
Infosphere Project:
System Support for Information Flow Appfications

Calton Pu, Karsten Schwan
Georgia Institute o f Technology
{calton, schwan} @cc.gatech.edu

Jonathan Walpole
Oregon Graduate Institute

walpole@ese.ogi.edu

Abstract

We describe the Infosphere project, which is building the
systems software support for information-driven applica-
tions such as digital libraries and electronic commerce.
The main technical contribution is the]nfopipe abstrac-
tion to support information flow with quality of service.
Using building blocks such as program specialization,
software feedback, domain-specific languages, and per-
sonalized information filtering, the Infopipe software
generates code and manages resources to provide the
specified quality of service with support for composition
and restructuring.

t Introduction

1.1 Technology Push
Computer technology has advanced steadily in terms of
CPU speed, memory and storage capacity. This reliable
evolution of hardware, commonly known as Moore's
Law, has made information technology the foundation of
modem economy. This evolution is leading to a shared
vision called ubiquitous computing [13] (see Section 5.3
for pointers to several ongoing research projects in this
area). In a ubiquitous computing environment of the fu-
ture, humans will be surrounded by hundreds to thou-
sands of processors linked in a pervasive wireless net-
work. At the same time, they will be surrounded by a
huge amount of information. In the lnfosphere project,
we are building the system support to bring the informa-
tion closer to humans.

We first note the impact of technology push on informa-
tion storage. Jim Gray mentioned in his Turing Lecture
(Atlanta, May 1999) that the total disk storage capacity
shipped last year was on the order of exabytes, which is
about the same order of magnitude as the total of all pre-
viously available storage. Each 12 to 18 months, as the
disk storage density doubles, vendors produce and have
been selling new storage capacity equal to all of the pre-
vious storage combined. Gray also estimated that all pro-
fessionally produced printed material in the entire human
history would fit into a few exabytes. In the near future,
we will be able to store many new kinds of information
such as virtual reality, or more importantly in our view,

massive amounts of up-to-date information about our
physical reality in unprecedented detail. This new infor-
marion comes from many sources including electronic
cormnerce databases such as online banks, sensors from
satellites, and smart appliances in ubiquitous computing.

1.2 Information-Driven Applications
Several important emerging classes of distributed applica-
tions are inherently information-driven. Instead of occa-
sionally dispatching remote computations, such informa-
tion-driven systems tend to transfer and process streams
of information continuously. Member of this class range
from applications that primarily transfer information over
the wires such as digital libraries, teleconferencing and
video on demand, to applications that require information-
intensive processing and manipulation, such as distributed
multimedia, Web search and cache engines. Other appli-
cations such as electronic commerce combine heavy-duty
information processing (e.g., during the discovery and
shopping phase, querying a large amount of data from a
variety of data sources) with occasional remote computa-
tion (e.g., buying and updating credit card accounts as
well as inventory databases).

In the Infosphere project, we are particularly interested in
Jhesh information that changes the way we interact with
our environment. For example, weather is considered an
inevitably uncertain element of nature. Given fresh sen-
sor information at suitably fine granularity (both in space
and in time), accurate weather reporting and forecasting
for small areas can be very valuable for everyone. For a
birthday party in the park, an accurate weather forecast
could mean happiness instead of disappointment. For
farmers facing a sudden freeze, it may spell the difference
between saving the crop or bankruptcy. For a military
commander leading a rescue mission in a hostile country,
it is a matter of life or death. Similarly, having an accu-
rate picture of the highway conditions may mean arriving
at work on time, beating the deadline for an important de-
livery, or reaching the hospital before the patient dies.
While knowing the world in detail has been an expensive
mission of agencies such as the CIA, CNN has shown us
the value of up-to-date information about current affairs.
We envision the fresh information providing more details
about the current state of our physical world than ever
imaginable, impartially to all human beings.

S I G M O D Record , Vol. 30, No. 1, M a r c h 2001 25

The delivery of fresh information requires assured quality
in the information flow. The success of guaranteed de-
livery services such as FedEx illustrates the importance
of timely delivery in the physical world. Physical goods
that are perishable usually have easily distinguishable
criteria, such as sell-by dates, to separate the fresh from
the decayed. Labeling goods in this way not only allows
users to make informed decisions on whether or not to
buy them, it also enables delivery mechanisms to make
informed decisions about how to transport them. In gen-
eral, many different properties are involved in such deci-
sions. For example, the rate of decay for some produce is
dependent not only on the amount of time it takes to
reach the store, but also on transportation conditions such
as temperature and humidity. Analogously, transporta-
tion conditions, such as constrained bandwidth, delay and
noise, affect the concrete delivery properties of informa-
tion flows which themselves span many dimensions in-
cluding resource level concerns such as bandwidth, la-
tency, and jitter as well as higher level concerns such as
freshness, reliability, trustworthiness, security and sur-
vivability. Our challenge is to develop the systems that
manage these concrete delivery properties for information
flows all the way from information producers to informa-
tion consumers.

Complex information systems depend on a number of
fundamental components working together in a critical
path. For example, the Internet infrastructure and hyper-
text were fully developed several years before the World
Wide Web standards (HTTP and HTML) were approved.
Similarly, the Web was deployed a couple of years before
the Mosaic browser was released. However, extra credit
is given to the Web browser, since it was the missing link
in a long chain of breakthroughs that made the Web and
the Internet finally take off. In the technology chain
leading towards ubiquitous computing, we divide the
concrete information flow into the producer end, the con-
sumer end, and the missing link in the middle. On the in-
formation producer end, the network technology push and
the resulting massive content generation (e.g., the Web)
provide the supply of information. On the information
consumer end, many dot.com and traditional companies
are working on information appliances and application
software that provide many different ways to access in-
formation. The missing link is the systems software that
links networks to applications, including operating sys-
tem, middleware, and data management layers.

