
Ginga: A Self-Adaptive Query Processing System

Henrique Paques
Georgia Inst. of Technology

College of Computing

paques@cc.gatech.edu

Ling Liu
Georgia Inst. of Technology

College of Computing

lingliu@cc.gatech.edu

Calton Pu
Georgia Inst. of Technology

College of Computing

calton@cc.gatech.edu

Categories and Subject Descriptors: H.2.4 [Systems]:
Query Processing; H.1.0 [Models and Principles]: Gen-
eral.General Terms: Design, Measurement, Reliability,
Experimentation, Performance. Keywords: Query Adap-
tation, Distributed Query Processing.

1. INTRODUCTION
Adaptive query processing in wide area distributed systems
has received significant attention due to the dynamics of the
Internet. Ginga is a project currently ongoing at Georgia
Institute of Technology aiming at studying the research is-
sues in building a self-adaptive query processing system. We
identify three important failure modes for executing queries
on the Internet: network delays [1], memory shortage, and
sudden unavailability of remote data servers. This extended
abstract will give a brief overview of the design of Ginga sys-
tem and illustrate the proposed adaptation framework using
a network delay scenario as example.

A query processing system is called adaptive if it has the
following two characteristics. First, it collects information
about its runtime environment and uses this information to
determine its subsequent behavior. Second, this information
collection and behavior revision process iterates over time,
generating feedback loop between the runtime environment
and the behavior of the system. For each query, informa-
tion about its runtime environment may include statistics
on the specific data sources accessed, the current state of
the network at the time that such access is attempted, and
the control information entered by the users.

We call a query processing system self-adaptive if it satis-
fies the following two properties: (1) information and control
feedback is collected or learned automatically by the system
rather than provided through interaction with users, and (2)
the system reacts to specified environment changes immedi-
ately upon receiving feedback.

We use self-adaptive to characterize the Ginga system to
distributed query processing. The Ginga query adaptation
engine collects information about its runtime environment
with high frequency and full automation, and reacts to any
environment change of interest immediately. We argue that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

to deal with frequent and unexpected delays experienced
when accessing data across the Internet, it is important
for an Internet search and query system to be self-tunable
within a short feedback loop between the runtime environ-
ment and the system.

The Ginga project has three interesting features. First,
it utilizes the Adaptation Space concept [4] to manage the
proactive generation of query plans. Adaptation space offers
a simple, yet powerful abstraction and framework to create
the main query plans, define system condition changes that
would render the current plan sub-optimal and trigger a
change to a new query plan, and manage the change pro-
cess. Second, it provides feedback-based control mechanism
that allows the query engine to switch to alternative plans
upon detecting runtime environment variations. Third, it
describes a systematic approach to integrate the adaptation
space with feedback control that allows us to combine proac-
tive and reactive adaptive query processing, including poli-
cies and mechanisms for determining when to adapt, what
to adapt, and how to adapt.

Our experimental results show that Ginga query adapta-
tion can achieve significant performance improvements (up
to 40% of response time gain) for processing distributed
queries over the Internet.

2. SYSTEM ARCHITECTURE: OVERVIEW
The Ginga system is a distributed software system that sup-
ports adaptive query processing. When executing a query
in a highly unstable runtime environment, the query pro-
cessor needs to be highly adaptive in order to cope with
unpredictable runtime situations (e.g., unexpected network
delays, latency fluctuations, memory shortage). Ginga is a
Brazilian word typically used to describe a quality that a
person needs to have when dancing samba. Like the rhythm
and movements of samba, the query processing system equip-
ped with Ginga can efficiently change the execution of a
query plan in order to keep up with the rhythm imposed by
the runtime variations in the environment.

Figure 1 shows a sketch of the Ginga system architec-
ture. A query submitted to Ginga is initially processed by
the query manager. The major tasks of the query man-
ager are to coordinate clients’ query sessions and to invoke
query routing process [5], which performs source selection by
pruning those data sources that cannot directly contribute
to the answer of the query. After query routing, each end-
user query is transformed into a set of subqueries associated
with some execution dependencies. Each of such subqueries
is targeted to one of the chosen data sources.

