA 30318, USA

Abstract

We propose a learning paradigm in which the
responsibility of choosing samples is shared
between the teacher and the learner. We
present an experiment that demonstrates the
potential of this approach with human teach-
ers and discuss interesting related research
problems.

1. Introduction.

A range of Machine Learning (ML) applications in-
volve learning from data provided by a human teacher
(e.g. document/image classification, recommender sys-
tems, programming by demonstration). Improving the
sample efficiency of learning algorithms is particularly
important in these applications, as providing data can
be a cumbersome task for the human. Active Learn-
ing (AL) has proven useful towards this objective. Al-
though theoretical results supporting the benefits of
AL have been limited (Castro & Nowak, 2006; Bal-
can et al., 2010), many papers published over that
last decade have demonstrated the practical strength
of AL with human oracles (Settles, 2010). A number
of directions have been explored with the purpose of
improving techniques within the AL paradigm; how-
ever, one question that has not been asked frequently
is “Can we do better than AL?”

The indication that we can do so comes from the field
of Algorithmic Teaching (Balbach & Zeugmann, 2009;
Goldman & Kearns, 1995) which studies the teacha-
bility of concepts. The teaching problem, unlike the
learning problem, involves producing a sequence of ex-
amples from a known target concept such that the
concept can be learned by a learner. Finding an opti-
mal teaching sequence for an arbitrary concept is NP-
hard (by reduction to the minimum cover set prob-
lem (Goldman & Kearns, 1995)) however efficient al-
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gorithms have been proposed for particular concept
classes. An important insight is that an active learner
can never learn faster than when a passive learner is
taught optimally (Goldman & Kearns, 1995; Angluin,
2004). In other words, teachability indicates an upper
bound on how fast a concept can be learned. Thus we
believe that the key for going beyond AL will be in
“good teaching.” To this end, we hope to exploit the
flexibility and intelligence of human teachers.

We propose a learning paradigm in which the respon-
sibility of choosing examples is shared between the
teacher and the learner – Mixed-Initiative AL (MIAL).
MIAL stands between passive supervised learning,
where all learning examples are chosen by the teacher
and AL where all examples are chosen by the learner
and labeled by the teacher. In this setup, the learner
receives an example even when it does not make a
query. Therefore it needs to decide when to make a
query, besides what query to make.

In this paper, we first give a few illustrative examples
of good teaching outperforming AL. We then overview
our previous work on human teaching which motivates
a mixed-initiative approach and present a follow-up
study that demonstrates the strength of MIAL.

2. Good Teaching

In this section we discuss the potential of “good teach-
ing” in different problem settings.

2.1. Optimal Teaching

Quantifying the teachability of concepts is a central
problem in Algorithmic Teaching. A number of teach-
ability metrics have been proposed (Natarajan, 1989;
Anthony et al., 1995; Balbach, 2008), the most popular
being the Teaching Dimension (Goldman & Kearns,
1995). This is the smallest number of examples needed
to uniquely identify any concept in a concept class.
The shortest sequence of examples that uniquely iden-
tifies a concept is referred to as an optimal teaching
sequence. A major concern is finding polynomial-time
algorithms that produce an optimal teaching sequence
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for any concept in a concept class. Such algorithms
exist for certain concept classes such as conjunctions,
monotone decision lists and monotone K-term DNFs.

To illustrate the strength of optimal teaching we con-
sider the concept class of conjunctions for which the
teaching dimension is identified as

TD(Cn) = min(r + 2, n+ 1) (1)

where r is the number of relevant features (i.e. num-
ber of variables in the conjunction) and n is the total
number of features (Goldman & Kearns, 1995). The
sample complexity of this concept class in the PAC-
Learning model is characterized by the inequality

1
ε

(n ln 3 + ln(1/δ)) ≤ m (2)

which says that the number of examples m to teach
a conjunction on n variables to a consistent learner
such that its error is bounded by ε, with probability δ,
is at least the number specified by the left hand side
of the inequality (Mitchell, 1997). For instance, the
number of required examples is 96 for a desired 0.95
probability that a hypothesis with at most 0.10 error
will be learned for conjunctions with n = 6. On the
other hand, the optimal teaching algorithm guaran-
tees to teach any conjunction (in a sample space with
6 features) with at most 7 examples. From a human
teacher’s perspective, this can be a significant differ-
ence.