1.3 Ubiquitous Information Vision
We call our vision ubiquitous information, in contrast to
ubiquitous computing, since our focus is on the delivery
of fresh information. Ubiquitous information goes be-
yond just gathering, storing, and retrieving increasing
amounts of information. Living in a ubiquitous informa-
tion environment means being in constant contact with
both the physical world and the information civilization.

For example, no one will ever get lost or become helpless,
whether hiking in remote mountains or walking in the
dark alleys of an inner city area. Help is always and im-
mediately available through two-way low latency infor-
mation flow to and from proper authorities, friends and
family, or cyber-neighbors and cyber-Samaritans. Similar
difficult situations arise from violent phenomena in our
world such as flash floods, tidal waves, wild fires, vol-
canic eruptions, hurricanes, tornadoes, riots, wars, and ter-
rorism. By providing detailed and up-to-date information
about the actual situation, humans can handle these prob-
lems from a much higher vantage point. Even if we are
still some years away from controlling these violent phe-
nomena, the world will be a much more civilized place
with ubiquitous information.

The Infosphere project is building the systems software
support towards ubiquitous information, focusing on the
proper treatment, transmission and delivery of informa-
tion. While networking and communications researchers
have been working on data transmission and delivery for
many years, traditional computer science disciplines such
as operating systems and programming languages have
focused primarily on computation. By shifting our atten-
tion to proper information treatment and propagation, new
and interesting research problems arise. Examples in-
clude delivery property management, adaptive resource
management, and smart information delivery, as de-
scribed in Section 2.

1.4 Client/Server Model

Remote procedure call (RPC) is a well-established
mechanism for constructing distributed systems and ap-
plications, and a considerable amount of distributed sys-
tems research has centered on it. RPC is based on the pro-
cedure call abstraction which raises the level of abstrac-
tion for distributed systems programming beyond raw
message passing and naturally supports a request-
response style of interaction that is common in many ap-
plications. The widespread use and acceptance of RPC
has led to the development of higher-level architectural
models for distributed system construction. For example,
it is a cornerstone for models such as client/server,
DCOM, and CORBA. The client/server model is widely
considered to be a good choice for building practical dis-
tributed applications, particularly those using computation
or database backend servers.

On the other hand, while these models have proven suc-
cessful in the construction of many distributed systems,
RPC and message passing libraries offer limited support
for information-driven applications. Concretely, when in-
formation flows are subject to real-world timing con-
straints certain elements of distribution transparency - an
often-cited advantage of RPC - can cause more problems
than they solve. For example, restrictions on the available
bandwidth or latency over a network link between two

26 S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001

components of a media-streaming application are a seri-
ous concern and should not be hidden by the program-
ming abstraction. Similarly, the reliability and security-
related characteristics of a connection may be significant
to applications that are streaming critical or sensitive in-
formation. We refer to these characteristics as the c~uality
of service (QoS) properties of an information flow.'

We argue that an appropriate programming paradigm for
information-driven applications should embrace informa-
tion flow as a core abstraction and offer the following ad-
vantages over RPC. First, data parallelism among flows
should be naturally supported. Second, the specification
and preservation of QoS properties should be included.
And third, the implementation should scale with the in-
creasing size, complexity and heterogeneity of informa-
rion-driven applications. We emphasize tlmt such a new
abstraction offers an alternative that complements RPC,
not to replace it. In client/server applications, RPC is
clearly the natural solution.

1.5 The Infosphere Approach
We propose the Infopipe abstraction to link information
producers to information consumers. In addition to their
basic function of transporting information, Infopipes
manage and manipulate the concrete delivery properties
of the information flowing through them, such as fresh-
ness. Infopipe creation and composition involve the
specification of the syntax, semantics, and QoS proper-
ties. Infopipe execution requires system resource man-
agement mechanisms to maintain the QoS properties. The
Infopipe specifications are translated automatically by the
system into an actual implementation with the desired
behavior. When information flows through an Infopipe,
concrete delivery properties and requirements such as
freshness, performance, and security are updated en route
and maintained each step of the way.

Specifically, application designers will specify QoS
property requirements by explicitly describing the re-
quirements of an information flow. These explicitly de-
fined properties are used by the system to generate code
that maintains QoS during delivery. In this way QoS re-
quirements define policies appropriate to the type and use
of information flow. Because of real-world constraints
over information flow speed, time, capacity and cost,
QoS property management is generally concerned with
trading among properties to preserve the most important
properties at the expense of the others. This trading ap-

We use the term quality of service and QoS in a broad
sense, including many systemic properties such as per-
formance, availability, and security. This includes the
initial definition of guaranteed QoS through reserved re-
sources (e.g., in network bandwidth) as a special case.

S I G M O D Record , Vol. 30, No. 1, M a r c h 2001

proach requires adaptive resource management algo-
rithms.

Infopipes fill the missing link to form the foundation of a
new paradigm for building information-driven applica-
tions. We call the concrete software architecture that im-
plements the information flows the producer~consumer
architecture, in contrast to the traditional client/server ar-
chitecture. The main difference between the two is the
emphasis on information flow in the Infopipes of the pro-
ducer/consumer architecture, as opposed to the control
flow focus of RPCs in the client/server architecture. By
focusing on information flow in this way we are able to
manage delivery properties explicitly. In the pro-
ducer/consumer architecture, information generated by a
producer is carried to consumers by Infopipes. Thus ubiq-
uitous information environments will be built from a net-
work of dynamically adapting Infopipes linking informa-
tion producers and consumers.

