
Separating concerns in direct manipulation user interfaces

R. E. Kurt Stirewalt
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824

Appears in: Proceedings of the IEEE International Conference on Automated Software Engineering (ASE’99)
Cocoa Beach, Florida, October 1999

Abstract

Direct-manipulation user interfaces are difficult to im-
plement as a layered hierarchy. Features, such as drag en-
abling and continuous graphical feedback, require frequent
interaction and collaboration among a large number of ob-
jects in multiple layers. These collaborations complicate
the design of the interfaces to the various layers. We present
a new component-interface model called the mode compo-
nent whose features simplify the expression of enabling and
feedback collaborations across layer boundaries. We illus-
trate the use of mode components through a large example.

1. Introduction

The direct-manipulation style of interaction now dom-
inates desk-top applications and is required for applica-
tions such as graphical design editors and interactive sim-
ulation. In this style, a user articulates commands—user
initiated operations that affect the state of the underlying
application—by manipulating graphical objects rather than
making a sequence of selections or typing text [20]. We are
investigating how to design these systems as a hierarchy of
software layers, where each layer represents the system at
some useful level of abstraction.

Our layering criterion is based on the time honored prin-
ciple of model-view separation, which aims to decouple the
user interface (UI) from the domain objects that implement
the core functionality of the system. This principle, which
was first applied in the SmallTalk Model-View-Controller
(MVC) paradigm [11], is motivated by the desire to reuse
the domain objects in different applications and requires
the domain objects to have no direct knowledge of UI ob-
jects. Using this principle, we want to design hierarchi-
cal software components that separate domain objects and
commands from the graphical objects that represent them.
Henceforth, we shall refer to these graphical objects as in-
teractors.

Layering is complicated by the need to provide feedback
before and during a complex interaction. Feedback refers
to the reflection of the legality of a command that is artic-
ulated by one or more interactors in the visual appearance
of those interactors. To support feedback requires a flow
of information from the domain objects to the interactors.
Such an information flow compromises model-view sepa-
ration and is generally difficult to accomplish in a layered
design. Consequently, the implementation of these features
tends to compromise the integrity of the layers.

We developed a new component model, which we call
the mode component model. In this model, a designer spec-
ifies the component’s interface using a variant of Harel’s
StateChart formalism [8, 9]. Like a traditional component
model, the interface to a mode component defines a collec-
tion of services, each of which can be invoked by a com-
ponent at a higher level in the layering hierarchy. An inter-
face under the mode-component model, however, also as-
sociates temporal and functional pre-conditions with each
service and provides a continuously updated view of its cur-
rent mode. These modes and pre-conditions are observable
by higher level components. Moreover, the implementation
of a mode component contains primitives for observing and
reacting to mode changes in lower-level components.

A mode component describes the behavior of the system
at one level in the hierarchy. By stacking one mode com-
ponent on top of another, mode and service–pre-condition
information can flow transparently from lower level com-
ponents into higher level components. This transparency
simplifies the design of feedback behavior without com-
promising model-view separation. As information flows
up through a level, low level modes and services are trans-
formed into higher level modes and services.

The original idea to use a modeling notation to represent
a single layer and then treat the stacking of layers as a trans-
formation from one instance of a model into another came
from the work on GenVoca [5]. GenVoca components use
object models (from OO-design [19]) to represent the inter-
face to each layer, and the implementation of each layer is
a transformation of objects and operations at one level into

1

... ...

......

T1 Tn

B1 Bm

1u

1d dn’

um’

Component

Figure 1. Model of component exteriors [5].

objects and operations at another. Mode components use
a variant of StateCharts, which have also been adopted by
OO-design methodologies, to describe the behavior of each
layer. Moreover, the implementation of each layer is a trans-
formation from modes and events at one level into modes
and events at a lower level. This paper introduces the model
underpinnings of Mode components. We will discuss how
to implement a stack of mode components in Section 5.

