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ABSTRACT

Serverless computing platforms allow developers to host single-
purpose applications that automatically scale with demand. In con-
trast to traditional long-running applications on dedicated, virtu-
alized, or container-based platforms, serverless applications are
intended to be instantiated when called, execute a single function,
and shut down when finished. State-of-the-art serverless platforms
achieve these goals by creating a new container instance to host
a function when it is called and destroying the container when it
completes. This design allows for cost and resource savings when
hosting simple applications, such as those supporting IoT devices
at the edge of the network. However, the use of containers intro-
duces some overhead which may be unsuitable for applications
requiring low-latency response or hardware platforms with limited
resources, such as those served by edge computing environments.
In this paper, we present a nomenclature for characterizing server-
less function access patterns which allows us to derive the basic
requirements of a serverless computing runtime. We then propose
the use of WebAssembly as an alternative method for running
serverless applications while meeting these requirements. Finally,
we demonstrate how a WebAssembly-based serverless platform
provides many of the same isolation and performance guarantees
of container-based platforms while reducing average application
start times and the resources needed to host them.
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1 INTRODUCTION

Enabling next generation technologies such as self-driving cars or
smart cities via edge computing requires us to reconsider the way
we characterize and deploy the services supporting those technolo-
gies. Edge/fog environments consist of many micro data centers
spread throughout the edge of the network. This is in stark contrast
to the cloud, where we assume the notion of unlimited resources
available in a few centralized data centers. These micro data center
environments must support large numbers of Internet of Things
(IoT) devices on limited hardware resources, processing the mas-
sive amounts of data those devices generate while providing quick
decisions to inform their actions [44]. One solution to supporting
emerging technologies at the edge lies in serverless computing.

Serverless computing (also known as Function-as-a-Service or
Faa$) platforms allow developers to create and host single-purpose
applications which scale dynamically. These applications are in-
tended to perform a single function on demand and then stop run-
ning until needed again. Such platforms provide a significant cost
savings to application owners, allowing them to pay for only the
times during which their serverless functions are executing. Like-
wise, hosting providers may realize a substantial savings in resource
consumption, since serverless applications do not require constantly
running dedicated virtualized or containerized machines [43]. Al-
though originally designed for the cloud, these platforms are well-
suited for edge/fog computing environments, where resources are
necessarily limited.

Serverless computing platforms can provide a strong comple-
ment to the edge, enabling a high degree of multi-tenancy while
minimizing resource requirements. By collocating computing re-
sources closer to the devices they support, edge computing allows
for much lower latency responses to event triggers. Additionally,
data may be filtered and processed locally, leading to a timely re-
sponse on pertinent events while preventing extraneous data from
saturating backhaul links to the cloud. The advantages provided
by edge computing are not only desirable but also necessary when
dealing with the requirements of large numbers of IoT devices [29].

State-of-the-art serverless computing platforms host application
instances in short-lived containers for the purposes of lightweight
process isolation and resource provisioning [32]. A container rep-
resents a distinct namespace within the underlying OS, complete
with its own CPU, memory, and storage limits and without access
to or from the rest of the system. When a serverless function is
called, the platform instantiates a new container, populates that
container with application files and dependencies, executes the
application’s function, and shuts down after a brief period of inac-
tivity. To achieve more efficient operation, many of these platforms
cache container resources and reuse containers if an application is
accessed in succession (e.g., the container may stay active if used
within a 5 minute window) [50].
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While the optimizations employed by container-based serverless
platforms do improve performance, these platforms still suffer from
inefficiencies associated with container setup costs and resource
provisioning. These inefficiencies lead to container startup delays,
which in turn impact the time it takes for serverless applications to
start. The startup delays incurred by existing serverless platforms
stem from two main areas. Foremost, container-based solutions suf-
fer from an issue known as the cold start problem. When a serverless
function is first called, a new container must be instantiated be-
fore the function can be run. This involves provisioning resources,
bringing the container to a running state, starting and running the
function’s application, and returning any output to the caller of the
function [48]. Benchmarks show that this startup time can take 300
ms or more, depending on the serverless platform [13]. The second
source of delays comes from attempting to provision resources [15].
For example, if a serverless function requires a container with 2
GB RAM and the platform is otherwise fully populated with 512
MB RAM containers, the system must wait for at least 4 containers
to stop running before it can claim this resource. These issues are
further exacerbated by the fact that application developers employ
workarounds to avoid startup delays, including artificially activat-
ing functions (to avoid container shutdown) or overprovisioning
resources required to run their functions (to secure a container that
is harder to evict due to difficulty in acquiring resources) [21] [36].

On a container-based serverless computing platform in an edge
computing environment, containers that are long-lived or overpro-
visioned can quickly degrade performance due to limited available
resources. If an edge computing node consists of a single server with
high multi-tenancy requirements (e.g., supporting a vast number of
10T devices), persistent containers are not only undesirable but also
impractical. Supporting a large number of containerized serverless
functions with limited hardware resources means that constant
churn must occur, either through organic setup/tear down of con-
tainers upon function start/stop or forceful eviction of containers
upon resource exhaustion. Such a high rate of churn exacerbates the
cold start problem: whereas the slow start time of a container could
normally be amortized over its lifetime, in an environment with
constant turnover this delay quickly becomes an obvious impedi-
ment to low latency performance. When the majority of serverless
applications at the edge require several hundred milliseconds to
start, the advantages of collocating these applications closer to the
end-user are quickly eroded. To fully reap the benefits of serverless
platforms at the edge, the impediments posed by existing solutions
must be reduced or eliminated while working within the constraints
of edge computing environments.

In this paper, we present a new method for running serverless
functions without the use of containers. This method leverages
WebAssembly, a binary format that provides inherent memory
and execution safety guarantees via its language features and a
runtime with strong sandboxing capabilities. Our work provides
two main contributions. First, we introduce a nomenclature for
characterizing serverless access patterns. We use this nomenclature
to decompose serverless workloads into their component behaviors
to better describe and understand the requirements of a serverless
computing runtime. Second, we demonstrate WebAssembly as a
viable alternative to the use of containers in serverless platforms
through the use of detailed experiments. In doing so, we provide an
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answer to the question of how to better orchestrate the execution
of a serverless platform to fit the low latency/high multi-tenancy
requirements of the edge.

