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  Abstract

An important part of understanding a program is
obtaining a representation of its architecture. One way of
viewing architectures is in terms of their components and
connectors. While static program analysis is useful for
extracting components from a program’s source code,
connectors are more problematic. This paper describes a
tool we have developed and an another we have adapted
in order to support an analyst in visualizing, abstracting,
and inferring architectural connectors in programs.
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1. Motivation

Most software development takes the form of
enhancements to existing programs. Consequently, under-
standing existing programs is a central activity to most
software developers. Program understanding takes many
forms from the reading of individual program statements
in order to fix a bug to viewing the overall system structure
in terms of its major pieces. The latter activity is con-
cerned with understanding a system’s software architec-
ture.

Two aspects of software architecture are central to
program understanding—components and connectors.
“Components are the loci of computation and state” [14].
As such, they correspond to discernible units in the pro-
gram text, such as statements or functions or object
classes. This enables tools to extract a description of a pro-
gram’s components by using static program analysis
(examination of a program’s source code).

“Connectors are the loci of relations among compo-
nents. They mediate interaction but are not things to be
hooked up (rather, they do the hooking up)” [14]. This
suggests that static analysis may be limited in its effective-
ness in extracting connectors. Instead, we propose to use

dynamic analysis (examination of actual program execu-
tions) to extract architectural connectors.

An event trace is a form of dynamic data that com-
prises a log of program activities. Such activities are
generically called events, and they may be visualized
using event trace diagrams [13] (also called message
sequence diagrams, temporal message flow diagrams [5],
or interaction diagrams). An example of an event trace dia-
gram is shown in Figure 1.

An event trace diagram consists of a series of vertical
columns, each corresponding to a system component, and
horizontal lines connecting two or more columns. Each
line denotes an event that took place among the compo-
nents in the associated columns. In Figure 1, each event
corresponds to a function call or return from the compo-
nent at the end of the line containing the white dot to the
component at the other end of the line. Events are time-
ordered with events at the bottom of the diagram occurring
after events at the top.

Because connectors “mediate interaction” and event
trace diagrams depict a class of interaction, it is appealing
to consider trying to extract meaningful interactions from
the diagrams. In particular, we will identify connectors
with interaction patterns [9], denotations of recurring
interactions, and try to detect interaction patterns in the
event trace that correspond to connectors meaningful at
the software architecture level.

2. Approach

We have used three techniques in our exploration of
this problem: visualization, abstraction, and inference.
Event logs contain high volumes of data; even small pro-
grams can generate hundreds of thousands of events. Con-
sequently exploring this data is essential to detecting
interesting interaction patterns. We have developed a novel
software visualization technique—the Information Mural
[9]—to support this activity. The Mural enables an analyst
to view the entire program execution history at once,
searching for recurring patterns that may correspond to
meaningful interactions among components. An Informa-
tion Mural can be seen along the right edge of the event



trace diagram in Figure 1. Information Murals are
described in more detail in Section 3.

Once the event log can be effectively visualized, the
analyst is able to construct higher-level models of it. The
ISVis (Interaction Scenario Visualizer) tool has be devel-
oped to support this process [9]. ISVis aids an analyst in
constructing abstractions of both components and connec-
tors. ISVis is described in more detail in Section 4.

ISVis is capable of detecting repeated occurrences of
simple interaction sequences. However, interesting system
behavior is manifested by more complex inter-component
interactions. Consequently, we would like to be able to
infer more complex patterns. To this end, we have con-
nected ISVis to the Balboa tool-set developed at the Uni-
versity of Colorado [6]. Balboa supports grammatical
inference, the construction of a grammar that explains a
stream of events taking place among system components
[4][11]. The grammars produced by Balboa serve as a
description for the behavior of connectors between those
components. Grammatical inference and Balboa are
described in more detail in Section 5.