2. Background

We designed the mode-component model to balance the
requirements of separation of application and UI concerns
against the information needs required to implement feed-
back. Feedback is the reflection of the legality of a com-
mand in the appearance of one or more interactors that are
used in the articulation of the command. We distinguish en-
abling, which is feedback that is provided prior to the begin-
ning of an interaction, from interim feedback, which is pro-
vided during the course of an interaction. Feedback is vital
to the usability of a DMI because the command that an in-
teractor is being used to articulate may be ambiguous prior
to and during the interaction. In a graphical file browser,
for example, the dragging of an icon might represent either
the delete-file command or the move-file command. The
ambiguity cannot be resolved until the user drops the icon
over either the waste-basket or a folder icon.

2.1. Hierarchical component models

The information needs associated with feedback compli-
cate a layered design. To explain these complications, we
adopt the terminology of Batory and O’Malley [5]. A layer
is synonymous with a component or a set of components.
The interface of a component is anything that is visible out-
side the component; everything else about the component is
considered part of its implementation [17]. Figure 1 illus-
trates an hierarchical component. In this model, the T i are
top operations, which higher level components can invoke
for lower level services. Conversely, the Bi are bottom oper-
ations, which lower level components can invoke for higher
level services. The set �T�� � � � � Tn�B�� � � � �Bm� is the com-
ponent’s interface. The component’s implementation may
invoke operations di and ui, which request services from
lower (respectively higher) level components.

Because feedback is concerned with the legality of a
command, information about this legality must flow from
the underlying application layer into the UI layer. Fig-
ure 1 suggests that information flow can be implemented
in one of two ways: Either the application layer provides
services that the implementation of the UI layer invokes, or
the implementation of the application layer can invoke bot-
tom services in the UI layer that notify interactors when a
command’s legality changes. The former mode of informa-
tion flow tends to be used to implement interim feedback;
whereas the latter tends to be used to implement enabling.

For a UI component to evaluate the legality of a com-
mand in an application component, the interface of the ap-
plication component must provide services that can be in-
voked to perform the evaluation. Moreover, these services
must support evaluation over a partial set of the command’s
inputs. Consider, for example, the command move-file in
the afore-mentioned file browser. This command takes two
parameters, a source file and a target directory. To decide
whether or not to enable a given interactor requires com-
puting the legality of move-file given only the source file
that corresponds to the given interactor. On the other hand,
to compute interim feedback when a given interactor (the
source) is being dragged over another interactor (the tar-
get) requires evaluating the legality of move-file given both
the source and target files. Consequently, the single com-
mand, move-file, leaves a footprint of three services in the
interface to the component. One service actually invokes
the command; whereas the other two services evaluate the
legality on one and two arguments respectively. Unfortu-
nately, this duplication makes it difficult to modify com-
mands (unless these modifications do not change the pre-
condition), and the variants are an artifact of the direct ma-
nipulation style of interaction rather than a generally useful
service in the component. If these additional services could
be automatically generated, then the component will be eas-
ier to maintain.

Another issue is the notification that is required to enable
interactors. When the legality of a command changes, some
interactors may need to be notified. The need to maintain
this view consistency can easily lead to conflicts with the
model-view separation principle, which forbids domain ob-
jects to be designed with any knowledge of the UI. For-
tunately, solutions to this problem are well known. The
Chiron environment [28, 24] addresses view consistency
by automatically augmenting domain objects with the logic
that notifies dependent view objects when a change occurs.
Each domain object is modeled as an abstract data type,
which can be wrapped by special listening agents that ex-
port the same interface. Clients of a domain object perform
operations on the wrapper, which invokes the core opera-
tion and then notifies the view. Because the notification is
introduced automatically, it does not compromise the reuse

2

of domain objects. Implicit notification is also easy to im-
plement using constraint features, such as are found in the
Garnet/Amulet object system [14, 13].

2.2. Specifying feedback

Part of the difficulty in designing components for feed-
back is specifying the conditions under which a command
is legal. These conditions reflect temporal constraints on
the global execution of commands as well as any functional
pre-conditions on the execution of the command. The other
difficulty lies in the specification of how the legality of a
command affects the appearance or enabling of an interac-
tor. Unfortunately, each of these specifications and their
interplay affects the interface to both the application and UI
components.