The number of examples required by a learner to
uniquely identify any concept in a concept class C with
membership queries is characterized by the inequality

log2 |C| ≤ #MQ(C) ≤ |X| (3)

where X denotes the instance space (Angluin, 2004).
For conjunctions over n binary features, |X| = 2n and
|C| = 3n, since a feature can either be irrelevant or
have one of the binary values in a hypothesis. For
example, for n = 6 the number of membership queries
to learn any concept is between 10 and 64. In this
setting, the lower bound on samples to be labeled by a
human teacher is reasonable and close to the optimal
value. However the range is large and this number
can become unreasonable for a human as it gets closer
to the upper bound. Thus, optimal teaching can also
significantly reduce the number of examples to learn a
concept, as compared to AL.

Note that a crucial assumption in this example is that
there exists an efficient algorithm that achieves opti-
mal teaching. As we will discuss in Sec. 3, our goal is
to use these algorithms as teaching guidance for hu-
mans in order to make them better teachers for ma-
chine learning algorithms.

learning. But sometimes ρ is a constant, and in such instances active learning gives an
exponential improvement in the number of labels needed.

We look at various hypothesis classes and derive splitting indices for target hypotheses
at different levels of accuracy. For homogeneous linear separators and the uniform input
distribution, we easily find ρ to be a constant – perhaps the most direct proof yet of the
efficacy of active learning in this case. Most proofs have been omitted for want of space;
the full details, along with more examples, can be found at [5].

2 Sample complexity bounds

2.1 Motivating examples

Linear separators in R1

Our first example is taken from [3, 4]. Suppose the data lie on the real line, and the classi-
fiers are simple thresholding functions,H = {hw : w ∈ R}:

hw(x) =
{

1 if x ≥ w
0 if x < w

+ + + +− − −−−−−
w

VC theory tells us that if the underlying distribution P is separable (can be classified per-
fectly by some hypothesis in H), then in order to achieve an error rate less than ε, it is
enough to drawm = O(1/ε) random labeled examples from P, and to return any classifier
consistent with them. But suppose we instead draw m unlabeled samples from P. If we
lay these points down on the line, their hidden labels are a sequence of 0’s followed by a
sequence of 1’s, and the goal is to discover the point w at which the transition occurs. This
can be done with a binary search which asks for just log m = O(log 1/ε) labels. Thus, in
this case active learning gives an exponential improvement in the number of labels needed.

Can we always achieve a label complexity proportional to log 1/ε rather than 1/ε? A
natural next step is to consider linear separators in two dimensions.

Linear separators in R2

LetH be the hypothesis class of linear separators in R2, and suppose the input distribution
P is some density supported on the perimeter of the unit circle. It turns out that the positive
results of the one-dimensional case do not generalize: there are some target hypotheses in
H for which Ω(1/ε) labels are needed to find a classifier with error rate less than ε, no
matter what active learning scheme is used.

To see this, consider the following possible target hypotheses (Figure 1, left): h0, for which
all points are positive; and hi (1 ≤ i ≤ 1/ε), for which all points are positive except for a
small slice Bi of probability mass ε.

The slices Bi are explicitly chosen to be disjoint, with the result that Ω(1/ε) labels are
needed to distinguish between these hypotheses. For instance, suppose nature chooses a
target hypothesis at random from among the hi, 1 ≤ i ≤ 1/ε. Then, to identify this target
with probability at least 1/2, it is necessary to query points in at least (about) half the Bi’s.

Thus for these particular target hypotheses, active learning offers no improvement in sam-
ple complexity. What about other target hypotheses in H, for instance those in which the
positive and negative regions are most evenly balanced? Consider the following active
learning scheme:
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Abstract

We propose to use concepts from algorithmic teaching to measure and improve hu-
man teaching for machine learners. We first investigate input examples produced
by human teachers in comparison to optimal or useful teaching sequences, and find
that human teachers do not naturally generate the best learning examples. Then
we provide humans with teaching guidance in the form of step-by-step teaching
strategy or a generic teaching heuristic, to elicit better teaching. We present results
for both experiments on three different problems, showing that everyday human
teachers are not naturally optimal from a machine learning perspective, but teach-
ing guidance significantly improves their input. This provides promising evidence
that human intelligence and flexibility can be leveraged to achieve better sample
efficiency when input data to a learning algorithm comes from a human teacher.