2 BACKGROUND

Our WebAssembly-based solution is a middle ground between run-
ning unisolated serverless applications as separate processes on
the underlying OS and running them inside of containers. We-
bAssembly provides several language and runtime features that
make it well-suited as an alternative to container-based runtimes
in serverless platforms. For the sake of completeness, we provide a
background on WebAssembly and its supporting technologies in
the remainder of this section. Readers already familiar with this
information may wish to continue on to the next section, where we
discuss how these features inform and support our design decisions.

WebAssembly. WebAssembly (sometimes abbreviated as Wasm)
is a binary instruction format first announced in 2015 and released
as a Minimum Viable Product in 2017 [41]. It is intended as a way
to run portable executable code with near native performance in
web browser environments. Developers who wish to leverage We-
bAssembly may write their code in a high-level language such as
C++ or Rust and compile to a portable binary which runs on a
stack-based virtual machine.

Several language features make WebAssembly well-suited as an
alternative to containers in serverless platforms [42]. First, each
WebAssembly module is designed to be memory safe and execute
deterministically within a sandboxed environment, providing per-
application isolation. Second, a module’s memory is laid out linearly
and fixed at compile time, which prevents many well-known secu-
rity vulnerabilities and errors arising from direct memory access.
Third, developers may port existing code intended to be compiled
natively to a WebAssembly compilation target with minimal effort.
And finally, since WebAssembly is both source language and target
platform agnostic, a WebAssembly module may be compiled once
and moved freely between different hardware architectures with
no reconfiguration.

Although WebAssembly shares many concepts with language
runtimes such as Java’s JVM or NET’s CLR, there are some key
differences which make it more acceptable as a container replace-
ment. Unlike Java or NET, WebAssembly was not meant to serve
as a compilation target for one particular language. Instead, it is
intended to be as open as possible. This is further supported by
the fact that the project is developed by the World Wide Web Con-
sortium (W3C) with support from all major web browser vendors
(Mozilla, Google, Microsoft, and Apple), thus increasing the like-
lihood that it will avoid serving the purposes of a single entity.
WebAssembly’s runtime was designed from the ground up with
security and performance in mind. New language and runtime fea-
tures are being added in small increments so as to avoid inadvertent
design errors which may later lead to security holes, performance
and stability bugs, or workarounds required to maintain backwards
compatibility [40]. Strong industry support, ease of use by both
developers and end users, and solid design decisions should ensure
WebAssembly remains a safe, stable, and viable binary format in
the long term.
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Figure 1: WebAssembly Serverless Platform Prototype Workflow

Runtime. Although one of WebAssembly’s primary goals is to
run in a web browser environment, such an environment is not
strictly necessary. Despite its name, WebAssembly may run in any
environment where the runtime contains an execution engine built
to its specification. Several of these engines exist today, such as
Mozilla’s SpiderMonkey, Microsoft’s Chakra, or Google’s V8. The
V8 engine [24] in particular has strong API support and is designed
to be embedded in an external program, making it ideal for use in
environments other than web browsers.

Applications which embed the V8 engine are referred to as em-
bedders [14]. An embedder is responsible for telling V8 which code
to execute and for making decisions on how that code may access
resources such as the local filesystem or console. This flexibility
allows V8 to run almost anywhere. For this reason popular em-
bedders exist on both the client side, such as in the Chrome web
browser, and on the server side, such as in NodeJS.

The Node]S platform provides non-blocking, asynchronous I/O
capabilities that allow it to support a large number of concurrent
connections to applications written in JavaScript and WebAssembly.
It is also highly extensible, providing strong support for additional
functionality through its module system. Several built-in and third-
party modules offer features such as filesystem access, V8 feature
management, extended sandboxing, and web server API creation.
As we will detail later, Node]S forms the basis for our WebAssembly-
based serverless platform prototype.

Compiler Toolchain. Emscripten [8] is the preferred method
for creating WebAssembly binaries from C or C++. Its toolchain is
backed by the LLVM [46] modular compiler infrastructure, which
it relies on for translating high-level code from languages such
as C++ to its own intermediate representation (IR). In addition to
code translation, LLVM also provides several tools which aid in
tasks such as optimization and dead code elimination. When source
code files have been translated to the IR, Emscripten can then parse
this representation to generate WebAssembly binary code and any
other supporting files.

Since Emscripten’s WebAssembly support is backed by LLVM, it
is also possible to include external files that have been translated
to LLVM’s IR, Bitcode. For example, if a WebAssembly application
developer wishes to leverage a popular library, they may link the
library via Emscripten by first compiling it to Bitcode via LLVM’s
toolchain. This provides increased functionality for more easily
porting existing code to WebAssembly modules.

When Emscripten generates a WebAssembly file, it also gener-
ates an associated JavaScript file which contains support for loading

and executing the WebAssembly code. The features included in this
file, such as enabling filesystem support or setting memory require-
ments, may be influenced by build time directives. Emscripten is
generally capable of determining what features need to be added
to the generated file based on its analysis of the source code, but
for production builds it is safest to explicitly specify all desired
options. The loader file generated by Emscripten is responsible for
brokering calls to and from the WebAssembly file and instructing
the execution engine (e.g., V8) to process and run the code.

3 PROTOTYPE DESIGN

In this section we discuss the design of our WebAssembly-based
serverless computing platform prototype, including its goals, limi-
tations, and implementation.

3.1 Design Goals

Our WebAssembly-based solution must meet several goals to be
considered a viable alternative to the use of containers in a server-
less platform. We address these goals as follows:

Strong Isolation. Our solution must provide isolation in the
form of a distinct namespace in which applications can operate.
This namespace must include memory and process segmentation
(such that an application may not influence another’s memory or
execution) and filesystem segmentation (such that an application
may only read and write its own files). Container-based solutions
achieve these goals through the use of Linux namespaces [34], a
kernel feature which provides an abstraction of system resources
to a per-process granularity. We can achieve an equivalent func-
tionality in WebAssembly through both its language features and
its runtime, which we do as follows:

Memory Isolation: WebAssembly uses a memory representation
that provides access to raw bytes without allowing direct memory
access (i.e., pointers are not allowed). This memory is represented
as an array of bytes (a linear memory) and is composed of 64 KiB
pages. Access to memory occurs via basic load/store instructions
which specify an offset into the array. In this respect, an application
may not escape its own memory space, as doing so would create an
array out-of-bounds condition. Modern WebAssembly execution
engines represent these linear memories internally as a JavaScript
ArrayBuffer [7].