2 System support for Information
Flow

2.1 Infopipe Concept
We propose the Infopipe as an abstraction for capturing
and reasoning about information flow in information-
driven applications. Intuitively, an Infopipe is the infor-
marion dual of an RPC. Like R.PCs, Infopipes raise the
level of abstraction for distributed systems programming
and offer certain kinds of distribution transparency. Be-
yond RPCs, Infopipes have attached QoS properties that
allow control over the quality, consistency, reliability, se-
curity and timeliness of the information flowing through
them. Furthermore, the Infopipe concept has inherent data
parallelism and is concerned with a high level abstraction
that embraces content semantics and user requirements in
order to control information flows and optimize resource
consumption. This distinction becomes particularly sig-
nificant when considering QoS properties such as the
quality or consistency of a flow of information.

A simple Infopipe has two ends - a consumer (input) end
and a producer (output) end - and implements a unidirec-
tional information flow from a single producer to a single
consumer. Tile processing, buffering, and filtering of in-
formation happen in the middle of the Infopipe, between
the two ends. As mentioned before, an Infopipe links in-
formation producers to consumers. The information pro-
ducer exports an explicitly defined information flow,
which goes to the input end of the Infopipe. After appro-
priate transportation, storage, and processing, the infor-
marion flows through the output end to the information
c o n s u l n e r .

Infopipe is a language and system independent mecha-
nism to process information in a distributed system. This
is done on purpose since one of the main reasons for

27

RPC's success among practical imperative programming
languages is their universal adoption of the procedure call
abstraction. As a consequence, stub generators are able to
hide the technical difficulties of marshalling and unmar-
shalling parameters for all practical languages. There are
two additional sources of problems in the implementation
of stub generators: (1) the heterogeneity of operating
systems and hardware, and (2) the translation between the
language level procedure call abstraction and the under-
lying system level message-based implementation. The
eventual definition of an Interface Description Language
(IDL) solved both problems, by encapsulating the trans-
lation functions in a portable IDL compiler.

Our approach to making Infopipes language and system
independent parallels that used in RPC. We define a ge-
neric interface for Infopipe manipulation, and use the
equivalent of IDL and stub generators to hide the techni-
cal difficulties of marshalling and unmarshalling data and
manipulating system-specific mechanisms for QoS prop-
erty enforcement. By adopting this approach we shield
the application developer from the complexity of hetero-
geneous operating systems and hardware and the transla-
tion from language-level abstractions to underlying mes-
sage-based implementations.

In the same way that RPCs form the foundation of the
message-oriented client/server architecture, we envision
Infopipes to be the basic building blocks for information-
driven distributed applications. In contrast to the cli-
ent/server architecture, in which message-based transac-
tions among clients and servers are the primary concern,
we call the distributed information-intensive processing
architecture the producer/consumer architecture, since we
are primarily concerned with the information flows from
producers to consumers.

2.2 Infopipe Typespec
Typespec (a refinement of the type concept in program-
ming languages) defines an Infopipe's consumer and
producer ends. A Typespec consists of the explicit de-
scription of the syntax, semantics, and QoS requirements
of the information flow. The syntactic part is equivalent
to the schema of information flow. We divide the infor-
mation flow into successive units and use the term
schema in the database sense, i.e., a detailed description
of the unit of information. Users interpret the informa-
tion flow using the Typespec schema and the semantic
description. The third component of Typespec consists
of the QoS requirements, for example, bandwidth, la-
tency, and jitter for multimedia applications. Typespec
defines which properties are meaningful for an Infopipe.
A QoS property defined in the Typespec usually has three
parts: (I) a specification of what the property should be,
(2) predefined limits of that property, if any, and (3) the
actual, current reading of that property. For example, an
Infopipe may have a specified bandwidth of 1Mbyte per
second (specification), on a network with T1

(1.5Mbyte/sec) maximum bandwidth, and data currently
flowing through it at 1.1Mbyte per second (actual read-
ing).

Between its consumer and producer ends, an Infopipe is a
one-way mapping that transforms information units from
its input domain (consumer Typespec) to the output range
(producer Typespec). Probably it is not surprising to the
reader that there are many examples of concrete Infopipes
in existing systems. We are particularly interested in ge-
neric Infopipes that are programmable using a domain
specific language, since this is our design choice for In-
fopipes in general. The first group of examples is in Unix
filter programs. The s o r t program is a permutation
mapping from one stdin record to one stdout record,
and s o r t offers a domain specific way (invocation pa-
rameters) for specifying the permutation transformation.
Another Unix filter example is subset selection mapping,
for instance, done by grep or egrep that use regular
expressions for the subset specification. These are exam-
ples of mappings in which their domain is the same as
range.

There are several concrete examples of mappings between
a domain that is different from the range. Again using
Unix filters, the line editor s e d is a good example of
transformation from one format into a different format
under an editing script control. In general, Unix pipeline
is a clear example of the Infopipe programming style. A
technical difference is that Unix streams are byte-oriented
(untyped), while we advocate Typespec conformance for
Infopipes (see below). Another important concrete In-
fopipe example is represented by relational databases.
Consider SQL as a domain specific language that defines
all access operations to a relational database Infopipe with
an active interface. Instead of invoking a read operation,
we send an SQL program to the database, and it returns
the information requested. The database transforms the
database schema into the result format specified by the
SQL query, performing selection, projection, and join op-
erations as part of the transformation.

Infopipe run-time system implements the Typespec de-
scription through a careful management of system re-
sources. We motivate the flow properties in Typespec
with an analogy. Consider oil flowing in a pipeline at a
constant speed. The cross section of pipe multiplied by
the flow speed is analogous to the bandwidth of informa-
tion flow (e.g., in a network). The length of the pipe di-
vided by the flow speed also gives us the latency between
entering into one end of the pipe to exiting from the other.
The flow speed can be calculated by considering the vis-
cosity of oil, the friction on internal pipe surface, and
pressure caused by gravity or a pump. Merging two
pipelines into one (or splitting one into two) changes
these variables and flow behavior in predictable ways.
For example, merging two pipes requires a resulting pipe
with their combined cross sections to maintain the same

28 S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001

flow speed. Similarly, combining or dividing an Infopipe
may cause changes in bandwidth or latency. One of our
research goals is to preserve important flow properties
such as bandwidth, latency, and (lack of)jitter.