1 Introduction

A diverse set of Machine Learning (ML) applications (e.g. document classification, user preference
modeling, robot programming by demonstration) take input data directly from a human who is not
a ML expert. In these applications it is essential that ML algorithms require a minimal amount of
data, as providing it can be a cumbersome process for the human. To this end, ML research has
produced a range of methods that adapt conventional learners to improve their sample efficiency in
learning (e.g. Active Learning or Semi-supervised Learning). The main idea that we explore in this
paper is to try to improve the teacher rather than the learner in trying to achieve this objective.

cw(x)

Having a helpful teacher can significantly improve the learning rate of a ML algorithm. Evidence
supporting this comes from the field of Algorithmic Teaching [?, ?, 4]. This field of ML studies the
teaching problem which, unlike the learning problem, involves producing a set of labeled examples
based on a known target concept. A lot of effort is devoted to finding efficient algorithms that can
teach with as few examples as possible.

To illustrate the potential of good teaching we consider the following canonical example from [?].
The learning problem is to find a linear separator on a line from observed examples. A simple
consistent learner achieves this by placing the threshold between the rightmost negative example
and the leftmost positive example. In this setting an active learner achieves logarithmic advantage
over random sampling, by always querying the unlabeled sample closest to the estimated boundary.
However, we can easily see that a good teacher could directly provide the two examples closest to
the true decision boundary, to achieve the smallest possible error rate.

hw(x) =
�

1 if x ≥ w
0 if x < w

+ + + +− − −−−−−
w

Related work, Zhu et. al, Tennenbaum et. al, relate somehow...
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sequence of 1’s, and the goal is to discover the point w at which the transition occurs. This
can be done with a binary search which asks for just log m = O(log 1/ε) labels. Thus, in
this case active learning gives an exponential improvement in the number of labels needed.

Can we always achieve a label complexity proportional to log 1/ε rather than 1/ε? A
natural next step is to consider linear separators in two dimensions.

Linear separators in R2

LetH be the hypothesis class of linear separators in R2, and suppose the input distribution
P is some density supported on the perimeter of the unit circle. It turns out that the positive
results of the one-dimensional case do not generalize: there are some target hypotheses in
H for which Ω(1/ε) labels are needed to find a classifier with error rate less than ε, no
matter what active learning scheme is used.

To see this, consider the following possible target hypotheses (Figure 1, left): h0, for which
all points are positive; and hi (1 ≤ i ≤ 1/ε), for which all points are positive except for a
small slice Bi of probability mass ε.

The slices Bi are explicitly chosen to be disjoint, with the result that Ω(1/ε) labels are
needed to distinguish between these hypotheses. For instance, suppose nature chooses a
target hypothesis at random from among the hi, 1 ≤ i ≤ 1/ε. Then, to identify this target
with probability at least 1/2, it is necessary to query points in at least (about) half the Bi’s.

Thus for these particular target hypotheses, active learning offers no improvement in sam-
ple complexity. What about other target hypotheses in H, for instance those in which the
positive and negative regions are most evenly balanced? Consider the following active
learning scheme:
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strategy or a generic teaching heuristic, to elicit better teaching. We present results
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supporting this comes from the field of Algorithmic Teaching [?, ?, 4]. This field of ML studies the
teaching problem which, unlike the learning problem, involves producing a set of labeled examples
based on a known target concept. A lot of effort is devoted to finding efficient algorithms that can
teach with as few examples as possible.

To illustrate the potential of good teaching we consider the following canonical example from [?].
The learning problem is to find a linear separator on a line from observed examples. A simple
consistent learner achieves this by placing the threshold between the rightmost negative example
and the leftmost positive example. In this setting an active learner achieves logarithmic advantage
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target hypothesis at random from among the hi, 1 ≤ i ≤ 1/ε. Then, to identify this target
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Figure 1. An example of empirically optimal teaching out-
performing Active Learning: finding a decision boundary
in R1 (Dasgupta, 2006).

