
InfoFilter: Supporting Quality of Service for Fresh Information Delivery 1

InfoFilter: Supporting Quality of Service

for Fresh Information Delivery

Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

Georgia Institute of Technology, Atlanta, GA 30332-0280, USA

� Oregon Graduate Institute, Portland, OR 97291-1000, USA
flingliu,calton,schwang@cc.gatech.edu, walpole@cse.ogi.edu

Received February 4, 2000

Abstract With the explosive growth of the Internet and World Wide Web

comes a dramatic increase in the number of users that compete for the shared

resources of distributed system environments. Most implementations of applica-

tion servers and distributed search software do not distinguish among requests to

di�erent web pages. This has the implication that the behavior of application

servers is quite unpredictable. Applications that require timely delivery of fresh

information consequently su�er the most in such competitive environments. This

paper presents a model of quality of service (QoS) and the design of a QoS-enabled

information delivery system that implements such a QoS model. The goal of this

development is two-fold. On one hand, we want to enable users or applications

to specify the desired quality of service requirements for their requests so that

application-aware QoS adaptation is supported throughout the Web query and

search processing. On the other hand, we want to enable an application server to

customize how it should respond to external requests by setting priorities among

query requests and allocating server resources using adaptive QoS control mech-

anisms. We introduce the Infopipe approach as the systems support architecture

and underlying technology for building a QoS-enabled distributed system for fresh

information delivery.

Keywords Distributed Information Flow Systems, Web Information Systems,

Quality of Service, Adaptive Resource Management.

x1 Introduction
On the Internet, users issuing search queries to remote information servers often

experience large variations in important performance metrics and information qual-



2 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

ity metrics. Typical performance variations include data transfer bandwidth and

access delay. Typical information-quality (IQ) variations include the amount of

false positives (useless answers that fail to ful�ll a user's needs) and false negatives

(useful answers that the system fails to deliver to the user) in the search results,

the freshness and coverage of the information delivered, and the information rep-

resentational consistency. These variations are primarily caused by the wide range

of server capabilities, such as time-of-the-day di�erences or server-dependent dif-

ferences in network paths, network load, server-speci�c query capabilities, and

server utilization. Furthermore, most implementations of application servers and

distributed search software treat all requests uniformly. This has the implication

that the behavior of application servers is quite unpredictable as analyzed in 6).

First, requests for popular pages have the tendency to overwhelm the requests

for other (and possibly more time-sensitive) pages. Second, pending requests may

completely bog down the servers, resulting in unacceptable response time. Third,

servers may start to drop requests indiscriminately. Fourth, servers may deliver

out of date results. It is becoming increasingly important for distributed systems

to be able to handle application demands for resources more intelligently.

In this paper, we present the initial results of our research towards de-

veloping an application-aware quality of service (QoS) framework for managing

distributed systems resources in order to provide application- level QoS guaran-

tees, and ultimately supporting smart delivery of fresh information. This research

consists of three main components. The �rst component is a model of QoS for fresh

information delivery. The second component is the Infopipe approach to designing

and implementing a QoS guaranteed Web information delivery system � InfoFilter.

The Infopipe approach is the core technology of the Infosphere Project 7), one of

the �ve pioneer projects under the DARPA ITO Information Expedition program.

The third component is an adaptive, micro-feedback driven approach to distributed

systems resource management that dynamically con�gure the available resources

in terms of the QoS demands of applications. This paper presents the QoS model

in the context of Web query and search processing and brie
y describes the In-

foFilter system that enforces the proposed quality of service model using Infopipes

technology.

The model of quality of service (QoS) presented in the paper aims at en-

abling an application server to customize how it should respond to external re-

quests. This includes setting priorities among page requests, allocating di�erent

kinds of (absolute and relative) service resources to di�erent requests. More con-

cretely, it allows the QoS parameters to be expressed in terms of di�erent units



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 3

of work and di�erent layers of the system. Built on top of the taxonomy of QoS

speci�cation developed in 3), we explicitly distinguish application-level QoS pa-

rameters (such as frame delay and frame jitter for a video) from resource-level and

system-level QoS parameters (such as the packet delay and packet jitter at network

resource level). We model application-level QoS parameters as a function of the

appliation's goals speci�ed by application designers. We describe resource-level

QoS parameters in terms of the design of the resources and their application-aware

control parameters.

To implement such a QoS model, �rst, the system needs to provide an

application-level QoS speci�cation language to allow users to specify the desirable

quality control parameters with their queries. Second, mechanisms are needed to

translate the application-level QoS parameters into resource-level and system-level

QoS parameters. Third and most importantly, an implementation requires the

creation of a resource model for determining various resources that exist at any

given moment. This paper describes an adaptive resource management mecha-

nism for scheduling various requests given a resource model such that the QoS

constraints are satis�ed. A key building block of the InfoFilter QoS system is the

use of infopipes. The Infopipe approach provides a viable and e�ective technology

to support distributed information 
ows with QoS requirements. It includes the


exible composition of Infopipes while preserving QoS properties, which is criti-

cal for implementing a QoS-aware distributed system for timely delivery of fresh

information.

x2 The InfoFilter Quality of Service Model
Much of the quality of service management research results have been produced

and published in the context of networking and multimedia systems where resource

consumption needs often exceed the available resource capacity of a system 10, 12, 8),

or where resources are allocated unfairly during periods of network congestion. In a

consumer-producer framework, quality of service can be seen as a quanti�cation of

level of services that an information production server can guarantee its consumers.