Execution Integrity: The WebAssembly stack machine relies on
structured control flow for code execution. This design decision pre-
vents erroneous control instructions (e.g., jmp, goto) from creating
irreducible loops or performing unsafe branching to other parts of



1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

the program. As a result, the correctness of an application’s control
flow may be verified at compile time and its execution is guaranteed
to be largely deterministic [27].

Filesystem Segmentation: The WebAssembly standard does not
specify any guidelines for filesystem access. Instead, this function-
ality must be implemented by the runtime that is used to execute a
WebAssembly application. Emscripten provides such functionality
through its FS library and API This library provides support for sev-
eral virtual filesystem types, including that of NodeJS [9]. We rely
on Emscripten’s library coupled with the NodeJS module vm2 [45]
to provide filesystem isolation capability akin to chroot. This pro-
vides WebAssembly applications filesystem access restricted to a
specific directory.

Runtime: Ultimately, it is the responsibility of the execution
engine to extend functionality and enforce security for any We-
bAssembly application it runs. Our prototype relies on Node]S,
which in turn embeds V8 for the execution of WebAssembly code.
V8 provides isolation between code executions via the notion of
contexts. Each context represents a distinct namespace within V8
(similar to a container), such that an application executing within
a context may only access resources associated with it. To restrict
the execution of each WebAssembly module to its own context, we
leverage vmZ2’s fine-grained sandboxing capabilities.

When combined, these language and runtime features of We-
bAssembly allow us to achieve isolation guarantees similar to those
that containers provide to existing serverless computing platforms.

Resource Provisioning. We must provide a way for our solu-
tion to limit an application’s execution time and maximum mem-
ory usage. In container-based platforms, this resource control is
achieved via the Linux control groups feature. This feature allows
one or more processes to be organized into groups which have their
resources monitored and limited by the kernel [33]. We are able to
achieve similar resource control in WebAssembly as follows:

Maximum Memory Usage: Each WebAssembly application has
a single linear memory available to it. This memory is created
with an initial size upon application load and may later be dynami-
cally grown. Current runtimes rely on WebAssembly’s JavaScript
API to perform this memory creation operation. The WebAssem-
bly.Memory() API function allows us to set initial and maximum
sizes for the linear memory to be created [11]. We set these values
on a per-application basis via our application loader code.

Execution Time: State-of-the-art serverless platforms provide
some maximum execution time in which a function may be run
before it is forcefully killed. We enforce the maximum runtime
of WebAssembly applications via vin2’s timeout property. This
property is configured upon context creation and restricts execution
to a configured number of milliseconds.

Configuration directives for maximum memory usage and execu-
tion time are set via our application loader. Any errors encountered
from out-of-memory or execution-time-exceeded conditions are
handled gracefully by our application executor. Through the use of
these features, our runtime may properly provision and control the
use of resources for each serverless application it executes.

Application Creation and Portability. The use of WebAssem-
bly in a serverless platform should not require application develop-
ers an undue amount of work in porting their existing code to the
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new runtime. Existing solutions provide tools to aid in serverless
function development in a variety of programming languages [16].
WebAssembly can provide similar functionality. It is source code
agnostic, meaning that potentially any programming language can
be ported to WebAssembly. Currently, support for many popular
programming languages (e.g., C#, Go, Python, Java) is in active
development across numerous open-source projects. Additionally,
its most popular toolchains automate much of the task of adapt-
ing code during the build process. For example, when translating
source code to WebAssembly Emscripten will recognize and emit
SIMD.js vector instructions for native SIMD code [10], providing
vectorization support that is not tied to any particular hardware
architecture.

In our experience with creating several new programs and adapt-
ing existing popular libraries for use in WebAssembly, the amount
of manual work involved was minimal. For example, adapting
OpenCV and several of its dependencies (libjpeg, libpng, and zlib)
to WebAssembly required little more than modifying the build
configurations for each library.

WebAssembly is also target platform agnostic, meaning that a
WebAssembly binary may run on any architecture where a run-
time exists. This allows applications to be easily moved between
heterogeneous architectures (e.g., x86, ARM, RISC-V) without the
need for maintaining multiple builds and toolchains. These features
allow developers to create highly portable applications without the
overhead of learning an entirely new paradigm.

3.2 Design Limitations

While our WebAssembly-based solution does provide many of the
same advantages as containers, it also has some limitations worth
mentioning:

Contexts vs. Isolates. Our prototype relies on V8 contexts for
segmenting code. While the use of contexts does meet our goals
by restricting code executions to unique namespaces and limiting
access to resources, it does not represent the strongest form of
segmentation offered by V8. The isolates feature of V8 provides
finer grained control over segmentation and resource control. Each
isolate contains one or more contexts, runs on a separate thread,
and is restricted to a user-defined upper limit on memory. At the
time of this writing, we were unable to locate a solution that al-
lowed us to create and control V8 isolates via Node]S while also
meeting all of our requirements. Due to this limitation, we leave
the implementation of hosting serverless functions inside isolates
to future work.

Performance vs. Native Code. Although the WebAssembly spec-
ification does call for code that executes at near-native speeds, the
current available runtimes introduce some overhead which can slow
execution. WebAssembly continues to make strides in improving
execution speed, but at present native code executes much faster
than that of WebAssembly. We discuss this limitation further in the
Evaluation section.

Hardware-Specific Features/Accelerations. Because WebAssem-
bly is a hardware-agnostic format it lacks support for specific ac-
celerations available via extensions on different architectures. Al-
though some features such as SIMD are supported in a generic
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manner, the exact extensions in their entirety are not. The We-
bAssembly project is currently working to support the most widely
used features of the extensions across architectures while maintain-
ing binary portability.

3.3 Implementation

Our goal is to create a prototype which represents basic serverless
computing features and demonstrates the use of WebAssembly to
execute functions. We model this prototype implementation after
core features available in the Apache OpenWhisk platform. This
decision is based on the open-source nature of OpenWhisk, which
provides for introspection and access to design documentation.
Such information allows us to most closely mirror select features
of OpenWhisk so that our later prototype evaluation will be as fair
as possible.

The OpenWhisk architecture consists of a user-facing reverse
proxy web server; a Controller which serves a RESTful API that
allows for the control, query, and invocation of functions; an Au-
thentication and Authorization component; a message queue and
load balancer; and an Invoker which executes functions within
their own Docker containers. Of these features, we implement a
Controller and an Invoker in our prototype. The reverse proxy
and Authentication/Authorization components add unnecessary
overhead and thus are not considered in our prototype. The mes-
sage queue and load balancer components are unnecessary for the
scale at which we evaluate our platform and are also not imple-
mented. OpenWhisk allows us to monitor the performance of the
Controller/Invoker components independent of other components,
and as such we are able to directly compare their performance to
that of our implementation.