Abowd and Dix argue that feedback is best specified as
an event-delimited, status constraint [3]. A status constraint
is a formula that derives the status of an interactor as a con-
tinuously updated function of the status of a domain ob-
ject. The constraint is event delimited, in the sense that it
only holds during an interval that is bound by the occur-
rence of events. In [21], we use hierarchical states, such
as are provided by the StateChart formalism [8], to repre-
sent event-delimited intervals. A StateChart can constrain a
transition based on the internal state of another (concurrent)
StateChart. So using states to represent event-delimited in-
tervals enables a designer to easily specify event-delimited
status constraints.

Trætteberg observes that using a StateChart represen-
tation of gestures, such as dragging an icon of one type
and dropping it over an icon of another type, simplifies
the expression of how interactor combinations denote com-
mands [25]. This suggests a nice three-layered approach to
specifying DMIs by stacking StateCharts on top of one an-
other. The lowest level layer is represented by a StateChart
whose states represent application modes and whose events
are commands that affect the domain objects. The middle
layer is represented by a StateChart whose states represent
gesture states and whose events represent interactor collab-
orations during an interaction. Finally, the top layer is repre-
sented by a state chart whose states represent the observable
states of each interactor and whose events represent device
events that each interactor services.

2.3. Summary

The information needs required to implement feedback
conflict with the desire to separate application and UI con-
cerns into different components with rigid interfaces. Feed-
back is difficult to design to begin with, and when it is super-
imposed on a layered design, it leaves an undesirable foot-
print on the interfaces of application and UI components.

...
T1 Tn

status u

...

1d ndstatus d

Component

Figure 2. Mode component schema.

The StateChart formalism, however, has features that are
useful for specifying feedback. If we can design compo-
nents whose interfaces have the interactive power of Stat-
eCharts, then we can solve the feedback problem without
violating the layering principles.

3. Mode components

A mode component (MC) is a model of an hierarchi-
cal software component whose interface provides a contin-
uously updated view of its current status (Figure 2). The
services that can be invoked are the Ti, and the view of
the component’s mode is represented by statusu. The im-
plementation of a mode component may invoke lower level
services (the di). In addition, a component can directly ob-
serve the current mode of a lower level component, and it
can observe the enabledness of a service with respect to the
current mode of a lower level component and one or more
parameters. These additional facilities are represented as
statusd in the figure. This model admits no bottom opera-
tions (Bi) because such operations compromise the critical
design separation principles. Rather, every aspect of feed-
back is expressed entirely in terms of the status, which flows
transparently between layers.

3.1. MC features and their use

A change in the status of one MC can trigger an event
in a higher level MC. Consequently, one component can de-
clare its status to be a continuously updated function of the
status of a lower level component. Triggering conditions
are quite useful for describing how the visual appearance
of an interactor relates to the status of the domain object it
represents and its enabling with respect to commands that it
might be used to articulate.

There are two forms of status observation. A component
can observe whether or not a lower level component is cur-
rently in one of a set of named states and whether or not
a lower level component currently enables a service with
a given set of parameters. This latter feature is defined to
work over an incomplete set of inputs. The interpretation
of such a check is that it is possible to perform the service
given the information known so far. We use this feature
extensively in enabling and feedback constraints that must

3

reflect the legality of a command on only a partial set of
data.

To allow the specification of event-delimited status con-
straints, a mode can be annotated with auxiliary transient
data, which we call roles. Constraints are specified through
an idiom of defining appropriate roles in a lower level com-
ponent and then constraining the status of a higher level
component on the low-level status introduced by the roles.

3.2. Formal introduction to MCs

We model the interface and implementation of an MC
through a disciplined use of UML state diagrams [7]. These
diagrams are based on Harel’s StateChart notation [8], with
special conventions for modeling the state and behavior of
objects. We chose UML over standard StateCharts because
some of the status relationships that we need to specify re-
fer to the values of attributes in specific objects 1. More-
over, many practicing software engineers know UML; so
MCs can be easily adopted into practice. The discussion
that follows includes inline diagrams that use the StateChart
notation. Recall that states in a StateChart are specified as
roundtangles; states are hierarchical; arrows that connect
states represent transitions; and arrows are annotated events
subject to a guard.