Often, the selection of quality of service parameters depends on the kind of services

that a server provides. Examples of typical parameters that multimedia systems

have used to guarantee services are transmission delay, network transfer rate, image

resolution, video frame rate, and audio or video sequence skew, among others. In

this section, we develop a model of quality of service for distributed information

servers, such as Web application servers, continual query servers 4), and geographic

information servers.



4 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

The design of the InfoFilter QoS model follows a number of design deci-

sions. The �rst design consideration is to make an explicit distinction between two

views of the quality of service: consumer view and producer view. In the consumer

view, the application server guarantees speci�c services to its consumers according

to the desirable level of services speci�ed by consumers. Examples of such QoS

guarantees are a server's resource guarantee for lower bounds on its throughput

(e.g., number of bytes per second) or upper bounds on response times for speci�c

queries. In the producer view, the quality of service implements the producer's

view of how the producer's server should provide certain services, including policies

for setting priorities among various resources and setting limits on server resource

usage by various types of requests.

The second design consideration is the need for establishing a common

understanding of how QoS should be speci�ed at application level, resource level

and system level 3). In order to design a system that allows multiple applications to

co-exist within a QoS management framework, it is necessary to de�ne a common

and coherent QoS model. Such a QoS model should not only incorporate various

individual speci�cations from consumers but also be able to map QoS properties

from application level to resource level and from resource level to system level.

2.1 QoS De�nition

In InfoFilter, an application is modeled as an information 
ow system using a di-

rected graph, where graph nodes represent processes and graph edges represent

information 
ow between those processes. A process can be either atomic or com-

posite. We use atomic processes to denote units of work and composite processes

to refer to services or composition of services (i.e., a service may use other services

to complete a task). A unit of work represents the smallest granularity of work for

which only a single resource needs to be allocated 3). A service is de�ned as a col-

lection of one or more units of work that may span multiple resources. Therefore,

a unit of work can also be referred to as a service.

We de�ne end-to-end QoS requirements (parameters) for each service and

describe the resource usage as a function of the QoS. Thus, a single QoS speci�-

cation is provided for the entire service. The consumer of a service negotiates the

QoS of the entire service without having to understand the units of work that made

up the service.

The InfoFilter application QoS model is developed as an extension to the

Quasar QoS model 11), which was designed speci�cally for multimedia systems and

video-on-demand in particular 11). Similar to the Quasar QoS model, we model



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 5

the quality of a query result as a measure of the amount of error present in it.

For example, a query returning a perfect result would return an error-free replica

of the real world object(s). We explicitly distinguish capture error, quantization

error (sampling error), and delivery error. The capture error refers to the class

of errors that result from the use of inaccurate capture equipment or less than

perfect information extraction software. These errors are considered as incidental

because they may not be present when di�erent capture (software or hardware)

or data extraction tools are used. The quantization error represents the class of

inherent errors that result from the use of a �nite number of samples (and a �nite

number of bits per sample) to represent time varying values from the real world.

The delivery error describes the class of errors introduced by resource management

decisions that in
uence the processing and the delivery of query results. Delivery

errors in Web query systems are primarily caused by page and packet oriented data

transfer delays, bu�ering delays, the choices of resource scheduling policies, and

the unexpected server unavailability problems. Below we discuss a list of quality

of service parameters that are common for Web application servers and describe

consumer requests with QoS speci�cations.

2.2 QoS Speci�cation

We de�ne the overall quality of a Web query request as the degree of user satis-

faction with the query results and the delivery e�ciency according to the user's

QoS requirements. While user satisfaction is qualitative and subjective, the de-

livery e�ciency can be measured against the QoS speci�cations. We introduce a

set of parameters to be used for incorporating quality of service control into the

construction, operation, and maintenance of consumer requests.

Table 1 lists a subset of QoS parameters to be used in the InfoFilter con-

sumer request construction. If we consider the QoS speci�cation as a performance

metric, then the �rst four parameters in Tabel 1 are the timeliness parameters. The

deadline for the query to complete measures the time a�ordable by the consumer

to wait for the query to return the results. The total time taken to complete a

query measures the query round trip time � from the time a query is submitted to

the time the execution of the query is completed (i.e., all results are returned). The

rest of parameters are either the precision parameters with respect to the volume

of the data 
ows or the accuracy parameters that measure the errors introduced

into the query results.