We detail the implementation of our Controller and Invoker as
follows:

Controller. Our Controller provides access to a RESTful API
via a web interface. It is responsible for translating API calls into
serverless function invocations and returning the status of these
invocations to the caller. The basis for our Controller is the Ex-
press [17] web framework for Node]S. Express is lightweight and
provides several fundamental web application features which aid
us in implementing a performant RESTful API frontend. We create
a web server using Express which provides access to API endpoints
via two HT TP methods:

o GET is used to call a serverless function with no arguments
(i.e., the function will execute and return results, if any, to
the caller)

e POST is used to call a serverless function with one or more
arguments. These arguments will be passed to the function
unmodified and output will be returned to the caller if avail-
able.

Each serverless application on the platform will have its own
endpoint. For example, if the platform hosts an application named
send-alert, this application may be accessed via the /faas/send-
alert endpoint by issuing the GET command to the Controller.
Note that a production system such as OpenWhisk would also
include some authentication mechanism for calling applications,
and applications would be differentiated by some unique ID so as
to avoid naming collisions.
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It is the responsibility of the Controller to validate any function
invocation requests before calling the Invoker. This includes veri-
fying that the function exists and confirming that any arguments
passed with the request are valid for that function. If a request is
invalid, an error code is returned to the caller. Otherwise, the Con-
troller calls the Invoker with the function’s name, WebAssembly
file location, memory/filesystem limits, and arguments passed by
the caller.

Invoker. The Invoker is responsible for loading and execut-
ing a function’s WebAssembly representation, as well as gather-
ing/returning any results. This process begins with setting up an
execution context and loading the function’s WebAssembly code.
Currently, the most popular method for loading a WebAssembly
application is via the use of its JavaScript APL. Emscripten includes
support for generating this boilerplate code when compiling a
WebAssembly module. Our Invoker extends this code by first con-
verting it to a JavaScript module, which allows us to call the file
externally from other JavaScript applications (namely, the Con-
troller). We create an entry function which will be called whenever
the Invoker is needed (i.e., when an associated serverless function is
called). This function takes as input the name of the WebAssembly
file to be executed, an array of input to the WebAssembly file (such
as variables passed from clients via the web API), and a callback
function that should be called after the WebAssembly code finishes
executing.

To guarantee application isolation, a new V8 context needs to
be created for each serverless function call. By default, NodeJS
does not provide any strong mechanism for isolating untrusted
code running within a context, meaning it may be possible for
malicious code to escape its current context and adversely affect
code in unrelated contexts. To avoid this issue, we utilize the vm2
third-party Node]S module which allows for the creation of sep-
arate strongly sandboxed contexts running untrusted code. This
also enables us to specify which Node]JS features are available to
each context with fine granularity. By containing each application’s
code within a dedicated V8 context custom tailored to its needs,
we effectively achieve our goal of separation from the underlying
operating system and other processes. An instance of the loader
prepares this new context for executing the WebAssembly code
by setting memory, execution time, and filesystem limits and then
makes the appropriate API calls to instruct the V8 engine to begin
executing the function’s WebAssembly code within the context.
When the WebAssembly code finishes its execution, it returns con-
trol to the loader file. The loader file then passes a status message
and any output from WebAssembly back to the Controller via a
callback function. Finally, the Controller returns this status and any
available output to the client.

We illustrate the workflow of our prototype in Figure 1, which
represents the call of a serverless function named resize. The work-
flow begins with an IoT device contacting the Controller on an edge
node (Step #1). The device calls the function at its API endpoint by
issuing a GET command to /faas/resize. The Controller confirms
this request as valid, then calls the Invoker with details of the resize
function’s configuration (Step #2). The Invoker creates a new con-
text configured with memory, execution time, and filesystem limits
specific to the function being executed. It then executes loader code
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within that context (resize_loader.js). The loader code makes the
appropriate V8 API calls to begin execution of the WebAssembly
code (Step #3, resize.wasm) and waits for a return. When execution
completes, resize.wasm returns the results of its execution to the
loader (Step #4). The loader then checks for a valid return code and
either returns the output of resize.wasm (upon success) or an error
code (upon failure) to the Invoker. Finally, the Invoker shuts down
the function’s context and passes this output back to the Controller
(Step #5). At this point the Controller may return an appropriate
status to the IoT device and terminate the connection.

4 CHARACTERIZING SERVERLESS
FUNCTION ACCESS PATTERNS

Our experimentation suggests that access patterns to serverless
functions may be characterized in three basic ways. To describe
these access patterns, we provide three scenarios from a real-world
campus camera network consisting of approximately 1,000 devices.
These devices provide real-time high-definition video streams to
the campus police department for use in identifying threats as
they occur. Our group collaborates with this department in an
ongoing effort to develop an edge computing-based infrastructure
which automatically identifies and tracks suspicious objects via
computer vision. The scenarios we present center around our design
of serverless platforms at the edge of the network which support up
to 50 cameras within the same geographic region. These platforms
are responsible for first stage processing, determining which video
streams contain relevant data that should be further considered
by humans in the loop or servers in the cloud. The remainder of
this section outlines the three access patterns clients may use when
accessing serverless computing platforms.

Single Client, Multiple Access. The first access pattern we de-
scribe is Single Client, Multiple Access. This pattern is illustrated in
Figure 2. We consider a scenario where an object of interest (e.g.,
a vehicle) has entered a smart camera’s field of view. This camera
first needs to gather the features of this object before it can proceed
with image recognition, and to do so it will query a serverless func-
tion to perform feature extraction. During the period where the
object remains in the camera’s field of view, the camera captures
multiple frames in which the object appears. Before the camera can
send these frames to the feature extraction function, it must first
resize them to a resolution suitable for processing. To do this, it
repeatedly queries the resize serverless function, sending a different
frame with each successive query. The first call to this function
incurs the cold start penalty, creating a delayed start to execution,
but subsequent calls execute without delay. In this scenario, the
camera is a client which accesses the same instance of the server-
less function multiple times in close succession. This access pattern
allows for already warm resources (such as an already running
container or populated cache) to be reused for subsequent requests,
thereby increasing performance and decreasing overall response
latency. A Single Client, Multiple Access pattern where an already
warm container may be reused multiple times represents the best
case scenario for a serverless platform.