We say that the consumer end of Infopipe A's Typespec
conforms to the producer's end of Infopipe B's Typespec
when the following conditions hold:

1. The definition of operations of Typespec A is a sub-
set of the operation's definition of Typespec B.

2. The schema of Typespec A is compatible with the
schema of Typespec B, i.e., a unit of B data can be
interpreted using the schema of Typespec A.

3. The specification part of Typespec A's properties
falls within the range of the limitations part of
Typespec B's properties.

The first condition says that any operations that A might
invoke (or a domain specific microprogram sent) will be
understood and supported by B. The second condition
says that a unit of B data can be interpreted by Infopipe
A, although A may or may not interpret B data at the
fullest level of detail. The third condition says that B has
a theoretical chance of satisfying A's requirements for all
flow properties of interest to A.

The Typespec of Infopipe A's consumer end must con-
form to the Typespec of Infopipe B's producer end for
them to be connected. The three conformance conditions
do not guarantee that the resulting Infopipe pipeline will
always function perfectly, but they provide the initial
conditions to get the Infopipe pipeline started flowing.

Typespec is the cornerstone for Infopipe reuse. From the
system construction point of view, one of the fundamen-
tal difficulties in software reuse is in the myriad of small
differences in the details. Despite encapsulation (e.g., in
object-oriented systems), typical software modules make
many assumptions that may or may not fit the new appli-
cation, where it is being reused. The situation is aggra-
vated by composition when these assumptions become
buried under many layers. We use Typespec to reveal the
assumptions made by each Infopipe and to describe its
functional capabilities as well as limitations.

2.3 Infopipe Composition
One of the most important requirements in large-scale
distributed applications is their scalability to ever in-
creasing number of nodes and users, as well as continual
addition of new functionality into the software. Compo-
sition of software modules is one of the established
methods to add new functionality, assuming that those
modules are compatible and cooperative with each other.
Unfortunately, the composition of software modules
based on procedural interfaces (e.g., client/server systems
using RPC) frequently becomes limited by the complex-
ity of interfaces involved. Given the relatively low level
of abstraction of those interfaces, this limitation is under-

standable and probably unavoidable. Note that the limi-
tation is due to the complexity itself, and interface stan-
dards such as CORBA do not address this problem.

In contrast, Infopipe is designed to be composable, i.e.,
the building of an information flow pipeline by connect-
ing component Infopipes together. By composable we
mean two things. First, the consumer of one Infopipe
should connect easily (through standard and simple inter-
faces and meta-interfaces) to producer(s) of other In-
fopipe(s). This is captured by Typespec conformance as
defined in Section 2.2. Second, the Typespec of the com-
posite Infopipe should be derivable from the Typespec of
the component Infopipes. Consequently, those Typespec
components that are easy to derive under composition are
"better" in some sense compared to Typespec components
that change in unpredictable ways when composed.

Bandwidth and latency are examples of good Typespec
component specifications under composition. In general,
the composite Infopipe will have the smallest bandwidth
of all the segments from an Infopipe pipeline. Analo-
gously, the latency of a composite Infopipe is calculated
by the addition of the latencies of the component In-
fopipes. Jitter is an example of Typespec that has more
complex behavior than latency. Adding deep buffers into
an Infopipe, for example, may reduce jitter but it in-
creases end-to-end latency. If we reduce the total amount
of buffering, the latency is reduced but jitter may be com-
pounded by ripple effects adding up small hiccups in each
component Infopipe, when data availability is not smooth.
A possible calculation of the composite Infopipe jitter (as-
suming sufficient other resources such as CPU) is a cu-
mulative addition of jitter functions, where the depth of
each stage (buffer size) is subtracted from the partial sum
up to that stage. Real-time constraints, e.g., fixed arrival
time often restricts the number/kind of intermediate stages
in the composite Infopipe.

2.4 Infopipe Restructuring
Some of Typespec properties concern the internal struc-
ture of Infopipes. For example, an Infopipe may have
some internal data buffering. This is common for many
reasons, including performance and jitter reduction.
While buffering may reduce jitter, the depth of the buffer
may introduce additional latency in data transmission.
Therefore, even though the depth of Infopipe may appear
to be an implementation detail from some angle, it affects
other important Typespec properties and so we include
this kind of properties as an integral part of our Typespec
research. Another example of Typespec property that is
related to Infopipe structures is the abstract semantics of
information unit ordering. Up to now we have made the
common assumption that an information flow is FIFO
(first in, first out). In an Infopipe, however, this assump-
tion can be relaxed to include other common semantics
from data structures such as queues (e.g., unordered

S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001 29

queues), stacks (e.g., LIFO), or network properties (e.g.,
reliable delivery).

For simplicity of presentation, we have made an implicit
assumption that Infopipes have one producer end and one
consumer end. This is what we call 1-1 Infopipe, in
terms of external structure (interface). We now introduce
a natural classification of Infopipe structure into four
groups.

• 1-1 Infopipe (single producer and single consumer).
Since most of the practical Infopipes are of 1-1 vari-
ety, we omit the numbering when referring to 1-1 In-
fopipe.

* N-I lnfopipe (multiple producers and single con-
sumer). This Infopipe receives data from several In-
fopipes, combines them, and transmits all to a single
consumer.

• 1-M Infopipe (single producer and multiple con-
sumers). This Infopipe takes the information units
from one producer and transmits them to M consum-
ers. Sometimes the information is replicated (e.g.,
multicast) and other times the consumers see differ-
ent data (e.g., multiple consumers of the same queue)
from the same source.