We restrict the interaction features of StateCharts to en-
force the hierarchical composition of MCs, as outlined in
Figure 2. The event-broadcast semantics of StateCharts are
restricted so that events flow exactly one level down the hi-
erarchy. Specifically, if an action of the form send e is
performed in a component at level i, then e is multicast to
all of the components at level i � �. A similar restriction
applies to the use of guards and triggers that refer to the in-
ternal state of another component. For a condition of the
form �C in S� to appear in the implementation of an MC at
level i, C must be a level i�� component, and S must name
a state in C.

We extend the StateChart formalism with two concepts:
roles that incorporate event-delimited data into the status of
a component and quantified enabling conditions. A role in-
creases the amount of status that is visible in the interface
of a component. A role is a named object whose lifetime is
bounded by a state. Roles are introduced through the key-
word role and are always initialized to some value. A role
is said to be filled when the state in which it is declared is
entered. In the example below, the State identifies a role
source, which is initialized to the parameter s of event e.

State
role: source := s

e(s)

1A dedicated object constraint language (OCL) is being adopted into
UML to handle such conditions [26].

We also extend StateCharts with the enables feature,
which is a concise shorthand for complex status conditions.
The full form of the enabling condition is:

��x � C enables e��y��x�

where C names a component, e names an event, �x denotes
a sequence of fresh identifiers, and �y denotes a sequence
of expressions over identifiers that name object attributes
and roles. The condition is true if there exist xi such that
component C is receptive to the event e��y � �x�, where the
� operation is sequence concatenation. To understand this
feature, we first describe the simple case in which there is
no quantifier.

The condition

C enables e��y�

is true if component C is in a state with an outgoing tran-
sition on event e, and if the inputs in �y satisfy the pre-
condition of e on that transition. The following example
shows snippets of the MCs of two components in adjacent
layers.

Component i

VU

[Component i-1 enables e(w,z)]

S T
e(x,y) [x < y]

Component i-1

Componenti�� can transition from state S into state T upon
receiving an event e�x� y� such that x � y. The condition on
the transition in Componenti names an instance of event e
with values w and z as actual parameters. The condition is
true if Componenti�� can perform a transition upon receiv-
ing e�w� z�. That is, the condition is true if Component i��

enables, or “is receptive to”, the event with the given pa-
rameters.

The full form allows some of the event parameters to be
existentially quantified. The quantifier notation was moti-
vated by the use of existential quantification to hide vari-
ables. Abadi and Lamport noticed that the formula � x � S
specifies the same system as S except with the variable x
hidden [1]. By existentially quantifying unknown variables,
the resulting formula is is optimistic: If any possible config-
uration of unknown values can make the formula true, then
the existentially quantified formula is true. The idea has
been adopted into other specification methods, such as the
Z schema calculus [27].

3.3. Examples of use

Figure 3 shows a mode-component description of the
drag-and-drop gesture. We present it here because we will

4

Idle

drag[Dropable(pick)]drag[Dropable(pick)]

Interim
 role: source := s

NoDrop

drag[Dropable(pick)]

drag[Dropable(pick)]

LegalDrop
role: target := pick

drop

drop / Act(source,target)

DragAndDrop

select(s)[Dragable(s)]

Figure 3. Specification schema for the DragAndDrop gesture.

use it in the extended example (Section 4) and because it
demonstrates some of the novel features of mode compo-
nents. Interaction is triggered by a select event, whose pa-
rameter is the interactor that was selected for dragging. The
transition is constrained by the condition Dragable, which
must be a boolean function of s. If, for example, this ges-
ture applied only to red checkers, as we will see in the ex-
tended example in Section 4, then Dragable might be the
condition: s�color � red.

The Interim state is used to encode an event-delimited,
status context. Interim is an hierarchical state with
two substates—LegalDrop and NoDrop—and with a role
source. Upon entry into this state, source is assigned to
remember the selected interactor. When in substate Legal-
Drop, a drop event determines a command to be performed.
Conversely, when in substate NoDrop, a drop represents
an abort. Transitions between these substates are governed
by the condition Dropable, which (like Dragable) must
be supplied by the designer. Dropable is any condition
in which the variables source and pick appear free. By
convention, each occurrence of the drag event assigns the
variable pick with the “top-most” object under the mouse.
Picking is a service provided by UI toolkits. Because graph-
ical objects tend to be stacked on top of one another, some-
times the object to pick is not clear. We do not address the
pick-ambiguity problem in this paper.