Multiple Client, Single Access. The second access pattern we
describe is Multiple Client, Single Access. This pattern is illustrated
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Figure 2: Single Client, Multiple Access Pattern

in Figure 3. For this access pattern, we consider a scenario where
multiple license plate reader cameras monitor the entrances to a
parking deck during peak morning hours. Each of these readers
queries the same serverless function a single time to determine
whether a captured license plate is of interest to the campus police.
In this scenario, the various license plate readers are the multiple
clients which each access separate instances of the same serverless
function concurrently. Since this access pattern requires a separate
instance of the serverless function to be spawned to handle each
request, each instantiation will contribute some initial delay to
function response latency (e.g., the cold start penalty for container-
based systems). A Multiple Client, Single Access pattern where all
functions incur the cold start penalty represents the worst case
scenario for a serverless platform.

GET /faas/1pr
Camera - Request #1
#1 t; ———Pp|
camera . t; _Reauest #2
Camer‘a . t; _Reduest #3 o Request #3
Edge Node

Figure 3: Multiple Client, Single Access Pattern

FaaS Server

Multiple Client, Multiple Access. The third access pattern we
describe is Multiple Client, Multiple Access. This pattern is illus-
trated in Figure 4. It is a combination of the first two access patterns
and is most representative of real-world workloads. We consider
a scenario where multiple smart cameras have already gathered
the features of objects within their fields of view and now wish
to perform image recognition on those objects. To perform im-
age recognition, each smart camera queries a serverless function
with the features of an object and receives a response with some
classification (e.g., "blue car"). Some cameras will only need to per-
form image recognition on one object, meaning they will access a
serverless function only once. Other cameras will need to perform
image recognition on multiple objects, meaning they will access the
same serverless function many times in succession. In this scenario,
the many cameras are the multiple clients which access separate
instances of the same serverless function one or many times. De-
pending on the ratio of Single Client, Multiple Access requests to
Multiple Client, Single Access requests, more or less opportunities for
optimization may exist. For example, with an even mix of request
types, containers created for clients with single requests may be
quickly recycled for clients with multiple successive requests, lead-
ing to an overall speedup. Multiple Client, Multiple Access represents
the average case scenario for a serverless platform.
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Name Source Size Size Function Libraries
Language | (Native) | (WASM)
License Plate Accepts license plate identifier as input and determines
Reader Crr 21 MB 271 KB whether identifier is on a list of suspicious vehicles None
I A i i D 1 k
mage N Cot 8.4 MB 1.4 MB ccepts image as input to a eep Neural Neror. a.nd returns tiny-dnn [47]
Recognition name and confidence level of objects recognized in image
. L . . Boost.GIL [38],
Image Resize | C++ 2.5 MB 481 KB Resizes input image by a given percentage libjpeg [25]

Table 1: Example Serverless Functions

GET /faas/imgrec
Camera equest #1
#1 4 ————————
Camera 4 """" #_3_
Request
e,
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Figure 4: Multiple Client, Multiple Access Pattern

5 EVALUATION

In this section we describe our methods for evaluating WebAssem-
bly as an alternative to the use of containers in serverless computing
platforms.

5.1 Setup

We evaluate our WebAssembly-based serverless computing plat-
form against Apache OpenWhisk, an open-source serverless com-
puting platform which uses the Docker container engine for hosting
applications. Our decision to use OpenWhisk as a comparison plat-
form stems from the fact that its open-source nature allows for
careful introspection and configuration of its inner workings. Our
evaluations consist of benchmarking three example applications
representing serverless functions of varying complexity. Both eval-
uation platforms were installed on identical hardware consisting of
an Intel Xeon E5-2680 v2 CPU and 16 GB of RAM running Ubuntu
Linux 16.04 LTS. Our WebAssembly evaluation platform is backed
by Node]JS version 11.0.0-pre running V8 version 7.0.276.24-node.4
and our OpenWhisk evaluation platform is backed by Docker ver-
sion 18.06.1-ce.

The execution time statistics used in our evaluations are gathered
from the serverless platforms themselves. Our WebAssembly-based
platform records the total time taken to instantiate a context and
execute a WebAssembly function, and returns this information
when responding to each request. OpenWhisk provides similar in-
formation (known as annotations [39]) with its responses, recording
the duration a function executes, the initialization time required
to create a container, and the waiting time incurred by other plat-
form operations (e.g., authentication, accounting, etc.). Since our
benchmarks are concerned with the cold start time of containers
and since our WebAssembly-based prototype does not include op-
erations such as authentication and accounting, we measure only
the duration and initialization times of OpenWhisk when deter-
mining how long it requires to execute a serverless function. This
methodology provides the closest comparison of the two platforms’

abilities to execute serverless functions while reducing extraneous
data such as network latency or overhead incurred by unrelated
services.

Benchmarks were conducted from the client-side using the Apache
JMeter [19] load testing tool. This tool was installed on a separate
server equipped with a Xeon E5-2430 CPU and 16 GB of RAM and
connected to our serverless computing platforms via a 1 Gbps link.
Separate configurations were created for each testing scenario, with
identical workloads applied to both platforms under evaluation. The
size and scope of these configurations are based on the example
scenarios described in Section 4 and are intended to demonstrate
the types of workloads a serverless computing platform at the edge
might experience. Results gathered by the JMeter client were com-
pared with results gathered server-side to ensure accuracy.

5.2 Example Applications

For our evaluations, we created three custom applications repre-
sentative of serverless functions from the scenarios described in
Section 4. These applications were written in C++ and statically
compiled to native x86 and WebAssembly binaries using clang 6.0.1-
x and Emscripten 1.38.x, respectively. Any dependent libraries were
first either statically compiled to native code using clang or com-
piled to Bitcode using the Emscripten toolchain and later linked
during build time. Details of these applications can be found in
Table 1 on page 7.

Although both native and WebAssembly applications were stat-
ically compiled from the same code, the resulting sizes of their
output binaries vary significantly. This is due in large part to Em-
scripten’s use of dead code elimination when compiling source code
to WebAssembly. Emscripten, through its LLVM backend, analyzes
and removes code that it determines will be unused during run
time. This system is highly effective, but at times may inadvertently
eliminate code that is actually needed. As a remedy, the dead code
elimination feature of Emscripten can either be disabled entirely or
configured to explicitly include portions of code that the developer
is certain will be needed. Creating smaller WebAssembly binaries
enables faster load times and more efficient code profiling, leading
to an overall speedup in execution.