• N-M Infopipe (multiple producers and multiple con-
sumers). While we could make this case a separate
group, for simplicity we reduce it to a composition of
an N-1 Infopipe with a 1-M Infopipe.

This classification covers Infopipes with a known number
of producers and consumers. Some Infopipes are open,
i.e., they have an unknown number of producers or con-
sumers. Concretely, typical broadcast media fall into this
category. A producer transmitting over a satellite link,
for example, can be received by a large number of con-
sumers. We model this situation as a 1-M lnfopipe with
implicit message replication.

Composite Infopipes may be relatively simple, for exam-
ple, a pipeline of 1-1 Infopipes forming a I-1 composite.
Conversely, another composite Infopipe may have sev-
eral N- 1 and 1-M components that result in a complicated
information flow. In Section 2.3, we described the rules
of Infopipe composition and Typespec conformance, so
the properties in the composite Infopipe Typespec can be
calculated. Once constructed, a composite Infopipe can
be dynamically restructured using the same Typespec
conformance rules. In analogy to previous work on ac-
tivity restructuring [2], the main restructuring meta-
operations are split, join, link, and modify:

* Sp l i t - divides an Infopipe producer or consumer
end into two identical ones.

• Join -merges two similar producer or consumer
ends into one.

• Link -connects the producer end of one Infopipe
with the consumer end of another Infopipe.

• Modify - changes the Typespec using application
semantics or system information.

3 Infopipe Implementation

3.1 Implementation Strategy
The first part of the Infopipe implementation is the In-
fopipe correspondent of stub generators for RPC. The
main difference between RPC and Infopipe is the proce-
dure call's single level of abstraction in RPC compared to
multiple abstractions in Infopipe, for example, introduced
by Infopipe structures and QoS specifications. To address
this issue, we are applying the concepts from Aspect-
Oriented Programming (AOP) developed by Kiczales'
team at Xerox PARC, to isolate the various aspects of In-
fopipe abstraction. These abstraction aspects will be
captured and implemented by the Infopipe Specification
microlanguage (ISL) using domain specific language
technology. Since Typespec contains the concrete de-
scription of these abstraction aspects, the function of ISL
is to support a compiler that transforms the Typespec in-
formation into plumbing code similar to marshalling and
unmarshailing code in stub generators.

In Section 2.2, Typespec was divided into three compo-
nents: syntax, semantics, and QoS properties. The soft-
ware that wraps the first two components corresponds di-
rectly to RPC stub generators, since the ISL will generate
the plumbing code so Infopipe programmers don't have to
write code to manipulate the explicit representation and
description of an Infopipe. In addition, the QoS proper-
ties such as security and performance may be subdivided
into aspects and their handling wrapped by ISL compiler.
Infopipe programmers need only to specify, for example,
a range of acceptuble bandwidth, and the ISL will gener-
ate code to maintain that bandwidth and notify QoS ex-
ception handling mechanisms when the actual bandwidth
falls outside the specified range.

We have built a prototype and several components of ISL
software, in particular the ISL Stub Generator for infor-
mation flows in the XML format. We are in the process
of building more robust versions of ISL software for ex-
perimentation by our collaborators as well as the commu-
nity at large. The next step is the research on Infopipe
composition.

We separate out the composition of Infopipes into an In-
fopipe Composition and Restructuring Microlanguage
(ICRL). In Sections 2.3 and 2.4, we outlined the compo-
sition and restructuring operations for Infopipes. These
operations will be defined in an ICRL so Infopipe pro-
grammers can build and modify Infopipes easily. ICRL
microprograms are then translated into ISL and Infopipe
linking/composition code. We plan to implement a fam-
ily of ICRLs, each with increasing sophistication, to allow

30 S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001

rapid development and testing of Infopipe concepts. For
example, the first member of the ICRL family is likely to
support only the composition of simple (e.g., 1-1) In-
fopipes.

3.2 Technology Building Blocks
Given our emphasis on in the modularity and composi-
tion of Infopipes, a natural question from the systems
community is performance. If we were to build Infopipes
the traditional way, modularity would have implied high
composition and layering overhead. The first building
block we use is the specialization technology to reduce
execution overhead through systematic program trans-
formations developed in the Synthetix project [7, 9],
among others. A relevant example is the automated spe-
cialization of SUN RPC code using the Tempo-C spe-
cializer [8]. This is a demonstration of specialization
technology on production software, by cutting out layer-
ing overhead using program analysis automated in
Tempo-C.

In addition to C and Java, we have used Tempo to im-
plement very efficient specialized interpreters for domain
specific languages, which form the second building block
of Infopipe construction. Two examples are the GAL
microlanguage for writing graphics device drivers and the
PLAN-P microlanguage for the construction of active
network protocols. These specialized interpreters have
performance comparable to production just-in-time com-
pilers (e.g., Java), but are much easier to write and spe-
cialize. Our implementation plans are designed to make
use of these proven specialization techniques and tools to
improve Infopipe performance while preserving micro-
language-level modularity.

An important requirement for a software system to run
smoothly in a shared environment, such as the Internet, is
the ability to adapt to both sudden and gradual changes in
environmental variables such as network congestion and
noise. The resource management layers of Infopipes will
use feedback-based schedulers, the third building block,
to adaptively manage shared resources. Where neces-
sary, appropriate property management policies are in-
voked to deal with the constraints of over-loaded re-
sources. We will use our software feedback toolkit to
construct basic feedback components with well-defined
behavior. During Infopipe composition, these basic
components will be composed into more sophisticated
feedback mechanisms with predictable behavior and fail-
ure modes. Infopipes equipped with feedback are able to
adapt to significant environmental changes. For example,
simple feedback-based schedulers can adjust the re-
sources given to the processes in a pipeline to keep the
information flowing smoothly, despite fluctuations in the
flow bandwidth and arrival times.