2.2. Empirically Optimal Teaching

In some cases no optimal teaching algorithms exist
(e.g. infinite concept classes and continuous instance
spaces). For these cases we consider limiting the teach-
ing problem to choosing examples from a finite set
drawn from the instance space. This is a realistic set-
ting often employed for studying AL algorithms.

As a simple example for this setting, consider learning
a decision boundary in R1 illustrated in Figure 1. This
is commonly cited as a case where AL provides loga-
rithmic advantage over random sampling (Dasgupta,
2006). We can easily see that a good teacher can
directly provide the examples closest to the decision
boundary to achieve the smallest possible error on the
rest of the data set. We refer to this as empirically op-
timal teaching. In general empirically optimal teaching
requires enumerating all possible subsets of the data.
However in some cases, such as in this example, the op-
timal teaching set can directly be identified by going
over all examples once. This is achieved by exploit-
ing the known structure of the sample and hypothesis
spaces. Human teachers can also exploit such struc-
ture when they are teaching. Note that the visualiza-
tion of data in this example makes teaching even easier
for humans (i.e. in comparison to having an unsorted
list of real numbers).

2.3. Heuristic Teaching

In practice finding such structure and visualizations is
not trivial and empirically optimal teaching in polyno-
mial time might not be possible. Nevertheless, teach-
ing algorithms that outperform AL might exist. To
discuss this scenario, we recreate the example in (Set-
tles, 2010) that illustrates the advantage of AL over
random sampling. It involves the classification of
emails between two newsgroups from the 20 News-
groups dataset, using logistic regression. The features
are counts of words in the email. Figure 2 shows learn-
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Figure 2. Progress of accuracy over the number of exam-
ples provided to the learner, averaged over 5-folds using
cross-validation, in the 2-class classification of emails be-
tween two newsgroups using Logistic regression.

ing curves for random and uncertainty sampling, as
well as for a learner trained by a greedy teacher that
always presents the example that provides the most
improvement in classifying the rest of the data set.
While this algorithm might be unrealistic for humans
to use, the result shows the existence of a dataset bet-
ter than the one produced with AL. We hypothesize
that these data sets can be captured by human teach-
ers using teaching heuristics. Such heuristics might
also allow good teaching in problems where the input
set is not finite (i.e. the teacher both instantiates and
labels an example for the learner, rather than pick-
ing an example from a finite set). We believe that
good teaching heuristics can be derived from intuition
based on the properties of the state space and the con-
cept class. Another option is to inspect good teaching
sets (e.g. the set that outperforms AL in Figure 2) to
characterize properties of good teaching examples at a
higher level.

3. Optimality of Human Teaching

The examples in the previous section demonstrate the
potential of “good teaching.” As mentioned earlier,
our motivation in analyzing optimal teaching algo-
rithms and algorithmic teaching heuristics is in deriv-
ing teaching strategies and heuristics that are usable
by humans. We refer to this as teaching guidance. In
this section we overview an experiment from our pre-
vious work (Cakmak & Thomaz, 2010) that explores
the idea of teaching guidance for humans.

Our experiment involves the teaching problem dis-
cussed in Sec. 2.1. An optimal teaching sequence that
satisfies the lower bound in Equation 1 is produced by
the following algorithm (Goldman & Kearns, 1995):

(1) First show one positive example.
(2) Then show another positive example in which all
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Figure 3. An optimal teaching sequence for the conjunction
concept HOUSE.

n − r irrelevant features are changed to the opposite
value. This demonstrates that the features changed
between the first two examples are irrelevant.
(3) Next, show negative examples that differ from
a positive example by only one feature. This is
repeated for each of the r relevant features. Since
only one feature is different from what is known to
be a positive example, these negative examples prove
that the changed feature is a relevant one.

Our experiment looked at teaching conjunctions to a
virtual agent. The sample space with n = 6 consists
of objects composed of two pieces (top and bottom)
where each piece is specified by three features (shape,
color and size). An example concept with r = 3 is
HOUSE which is defined as an object that has a pink
triangle top and a square bottom piece, while other
features do not matter. An optimal teaching sequence
for this concept, which consists of 5 examples, is shown
on Figure 3.