5.3 Native vs. WebAssembly Execution Time

We begin our evaluations with a comparison of the execution speed
of native vs. WebAssembly binaries. The execution of each binary
file was recorded over 50 runs via the Linux time utility and a timer
internal to each application. Binaries compiled to native x86 code
were executed directly and binaries compiled to WebAssembly code
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were executed via Node]JS through their JavaScript loader files. The
average execution times for each binary can be seen in Table 2.

In this scenario, WebAssembly provides no clear advantage. The
overhead of executing WebAssembly code via Node]S causes delays
that far outstrip the execution time of native code. Although the
WebAssembly specification calls for performance similar to native
code [26], current mainstream runtimes do not achieve this goal in
full.

Despite its slower performance compared to native execution
at the time of this writing, the WebAssembly project is still mak-
ing strides in closing this gap. For example, during the course of
our research Google’s V8 team released a new baseline compiler,
Liftoff [22], that improved our WebAssembly execution times by
approximately 50%. There are also ongoing efforts to create new
runtimes for WebAssembly, some of which have shown early bench-
marks with execution time on par with native binaries [30]. How-
ever, these runtimes are still in nascent stages and lack the more
fully featured offerings of Node]S. For this reason, we leave the
exploration of alternative runtimes to future work.

App x86
License Plate Reader | 1ms | 6 ms

wasm

Image Recognition 30 ms | 160 ms
Image Resize 60 ms | 115 ms

Table 2: Native vs. WebAssembly Execution Speeds

5.4 Single Client, Multiple Access Workload

Container-based serverless computing platforms perform most effi-
ciently when processing successive requests from the same client.
For example, an IoT device may call a serverless function every
10 ms for 50 times in succession without closing its initial connec-
tion. The efficiency gained comes from the fact that the container
instantiated to handle the initial request can be recycled for sub-
sequent requests, thereby amortizing the long cold start time over
the lifetime of the container.

To demonstrate the speedup from successive single client re-
quests, we created a workload in JMeter simulating 50 subsequent
requests from a single worker to the same serverless function.
From this workload, we measured the time taken to receive a re-
sponse from the function. We also applied this workload to our
WebAssembly-based platform for comparison.

The results from our benchmark can be seen in Figure 5 and Ta-
ble 3. As expected, the first requests for all three sample applications
experience startup delays associated with container instantiation
(in the case of OpenWhisk) or context creation (in the case of We-
bAssembly). The OpenWhisk platform experienced delays during
the initial calls only, as indicated by the maximum latency value
recorded for each function call. Subsequent requests were much
faster, executing at approximately native speed. This initially slow
response is due to the cold start penalty associated with creating
the first containers, and the subsequent speedup is due to those
containers being recycled to service the remaining calls. The We-
bAssembly platform also experienced a small delay during the first
calls, but subsequent function calls did not receive the same speedup
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as those served by containers. This behavior caused the WebAssem-
bly platform to perform in a more predictable manner, but slower
on average relative to the average latencies of the container-based
platform. Any speedups gained by WebAssembly came as a result
of code profiling and code hotspot caching, both of which occur
during the first few runs of an application.
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Figure 5: Single Client, Multiple Access Latencies

Avg / Min / Max | Avg/Min / Max

App (OpenWhisk) | (WebAssembly)
Image 79/ 64/ 658 123 /114 / 145
Resize (ms) (ms)

License Plate 38/3/580 27/19/48
Reader (ms) (ms)
Image 45/29 /744 112/94/ 144

Recognition (ms) (ms)

Table 3: Single Client, Multiple Access Latencies

When compared to serverless functions executing in already
warm containers, WebAssembly still lags behind. Although We-
bAssembly’s initial startup time is much better than that of Open-
Whisk, over the lifetime of a long-running container this advantage
is eroded by native execution speeds resulting in an overall lower
average response time. However, it is important to note that Single
Client, Multiple Access traffic patterns are not representative of a
typical serverless computing workload. In an edge computing envi-
ronment it is more likely that a large number of devices will make
concurrent, simultaneous requests which require the instantiation
of a separate container or context to process.

5.5 Multiple Client, Single Access Workload

One advantage of serverless computing platforms is their ability
to scale dynamically with demand. For example, if 50 IoT devices
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simultaneously request the same serverless function, the platform
hosting that function may need to create a separate instance of the
function to concurrently serve each request. On a container-based
platform this means up to 50 new containers must be created, all of
which will incur the cold start penalty. We refer to this access pat-

tern as Multiple Client, Single Access. To benchmark this workload,

we created a JMeter configuration with 50 clients which access the
same serverless function once simultaneously over a 10 second
ramp-up period.
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Figure 6: Multiple Client, Single Access Latencies

A Avg /Min / Max | Avg/Min / Max
PP (OpenWhisk) | (WebAssembly)
Image 394 /68 / 904 124 /114 /179
Resize (ms) (ms)
License Plate 334/3/701 28/19/54
Reader (ms) (ms)
Image 432 /30/ 1073 146 /102 / 219
Recognition (ms) (ms)
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more likely given serverless functions with longer running times,
which would greatly reduce the opportunity for container reuse
during the brief period where an influx of concurrent requests
is processed. Our WebAssembly platform exhibited lower startup
times overall, but was not able to achieve the same level of perfor-
mance as already warm containers running native code. However,
WebAssembly did provide the advantage of more stable, predictable
latencies and much lower average latencies for all function calls.
Details from our benchmarks can be found in Table 4.

5.6 Multiple Client, Multiple Access Workload

Although benchmarks of the Single Client, Multiple Access and Mul-
tiple Client, Single Access workloads both yield interesting results,
neither is representative of a real-world workload. Instead, access
patterns to serverless functions exhibit properties of both work-
loads: some clients access a function multiple times in succession
and other clients access a function only once. Our goal is to deter-
mine whether WebAssembly provides any advantage in reducing
the average latency when accessing functions on platforms pro-
cessing this type of workload.
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Figure 7: Multiple Client, Multiple Access Latencies

Table 4: Multiple Client, Single Access Latencies

Figure 6 demonstrates the latency distributions for the 50 clients
in our benchmark. At least half the clients accessing applications
hosted on the OpenWhisk platform suffered from cold start delays,
with other clients benefiting from warm containers. Since concur-
rent accesses in our benchmark could not occur at exactly the same
time and since our example applications finished executing very
quickly, the OpenWhisk platform was able to recycle some contain-
ers to serve other clients when those containers became available.
This was an unexpected result, but speaks to the efficiency of Open-
Whisk in reducing latency whenever possible. In the worst case,
each request would have required a separate container and thus 50
cold starts would occur. The worst case scenario would be much