In addition to fme-grain adaptation, feedback toolkit-
based implementations have two other advantages. First,

the adaptive capability of component Infopipes is used in
predicting the adaptation capability of composite In-
fopipe. Recall that Typespec describes the functional ca-
pabilities and limitations of each Infopipe, component and
composite alike. In particular, feedback-based adaptation
has well-defined limitations in their applicability, which
are explicitly documented in the Typespec. The second
advantage is the ability to detect and recover from feed-
back failures. We use guards to detect these situations and
replug failing feedbacks with more generic control and
adaptation mechanisms (e.g., perhaps more stable al-
though less responsive control policies such as admission
and congestion control through job cancellations).
Guarding and replugging are techniques well understood
in our research on specialization and feedback [11, 12].

In the next section we outline some concrete applications
that will benefit from Infopipe architecture and imple-
mentation. These applications are not only scenarios that
motivate our research. We have active projects that are
building software for these applications. For example, the
update monitoring application (Section 4.1) is realized by
the Continual Queries project [6, 5]. The distributed
multimedia example (Section 4.2) is realized by the Qua-
sar project. The successive versions of Infopipe imple-
mentation will be evaluated in concrete applications that
we have been working on.

4 Application Scenarios

4.1 Update Monitoring
The deluge of Internet information shows the human
limitations of browsing in finding the right information.
Consequently, the discovery of fresh information is best
achieved through automated monitoring. In traditional
database applications, update monitoring has not included
freshness or other delivery properties, since these proper-
ties are "outside the database". The only guarantee that
traditional update monitoring systems provide is to de-
liver information updates when they reach some specified
conditions of interest. In contrast, fresh information deliv-
ery in the ubiquitous information requires two levels of
filtering: the conditions of interest and the freshness re-
quirement. Conditions of interest then trigger active push
information delivery mechanisms. Furthermore, fresh in-
formation delivery needs to keep track of not only the ar-
rival of fresh information (conditions of interest) but also
the decay rate of fresh information.

Our experience with the research and development of the
Continual Query (CQ) system [6] demonstrates that up-
date monitoring at Internet scale is best implemented as
Infopipe systems from both user perspective and system
extensibility and QoS control perspective. For example,
we can model each user's update monitoring request as an
Infopipe with the user as the consumer end and the CQ

S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001 31

server as the producer end. Once the Infopipe is installed
and activated, the CQ system will invoke the query rout-
ing service to fred the set of relevant data sources that can
handle the given request and then invoke the query par-
allelization manager to generate an optimized parallel
query execution plan. Such a parallel query plan is pro-
duced by dynamically splitting the user's request In-
fopipe into a collection of data source-specific Infopipes,
each targeted at one relevant data source, and has the CQ
server as the consumer end and the specific data source as
the producer end. The quality of service requirements of
each Infopipe is entered using the Typespec and auto-
matically guaranteed by the Infopipe QoS manager.

Application specific update monitoring is already in
widespread use in many practical applications. For ex-
ample, electronic trading companies such as ETRADE
send stock market updates, and airlines send weekly spe-
cial ticket sale prices. Our goal is to provide this capa-
bility in a generic way to many information-driven appli-
cations, for example, in digital libraries and electronic
commerce.

4.2 Distributed Multimedia

Multimedia systems are fundamentally information-flow
systems with demanding QoS requirements. They often
exhibit complex streaming structures among multiple cli-
ents and servers, for example, involving dynamically re-
configurable broadcast and multicast distribution trees.
These structures are difficult to construct using the pair-
wise request-response constructs of RPC-based models.
Furthermore, multimedia systems often require direct
manipulation of the data within a stream, for example to
decode it, or transcode it to adapt its quality, and they
often require real-time synchronization among and within
streams. For these reasons streams cannot be treated as
completely opaque. Hence the levels of transparency as-
sociated with object binding in RPC-based systems tend
to hide too many details of the underlying environment
that affect these properties. QoS management involves
the specification of QoS requirements and tolerances, ne-
gotiation of QoS contracts, run-time actual QoS moni-
toring, policing and dynamic renegotiations, and specifi-
cation of QoS trade-offs and dynamic adaptation policies.
Infopipes offer great leverage in all of the areas men-
tioned above by defining interfaces that export control to
the application in high-level, domain-specific terms, and
by automatically generating "stubs" to hide the complex-
ity of managing the details of the interaction with lower
layers.

Videoconference systems require a variety of multimedia
stream properties that can be represented as QoS proper-
ties in Infopipe Typespec. Examples include frame-rate,
frame jitter, end-to-end latency, frame/data drop ratios
and synchronization among audio and video streams.
Despite many attempts, current videoconferencing soft-

ware packages are still limited in performance and quality
when running over shared environments such as the Inter-
net. For example, frame-rate is a domain-specific notion
of the temporal resolution of the video stream and can be
used together with other information (such as spatial
resolution and encoding format details) to calculate the
bandwidth requirements of the stream. Infopipe can
translate frame-rate requirements to bandwidth require-
ments, hence hiding complexity from the application de-
veloper. End-to-end latency is clearly visible in video-
conference systems. Infopipe stubs will calculate the ac-
cumulated latencies from various system components,
compare them to the overall end-to-end latency require-
ments, and make the necessary adjustments.