6 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

parameter Synopsis Example

DL The deadline for the query to complete 30 seconds

RT Query response time � from the time a query is
submitted to the time the �rst piece of data appears 20 seconds

TT The total time taken to complete a query 1 minute

JT Jitter � The variability in time to complete the query 0.5 seconds

(measuring the internal consistency of timeliness parameters)

QS Query scope � query search scope in a Web document <B>,<HREF>

QC Query coverage � Number of network nodes or Web
sites accessed 250 sites

FR Freshness of query result � the usefulness duration
of a result item since its last modi�cation 5 days

RD Redundancy rate of query result � percentage of
duplicate items 0.004

AC Accuracy of the query � the percentage of the retrieved
documents or result items satisfying the query condition 0.9

PR Precision of the query � the fraction of the retrieved
documents or result items which is relevant 0.99

RC Recall of the query � the fraction of relevant
documents or result items that has been retrieved 0.12

RL Relevance of the query result � percentage of result items

that may not satisfy the query condition 0.15

ND Number of Web documents (�les) accessed 10,000 docs

NA Total size of the query result � the number of result
items returned in an execution of a query 320 items

Table 1: Typical QoS parameters for Web queries

The term \result item" used in Table 1 is de�ned as a data object or an URL of

a related document for Web information sources. The query scope (QS) is de�ned

in terms of a subset of record �eld tags for data �les or a subset of HTML (or

XML) tags for HTML (or XML) documents. A QS value speci�es a minimum set

of content tags that the InfoFilter query processor has to search. For example, a QS

value f<H2>,<B>,<HREF>gmeans to search at least the text appearing in the header

parts, the bold parts, and the embedded URL links of each HTML document. A

QS value Tablemeans to search the table de�ned by the pair of start and end table

tags <table> and </table>. The default value of QS is <HTML>, which means to

search the whole document. A freshness value FR indicates the duration of an item

since its existence. It is an important quality measurement for Web queries since

most of the users are not be interested in \out of date" information. The accuracy

of the query result (AC) is de�ned as

AC = NC=NA

where NC is the number of correct items in the query result. We de�ne the precision

PR of a query as follows:

PR = (NA \NR)=NA



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 7

where NR is the total number of relevant documents or relevant objects at the

sources of the query. (NA \NR) is the total number of retrieved documents that

is relevant. A precision of 90% means that 90% of the query result are relevant

and there are 10% of irrelevant result items in the result. We de�ne the recall of a

query as

RE = (NA \NR)=NR.

A recall of 100% means that the query returns all the relevant objects at the

sources. A recall of 90% means that the query returns 90% of the relevant objects

and missed 10% of the relevant objects.

Typically, users specify a requirement threshold (minimum/maximumvalue)

for each quality parameter when he/she issues a request. The InfoFilter request

manager checks if the execution of the query meets the quality requirements by

examining the values of quality parameters. The quality of service inspection mod-

ule sets o� an alarm when a quality parameter drops below the minimum required

QoS value or rises above the maximum. We refer to the QoS values speci�ed by a

user as user-de�ned quality parameter values. In contrast, the quality parameter

values obtained at run time during Web query processing are called execution-time

quality parameter values. We say that a Web query execution is successful under

QoS control if all of its execution-time parameter values are equal to or better than

(smaller or greater depending on the semantics of each parameter) the user-de�ned

quality parameter values.

2.3 QoS as a Distance Measure

A distance function 11) is de�ned over a single parameter of a given QoS metrics.

It is used to measure the distance between two quality parameter values. Such dis-

tance value is a useful indicator of the relative goodness of the two QoS parameter

values.

Distance function.

Let P be a QoS parameter, domain(P ) denote the domain of P , and domain(P )

6= ;. Let u; v; w 2 domain(P ). A function �P (u; v) is a distance function for the

parameter P , if it has the following properties:

1. �P is a function from domain(P )� domain(P ) to a set of real numbers,

denoted by R, and domain(R)
def
= [0; 1];

2. 8u; v 2 domain(P ), �P (u; v) = �P (v; u); (Symmetry)

3. 8u; v; w 2 domain(P ), �P (u; v) + �P (v; w) � �P (u;w). (Triangle inequal-



8 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

ity)

Consequently domain(P ) is a metric space. Let each value in domain(P ) denote a

presentation state of the query result object o. The distance function �P can be

de�ned as the absolute value of the di�erence between two presentation states of

the object o. By the de�nition of �P (u; v) where u; v 2 domain(P ), the following

properties holds:

(a) �P (u; v) = 0 if and only if u = v.

(b) �P (u; v) > 0 if and only if �P (v; u) < 0.

(c) if �P (u; v) > 0 and �P (v; w) > 0, then �P (u;w) > 0.

The property (a) amounts to say that two property values are identical if their

distance is zero. The property (b) implies that if a property value u is better than

v, then v is worse than u. The property (c) says that if u is better than v and v

is again better than w, then we can say u is better than w. These properties are

frequently used in QoS control systems.