A Avg /Min / Max | Avg/Min / Max
PP (OpenWhisk) | (WebAssembly)
Image 221/ 66 /1039 129 /116 / 208
Resize (ms) (ms)
License Plate 173 /3 /912 34/19/75
Reader (ms) (ms)
Image 247 /30/ 1799 98/75/181
Recognition (ms) (ms)

Table 5: Multiple Client, Multiple Access Latencies

We demonstrate the effect of such mixed access patterns by cre-
ating a workload in JMeter which provides equal representation to
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both access patterns. This workload consists of 1 worker accessing
the same serverless function 25 times (a Single Client, Multiple Ac-
cess pattern) and 25 workers accessing the same function 1 time
over a 5 second ramp-up period (a Multiple Client, Single Access
pattern). Workers with little to no delay between accesses will re-
alize the benefit of an already warm container during subsequent
requests, while workers with a large delay will likely incur the
cold start penalty each time. We apply this same workload to our
OpenWhisk and WebAssembly platforms.

The results from our benchmark can be found in Figure 7 and
Table 5. Given this type of access pattern, the OpenWhisk container-
based platform incurred cold start penalties for approximately 20-
25% of requests. The WebAssembly platform demonstrated more
uniform results, and showed performance consistent with previous
benchmarks of other workloads.

5.7 Discussion of Results

Benchmarks. We designed our benchmarks to demonstrate
the performance of a container-based serverless platform and a
WebAssembly-based serverless platform given workloads from real-
world scenarios. The example serverless functions we created from
these scenarios represent two tasks of moderate complexity (Image
Resize and Image Recognition) and one task of basic complexity
(License Plate Reader). To prove a viable alternative to the use of
containers for hosting applications, WebAssembly should provide
at least similar performance on average to a container-based solu-
tion when presented with the same workloads. The results gathered
from our tests suggest that WebAssembly is indeed a viable alter-
native, despite having its own disadvantages in certain scenarios.

During our discussion of these results, we abbreviate several
repeated references for the sake of simplicity. We refer to the
container-based solution as OpenWhisk and the WebAssembly-
based solution as Wasm. When describing application executions
we refer to the Image Resize and Image Recognition applications
as moderate tasks and the License Plate Reader application as a
basic task. And when discussing execution latencies we refer to the
minimum, maximum, and average latencies as the best, worst, and
average cases.

Given the Single Client, Multiple Access workload, Wasm provides
little advantage. In the best case, Wasm performed approximately
1.5-3x slower than OpenWhisk when executing moderate tasks and
approximately 6x slower executing a basic task. Despite applica-
tions hosted on OpenWhisk incurring the cold start penalty during
their initial calls, subsequent calls all executed on warm containers
at native speed. These initial cold starts increased average appli-
cation latencies by approximately 25-50% for the moderate tasks
and approximately 400% for the basic task. These results suggest
that although OpenWhisk is generally a solid performer for the
Single Client, Multiple Access workload, very simple applications
will require far more subsequent executions before the cost of the
initial cold start is amortized enough to reduce average execution
latency.

Wasm begins to show its benefit over OpenWhisk when tasked
with the Multiple Client, Single Access workload. We initially ex-
pected this workload to be problematic for OpenWhisk, with each
concurrent request forcing a cold start. However, we found that
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OpenWhisk handled these requests gracefully and was able to recy-
cle approximately half the containers to avoid cold start penalties.
There are two reasons for this behavior. The first reason is that no
two requests can be exactly concurrent, which means there was
a small window of opportunity for a warm container to become
available during the brief period where the concurrent requests
were being sent from client to server. The second reason is the short
running times of our moderate and basic tasks. Our applications
finished execution quickly, which freed up their containers to be
recycled. If our applications had taken longer to run, it is very likely
that OpenWhisk would have suffered from a majority of cold starts.
Wasm processed this workload with execution speeds very similar
to those seen with Single Client, Multiple Access. When compared
to OpenWhisk’s best case speeds, Wasm is still much slower. How-
ever, when we look at the average case we begin to see the effect
the cold start problem has on overall performance. OpenWhisk’s
average latency was roughly 6x-14x higher than the best case for
the moderate tasks and around 100x higher than the best case for
the basic task. Comparatively, Wasm executed the moderate tasks
approximately 70% faster and the basic task approximately 90%
faster on average.

The Multiple Client, Multiple Access workload exposed each plat-
form to an even mix of requests from each of the first two work-
loads. Since OpenWhisk realizes a strong advantage when faced
with the Single Client, Multiple Access workload, we expected that
this advantage would offset some of the disadvantage caused by the
concurrent requests of the Multiple Client, Single Access workload.
The results from our benchmarks were in line with our expectations.
Most requests to OpenWhisk were served from warm containers
and approximately 25% of function calls suffered from cold start
delays. Almost all these delays can be attributed to the concurrent
requests from the Multiple Client, Single Access pattern. Interest-
ingly, we note that this workload consisting of 50% Multiple Client,
Single Access requests results in approximately 25% cold starts,
which is consistent with the results from our previous benchmark
where a workload consisting of 100% Multiple Client, Single Access
requests resulted in approximately 50% cold starts. Wasm contin-
ued to perform in a consistent manner throughout this workload,
achieving best, worst, and average case latencies very similar to
the previous two workloads. OpenWhisk demonstrated similar best
case latencies and decreased average case latencies due to less cold
starts. We note that a Multiple Client, Multiple Access workload will
not always achieve an even split between the two access patterns,
and that a skew toward one or the other type of request can eas-
ily cause more or less cold starts to occur. For example, a mixed
workload with a majority of Single Client, Multiple Access requests
would show fewer cold starts, while a workload with a majority of
Multiple Client, Single Access requests would show more cold starts.
Our workload in this benchmark represents an ideal case so that
we may fairly demonstrate the effect of such access patterns on
both OpenWhisk and Wasm.

Our benchmarks demonstrate that Wasm performs well over
the three given workloads. Although at times this performance is
slower than that of OpenWhisk, it is consistent and on average
faster. Even when faced with workloads which cause OpenWhisk
to experience spikes in latency, Wasm provides relatively stable
response times. These results do not necessarily suggest that Wasm
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is better than OpenWhisk. Certain workloads that are favorable to
container reuse still provide superior performance due to Wasm’s
slower-than-native execution speeds. However, Wasm does appear
to at least be a peer to OpenWhisk and even a viable alternative
given certain conditions.