3. The Information Mural

The Information Mural technique allows two-dimen-
sional visual representations of large information spaces to
be created even when the number of informational ele-
ments greatly outnumbers the available pixels. Current
methods for depicting such large information spaces typi-
cally utilize abstraction, over-plotting, or sampling to cre-
ate a view of the entire space. Alternatively, scrollbars are
used to allow access to different parts of the information.
All of these techniques result in a loss of information that
might be useful to the observer.

The Information Mural technique increases the visual
information bandwidth available to visualization applica-
tions. An Information Mural is a two-dimensional, minia-
ture representation of an entire information space that uses
visual attributes such as color and intensity along with an
anti-aliasing-like compression technique to portray
attributes and density of information. The goals of the
visualization technique can be summarized as follows:

•   to create a representation of an entire (large) informa-
tion space that fits completely within a display window
or screen;

Figure 1: Event Trace Diagram



•   to mimic what the original visual representation of the
information looks like when it is viewed in its entirety;

•   to minimize the loss of information in the view, regard-
less of the size of the compressed representation.

3.1 Technique
Imagine some visual representation of a large infor-

mation space, made up of distinct elements each with their
own representation. If an Information Mural of this space
is to fit in some area of I x J pixels; assume there is a
“bin” associated with each pixel. The position of each
information element is first scaled to fit into the available
space. As each element is “drawn” in the mural using an
imaginary pen, different amounts of “ink” fall into differ-
ent bins. As each subsequent element is drawn, the amount
of ink builds up in different bins, depending on the amount
of overlap of the elements.

The resulting Information Mural is created by map-
ping the amount of ink in each bin (the information den-
sity) to some visual attribute. In a grayscale mural, the
shade of each pixel corresponds proportionally to the
amount of ink in each bin. Instead of using grayscale vari-
ation, an equalized-intensity variation over the entire color

scale can be used. With a raindrop mural, for example, the
amount of ink in each bin makes a “puddle” centered
around that pixel, so pixels with more ink appear larger.
Color can then be added to the mural to convey other
attributes of the informational elements, while still pre-
serving the density mapping.

3.2 Implementation
The Information Mural is implemented as an abstract

widget which can be used by an application just like a
scrollbar, drawing area, or other graphical widget. The
widget can be used purely for output, to display an Infor-
mation Mural. Or it can act as a global companion view to
a more detailed view by providing a “navigation rectan-
gle” which can be panned and zoomed by the user. The
widget is written in C++ on top of X Windows and Motif.
The Mural class provides a basic application interface to
create, lay out, and draw a mural. Client applications
inherit from the Mural_Client class to receive interac-
tion notification methods that the application may choose
to implement.

When an instance of a Mural is created, the applica-
tion defines the coordinate system in which the Informa-

Figure 2a: Mural of an event trace of over 50,000 messages, drawn in an area 500 pixels wide

Figure 2b: Same diagram drawn by just over-plotting (without using the Information Mural technique)



tion Mural is drawn. If the Mural’s navigation capabilities
are to be used, the initial position and size of the naviga-
tion rectangle must also be set. All of the drawing methods
(MuralDrawPoint(), MuralDrawLine(),
MuralFrame-Rectangle(), etc.) are passed coordi-
nates in the application-defined coordinate system. When-
ever the Mural needs to be redrawn, it calls the
application’s MuralRedrawNeededCB() callback
method. Additionally, whenever the navigation rectangle
is moved or the Mural is zoomed into by the user, the
application’s MuralValueChangedCB() and
MuralZoomedCB() are called, respectively.

In this way, the application draws the Information
Mural in its own coordinate space with respect to the
information being displayed, and the Mural widget han-
dles the rendering of the mural in whatever space it has on
the screen. User interactions with the Mural widget are
passed back to the application in the application-defined
coordinate space as well.

3.3 Conclusion
Figures 2a and 2b displays the same data with and

without using the Information Mural algorithm. Although
Figure 2b may look as though it contains mostly white
space, this is actually an indication that nearly all of the
pixels in the region are white. Figure 2a gives a much
more informative view of the original information.

We have examined event traces containing as many as
one million events. Trying to detect interesting patterns of
information in such a display would have been impossible
without a visualization technique such as the Information
Mural. Once patterns are detected, then the ISVis tool can
be used to abstract away details, thereby providing oppor-
tunities to detect other interesting interaction patterns.