An idiomatic use of roles and status conditions is par-
ticularly useful for implementing dragging feedback. The
idiom is to use roles in one component to encode the event-
delimited–status required to form status conditions in a
higher level component. An informal specification of such
a condition is, “User is performing a gesture in which I [the
interactor] am the drop-target.” When this condition is true,

Figure 4. Interactive checkers program.

the presentation of the interactor will be visually offset. We
can express the condition formally as: [self = DragAnd-
Drop.target].

4. Example

We used MCs to construct a layered design of a larger
application, the graphical checkers program that is part of
the Amulet [13] source distribution (Figure 4). Players
move and jump by directly manipulating checker icons.
As a checker is being dragged, the system provides visual
feedback to signify the legality of a drop over a particular
square. This legality is a function of the player’s turn and

5

domain-object conditions, such as whether or not a target
square already contains another checker.

The full specification is too large to include here, but we
show the MCs for the commands and two of the four ges-
tures. When reading these specifications, the reader should
observe how well the syntactic concerns are captured in the
gestures layer, while the semantic concerns are captured
in the commands layer. Specifically, the command-level
MC accurately captures the complex two-player dialog and
some of the functional pre-conditions. For sake of brevity,
we do not include all of the functional pre-conditions, but
we clearly indicate any deviations in the text.

4.1. Commands: Game rules

Figure 5 shows a model of the commands that checker
players perform. We model the commands—Move and
Jump—as events M and J and distinguish opponents by the
subscripts Red and Black. The states in this model enforce
an ordering over these commands (events).

The dialog begins in state B, from which the only al-
lowable commands are moving a black checker to an adja-
cent square and using a black checker to jump over a red
checker. MBlack represents the move command; JBlack rep-
resents the jump command. If the user performs the move
command—by dragging a black checker to an unoccupied
adjacent checker square and dropping the checker in that
square—a gesture will request the MBlack service, which will
cause the MC to move into the R state. The R state is anal-
ogous to the B state except that the commands involve red
checkers.

B and R are sub-states of the hierarchical states Black
Turn and Red Turn respectively. These represent the con-
texts in which any black (respectively red) checker can be
used to perform a command. The sub-states Black Jumped
and Red Jumped represent a special case in which a black
(respectively red) checker has just jumped over an opponent
checker and is in a position to make yet another jump. Upon
entry into these states, we establish the role r to remember
the checker that was used in the jump. The do activities
are then invoked: The checker that was jumped is removed
from the appropriate set, and then the jumping checker p is
physically moved to the new square sq.

The rules of checkers permit multiple successive jumps
by the same checker. So from the Black Jumped state,
the black opponent may jump again if she uses the same
checker (r). However, because Black Jumped is a substate
of Red Turn, it is also legal for any red checker to move or
jump.

The final states Black Winner and Red Winner can only
be entered after a jump. The condition �blackSet � ��,
which guards the transition into Red Winner, refers to the
domain object blackSet, which we assume is specified in the

object model.
This one MC constitutes the entire Commands layer in

this application. Some of the services have complex pre-
conditions. For example, the pre-condition for the service
MRed�p� sq� says “square sq is adjacent to the square that
contains checker p, and sq is in a forward direction from
p.” For sake of brevity, we do not show these constraints in
this diagram, but they are just guards on the reception of the
various move and jump events.

4.2. Gestures: Checker manipulation

This layer invokes the command-services MBlack, MRed,
JBlack, and JRed. Each service is handled by a separate in-
stance of the DragAndDrop MC from Section 3.3. We il-
lustrate two of the four instances: one invokes the service
MRed while the other invokes JRed. Consider first the com-
ponent that performs send MRed�source� target� after ob-
serving a drop. We will first explain the Dropable condi-
tion. At this point in the interaction, the variable source
names the object being dragged (a checker), and the vari-
able pick names the object under the mouse, which will be
a checker square2. The condition is:

CheckerDialog enables MRed�source� pick�

Observe that by using the enables condition, the complex
conditions that decide when a move is legal flow trans-
parently from the command layer in which the informa-
tion lives into the gesture. The condition for Dragable is
slightly more complex because, at this point in the interac-
tion, we do not yet have a drop object. For this we use the
quantification feature:

� target � CheckerSquare �
CheckerDialog enables MRed�s� target�

This condition is true if there exists a CheckerSquare,
(which we name target), that satisfies the event-enabled
condition CheckerDialog enables MRed�s� target�.