We will demonstrate and experiment with ubiquitous in-
formation by integrating information producers and con-
sumers. The integration starts with the wrapping of fresh
information sources on the Internet and filtering interest-
ing fresh data to form information producers. Data
sources such as sensors or e-commerce databases produce
a continuous stream of fresh data and therefore are of
particular interest. On the consumer side, we will build
the software for lightweight and inexpensive combina-
tions of communications devices (e.g., a cell phone),
computers (e.g., a personal digital assistant), and sensors
(e.g., a GPS receiver), which will serve as unobtrusive
connections between users and the ubiquitous informa-
tion. The Infopipe backbone will connect the producers
to the consumers with well-defined delivery properties.

4.3 Current Status

The main results at Oregon Graduate Institute have been
primarily in the Kernel Layer, divided into two areas.
The first area is the research on Real-Rate Infopipes. We
have defined a "QoS-adaptive real-rate network service"
which will form the basis of real-rate infopipes. Con-
cretely, we have been working on the definition of packet
formats for real-rate flows, understanding how traffic
specifications should work, and more importantly, under-
standing how to parameterize feedback control mecha-
nisms and provision buffers so that real-rate scheduling
can work along a pipeline. Some of research challenges
have been summarized in a paper [10] using environ-
mental observation and forecasting as a concrete applica-
tion.

The second area is the study of formal system properties
when feedback is used. For example, we have been de-
veloping a feedback-based model of TCP-friendly con-
gestion control - basically, using feedback control ideas
to understand the f'me-grain dynamic behavior of TCP-
like congestion control so that we can produce other real-
rate transmission protocols that are truly TCP-friendly. In
addition to simulation studies, we have modified the Li-
nux kernel to let users adjust any TCP flow's AIMD in-
crement and decrement parameters, allowing them to pro-
duce TCP flows with various levels of aggressiveness.

32 S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001

The main results at Georgia Institute of Technology have
been made primarily in the Middleware and Application
Layers. The Middleware layer work is both conceptual
and practical. Conceptually, we have been describing
and decomposing information-driven applications. Prac-
tically, we have been building efficient Infopipe support
based on the Echo and JEcho, a publish/subscribe com-
munications facility developed previously.

At the Application Layer, we have been developing and
adapting tools to support personalized filtering of infor-
mation [3]. We also have been developing an Infopipe
Stub Generator (ISG) using XML as the transmission
format. The ISG generates code to interpret and create
XML data streams for applications that transform XML
data. The ISG is now being developed for BPIO, a bi-
nary format used by Echo and JEcho.

Another area of research at this layer is the methods and
software to extract information automatically from the
Web [1, 4]. This is an important preparatory step for
most of data, since we need to add the Typespec descrip-
tion to the data stream before it can be transported by In-
fopipes. The automation of the information extraction
process (Usually in the form of wrapper generators) is
crucial to the gradual importation of non-Infopipe data,
since all information originated from the real world (e.g.,
sensors) probably will require some kind of wrapping and
cleansing.

The work on the middleware level Infopipe consists of
three parts. First, the definition of the middleware In-
fopipe model, interfaces, and a specification language for
the definition of middleware Infopipes. Second, the im-
plementation of a prototype middleware Infopipe for
evaluation and validation. Third, the interactions be-
tween the middleware Infopipe with the other levels (e.g.,
the kernel level Infopipe below and the application level
Infopipe above) in terms of interfaces and integration.
The current priorities are with the first and second parts.

The work on the application level Infopipe consists of
three parts. First, the definition of the application In-
fopipe model, interfaces, and a specification language for
the definition of application Infopipes. Second, the im-
plementation of a prototype application Infopipe for
evaluation and validation. Third, the interactions be-
tween the application Infopipe with the lower levels (e.g.,
kernel level and middleware level) in terms of interfaces
and integration. The current priorities are with the first
and second parts

We are currently redesigning the Infopipe software to
retarget it to embedded devices such as PDAs. This in-
cludes the exploratory adoption of AspectJ compiler and
AOP methodology, the development of translation rou-
tines between XML and BPIO for middleware imple-
mentation, and development or adoption of embedded
applications for evaluation. We are also investigating the

use of program specializers such as Tempo-C and Tempo-
J for optimizing embedded code while preserving port-
ability and maintainability.

5 Appendices

5.1 Funding Acknowledgements
The Infosphere project is funded by DARPA/ITO through
the Information Technology Expeditions, Ubiquitous
Computing, Quorum, and PCES programs. The PI and
co-PIs are also partially funded by NSF's CISE director-
ate, through the ANIR and CCR divisions. In addition,
the PI and co-PIs are partially funded by Intel and Tek-
tronix.

5.2 Project Scope
A project of the scale of Infosphere necessarily involves
many participants organized as tasks. In the Base/QoS
tasks, the main faculty members are: Calton Pu (principal
investigator), Ling Liu, and Karsten Schwan of Georgia
Institute of Technology, and Jonathan Walpole of Oregon
Graduate Institute. In the Context Aware task, the main
faculty member is Gregory Abowd of Georgia Tech. In
the Embedded Infopipe subproject, two additional faculty
members participate: Mustaque Ahamad and Yannis Sma-
ragdakis of Georgia Tech. Other research staff members
include Greg Eisenhauer, a research scientist, and J.
Adam Sigler, a research programmer at Georgia Tech.

Many graduate students have been working in the many
aspects of the project. They include: Fabian Bustamante,
David Buttler, Wei Han, Henrique Paques, Galen Swint,
Wei Tang, and Patrick Widener of Georgia Tech, and
Ashvin Goel and Kang Li of Oregon Graduate Institute.
In addition, several visiting scholars have contributed to
the project, including Prof. Yasushi Shinjo of University
of Tsukuba (Japan), and Mr. Koichi Moriyama of Sony
Corporation. Mr. Moriyama built the first prototype of
the Infopipe Stub Generator during an extended visit to
Georgia Tech.