4. ISVis

ISVis (Interaction Scenario Visualizer) is a tool that
uses abstraction to support the program understanding
process. Program executions are made up of recurring pat-
terns of interactions, manifested as repeated sequences of
program events such as function calls, object creations,
and task initiations. Instances of these interaction patterns
occur at various levels of abstraction. Using them, the ana-
lyst can help bridge the gulf of abstraction between low-
level execution events and high-level models of program
behavior. Humans typically solve complex problems by
using divide-and-conquer strategies, by detecting patterns,
and by finding analogies; interaction patterns can be used
in support of all three of these activities.

The purpose of ISVis is to support the process of
abstracting high-level static and dynamic structures from
program text and event traces. It is useful during software
engineering tasks requiring a behavioral understanding of
programs, such as design recovery, architecture localiza-
tion, design or implementation validation, and reengineer-
ing. Features of ISVis include the following.

•   views include actor and interaction lists and relation-
ships, scenarios, and source code (via XEmacs);

•   analysis of program event traces numbering over
1,000,000 events;

•   simultaneous analysis of multiple traces for the same
program;

•   use of Information Mural visualization techniques to
portray global overviews of event data;

•   abstraction of actors through containment hierarchies
and analyst-defined components;

•   analyst-specified interaction patterns, including regular
expression wildcards for actors

•   selective filtering of individual or multiple occurrences
of a particular interaction;

•   definition of higher-level interactions comprising
repeated occurrences of lower-level patterns;

•   identification of patterns for locating the same or similar
interactions elsewhere in an event trace;

•   saving and restoring of analysis sessions.
ISVis assumes the existence of an independent static

analysis tool. In its current implementation, it makes use
of information provided by the Source Browser facility
that accompanies SUN’s Solaris C and C++ compilers.
The static analyzer reads the Source Browser database
files and generates a static information file. An instrumen-
tation tool that accompanies ISVis takes the source code,
the static information file, and information supplied by the
analyst about what parts of the code to instrument, and
generates instrumented source code. This code must be
compiled externally to the ISVis tool, and then, when the
instrumented system is executed using relevant test data,
event traces are generated and read into ISVis. The user
then interacts with ISVis to abstract the source code into
actors and the event traces into scenarios.

ISVis currently provides two views, the Main View
and the Scenario View. Figure 3 is a snapshot of the Main
View. The top portion of the view lists the actors, includ-
ing files, classes, functions, and user-defined aggregations
of them. The middle portion of the Main View includes
lists of the scenarios and interactions, as well as an area for
displaying information about the item in primary focus
(selectable with the middle mouse button). The Key area
allows users to assign colors to actors or interactions that
have been selected using the left mouse button. The bot-
tom portion of the view is a small window for textual
information entry and display. Note that each of the scrol-
lable lists of actors and interactions uses an Information
Mural to display a graphical overview of the selected and
colored items in the list.

The Main View includes a menu bar for entering com-
mands, including the ability to open the second ISVis
view, a Scenario View, for each scenario in the model. Fig-
ure 1 shows a Scenario View. The Scenario View is in fact
an event-trace diagram. Actors in the view are assigned
columns, and interactions are drawn as lines from source
to destination actor in descending time order. A global
overview of the scenario appears on the right of the view,
and is used to navigate through the interactions in the sce-
nario. The overview is created using an Information
Mural, which provides effective global overviews of sce-
narios containing hundreds of thousands of interactions.
This allows the analyst to observe various phases in the



scenario including repetitive visual patterns indicating the
presence of frequently occurring interactions in the pro-
gram execution being analyzed. As interactions are
selected and colored, the Mural is colored as well, helping
an analyst locate where particular interactions occur in a
program’s execution.