Query
Result
Assembly

Runtime
System

Runtime
Environment
Monitoring

Query
Manager

Q
uery

A
nsw

er

Wrapper 2Wrapper 1 Wrapper N

Internet

(Scheduler)

Data

Adaptation
Space

Source 1

GINGA Server
Proactive
Engagement
Phase

Reactive
Control
Phase

...
...

Internet

Source 2
Data

Source N
Data

Figure 1: Ginga System Architecture.

Ginga query adaptation engine takes the resulting queries
from the query routing process and builds an initial opti-
mized plan and some alternative execution plans that may
be used when the runtime environment state changes signifi-
cantly. The query adaptation in Ginga combines a proactive
adaptation engagement phase, before query execution, with
a reactive adaptation control phase during the execution. At
the engagement phase, an initial adaptation space is built
with the initial optimized plan as the root and the alter-
native plans as the non-root nodes. During query execu-
tion, Ginga monitors the runtime environment and resource
availability continuously, and determines when to change
the query plan and how to adapt by choosing an alternative
plan from the corresponding adaptation space.

3. PROACTIVE ENGAGEMENT PHASE
In the proactive engagement phase, Ginga builds the ini-
tial query plan P0 and establishes a selection of alternative
plans for adaptation. The first task is to generate the initial
optimized plan. This can be done using any existing query
optimization algorithm for distributed databases (e.g., [11,
6, 9]). In our experimental study, we use the distributed
query scheduler developed in [6]. The second task is to gen-
erate query adaptation alternatives ({Pi, i = 1, . . . n}).

Each of the alternative query plans generated by Ginga
consists of two parts. The first part is a trigger, describing a
significant runtime environmental change that may degrade
the query execution according to the original plan P0 (or
more generally, the current plan on execution, Pi−1). The
second part is a new query execution plan Pi, optimized for
the new runtime parameters, taking into account the change
detected. Since there are many potential alternative plans,
we organize them into an adaptation space [4].
Adaptation Space Model
In general, an adaptation space consists of two main com-
ponents: a set of adaptation triggers and a set of adaptation
cases associated with the triggers. Formal definitions for the
adaptation space model are presented in [4].

In Ginga, adaptation cases are the query plans Pi, where

i = 0, . . . , n, each optimized for a set of environmental pa-
rameters. An adaptation trigger is defined as a quadruple
< Pfrom, AT condition, Pto, wait time >. Assuming that
Ginga is currently executing the query plan Pfrom, when
AT condition (a significant runtime environment change such
as the network delay reaches certain threshold) happens,
Ginga adapts by making the transition from Pfrom to Pto.
The wait time component indicates for how long AT condi-
tion must hold before the described transition takes place.
This wait time is used to prevent oscillations in feedback-
based adaptation, when, for example, temporary network
latency and bandwidth fluctuations cause repeated transi-
tions back and forth between two query plans. As in all
feedback-based adaptation, a short wait time results in fast
adaptation soon after the onset of network delay. A long
wait time slows down the adaptation process, but it de-
creases the probability of an oscillation. A precise setup for
wait time is a hard problem yet to be solved as it implies
being able to predict the future state of a runtime environ-
ment.

It is important to note that constructing an adaptation
space that covers adaptation cases for every single change
to the runtime environment is not only unrealistic but also
unnecessary due to a number of reasons. First, it is very
unlikely that all possible changes will indeed occur. Sec-
ond, the overhead of constructing such a complete adap-
tation space is prohibitive. A more realistic approach for
constructing an adaptation space is to generate adaptation
cases for only those runtime environment changes that are
known to occur with a frequency above a realistic threshold.

In Ginga, the initial adaptation space for each query is
generated at the adaptation engagement phase, prior to the
query execution. New adaptation cases can be inserted to
the initial adaptation space as new triggers are identified
from the feedbacks about the runtime environment behavior
over multiple runs of the same query. We gather information
of the runtime environment by monitoring the usage of the
resources allocated during the query execution.