Our experiment compared natural human teaching
with guided human teaching. In the natural teaching
condition the subjects are not given any explicit in-
struction on how to teach while in the guided teaching
condition they are asked to follow the optimal teach-
ing algorithm. The algorithm is described using lay
terms. Our main findings from this experiment were:

• Natural human teaching is much better than ran-
dom, but not spontaneously optimal.

• Teaching guidance significantly improves human
teaching, however does not make them optimal.

We observed that the improvement in the guided
teaching condition was mainly due to step (2) in the
described algorithm. Step (1) was already carried out
during natural teaching (i.e. most human teachers nat-
urally start with a positive example). Step (3), on the
other hand, was not as intuitive for our subjects. Most
subjects could not keep track of which features they
had already varied, and either stopped early without
uniquely identifying the target or defaulted to test-
ing the learner until they found an example for which
the learner was uncertain about. While this outcome
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points out the importance of the usability of teach-
ing guidance, it also motivates a mixed-initiative ap-
proach.

4. Mixed-initiative Active Learning

In the experiment described above, the part of the
teaching algorithm that humans were not good at, can
actually be replaced with AL without loosing optimal-
ity. In other words, if the learner was to make a query
after the first two examples in the sequence given in
Figure 3, it would choose the same (or equivalent) sam-
ples as in the rest of the sequence. The part of the al-
gorithm that humans were good at following happens
to be the part that gives the advantage to the teacher
in teaching efficiently. This step involves changing ir-
relevant features all at once. Having the knowledge of
what these features are, the teacher can easily perform
this step. An active learner, on the other hand, cannot
risk to change more than one feature at a time, since if
the resulting example is negative, it cannot infer which
feature(s) were relevant.

This points towards an ideal division of labor between
the teacher and the learner: the teacher should follow
the steps (1) and (2) of the algorithm and then the
learner should make queries. In this way, the work-
load of the teacher is reduced to providing two care-
fully chosen examples and then responding to queries,
while the optimal number of examples to be labelled
is maintained.

We explored this idea in a follow-up experiment where
the learner has the capability to make queries. The
queries are triggered by the teacher, i.e. the learner
only makes a query when the teachers presses an “Any
questions?” button. The experiment had two groups:
the active learning group was told to use queries as
they want, and the mixed-initiative group was given
the first two steps of the teaching algorithm and was
told to trigger and answer queries after that.

The results from this experiment demonstrate that the
mixed-initiative approach can achieve close to optimal
teaching. We observed that all subjects in the mixed-
initiative condition fully identified the target concept,
because they kept triggering queries until the learner
converged to the correct hypothesis and did not have
any more queries. In addition the length of the teach-
ing sequences provided in this condition were optimal
or close to optimal. As in the previous experiment, op-
timal teaching did not spontaneously emerge in the ac-
tive learning condition with teacher-triggered queries.

We compare the different teaching conditions from
both experiments in Figure 4 in terms of average infor-
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Figure 4. Average informativeness of examples provided
by human teachers in four conditions in our experiments:
Natural teaching, Guided teaching, Active learning with
teacher-triggered queries, Mixed-Initiative teaching. The
experiments involved 10 subjects in each condition.

mativeness of examples across subjects. We define the
informativeness of an example as the ratio of the max-
imum accuracy gain provided by any example in the
current state of the learner to the gain provided by this
example. Thus, the informativeness of all examples in
the optimal teaching sequence is 1 and the informa-
tiveness of a redundant example is 0. We see that the
average informativeness in the mixed-initiative condi-
tion is close to 1 and is significantly higher than the
other conditions.

5. Discussion

The mixed-initiative approach can be applied to other
concept classes for which optimal teaching algorithms
exist. This requires (i) identifying parts of an opti-
mal teaching sequence that are obtainable with active
learning, and (ii) describing the rest of the algorithm
in a human-friendly manner and verifying its usabil-
ity. Whether other concept classes will exhibit the nice
property that led to the success of the mixed-initiative
approach in our experiment is an interesting question
that we would like to address in future work.