The Scenario View provides several features to help
an analyst build abstract models of the subject system and
to localize behavior. An option menu allows the actors
in the scenario to be grouped by containing file, class, or
component actors. Another option allows the user to select
a class of interactions or just a single instance of an inter-
action. Once a sequence of interactions are selected, they
can be defined as a scenario, and then all occurrences of
that sequence of interactions in the original event trace are
replaced with a reference to the newly defined scenario.
While a simple interaction is a shown as a line connecting

the source and destination actors, a sub-scenario that
occurs within the Scenario View appears graphically as a
slim, horizontal rectangle containing all of the actors
involved in the scenario.

The Scenario View also provides a feature to find
interaction patterns in a scenario, in a manner similar to
regular-expression matching. For example, given an inter-
action pattern, the user can choose to look for an exact
match in the scenario (actors and interactions match
exactly), an interleaved match (all interactions in the pat-
tern occur exactly, but others may be interleaved), a con-
tained, exact match (actors in the scenario contain the
actors in the pattern, and the interactions occur in exact
order), and a contained, interleaved match. Additionally,
actors in an interaction pattern may be specified with wild-
cards, meaning they match any actor. The final pattern fea-
ture includes the ability to ask ISVis to look for repeated

Figure 3: ISVis Main View



sequences of interactions that occur in the event trace. This
helps an analyst locate sequences of interactions which
may have a higher-level meaning in the system, in addition
to the analyst simply noticing these patterns in the global
overview or as he or she browses through the scenario.

Note that ISVis’ two Views have a Subject-View rela-
tionship such that any selection or modification done in
one view is immediately reflected in the other. Also, it is
possible to save the current session status for later analy-
sis.

5. Grammatical Inference and Balboa

5.1 Grammatical Inference
“Grammatical Inference encompasses theory and

methods for learning grammars from training data.” [16]
Although many different types of grammars have been
used, the most successful and commonly used grammar is
the type three or regular grammar. These grammars are
normally expressed using regular expressions of finite
state machines.

Any stream of events can be trivially modeled with a
state machine. Imagine, for example, a stream of fifty
events. Construct a state machine containing exactly fifty
states, one for each event occurrence in the input stream.
Each state is linked only to its successor by a transition on
the corresponding event in the input stream. Not only is
this solution inelegant, but it explains only the input
stream and is of no use in predicting either the next ele-
ment in the stream or elements in another stream from the
same source. The solution is too specific.

Another trivial solution is a non-deterministic finite
state machine containing exactly one state. There are as
many transitions as there are different input events, and all
transitions lead back into the single state. Although this
solution also models the input stream, it is no more satis-
factory than the first. Its major problem is that it explains
not only the given input stream, but every other input
stream as well. It is too general.

The goal of grammatical inference, therefore, is to
find a grammar that is of the right size and is capable of
predicting or modeling not only the input stream, but other
streams from the same source. There are two implications
of this: that any solution will be an approximation, trading
off conciseness for predictive power, and that a suitable
solution mechanism should include parameters to facilitate
tuning the grammar until a desired balance can be found.

5.2 Inference Mechanisms
Many different approaches have been taken to the

problem of grammatical inference, such as neural net-
works and genetic algorithms. The two that Balboa uses
are hidden Markov models [2] and k-tail algorithms
[10]. A Markov process is similar to a state machine in
which transitions are labeled with the probability of the
corresponding transition occurring. Markov models are
useful for modeling event streams produced by stochastic
processes. A hidden Markov model is one in which the

parameters of the Markov model must be inferred from its
behavior.

A k-tail grammatical inferencing algorithm is one
in which an overly specific state machine, such as the first
unsatisfactory solution described above, is successively
refined by merging states. Two states are merged if their
next k states are identical. Of course, k serves as a tuning
parameter for this approach.

5.3 Balboa
Balboa is a tool developed by Jonathan Cook and

Alex Wolf at the University of Colorado [6]. They have
used it to model organizational processes and validate that
an actual process corresponds to an intended one. Their
research included the exploration of various approaches to
grammatical inferencing including Markov modeling,
neural networks, and k-tail algorithms.