Performance vs. Containers. Wasm’s primary advantage over
container-based solutions is the absence of a large cold start penalty.
There are two reasons for this advantage. First, container runtimes
such as Docker incur a large amount of overhead in ensuring their
support for containers is as broad as possible. This support in-
cludes several features (e.g., advanced networking, container check-
point/restore) which are unnecessary for the minimal container
configurations used by serverless functions. Setup and control of
these features requires multiple syscalls and IPC between container
parent and child processes before a serverless function can begin
executing. In contrast, Wasm is focused on executing sandboxed
code as quickly as possible. Many of the necessary isolation and
resource management features needed for serverless functions are
inherent to Wasm. The additional overhead we need to add to use
Wasm in a serverless platform is minimal, allowing for a reduced
mean time to function execution. Second, each Docker container
consists of one or more separate processes, whereas each Wasm
instance is contained within the same V8 process. This provides a
Wasm-based solution the advantage of warmer caches and reduced
context switch penalties, creating better potential for speedup when
concurrently executing multiple serverless functions. Although in
general a container’s overhead may be acceptable for long-running
applications, this overhead quickly proves an impediment to meet-
ing the low-latency demands of serving emerging IoT applications.

It is important to keep in mind that WebAssembly is still in a
nascent stage and continues to improve at a rapid pace. At present,
its biggest advantage over containers is consistent performance
and lower average latency when cold starts exist. However, as the
project continues to progress execution times will improve signifi-
cantly. When these execution times reach near-native performance,
WebAssembly will provide an even greater benefit over containers
with or without regard to the cold start problem.

6 RELATED WORK

The oldest and arguably most popular serverless computing plat-
form, Amazon’s AWS Lambda [2], was first introduced in 2014.
Since then, other major cloud providers have followed suit with
offerings such as Google’s Cloud Functions [23], IBM’s Cloud Func-
tions [31], and Microsoft’s Azure Functions [4]. Interest and re-
search in serverless computing has also spawned open source
projects such as OpenLambda [12] and Apache OpenWhisk [18].
Offerings also extend to the edge of the network, with commercial
platforms such as AWS Greengrass [3] and Azure IoT Edge [5] and
open-source platforms such as EdgeXFoundry [20] specifically tar-
geting serverless for IoT. As mentioned in the Introduction, these
platforms rely on containers for function isolation and are thus
susceptible to cold start delays.

Several approaches to improving container-based serverless plat-
forms have been proposed. SAND [1] introduced the notion of
grouping functions related to the same application within the same
container, thereby greatly increasing the opportunity for reuse of
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already warm resources. Slacker [28] and SOCK [37] introduced
new methods for loading and caching dependencies upon container
instantiation, decreasing the time to initial application execution
after a container has been provisioned. And McGrath, et al. [35]
proposed the use of an intelligent queuing system where worker
platforms indicate the availability of cold and warm containers to
enable better placement for executing incoming function requests.

Our work takes a different approach to improving serverless
computing performance by adapting WebAssembly, a technology
from the client-side web browser space, to work on the server-side.
In the future, WebAssembly may serve as an alternative runtime
for state-of-the-art serverless platforms. Its features are especially
beneficial to those platforms at the edge of the network which need
to serve vast numbers of IoT devices with low latency response
times. Additionally, the hardware-agnostic nature of WebAssembly
allows its applications to be readily portable across a wide array of
devices with different architectures within the IoT space.

To our knowledge, our study is the first to quantitatively com-
pare container-based and WebAssembly-based solutions for server-
less function execution. We are not aware of the existence of any
formal research which has explored WebAssembly for containing
and executing serverless functions as an alternative to containers.
However, at the conclusion of our research a commercial prod-
uct, Cloudflare’s Service Workers [49], began to offer support for
creating and hosting serverless functions in WebAssembly. There
is no explicit documentation indicating what runtime is used for
these serverless functions, but available information implies that
Cloudflare’s solution may function similar to ours. We view this
development as a validation of our research ideas and look forward
to the emergence of similar projects in the future.

7 CONCLUSIONS AND FUTURE WORK

Our goal in benchmarking WebAssembly was to determine if it
could provide similar or better performance than containers given
the same workloads. The results from these benchmarks showed
it to perform consistently across all access patterns. Although its
execution speed vs. container-based native binaries is slower, when
the cold start penalty of containers is factored in to this calcula-
tion its performance is faster on average. WebAssembly is a new
technology, and advances are still being made toward enabling
performance similar to native execution speeds. Its execution speed
has continued to improve since the release of the Minimum Viable
Product in late-2017. We believe the results from our benchmarks
indicate WebAssembly is a viable alternative to the use of containers
in serverless platforms, and that further exploration in this space is
warranted.

In addition to its viability as a serverless computing runtime for
the Edge, WebAssembly can also prove useful to the IoT domain
in general. WebAssembly’s platform-neutral nature lends itself to
building applications that can execute across the myriad architec-
tures of devices which comprise the Internet of Things as well as
servers in the cloud. This is in line with the vision of the Fog Com-
puting paradigm [6], which describes a computational continuum
that extends the power of the cloud to the network edge.

We intend to continue our exploration of WebAssembly as an
execution environment for serverless functions in three areas:
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Full Serverless Platform: The WebAssembly-based serverless plat-
form we created for this paper is a simple prototype. It provides
the most basic functionalities of serverless platforms, but is not
robust enough to be considered production-ready. As future work
we intend to further develop this platform to mirror the features
of state-of-the-art offerings such as OpenWhisk. This work would
include a more robust web API, authorization and accounting fea-
tures, and stronger orchestration features to allow provisioning
and migration among different instances of the serverless platform.

Custom Runtime: Our prototype is based on Node]S and several
of its third-party modules, which limits us to the features that they
offer. We intend to explore the creation of our own WebAssembly
runtime which will provide much more robust functionalities. In
particular, we hope to achieve finer-grained control over resource
provisioning, execution of code, and process isolation.

Benchmarks at Scale: With our custom runtime and full serverless
platform in place, we hope to revisit our benchmarks and test
our WebAssembly-based solution against popular container-based
solutions at scale. These tests would incorporate workloads from
the access patterns described in Section 4 and better demonstrate
WebAssembly’s efficacy for executing serverless functions over a
wide range of scenarios.
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