Consider the list of QoS properties in Table 1. For response time RT, round

trip time TT, freshness FR, redundancy rate RD, and relevance RL, the smaller

the parameter value is, the higher the quality. Therefore, we de�ne the distance

function as

�P (u; v) = v � u, where P 2 fRT; TT; JT; FR;RD;RLg.

However, for other parameters such as accuracy AC, precision PR, recall RE, the

larger the parameter value is, the higher the quality. We de�ne the distance function

as

�P (u; v) = u� v, where P 2 fAC;PR;REg.

For the rest of parameters the de�nition of its distance function is more sophisti-

cated. User-de�ned quality criteria can be used in such cases to determine the best

quality between two sets of parameter values. For instance, a user may consider

that the query results returned by searching over a larger coverage are better in

quality.

Very often, users need to specify a set of quality parameters for each con-

sumer request. To compare two sets of quality parameter values, we need to intro-

duce an aggregate distance function that allows us to compute the distance between

two multi-dimensional quality parameter vectors. The design of a concrete distance

function is a subject of our ongoing research. One possible solution is to de�ne the



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 9

aggregate distance function as a weight function by assigning a weight to each

quality dimension. The sampling approach or self-adaptive learning approach can

be employed to determine the weight values for di�erent quality dimensions.

2.4 Constructing Requests with QoS Parameters

In InfoFilter, two types of consumer requests are supported with quality of service

guarantee. The �rst type of requests is called ad-hoc queries. An ad-hoc query

performs a conditional search over the remote information sources. The second type

of requests is called QoS-guaranteed query subscription. Each query subscription

is modeled as a continual query�1. We de�ne a query subscription in terms of

four components: triggering event, standing query, start and stop condition. The

triggering event can be a recurring time event (e.g., every 10 minutes), a system

state (e.g., when a thermometer reaches the temperature of 100F), or a combination

of both. The standing query is a normal query on the data sources (in this case,

pulling selected sensor data) that is executed each time the triggering event becomes

true. The query result is pushed to the user or program that created the request

whenever the trigger condition is met. Like the triggering event, the start and stop

condition of a query subscription can be a combination of time-based or content-

based events. A subscription is deactivated after the stop condition has occurred.

For example, the query subscription "transmit the last 2 minutes of bu�ered infrared

videotape when the seismic sensor indicates an explosion nearby" can be speci�ed

as an InfoFilter continual query.

Formally, a QoS guaranteed query subscription, denoted as (fcq ; fQoS), is

de�ned by a continual query component fcq and a QoS speci�cation component

fQoS . We de�ne the continual query component fcq as a quadruplet (Q; Tcq;Start,Stop),

consisting of a normal query Q, a trigger condition Tcq , a begin condition Start,

and a termination condition Stop. Tcq, Start, and Stop in general may depend

on many di�erent parameters, and in the sequel we omit their parameters for clar-

ity. In contrast to ad-hoc queries in conventional database systems or current Web

search engine-based information retrieval systems, an InfoFilter query subscription,

once activated (installed and started) runs continually over the set of information

sources. Whenever its trigger condition becomes true, the new result since the

previous execution of the query will be returned if it meets the QoS speci�cation.

Below we illustrate the construction of InfoFilter query subscription requests using

�1 A continual query (CQ)4) is a standing query that, once installed, runs continually over the
targeted information sources and returns the new results when the amount of information
updates reaches a speci�ed threshold.



10 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

an example:

Example 2.1

\I want all SAR (Synthetic Aperture Radar) Imagery within 100 miles of my (time-

varying) location". Suppose this query has the following quality requirements: the

precision of 100 miles of my location is 90%, the duplication rate of the query

result is zero, and the maximum query turnaround time latency is 2 minute. We

can perform this request by installing the following continual query:

fcq = (Q : Select * From SARImagerySource

Where my location - 100 miles < distance range

AND distance range < my location + 100miles,

Tcq: my location changes From LocationCoordinateSource,

Start: now,
Stop: 24 hours)

fQoS = (TT:2min,SC:f<SARImagery>,<distance range>,<LocationCoordinate>g,

AC:0.9, RD:0.0).

Note that we use the trigger condition Tcq to monitor the changes of \my location"

and use the query Q to �lter those SAR Imagery within 100 miles of distance to

each given value of \my location". The QoS speci�cation of the request will be

translated into lower level of QoS properties for �ne-granularity resource manage-

ment and control by the dynamic QoS adaptation controller.

2.5 QoS Speci�cation of Server Resources

It is well understood that a QoS model must tie the users' needs (application

QoS) to the amount of resources required to provide them. The resource-level

QoS speci�cation describes the system resources that are required by the server to

ful�ll the application requests. Typical server resources associated with consumers'

requests to Web pages include resource types (such as the percentage of server

resources allocated to a page request), performance characteristics (such as the

number of requests per second for the page, or the number of kilobytes of a page

transmitted per second), and scheduling policies for each type of resources.