An adaptation space can also be described by a transition
graph – a lattice with nodes representing query plans and
edges representing the transition from one query plan to an-
other. We illustrate next the construction of an adaptation
space by using a simple distributed query.
Example 1 (Adaptation Space Construction): Sup-
pose that we want to execute query Q (Figure 2(a)) where
all data sources are remotely located and connected to the
Ginga Server through network links (Li, 1 ≤ i ≤ 3) with
transfer rate (Rate(Li)) of 1Mbps. Also, assume that we are
interested in adapting the execution of Q whenever Rate(Li)
drops below w × 1Mbps, 0 < w ≤ 1.

The construction of an adaptation space for executing Q

has three main steps. First, we generate the initial query
plan P0 and record the assumptions made about the run-
time environment used by P0. Second, we identify the set
of important adaptation triggers AT conditions, specifying
the conditions when adaptation should be turned on to deal
with the delays experienced. Third, we generate the al-
ternative optimized query plan for each adaptation trigger
AT condition. Then we construct the adaptation space in
the format of a transition graph. Figure 2(b) shows an ex-
ample adaptation space for Q. The root adaptation case P0

(labeled as ac initialP) is the initial optimized query plan,
and the other nodes represent alternative query plans when

Q: SELECT *
QUERY

WHERE KEY_A = KEY_B
AND KEY_B = KEY_C

FROM A, B, C

Internet

SCHEMA

C (Key_C, Attr_C)
B (Key_B, Attr_B)
A (Key_A, Attr_A)

L2 L3L1

Ginga Server
Site

Site 3Site 2

B C

Site 1

A

Network Connections: L1, L2, L3

INITIAL OPTIMIZED QUERY PLAN: P0

(a)

Use Condition 2

ac_case2

Rate(L2) < 1Mbps
Rate(L1) = 1MbpsRate(L1) < 1Mbps

Rate(L2) = 1Mbps
Rate(L3) = 1Mbps

Use Condition 5

Rate(L3) = 1Mbps

Rate(L1) < 1Mbps

Rate(L3) < 1Mbps
Rate(L2) = 1Mbps

ac_case5

Use Condition 6

ac_case6

Rate(L1) = 1Mbps
Rate(L2) < 1Mbps
Rate(L3) < 1Mbps

Rate(L1) < 1Mbps
Rate(L2) < 1Mbps
Rate(L3) = 1Mbps

Use Condition 4

ac_case4

Use Condition 7

ac_case7

Rate(L1) < 1Mbps

Rate(L3) < 1Mbps

L1 L2

A B

C

L3

Rate(L3) < 1Mbps
Rate(L2) = 1Mbps

Rate(L2) < 1Mbps

<ac_case1,
"Rate(L2) < 1Mpbs",
ac_case4, timeout=5secs>

Adaptation Trigger 2

Rate(L1) = 1Mbps

ac_case3

Use Condition 3

Adaptation Action: AAction11

Use Condition 0

ac_initialP

Rate(L1) = 1Mbps
Rate(L2) = 1Mbps
Rate(L3) = 1Mbps

Use Condition 1

ac_case1

(Transition Graph)
Adaptation Space

Adaptation Trigger 1

Rate(L1) < 1Mbps

Rate(L1) < 1MbpsRate(L3) < 1Mbps

Rate(L3) < 1Mbps Rate(L2) < 1Mbps

Rate(L2) < 1Mbps Rate(L2) < 1Mbps

Rate(L2) < 1Mbps

Rate(L3) < 1MbpsRate(L1) < 1Mbps

Rate(L2) < 1Mbps

Rate(L1) < 1Mbps

Plan P21

<ac_initialP , "Rate(L1) < 1Mbps" , ac_case1, timeout = 5seconds >

Initial Query Plan (P0)

Plan P11

B

MatRel

C

L2

C

MatRel

B

L1

A

L1

A

Adaptation Action: AAction21

(b)

Figure 2: (a) Initial optimized plan query P0; (b) Adaptation Space for Q.

network delays occur. For each non-root node, we may have
more than one alternative query plan where each plan ad-
dresses different network delay duration (see Example 2).