Now consider the instantiation of DragAndDrop in
which the derived action is sendJRed�source� target�. The
conditions Dragable and Dropable are analogous to those
for moving a red checker. For Dragable, we have:

� target � CheckerSquare �
CheckerDialog enables JRed�s� target�

and for Dropable, we have:

CheckerDialog enables JRed�source� target�

2That is we are resolving the pick ambiguity at design time. The pick
operation will always return a square if a square is in the stack of objects
under the mouse.

6

B

J Red (p,q,sq) [r = p]

R

J Black (p,q,sq) [r = p]

J Red (p,q,sq)

J Black (p,q,sq)

M Red (p,sq) /

M Black (p,sq) /

RedWinner BlackWinner

Checker Dialog

Black Turn

Red Jumped

do: blackSet.remove(q)
board.move(p,sq)

Red Turn

do: redSet.remove(q)
board.move(p,sq)

board.move(p,sq)

board.move(p,sq)

Black Jumped

Win

[redSet = {}][blackSet = {}]

role: r := p role: r := p

Figure 5. Dialog model for the checkers game. Events correspond to commands.

The only difference is that the event being checked is the
JRed event as opposed to the MRed event.

These two instantiations of DragAndDrop define ges-
tures that recognize commands from the manipulation of
red checkers. A similar pair of instantiations defines the
manipulation of black checkers. The conjunction of these
four instantiations constitutes the direct-manipulation layer
of this user interface. Observe that this layer is abstract
with respect to the device events, such as mouse-click and
mouse-motion; yet it describes exactly how the manipula-
tion of checker objects implements the commands (events)
that are named in the command layer. This layer issues the
events required for it to be used by the dialog layer, and
it constrains its behavior to conform to the command state
represented in the dialog layer.

5. Discussion and conclusions

An important design principle is to encapsulate the im-
plementation of a component behind an interface so that
clients will not be affected by changes in the implemen-
tation. Unfortunately, operations that implement feedback
must break this encapsulation. It is a waste of effort to en-
capsulate an implementation just to then go and “design”
an interface that mirrors the implementation. Mode com-
ponents relax the rigidity of a component interface so that
designers do not have to waste effort in this way.

A related approach to UI layering is based on the use
of agents to specify UI components [2, 15]. Agents are
founded in theories of communicating processes (e.g., [10,
6]), and their interaction is defined in terms of observation
and rendezvous-style synchronization rather than a transfer

of sequential control. Like MCs, agents relax the rigid inter-
face of layered components, and they provide some of the
benefits of our approach. We developed support for com-
posing components in the agent style in [22, 23]. Other
researchers have come up with elaborate theories on how to
use agents to implement layered components (c.f., [18, 12]).
Unfortunately, these theories use features that are either dif-
ficult to implement, or that cannot fully utilize the facili-
ties provided by a modern toolkit. We discuss these issues
in greater detail in [21] and conclude that agent-based ap-
proaches to layering DMIs are unwieldy.

There is also a long history of research into the architec-
ture of interactive systems. Good surveys of this research
can be found in Olsen [16] and Bass, Clements, and Kaz-
man [4, Ch. 6]. These generic UI architectures provide
heuristic design guidance. We believe, however, that real
designs often must deviate from these guidelines to handle
thorny issues, such as feedback. We believe that our work
helps to adapt a conceptual UI architecture into a workable
implementation architecture.

This work contributes to the body of automated software
engineering a new model for dealing with features that are
difficult to integrate into a layered design. We envision
mode components being used the framework of an applica-
tion generator. Designers will construct and maintain mode
components, and an application generator will generate the
code from these components. Mode components add an-
other dimension to behavioral modeling in much the same
way that GenVoca components added another dimension to
object modeling.