In order to measure the performance and the cost of each resource at dif-

ferent operational points, a cost function associated with each type of resources

will be developed. Typically, the resource QoS is managed according to the re-

source model of the underlying system, which describes the resource capacity of

each information server at a given moment, including CPU speed, local CPU load

factor, memory, �le server's capacity, network bandwidth, local area network char-



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 11

acteristics. A common abstraction to specify the capacity of an information server

is in terms of bytes per second. Using this abstraction, each information server

periodically determines the number of bytes per second it can deliver. Concrete

formula for computing the resource capacity of an InfoFilter server is still under

development and will be reported in a forthcoming paper7).

2.6 System-Level QoS Speci�cation

In distributed computing environments, users and applications often compete with

one another for system resources. Consequently, application QoS and resource QoS

may have some con
icting goals. The system perspective of the QoS model needs

mechanisms to reconcile the con
icting goals between di�erent types of applica-

tions, between heterogeneous resources, and between application perspectives and

resource perspectives. For example, when a new application is started and there

are not enough resources to perform it with the desired QoS, several methods can

be used to free up some resources. One can degrade the QoS requirement of this

new application, or degrade the QoS of a less important application that is already

running. One of the main mechanisms for dealing with such resource contention

problems is to de�ne a set of end-to-end system policies. An example system policy

could be to de�ne the action that should be taken when a new application is started

and there are not enough resources to perform it with the desired QoS. An obvious

approach to handling competing users or competing applications is to de�ne and

evaluate the relative importance of di�erent applications that are contending for

the resource. One of the e�ective mechanisms is to use the price (cost) that the

user is willing to pay for a server of a given quality as the measurement of relative

importance.

In InfoFilter, we describe system-level QoS requirements in terms of QoS

constraints. For Web applications, QoS constraints for various requests are a form

of speci�cation used to describe how a server's resources should be allocated. Typ-

ical system-level QoS speci�cations include speci�cation of guarantees about byte

transfer rates and page request rates, allocation of speci�c and relative amount of

server resources to speci�c page requests, time-based and link-relation-based allo-

cation of resources, scalable allocation of resources, required system throughput,

to name a few. We de�ne a QoS constraint to be a conditional QoS speci�cation

in the sense that the QoS speci�cation must be guaranteed when the condition is

true. Other issues related with system perspective of the QoS model is the multi-

layer QoS enforcement architecture, which is omitted in this paper due to the space

restriction.



12 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

x3 QoS Information Server

3.1 Infopipe Abstraction

The implementation of the InfoFilter QoS model described in Section 2 is a signi�-

cant undertaking. To make our implementation feasible and simpler, we will build

the InfoFilter QoS Information Server using the Infopipe abstraction, being devel-

oped in the Infosphere project, which is building the system software to support

the next generation information 
ow applications.

Infopipe is represented by an explicit description of the syntax, semantics,

and QoS requirements of the information 
ow. Typically the information 
ow is

divided into logical units (potentially of variable length), and the component �elds

within the units are described by a microlanguage similar to C records or database

schema description, which captures the information semantics. The semantics de-

scription is needed during the interpretation of the information 
ow. In addition to

the syntax component and the semantics component, the third main component of

Infopipe description consists of the QoS requirements of the applications producing

and consuming the information 
ow. This is a major departure from traditional

systems supporting QoS, since the QoS speci�cation and representation are usually

implicitly described or handled by the applications themselves. By attaching the

QoS requirements to the information 
ow itself, our goal is to provide the under-

lying system with enough guidance to make informed decisions in resource man-

agement tradeo�s, for example, what to do under system saturation. The Infopipe

software toolkit handles the translation of the Infopipe description into executable

code, much the same way the Remote Procedure Call (RPC) stub generators take

care of the code to marshal/unmarshal parameters into/from messages.

Each Infopipe has an input end, a processing middle, and an output end.

The input and output ends are described by a Typespec, which is the explicit

description of the syntax, semantics, and QoS requirements of the information


ow at both producer end and consumer end. The processing middle transforms

the information 
ow from the input Typespec into the output Typespec, while

guaranteeing the QoS properties speci�ed at the two ends of the infopipe. The

middle also handles bu�ering and active push, for example. The details of Infopipe

abstracts will be described in another paper 7).

3.2 Infopipe Software Toolkit

The Infopipe software toolkit contains four main components. The �rst component

of the toolkit is the Infopipe stub generators, the equivalent of RPC stub generators



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 13

for Infopipes. It handles primarily the syntax and semantics for correct interpre-

tation of the information 
ow. Given the Typespec of an end, the toolkit will

generate the appropriate code for the parsing and generation of information 
ow.

Our current design decision uses XML as the wire format for high-level information


ows. The code to parse XML input and generate XML output is automatically

generated by the toolkit.