4. REACTIVE CONTROL PHASE
When query Q is executed, Ginga (reactive control phase)
monitors the AT conditions specified in Q’s adaptation trig-
gers that are relevant to the current query plan Pfrom (e.g.,
transfer rate of network connections). The adaptation trig-
ger is fired when its AT condition becomes true (e.g., net-
work delay). The transition from plan Pfrom to Pto is called
adaptation action.

When an adaptation trigger is fired, Ginga checks the cur-
rent stage of the query execution.1 If the adaptation action
is found to be still beneficial, Ginga proceeds to change the
query plan to Pto. Determining if an adaptation action is
beneficial depends directly on how much of the query plan
has already been processed. For example, if Adaptation
Trigger 1 from Figure 2(b) is fired after we have collected
most of the data from Source A (Site 1), scheduling adapta-
tion action AAction11 may not provide significant gains to
the final query response time.

Using the Adaptation Space model, we now discuss the
concrete steps taken by Ginga to cope with environmental
changes, particularly network delays caused by slow delivery.

1
We assume that the Runtime System will keep the Reactive

Control Phase informed of its current execution.

In order to cope with network delays, Ginga first sched-
ules adaptation actions that involve materializing indepen-
dent subtrees from the original query tree while continu-
ing to process the data retrieval through the slow network
connection2. When no more independent subtrees can be
materialized and the problematic connection is still slow,
Ginga schedules adaptation actions that create and materi-
alize new joins between the relations that were previously
materialized.
Example 2 (Adaptation Actions): Suppose that as the
query processor starts executing P0 (Figure 2(a)), the trans-
fer rate of connection L1 degrades from 1Mbps to 500Kbps
causing the data from A to be slowly delivered. Conse-
quently, Ginga schedules the first adaptation action to start
the new query plan P11, which executes concurrently the
materialization of remote data source B (MatRel(B)). If we
can finish processing A 3 while concurrently running Ma-
tRel(B), then no further adaptation is necessary. However,
if the slow delivery on L1 delays the processing of A beyond
the completion of MatRel(B), then another adaptation ac-
tion should be scheduled. In our example, the new query
plan P12 (Figure 3) starts concurrently the materialization
of the data from source C (MatRel(C)). The goal of both

2
We call independent subtree a query tree from the original plan

that does not depend on the input from the delayed source.
3
Processing A consists of retrieving, hashing, and partitioning

the data from A.

P11 and P12 is to change the retrieval and processing order of
sources, so the fast sources are processed concurrently with
the delayed source. At any point during the query execu-
tion, there is only one plan that is being used. When Ginga
changes from plan P0 to plan P11 or from P11 to P12, the
operator schedule is changed accordingly.

L1L

AAction12AAction11

1

1

2:MatRel

L

L1for Network Delays on Connection
Alternative Query Plans

C

: total execution time of adaptation action i

AAction13

et (action i)

Plan P11 Plan P12 Plan P13

A 1:MatRel

B

2:MatRel

C
A

C

1:MatRel

B

A

1:MatRel

B

3:MatJoin

Legend:
proc(S1) : total execution time for processing data from S1

proc(S1) > et (AAction12)proc(S1) > et (AAction11)

Figure 3: Summary of adaptation actions when de-
lays are detected on network connection L1.

When there are no more independent query subtrees from
the original plan to be materialized and we still have not
finished processing A, the next adaptation action is to start
with joins. The new query plan P13 will create and mate-
rialize a new join with the relations that P12 materialized.
In this example, P13 will start MatRel(B) 1 MatRel(C).
Ginga creates new joins by following the query graph associ-
ated with P0. Only those relations that can be joined (i.e.,
there is an edge in the query graph connecting them) are
considered during the creation of new joins. This way, Ginga
avoids the generation of new joins that result in Cartesian
products.