The interface to the Balboa tool suite is provided by
Tcl/Tk [12] and consists of tools for managing event
streams, identifying the salient features of events, invoking
the two grammatical inference methods, and displaying
the resulting state machine using the dotty tool from
AT&T [7].

To use Balboa, we took an ISVis event stream, con-
verted it to a format suitable for input to Balboa, and asked
Balboa to produce a state machine model. An example of
the models produced is shown in Figure 4. In this case, rel-
evant events included calls and returns between functions
in the systems being analyzed. We looked at both an entire
execution trace and projections of it that pertained to a
specific component of the program.

6. Status

ISVis has just completed its beta test evaluation at
three sites in the U.S. and Europe. It will be made avail-
able for public release as soon as the results of the evalua-
tion can be addressed. The ISVis web page can be found at
URL http://www.cc.gatech.edu/morale/
tools/isvis/isvis.html. Balboa can be obtained
on the Internet from URL http://www.cs.colo-
rado.edu/~serl/process/Balboa.

Our next step is to connect ISVis directly to Balboa.
This will provide several benefits. First, abstractions rec-
ognized by an analyst using ISVis can be fed to Balboa,
thereby guiding its inference process. Furthermore, inter-
esting patterns detected by Balboa can be proposed to the
ISVis analyst for examination using the Information Mural
and the ISVis view windows. We envisage this process
being iterative, with the analyst switching back and forth
between the tools.

7. Discussion

The use of dynamic analysis to detect software archi-
tectural connections raises several issues including the for-
mal power of the grammars used to describe connector
abstractions and the fidelity of the resulting models.



7.1 Representing Connector Abstractions
The physical part of the ISVis-Balboa connection is

straightforward—either temporary files or UNIX pipes can
be used. More interesting is how to encode abstract inter-
actions. Unlike abstract component descriptions that are
made up of lower-level components, lower-level connec-
tions combine using a protocol specifying conditions
under which the interactions can interleave.

ISVis patterns express the sequential occurrence of
events in an input stream. Because the ISVis pattern
matcher can detect repeated occurrence of such sequences,
it is capable of expressing patterns roughly equivalent to
path expressions [3]. The qualification is due to the fact
that one form of ISVis pattern matching (the interleaved
match) allows arbitrary, non-pattern events to be inter-
leaved with the events being searched for. Balboa, on the
other hand, is capable of inferring regular expressions

denoted by finite state machines. Hence, Balboa can pro-
vide suggestions to the analyst that ISVis cannot.

However, what we are really interested in detecting
are architectural connections. Although there are many
different ways to express these, the Wright language is
typical [1]. In Wright, descriptions of connections include
not only structural information but also a formal semantic
notation for describing the interaction behavior of the con-
nection. The semantics are expressed in a process algebra
notation, derivative of CSP [8]. Because CSP can describe
the interleavings of independently executing processes,
event streams from these processes cannot be described by
regular expressions. In fact, the streams are examples of
shuffle grammars, which are not even context free. The
implication is that fully automated detection of architec-
tural connections is theoretically difficult. For a related use
of CSP for describing occurrences of atomic events, refer
to [15].
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7.2 Approximations
The typical mechanism for designers to communicate

the architecture of a system is to use a single, high-level
“box-and-arrow” diagram. Their popularity indicates that
they are useful for communicating abstractions, but they
suffer from several difficulties. One difficulty is due to
their informality. This usually takes the form of multiple
or vague interpretations being given to the arrows in the
diagrams. Research into software architectures and archi-
tectural description languages are addressing this problem.
However, even a formally specified diagram is still only an
approximation. That is, it is someone’s idea of what is
important and what is not important about a system. But
different system aspects are important to different people.
And therefore multiple high-level architecture diagrams
may be required. For example, some people might be
interested in how a system is structured to guarantee its
performance requirements while others may be interested
in how it will provide reliability.

A further problem is due to design drift. This occurs
when the original, presumably clean structure of a system
disintegrates over time due to subsequent maintenance
activities. It is here that having an automatically-derived
description of a system’s actual components and connec-
tors to contrast with the ideal one shown in the box-and-
arrow diagram can be of value.
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