The second part of the toolkit is the system code that handles QoS prop-

erties in the kernel, of the information source, the user (or another programmed

robot information consumer), and the intermediate nodes along the information


ow path. This could be a modi�cation of the operating system kernel, e.g., the

Quasar implementation built into the Linux kernel. Alternatively, it could be user

routines written on top of the kernel, e.g., the Resource Kernel work on Windows

NT. The system support typically consists of adaptive resource (e.g., CPU, mem-

ory, disk and network bandwidth) management mechanisms (e.g., control-system

based Microfeedback 9) and saturation situation management policies (e.g., trade-

o�s between CPU, memory, and network bandwidth).

The third part of the toolkit is the library code the applications and the

systems need in order to interpret the QoS requirements. In addition, it also

contains the current system state, so the component nodes may exchange system

status information and take appropriate adaptive action if needed. This part of the

code observes the system and application behavior, and then invokes appropriate

adaptation mechanisms in the operating system according to the policies speci�ed

by the application designer.

The fourth part of the toolkit is the software supporting Infopipe compo-

sition, forming larger or longer composite Infopipes. The main research challenge

in this part of the toolkit is the preservation of predictable QoS properties during

composition. Our goal is to be able to provide the application designer clear control

over the QoS properties from an end-to-end perspective.

3.3 Development of QoS Information Server

There are four issues that are critical for providing QoS guarantees for fresh infor-

mation delivery. The �rst issue is QoS speci�cation, which we have discussed in

Section 2. The second issue is QoS Mapping. The QoS speci�cations associated

with the consumers' requests are at the application level. As the processing of a con-

sumer's query involves resources such as CPU, memory, and network connection,

the application-level QoS speci�cations must be mapped to resource requirements.

For example, QoS parameters (such as bandwidth) have to be derived for the net-



14 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

work connection. Similarly, given a timeliness parameter, the mapping operation

derives the amount of processing required so that the CPU capacity can be allo-

cated to ensure the processing is performed at the desired rate. Figure 1 shows

the QoS speci�cation and mapping operations implemented in terms of infopipes.

The third issue is QoS enforcement, which is mainly concerned with scheduling

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Buffer
Requirement

Network Connection
Requirement

CPU MEMORY CONNECTION

Compositions
Infopipe

RESOURCES

Processing
Requirement

QoS SpecificationApplication

Infopipe QoS Abstraction

CPU Scheduling

Fig. 1 Mapping application-level QoS speci�cation to resource-level QoS requirements

shared resources during data transfer or data processing. The goal is to schedule

all application threads for data transfers and data processing in such a way that

they obtain their required share of the CPU and network resources in each period.

This is the same as ensuring that all threads meet their deadlines. The fourth

issue is QoS adaptation, which monitors the state of shared resources and �res the

adaptive re-scheduling process whenever it is necessary. Figure 2 shows the main

components used for the QoS implementation and adaptation. All concurrent ap-

plications are controlled by one adaptor for each type of system resource (most

notably CPU and network bandwidth), in order to maintain fairness and stabil-

ity. Each adaptor consists of monitoring task and adaptation task. The former

observes the state changes and noti�es the adaptation module when the amount

of changes reaches certain threshold. The feedback-based con�guration controller

maps the adaptation decisions made by the adaptor to application-speci�c parame-

ter tuning and recon�gures adaptation choices within the application. Hence, each

application needs to have a corresponding feedback-based con�guration controller.

More concretely, at the QoS mapping phase, the end-to-end QoS speci�ca-

tions of the application are translated into the third component (QoS speci�cation)

of the Infopipe Typespec. Since the Infopipe Typespec is a declarative speci�cation

of machine resources requirements, this translation e�ectively isolates the under-



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 15

CPU Adaptor

QoS Adaptation Monitoring

State Changes

Application Process

QoS Adaptation Monitoring

State Changes

QoS adaptation Infopipes

Resource-Level QoS Mapping
& Systems-Level QoS Guarantee

Application-Level QoS Specification

QoS mapping Infopipes

QoS enforcement Infopipes

Application-Level Feedback Controler
QoS adaptation Infopipes

Bandwidth Adaptor

Fig. 2 QoS Implementation and Aaptation

lying hardware from the application. On the programmer side, the writing of

Typespec will be handled by a GUI that speeds up the process. Then the Infopipe

Typespec QoS speci�cations are translated into code by applying the Infosphere

toolkit parts discussed in Section 3.2. In the case of QoS Information Server, we

will use the part 1 of toolkit to generate the XML parser and generator code for

each Infopipe. Part 2 of the toolkit consists of the system code running underlying

the QoS Information Server components. Part 3 of the toolkit takes the Typespec

speci�cations (second step) and communicates with the Part 2 kernel calls that al-

locate resources. In particular, the monitoring code will be generated to watch over

the maintenance of QoS during execution. If saturation occurs, tradeo�s speci�ed

by the application designers will be used to invoke appropriate resource manage-

ment mechanisms to recover from the saturation situation. Part 4 of the toolkit is

invoked to glue together the components into the information 
ow grid that forms

the QoS Information Server.