We also have several collaborators working with us on re-
search topics related to Infosphere technology and goals.
They include Prof. Molly Shor of Oregon State Univer-
shy, Prof. Charles Consel and Prof. Gilles Muller of Uni-
versity of Bordeaux (France) and Prof. Masaru Kitsure-
gawa of University of Tokyo (Japan).

5.3 Related Project Pointers
There are four other Information Technology Expedition
projects that are exploring the long-term impact of tech-
nology that leads to the vision of ubiquitous computing
and ubiquitous information. Pointers to the expedition
projects are:

S I G M O D R e c o r d , Vol. 30, No. 1, M a r c h 2001 33

• Aura Project http://www.cs.cmu.edu/-aura/at
Carnegie-Mellon University (PI: Prof. David Garlan
http://www.cs.cmu.edu/-garlan).

• Endeavour Project http://endeavour.cs.berkeley.edu
at University of California at Berkeley (PI: Prof. Randy
Katz http://www.cs.berkeley.edu/-randy).

• Infosphere Project
http://www.cc.gatech.edu/projects/infosphere at Geor-
gia Institute of Technology and Oregon Graduate In-
stitute (PI: Prof. Calton Pu
http://www.cc.gatech.edu/-calton).

• Oxygen Project at Massachusetts Institute of Tech-
nology (PI: Prof. Michael Dertouzos
http://www.lcs.mit.edu/about/mld), with several pres-
entations available at http://www.lcs.mit.edu/anniv/.

• Portolano Project http://portolano.cs.washington.edu/
at University of Washington (PI: Prof. Gaetano Borri-
clio http://www.cs.washington.edu/homes/gaetano/).

Related project URLs:

• Quasar project (Section 4.2) URL:
http://www.cse.ogi.edu/DISC/projects/quasar.

• Continual Queries (Section 4.1) URL:
http://www.cc.gatech.edu/projects/disl/CQ/.

6 References
Space constraints prevent us from listing all the relevant
references in the literature and on the web. We include
some papers for illustrative purposes.

1. D. Buttler, L. Liu, and C. Pu, "'A Fully Automated
Object Extraction System for the World Wide Web",
to appear in the Proceedings of the 2001 Interna-
tional Conference on Distributed Computing Systems
(ICDCS'O1), May 2001, Phoenix, Arizona.

2. L. Liu and C. Pu, "Methodical Restructuring of
Complex Workflow Activities", Proceedings of the
IEEE 14th International Conference on Data Engi-
neering (ICDE'98), Orlando, Florida, February 1998.

3. L. Liu, C. Pu, K. Schwan and J. Walpole, "InfoFilter:
Supporting Quality of Service for Fresh Information
Delivery", New Generation Computing Journal
(Ohmsha, Ltd. and Springer-Verlag), Special issue
on Advanced Multimedia Content Processing,
Vol. 18, No.4, August 2000.

4. L. Liu, C. Pu, and W. Han, "An XML-Enabled Data
Extraction Tool for Web Sources". To appear in the
special issue on Data Extraction, Cleaning, and Rec-

onciliation of Information Systems: An International
Journal, Kluwer Academic, 2001.

5. L. Liu, C. Pu, W. Tang, and W. Han, "Conquer: A
Continual Query System for Update Monitoring in
the WWW", International Journal of Computer Sys-
tems, Science and Engineering. To appear in the Spe-
cial issue on Web Semantics, 1999.

6. L. Liu, C. Pu, and W. Tang, "Continual Queries for
Internet Scale Event-Driven Information Delivery",
1EEE Transactions on Knowledge and Data Engi-
neering, Special issue on Web Technologies, Vol. 11,
No. 4, July/August 1999.

7. Dylan McNamee, Jonathan Walpole, Calton Pu,
Crispin Cowan, Charles Krasic, Ashvin Goel, and
Perry Wagle, Charles Consel, Gilles Muller, and
Renaud Marlet, "Specialization Tools and Tech-
niques for Systematic Optimization of System Soft-
ware", ACM Transactions on Computer Systems. To
appear in the May 2001 issue.

8. G. Muller, R. Marlet, E.N. Volanschi, C. Consel, C.
Pu and A. Goel, "Fast, Optimized Sun RPC using
Automatic Program Specialization", Proceedings of
the 1998 International Conference on Distributed
Computing Systems, Amsterdam, May 1998.

9. Calton Pu, Tito Autrey, Andrew Black, Charles Con-
sel, Crispin Cowan, Jon Inouye, Lakshmi Kethana,
Jonathan Walpole and Ke Zhang, "Optimistic Incre-
mental Specialization: Streamlining a Commercial
Operating System", Proceedings of the Fifteenth
Symposium on Operating Systems Principles
(SOSP'95), Colorado, December 1995.

10. David Steere, Antonio Baptista, Dylan McNamee,
Calton Pu, and Jonathan Walpole, "Research Chal-
lenges in Environmental Observation and Forecasting
Systems", Proceedings of the 6th Annual Interna-
tional Conference on Mobile Computing and Net-
working (MobiCom'O0), Boston, August 2000.

11. D. Steere, A. Goel, J. Gruenberg, D. McNamee, C.
Pu, and J. Walpole, "A Feedback-Driven Proportion
Allocator for Real-Rate Scheduling", Proceedings of
the Third Symposium on Operating System Design
and Implementation (0SD1'99), New Orleans, Febru-
ary 1999.

12. David Steere, Molly H. Shor, Ashvin Goel, Jonathan
Walpole, and Calton Pu, "Control and modeling is-
sues in computer operating systems: resource man-
agement for real-rate computer applications". Pro-
ceedings of the 39 Ih 1EEE Conference on Decision
and Control (CDC), Sydney, Australia, December
2000.

13. Mark Weiser, "Some Computer Science Problems in
Ubiquitous Computing," Communications of the
ACM, July 1993.

34 S I G M O D Record , Vol. 30, No. 1, March 2001