The work also raises some questions, which we did not
try to address in this paper. The most interesting issues con-
cern automation. While there are nice approaches to au-

7

tomate view notification, the automated generation of pre-
condition evaluators from the quantified enables conditions
requires more investigation. Our next step is to investigate
this problem and to incorporate MCs into an environment
that supports this degree of automation.

References

[1] M. Abadi and L. Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May
1991.

[2] G. D. Abowd. Formal Aspects of Human-Computer Interac-
tion. PhD thesis, Oxford University, 1991.

[3] G. D. Abowd and A. J. Dix. Integrating status and event
phenomena in formal specifications of interactive systems.
In Proceedings of the ACM SIGSOFT’94 Symposium on
the Foundations of Software Engineering, New Orleans,
Louisiana, December 1994.

[4] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice. SEI Series in Software Engineering. Addison
Wesley, 1998.

[5] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Trans. Softw. Eng. Meth., 1(4):355–398, October 1992.

[6] T. Bolognesi and E. Brinksma. Introduction to the ISO spec-
ification language LOTOS. Comp. Netw. ISDN Sys., 14(1),
1987.

[7] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling
Language User Guide. Addison Wesley, 1999.

[8] D. Harel. Statecharts: a visual formalism for complex sys-
tems. Science of Computer Programming, 8, 1987.

[9] D. Harel. On visual formalisms. Commun. ACM, 31(5),
1988.

[10] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[11] G. E. Krasner and S. T. Pope. A cookbook for using the
model view controller user interface paradigm in smalltalk.
Journal of Object Oriented Programming, 1(3), 1988.

[12] P. Markopoulos, J. Rowson, and P. Johnson. On the compo-
sition of interactor specifications. In Formal Aspects of the
Human Computer Interface, BCS-FACS Workshop, 1996.

[13] B. A. Myers et al. The Amulet environment: New models for
effective user-interface software development. IEEE Trans.
Softw. Eng., 23(6), 1997.

[14] B. A. Myers, D. A. Giuse, and B. V. Zanden. Declarative
programming in a prototype instance system: Object ori-
ented programming without writing methods. In Proceed-
ings of OOPSLA, 1992.

[15] L. Nigay and J. Coutaz. Building user interfaces: Organizing
software agents. In ESPRIT’91, 1991.

[16] D. R. Olsen. User-interface management systems: Model
and algorithms. Morgan Kaufmann, 1992.

[17] D. Parnas. Designing software for ease of extension and
contraction. IEEE Trans. Softw. Eng., 5(2), 1979.

[18] F. Paternò. A theory of user-interaction objects. Journal of
Visual Languages and Computing, 5:227–249, 1994.

[19] J. Rumbaugh et al. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[20] B. Shneiderman. Direct manipulation: A step beyond pro-
gramming languages. IEEE Computer, 16(8):57–63, 1983.

[21] R. E. K. Stirewalt and G. D. Abowd. Practical dialogue re-
finement. In Proceedings of the Fifth International Euro-
graphics Workshop on Design, Specification and Verifica-
tion of Interactive Systems (DSV-IS’98), June 1998.

[22] R. E. K. Stirewalt and S. Rugaber. Automating user-
interface generation by model composition. In Proceedings
of the IEEE International Conference on Automated Soft-
ware Engineering, 1998.

[23] R. E. K. Stirewalt and S. Rugaber. The model-composition
problem in user-interface generation. Automated Software
Engineering, 7(2), Apr. 2000. To appear.

[24] R. N. Taylor et al. Chiron-1: a software architecture for user
interface development, maintenance, and run-time support.
ACM Trans. on Computer-Human Interaction, 2(2):105–
144, June 1995.

[25] H. Trætteberg. Modeling direct manipulation with referent
and statecharts. In Proceedings of the Fifth International
Eurographics Workshop on Design, Specification and Veri-
fication of Interactive Systems (DSV-IS’98), June 1998.

[26] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison Wesley, 1999.

[27] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice Hall, 1996.

[28] M. Young, R. N. Taylor, and D. B. Troup. Software environ-
ment architectures and user-interface facilities. IEEE Trans.
Softw. Eng., 14(6):697–708, June 1988.

8