Consider the InfoFilter query subscription request of Example 2.1 given

in Section 2.4. At the beginning, the InfoFilter query \SAR Imagery" is installed

at the QoS-aware InfoFilter Server 4) through a message. There are two parts

of the query: the trigger part and the query proper. For the query proper, the

InfoFilter Server is connected to the SAR Imagery information sources through

Infopipes. For the trigger part, the InfoFilter Server is connected to the sensors

that monitor my current location, also through Infopipes. In this example, the

\2 minutes turnaround" QoS speci�cation is translated into QoS requirements to



16 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

the SAR Infopipe. Let us assume that the SAR Images returned are about 80MB

each set, and that for land movements in a car, the coverage of images results

in maximum two sets of SAR data every 2 minutes. The SAR Infopipe therefore

will be annotated with the QoS requirement of latency and bandwidth that will

transmit 160MB within the 2-minute limit. Let us further assume that the network

link to SAR is a T3 connection at 45Mbit/sec, resulting in about 40 seconds of

transmission time for each set. Finally, let us assume that the InfoFilter Server

has enough processors to take about 30 seconds to process each SAR data set for

display, for a maximum of 60 seconds for two sets. This means that the sensor

trigger must be polled at least once every 20 seconds, so there is enough time for

transmitting and processing 2 sets of 80MB SAR data after movement is detected.

The sensor Infopipe therefore is annotated with the QoS requirement that the

sensor information must be up-to-date to within 20 seconds of the actual event

being observed (location change).

With the Infopipes properly annotated, the QoS Information Server, con-

sisting of the InfoFilter Server, the location sensors, and the SAR Imagery source, is

ready to provide the QoS requested. The sensors \know" that they must notify the

InfoFilter server of a location change within 20 seconds, and the sensor Infopipes

take care of the system resource management to make that happen. Once noti�ed,

the InfoFilter Server fetches the SAR data sets within 40 seconds (provided by

Infopipe), processes them within 60 seconds, and generates the results within the

2-minute speci�ed turnaround time.

Note that scalability is inherent in the architecture. For example, suppose

we connect to a source generating larger SAR data sets that require more processing

than available within the InfoFilter Server. We upgrade the Infopipe bandwidth

to the new SAR source to reduce the transmission latency, and add two high-

bandwidth, low-latency Infopipes between the InfoFilter Server and a specialized

processing unit for SAR data. The InfoFilter Server gets the larger data sets,

sends them to the specialized processing unit, and then returns the results to the

user. The con�guration upgrade is transparent to the application using the QoS

Information Server, and the higher performance is achieved with minimal code

change at the system level. Most of the change is captured by the Infopipe QoS

speci�cations and handled by Infosphere software.

x4 Related Work
The notion of quality of service has been studied in great detail within the con-

text of networking 5) and multimedia systems 10). Our work overlaps with the



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 17

research on quality of service in distributed systems where various QoS models and

scheduling algorithms have been developed for supporting speci�c QoS guarantees.

In particular, the development of our QoS model was inspired by the study on

taxonomy of QoS speci�cations 3), the QoS support for HTTP servers and Web

servers 1, 2, 6), and the Quasar QoS model 11). However, our work di�ers from the

previous research in a number of ways. First, our work focuses on the development

of generic QoS de�nition and QoS speci�cation language for distributed informa-

tion 
ow systems. Second, we employ the Infopipe abstraction as the fundamental

building blocks for implementing the QoS information 
ow servers. Infopipe is a

natural solution for the construction of QoS Information Servers because of the

close match between the information 
ow nature of Information Servers and the

Infopipe de�nition, designed explicitly to support such information 
ows. While

client/server architectures based on RPC work well for speci�c situations (e.g.,

single-company electronic commerce), Infopipes provide much more scalability and

evolvability, particularly with regard to QoS support.

x5 Conclusion
We have presented the design of a distributed information 
ow system � InfoFilter,

which implements a quality of service model. The distinct characteristics of the

InfoFilter QoS model is its generic framework that uni�es the QoS speci�cations

at application-level, resource-level and system-level. Such an integrated framework

enables a server to determine how consumers' requests for various web pages should

be served. Several QoS enforcement mechanisms were discussed, including methods

for setting priorities among various requests, association of constraints on system's

resource usage.

Our future work involves the formalization of the InfoFilter QoS model,

and an implementation of the InfoFilter system on top of the WebCQ system

(http://www.cc.gatech.edu/projects/disl/WebCQ), currently operational at Geor-

gia Tech. In addition, we plan to conduct experiments for comparing performance

of the QoS-aware InfoFilter server with the WebCQ server we have built for mon-

itoring Web information changes. Typical experiments we have in mind are mea-

surement of behavior of QoS server with di�ering number of concurrent requests,

comparison of throughputs and average response times of WebCQ and InfoFilter

servers, as well as bene�ts and overhead of QoS guaranteed services.

