NAME
cxGeoTransparencyAdd
- add transparency to the current geometry object
C SPECIFICATION
#include <cx/Geometry.h>
enum cxGeoBindingLevel
{
CX_GEO_PER_DEFAULT,
CX_GEO_PER_OBJECT,
CX_GEO_PER_PART,
CX_GEO_PER_FACE,
CX_GEO_PER_FACE_INDEXED,
CX_GEO_PER_VERTEX,
CX_GEO_PER_VERTEX_INDEXED
};
void cxGeoTransparencyAdd( int n, float *transparency,
cxGeoBindingLevel per)
FORTRAN SPECIFICATION
integer CX_GEO_PER_DEFAULT
integer CX_GEO_PER_OBJECT
integer CX_GEO_PER_PART
integer CX_GEO_PER_FACE
integer CX_GEO_PER_FACE_INDEXED
integer CX_GEO_PER_VERTEX
integer CX_GEO_PER_VERTEX_INDEXED
parameter (CX_GEO_PER_DEFAULT = 0)
parameter (CX_GEO_PER_OBJECT = 1)
parameter (CX_GEO_PER_PART = 2)
parameter (CX_GEO_PER_FACE = 3)
parameter (CX_GEO_PER_FACE_INDEXED = 4)
parameter (CX_GEO_PER_VERTEX = 5)
parameter (CX_GEO_PER_VERTEX_INDEXED = 6)
subroutine cxGeoTransparencyAdd(n,transparency,per)
integer n
real transparency(*)
integer per
PARAMETERS
-
n
-
Number of scalar transparency values.
-
transparency
-
An array of scalar transparencies.
-
per
-
A flag indicating how transparencies are to be applied.
DESCRIPTION
This function adds transparencies to the current point set, line set, polygon
set, triangle mesh set, sphere set, cylinder set, or grid.
The current object is the primitive or pushed transform most recently
defined, or it may be explicitly set with cxGeoFocus(3E).
Transparency may be applied in different ways, depending on the setting of the
per flag:
-
CX_GEO_PER_OBJECT
-
a single attribute is used over the entire
object
-
CX_GEO_PER_FACE
-
a different attribute is applied on each
face (valid for polygons, triangles, and
grids)
-
CX_GEO_PER_VERTEX
-
a different attribute is applied per vertex
(valid for points, lines, polygons, triangles,
and grids)
-
CX_GEO_PER_VERTEX_INDEXED
-
a different attribute is applied on each
reference to a vertex (valid for lines,
polygons, and triangles)
A transparency is a scalar value in the range [0..1]. A transparency of
0 corresponds to fully opaque.
SEE ALSO
cxGeoFocus(3E)
Last modified: Mon Nov 18 13:49:28 GMT 1996
[ Documentation Home ]
© The Numerical Algorithms Group Ltd, Oxford UK. 1996