The eager execution of these expensive new join opera-
tors is a departure from the initial optimized plan P0. This
means that P13 was considered sub-optimal when compared
to P0 originally. Therefore, P13 may or may not finish be-
fore P1i, i < 3, depending on the completion time of process-
ing A. An alternative solution is to use a detailed dynamic
adaptation query plan generation to take these factors into
account. This is similar to query re-optimization [3].

The scheduling of P13 results in changing the right operand
of the originally scheduled join between A and B. In our cur-
rent implementation of Ginga, this scenario is possible be-
cause we assume that all joins operators are hash-based [10]
and the execution of a query plan follows the model pre-
sented in [8], where the left operand from the hash join
is first materialized before starting the probe of the right
operand in a pipeline fashion.

Figure 3 summarizes the adaptation actions and AT condi-
tions (represented by the labels on the edges connecting the
query plans) used for coping with network delays detected
on connection L1. For each action, the materializations are
numbered in the order they should the executed. Observe
that these new materialization operations are scheduled in
a way that allows a smooth transition from one query plan
to another at runtime.

5. RELATED WORK AND CONCLUSION
Representative examples of relevant adaptive query process-
ing research include Query Scrambling [1] and Dynamic Sche-
duling Execution(DSE) [2]. Query Scrambling uses material-
ization and operator synthesis to adapt the execution of dis-
tributed queries in the presence of network delays. DSE also
adapts the execution of distributed queries to the network
delays by concurrently scheduling the execution of indepen-
dent subtrees. In comparison, Ginga uses a unified frame-
work (adaptation space model) to support both approaches.
In addition, Ginga’s framework is powerful enough for us to
study not only query adaptation to network delays, but also
query adaptation to memory shortage and sudden unavail-
ability of remote sources.

In this extended abstract, we outline some of the inter-
esting features of Ginga, primarily an experimental study
of the trade-offs in adapting the execution of distributed
query to network delays. Our ongoing research efforts in-
clude other resource constraint trade-offs such as memory
shortage, sudden unavailability of remote sources, and com-
bined failure modes. Further technical details of Ginga are
described in [7].

6. ACKNOWLEDGEMENTS
The first author was partially supported by CAPES - Brasilia,
Brazil - and DoE SciDAC grants. The other two authors
were partially supported by DARPA, DoE, and NSF grants.

7. REFERENCES
[1] L. Amsaleg, M. J. Franklin, A. Tomasic, and T.Urhan.

Scrambling query plans to cope with unexpected
delays. In PDIS, 1996.

[2] L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez.
Dynamic query scheduling in data integration
systems. In ICDE, 2000.

[3] N. Kabra and D. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
In ACM SIGMOD, 1998.

[4] L. Liu. Adaptation cases and adaptation spaces:
Notation, issues, and applications (part i: Concepts
and semantics). Technical report, OGI CSE
Heterodyne Working Paper, 1998.

[5] L. Liu. Query routing in large-scale digital library
systems. In ICDE, 1999.

[6] L. Liu, C. Pu, and K. Richine. Distributed query
scheduling service: An architecture and its
implementation. JCIS, 7(2-3), 1998.

[7] H. Paques, L. Liu, and C. Pu. Distributed Query
Adaptation and Its Trade-offs. Technical Report,
Georgia Institute of Technology, 2002.

[8] D. A. Schneider and D. J. DeWitt. Tradeoffs in
processing complex join queries via hashing in
multiprocessor databas machines. VLDB’90.

[9] P. Selinger and M. Adiba. Access path selection in
distributed database management systems. VLDB’80.

[10] L. D. Shapiro. Join processing in database systems
with large main memory. ACM TODS, 11(3), 1986.

[11] M. Stonebraker. The design and implementation of
distributed ingres. The INGRES Papers, M.
Stonebraker (ed.)(Addison-Wesley), 1986.