Acknowledgment This research was partially supported by DARPA

ITO under the Information Expedition program. The �rst three authors are also



18 Ling Liu, Calton Pu, Karsten Schwan, Jonathan Walpole�

partially supported by the Yamacraw Mission, State of Georgia.

References

1) M. Banatre, V. Issamy, F. Leleu, and B. Charpiot. Providing quality of service over

the web: A newspaper-based approach. In Proceedings of the sixth international

World Wide Web conference, 1997.

2) G. Banga and P. Druschel. Measuring the capacity of a web server. In Proceed-

ings of the USENIX Symposium on Internet Technologies and Systems, Monterey,
California, December 1997.

3) B. S. S. Chatterjee, M. D. J. J. Sydir, and T. F. Lawrence. Taxonomy for qos
speci�cations. In Proceedings of WORDS'97, Newport Beach, California, 1997.

4) L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale event-driven
information delivery. IEEE Knowledge and Data Engineering, 1999. Special Issue

on Web Technology.

5) K. Nahrestedt and J. M. Smith. The qos broker. In IEEE Multimedia Magazine,

Spring 1995.

6) R. Pandey, J. F. Barnes, and R. Olsson. Supporting quality of service in http

servers. In Proceedings of PODC, Puerto Vallarta, Mexico, 1998.

7) C. Pu, L. Liu, K. Schwan, and J. Walpole. The Infosphere project and the Infopipe

abstraction. Technical report, College of Computing, Georgia Tech, 2000.

8) D. Rosu, K. Schwan, and S. Yalamanchili. FARA - A Framework for Adaptive

Resource Allocation in Complex Real-time Systems. In Proceedings of the 4th

IEEE real-time Technology and Application Symposium (RTAS), Denver, USA,

June 1998.

9) D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J.Walpole. A feedback-

driven proportion allocator for real-rate scheduling. In Proceedings of the Third

Symposium on Operating System Design and Implementation (OSDI'99), New Or-
leans, February 1999.

10) A. Vogel, B. Kerherve, G. von Bochmann, and J. Gecsei. Distributed mulitmedia

and qos: A survey. In IEEE Multimedia, Vol.2 No.2, 1995.

11) J. Walpole, C. Krasic, L. Liu, D. Maier, C. Pu, D. McNamee, and D. Steere.
Quality of service semantics for multimedia database systems. In Proceedings

Data Semantics 8: Semantic Issues in Multimedia Systems IFIP TC-2 Working
Conference, Rotorua, New Zealand, January 1999.

12) R. West and K. Schwan. Experimentation with event-based methods of adaptive

quality of service management. Technical report, College of Computing, Georgia

Tech, 2000.



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 19

Ling Liu, Ph.D.: She is an associate professor at the College of Computing,

Georgia Institute of Technology. She received her Ph.D. from Tilburg University,

The Netherlands in 1993. Her research interests are in the area of large-scale

data intensive systems and its applications in distributed, mobile, multimedia, and

Internet computing environments. Her work has focused on systems support for

creating, searching, manipulating, and monitoring streams of information in wide

area networked information systems. She has published more than 70 internal

journals or international conferences, and has served on more than a dozen of

conference program committees in the area of data engineering, databases, and

knowledge and information management.

Calton Pu, Ph.D.: He is a Professor and John P. Imlay, Jr. Chair in

Software at the College of Computing, Georgia Institute of Technology. Calton

received his PhD from University of Washington in 1986. He leads the Infosphere

expedition project, which is building the system software to support the next gen-

eration information 
ow applications. Infosphere research includes adaptive op-

erating system kernels, communications middleware, and distributed information


ow applications. His past research included operating system projects such as

Synthetix and Microfeedback, extended transaction projects such as Epsilon Seri-

alizability, and Internet data management. He has published more than 125 journal

and conference papers, and served on more than 40 program committees.

Karsten Schwan, Ph.D.: He is a professor in the College of Computing

at the Georgia Institute of Technology. He received the M.Sc. and Ph.D. degrees

from Carnegie-Mellon University in Pittsburgh, Pennsylvania. He directs the IHPC

project for high performance cluster computing at Georgia Tech. His current re-

search addresses the interactive nature of modern high performance applications

(i.e., online monitoring and computational steering), the development of e�cient

and object-based middleware, the operating system support for distributed and

parallel programs, and the online con�guration of applications for distributed real-

time applications and for communication protocols.

Jonathan Walpole is a Professor in the Computer Science and Engineering

Department at Oregon Graduate Institute of Science and Technology. He received

his Ph.D. in Computer Science from Lancaster University, U.K. in 1987. His re-

search interests are in the area of adaptive systems software and its application in

distributed, mobile, multimedia computing environments. His work has focused on

quality of service speci�cation, adaptive resource management and dynamic special-

ization for enhanced performance, survivability and evolvability of large software

systems, and he has published extensively in these areas.