As discussed in Sec. 2, more complex scenarios re-
quire intuitive teaching heuristics, as opposed to exact
teaching strategies. A potential MIAL setting with
heuristics, consists of the human teacher providing a
seeding set and the learner making queries in the rest.
In most practical applications of AL the learner is
seeded with a random set of examples from each class,
which gives the learner a good place to start. However
a large variance can be observed in the performance of
the learner depending on the seeding set. Thus we can
aim to device heuristics that let humans pick a good
seeding set, such that the performance of the active
learner is close to the upper bound of this variance.

We emphasize the potential of this idea with the ex-
ample from Sec. 2.1 which theoretically identified the
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number of membership queries to learn any conjunc-
tion with n = 6 to be varied between 10 and 64. This
number is reduced to a guaranteed 6 queries if the
learner starts with a positive example. Given a posi-
tive example, an active learner can just query exam-
ples that differ from this example by only one feature
to find out whether the feature is relevant or not. The
learner converges to the target concept after repeat-
ing this for all n features. Thus having a good place
to start in AL can make a big difference. Arguably,
the practical success of many AL algorithms, is rooted
in the common practice of seeding the learner with a
random set of examples from each class.

In our experiment we skipped the problem of deciding
when to make query (from the learner’s perspective)
in the mixed-initiative setting, by having the teacher
trigger the queries. Leaving this decision to the learner
raises other interesting problems, such as whether op-
timality can be guaranteed, the necessary and suffi-
cient conditions to guarantee optimality, or the nec-
essary and sufficient conditions to guarantee perfor-
mance better than or equivalent to pure AL.

We note that even in cases where MIAL does not
improve upon pure AL, the MI setting can provide
a more balanced, possibly preferable user experience
for the teacher which can be crucial in certain do-
mains (Horvitz, 1999). In a different experiment (Cak-
mak et al., 2010), we demonstrated that MIAL with-
out any guidance provides the same performance gain
as pure AL, however is preferred from an interaction
point of view. The constant stream of queries in pure
AL is often found to be annoying and negatively af-
fects the teacher’s mental model of what has been
learned. In addition, teacher-triggered queries are pre-
ferred over learner-initiated as they give full control of
the interaction to the teacher.

References

Angluin, D. Queries revisited. Theoretical Computer
Science, 313:175–194, 2004.

Anthony, M., Brightwell, G., and Shawe-Taylor, J. On
specifying boolean functions by labelled examples.
Discrete Applied Mathematics, 61(1):1–25, 1995.

Balbach, F.J. Measuring teachability using variants
of the teaching dimension. Theoretical Computer
Science, 397(1–3):94–113, 2008.

Balbach, F.J. and Zeugmann, T. Recent developments
in algorithmic teaching. In 3rd Intl. Conference on
Language and Automata Theory and Applications,
pp. 1–18, 2009.

Balcan, M.F., Hanneke, S., and Vaughan, J. The
true sample complexity of active learning. Machine
Learning, 80:111–139, 2010.

Cakmak, M. and Thomaz, A.L. Optimality of human
teachers for robot learners. In Proceedings of the
IEEE International Conference on Development and
Learning (ICDL), 2010.

Cakmak, M., Chao, C., and Thomaz, A.L. Designing
interactions for robot active learners. IEEE Trans-
actions on Autonomous Mental Development, 2(2):
108–118, 2010.

Castro, R. M. and Nowak, R. D. Upper and lower er-
ror bounds for active learning. In The 44th Annual
Conference on Communication, Control and Com-
puting, 2006.

Dasgupta, S. Coarse sample complexity bounds for ac-
tive learning. In In Proceedings of the NIPS Work-
shop on Cost-Sensitive Learning, 2006.

Goldman, S.A. and Kearns, M.J. On the complexity
of teaching. Computer and System Sciences, 50(1):
20–31, February 1995.

Horvitz, E. Principles of mixed-initiative user inter-
faces. In SIGCHI Conference on Human Factors in
Computing Systems, pp. 159–166, 1999.

Mitchell, Tom M. Machine Learning. McGraw-Hill,
1997.

Natarajan, B.K. On learning boolean functions. In
19th Annual ACM Symp. on Theory of Computing,
pp. 296–304, 1989.

Settles, Burr. Active learning literature survey. Com-
puter Sciences Technical Report 1648, University of
Wisconsin–Madison, 2010.


